图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: XC6108C15AMR-G
  • 制造商: TOREX SEMICONDUCTOR
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

XC6108C15AMR-G产品简介:

ICGOO电子元器件商城为您提供XC6108C15AMR-G由TOREX SEMICONDUCTOR设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 XC6108C15AMR-G价格参考。TOREX SEMICONDUCTORXC6108C15AMR-G封装/规格:PMIC - 监控器, 推挽式,图腾柱 监控器 1 通道 SOT-25。您可以下载XC6108C15AMR-G参考资料、Datasheet数据手册功能说明书,资料中有XC6108C15AMR-G 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)

描述

IC SUPERVISOR 1.5V SOT25-5

产品分类

PMIC - 监控器

品牌

Torex Semiconductor Ltd

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

XC6108C15AMR-G

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

-

产品目录页面

点击此处下载产品Datasheet

供应商器件封装

SOT-25

其它名称

893-1000-1
XC6108C15AMRG

包装

剪切带 (CT)

受监控电压数

1

复位

-

复位超时

-

安装类型

表面贴装

封装/外壳

SC-74A,SOT-753

工作温度

-40°C ~ 85°C

标准包装

1

电压-阈值

1.5V

类型

简单复位/加电复位

输出

推挽式,图腾柱

推荐商品

型号:BD5232G-TR

品牌:Rohm Semiconductor

产品名称:集成电路(IC)

获取报价

型号:ADM803RAKSZ-REEL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:CAT1163WI-30-GT3

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:MAX821PUS+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:NCP308MT250TBG

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:TC54VC1402ECB713

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:MC33160PG

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:MAX6421US29+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
XC6108C15AMR-G 相关产品

MAX6800UR29D1+T

品牌:Maxim Integrated

价格:

CAT705VI-GT3

品牌:ON Semiconductor

价格:

CAT810ZTBI-T3

品牌:ON Semiconductor

价格:

LTC2934CDC-1#TRPBF

品牌:Linear Technology/Analog Devices

价格:

MAX16006ETG+

品牌:Maxim Integrated

价格:

BU4316G-TR

品牌:Rohm Semiconductor

价格:

ADM803ZAKS-REEL

品牌:Analog Devices Inc.

价格:

MAX6757UTLD3+T

品牌:Maxim Integrated

价格:

PDF Datasheet 数据手册内容提取

XC6108 series is Not Recommended for New Designs. XC6108 Series ETR0205_010b Voltage Detector with Separated Sense Pin & Delay Capacitor Pin ■GENERAL DESCRIPTION The XC6108 series is highly precise, low power consumption voltage detector, manufactured using CMOS and laser trimming technologies. Since the sense pin is separated from power supply, it allows the IC to monitor added power supply. Using the IC with the sense pin separated from power supply enables output to maintain the state of detection even when voltage of the monitored power supply drops to 0V. Moreover, with the built-in delay circuit, connecting the delay capacitance pin to the capacitor enables the IC to provide an arbitrary release delay time. Both CMOS and N-channel open drain output configurations are available. ■APPLICATIONS ■FEATURES ●Microprocessor reset circuitry Highly Accurate : +2% (Detect Voltage≧1.5V) +30mV (Detect Voltage<1.5V) ●Charge voltage monitors Low Power Consumption ●Memory battery back-up switch circuits : 0.6 μA TYP. (detect, V = 1.0V ) IN ●Power failure detection circuits 0.8 μA TYP. (release, VIN= 1.0V ) Detect Voltage Range : 0.8V ~ 5.0V in 0.1V increments Operating Voltage Range : 1.0V ~ 6.0V Temperature Stability : ±100ppm/ ℃ TYP. Output Configuration : CMOS or N-channel open drain Operating Temperature : -40 ℃ ~ +85 ℃ Separated Sense Pin : VSEN Pin Available Built-In Delay Circuit : Delay Time Adjustable Packages : USP-4, SOT-25 Environmentally Friendly : EU RoHS Compliant, Pb Free ■TYPICAL APPLICATION CIRCUIT ■TYPICAL PERFORMANCE CHARACTERISTICS ●Output Voltage vs. Sense Voltage XC6108C25AGR Monitering Power Ta=25℃ supply 7.0 (No Pull-Up resistor needed for CMOS output product) 6.0 V) VIN=6.0V V) T ( 5.0 (TOU 4.0 OUV e: Vge: 3.0 4.0V ga oltaVolt 2.0 ut Vput 1.0 utpOut 0.0 1.0V O -1.0 0 1 2 3 4 5 6 SSeennssee V Vooltltaaggee:: VVSEN ( V(V) ) SEN 1/22

XC6108 series is Not Recommended XC6108 Series for New Designs. ■PIN CONFIGURATION 5 4 Cd VSEN VOUT VSS VIN USP-4 1 2 3 (BOTTOM VIEW) * In the XC6108xxxA/B series, the dissipation pad should SOT-25 not be short-circuited with other pins. (TOP VIEW) * In the XC6108xxxC/D series, when the dissipation pad is short-circuited with other pins, connect it to the NC pin (No.2) pin before use. ■PIN ASSIGNMENT PIN NUMBER PIN NAME FUNCTION USP- 4 SOT-25 1 1 VOUT Output (Detect ”L”) 2 5 Cd Delay Capacitance (*1) 2 - NC No Connection 3 4 VSEN Sense 4 3 VIN Input 5 2 VSS Ground (*2) NOTE: *1: With the VSS pin of the USP-4 package, a tab on the backside is used as the pin No.5. *2: In the case of selecting no built-in delay capacitance pin type, the delay capacitance (Cd) pin will be used as the N.C. ■PRODUCT CLASSIFICATION ● Ordering Information XC6108 ①②③④⑤⑥-⑦(*1) DESIGNATOR DESCRIPTION SYMBOL DESCRIPTION C CMOS output ① Output Configuration N N-ch open drain output ②③ Detect Voltage 08 ~ 50 e.g. 18→1.8V A Built-in delay capacitance pin, hysteresis 5% (TYP.)(Standard*) B Built-in delay capacitance pin, hysteresis less than 1%(Standard*) Output Delay & Hysteresis ④ No built-in delay capacitance pin, hysteresis 5% (TYP.) (Options) C (Semi-custom) No built-in delay capacitance pin, hysteresis less than 1% D (Semi-custom) GR USP-4 Packages GR-G USP-4 ⑤⑥-⑦ Taping Type (*2) MR SOT-25 MR-G SOT-25 *When delay function isn’t used, open the delay capacitance pin before use. (*1) The “-G” suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant. (*2) The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or representative. (Standard orientation: ⑤R-⑦, Reverse orientation: ⑤L-⑦) 2/22

XC6108 XC6108 series is Not Recommended for New Designs. Series ■BLOCK DIAGRAMS (1) XC6108CxxA *The delay capacitance pin (Cd) is not connected to the circuit in the block diagram of XC6108CxxC (semi-custom). (2) XC6108CxxB *The delay capacitance pin (Cd) is not connected to the circuit in the block diagram of XC6108CxxD (semi-custom). (3) XC6108NxxA *The delay capacitance pin (Cd) is not connected to the circuit in the block diagram of XC6108NxxC (semi-custom). (4) XC6108NxxB *The delay capacitance pin (Cd) is not connected to the circuit in the block diagram of XC6108NxxD (semi-custom). 3/22

XC6108 series is Not Recommended XC6108 Series for New Designs. ■ABSOLUTE MAXIMUM RATINGS ●XC6108xxxA/B Ta = 25OC PARAMETER SYMBOL RATINGS UNITS Input Voltage VIN VSS-0.3 ~ 7.0 V Output Current IOUT 10 mA XC6108C (*1) VSS-0.3 ~ VIN+0.3 Output Voltage VOUT V XC6108N (*2) VSS-0.3 ~ 7.0 Sense Pin Voltage VSEN VSS-0.3 ~ 7.0 V Delay Capacitance Pin Voltage VCD VSS-0.3 ~ VIN+0.3 V Delay Capacitance Pin Current ICD 5.0 mA USP-4 120 Power Dissipation Pd mW SOT-25 250 Operating Temperature Range Ta -40 ~+85 ℃ Storage Temperature Range Tstg -55 ~+125 ℃ ●XC6108xxxC/D Ta = 25OC PARAMETER SYMBOL RATINGS UNITS Input Voltage VIN VSS-0.3 ~ 7.0 V Output Current IOUT 10 mA XC6108C (*1) VSS-0.3 ~ VIN+0.3 Output Voltage VOUT V XC6108N (*2) VSS-0.3 ~ 7.0 Sense Pin Voltage VSEN VSS-0.3 ~ 7.0 V USP-4 120 Power Dissipation Pd mW SOT-25 250 Operating Temperature Range Ta -40 ~+85 ℃ Storage Temperature Range Tstg -55 ~+125 ℃ NOTE: *1: CMOS output *2: N-ch open drain output 4/22

XC6108 XC6108 series is Not Recommended for New Designs. Series ■ELECTRICAL CHARACTERISTICS ●XC6108xxxA Ta=25℃ PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNITS CIRCUITS Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V (*1) 1.0 - 6.0 V - Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V ① Hysteresis Width VHYS VIN = 1.0 ~ 6.0V E-2 V ① Detect Voltage ΔVDF / VIN = 1.0 ~ 6.0V - ±0.1 - %/V ① Line Regulation (ΔVIN・VDF) VSEN = VIN = 1.0V - 0.6 1.5 Supply Current 1 (*2) ISS1 μA ② VDF x 0.9 VIN = 6.0V - 0.7 1.6 VSEN = VIN = 1.0V - 0.8 1.7 Supply Current 2 (*2) ISS2 μA ② VDF x 1.1 VIN = 6.0V - 0.9 1.8 VIN = 1.0V 0.1 0.7 VIN = 2.0V 0.8 1.6 VSEN =0V VIN = 3.0V 1.2 2.0 IOUT1 VDS = 0.5V - mA ③ VIN = 4.0V 1.6 2.3 (N-ch) VIN = 5.0V 1.8 2.4 Output Current (*3) VIN = 6.0V 1.9 2.5 VSEN = 6.0V VIN = 1.0V - -0.30 -0.08 IOUT2 VDS = 0.5V mA ④ (P-ch) VIN = 6.0V - -2.00 -0.70 CMOS 0.20 - Leakage Output VIN=6.0V, VSEN=6.0V, ILEAK - μA ③ Current Nch Open VOUT=6.0V, Cd: Open 0.20 0.40 Drain Output ΔVDF / ppm/ Temperature Characteristics -40 ℃ ≦ Ta ≦ 85℃ - ±100 - ① (ΔTopr・VDF) ℃ Sense Resistance (*4) RSEN VSEN = 5.0V, VIN = 0V E-4 M ⑤ VSEN = 6.0V, VIN = 5.0V, Delay Resistance (*5) Rdelay 1.6 2.0 2.4 M ⑥ Cd = 0V Delay capacitance pin ICD VDS = 0.5V, VIN = 1.0V - 200 - μA ⑥ Sink Current Delay Capacitance Pin VSEN = 6.0V, VIN = 1.0V 0.4 0.5 0.6 Threshold Voltage VTCD VSEN = 6.0V, VIN = 6.0V 2.9 3.0 3.1 V ⑦ Unspecified Operating VUNS VIN = VSEN = 0V ~ 1.0V - 0.3 0.4 V ⑧ Voltage (*6) VIN = 6.0V, VSEN = 6.0V→ 0.0V Detect Delay Time (*7) tDF0 30 230 μs ⑨ Cd: Open VIN = 6.0V, VSEN = 0.0V→ 6.0V Release Delay Time (*8) tDR0 30 200 μs ⑨ Cd: Open NOTE: *1: VDF(T): Nominal detect voltage *2: Current flows the sense resistor is not included. *3: The Pch values are applied only to the XC6108C series (CMOS output). *4: Calculated from the voltage value and the current value of the VSEN. *5: Calculated from the voltage value of the VIN and the current value of the Cd. *6: The maximum voltage of the VOUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited This value is applied only to the XC6108C series (CMOS output). *7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin. *8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin. 5/22

XC6108 series is Not Recommended XC6108 Series for New Designs. ■ELECTRICAL CHARACTERISTICS (Continued) ●XC6108xxxB Ta=25℃ PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNITS CIRCUITS Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V (*1) 1.0 - 6.0 V - Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V ① Hysteresis Width VHYS VIN = 1.0 ~ 6.0V E-3 V ① Detect Voltage ΔVDF / VIN = 1.0 ~ 6.0V - ±0.1 - %/V ① Line Regulation (ΔVIN・VDF) VSEN = VIN = 1.0V - 0.6 1.5 Supply Current 1 (*2) ISS1 μA ② VDF x 0.9 VIN = 6.0V - 0.7 1.6 VSEN = VIN = 1.0V - 0.8 1.7 Supply Current 2 (*2) ISS2 μA ② VDF x 1.1 VIN = 6.0V - 0.9 1.8 VIN = 1.0V 0.1 0.7 - VIN = 2.0V 0.8 1.6 VSEN =0V VIN = 3.0V 1.2 2.0 IOUT1 VDS = 0.5V mA ③ VIN = 4.0V 1.6 2.3 - (N-ch) Output Current (*3) VIN = 5.0V 1.8 2.4 VIN = 6.0V 1.9 2.5 VSEN = 6.0V VIN = 1.0V - -0.30 -0.08 IOUT2 VDS = 0.5V mA ④ (P-ch) VIN = 6.0V - -2.00 -0.70 CMOS 0.20 - Leakage Output VIN=6.0V, VSEN=6.0V, ILEAK - μA ③ Current Nch Open VOUT=6.0V, Cd: Open 0.20 0.40 Drain Output ΔVDF / ppm/ Temperature Characteristics -40 ℃ ≦ Ta ≦ 85℃ - ±100 - ① (ΔTopr・VDF) ℃ Sense Resistance (*4) RSEN VSEN = 5.0V, VIN = 0V E-4 M ⑤ VSEN = 6.0V, VIN = 5.0V, Delay Resistance (*5) Rdelay 1.6 2.0 2.4 M ⑥ Cd = 0V Delay capacitance pin ICD VDS = 0.5V, VIN = 1.0V - 200 - μA ⑥ Sink Current Delay Capacitance Pin VSEN = 6.0V, VIN = 1.0V 0.4 0.5 0.6 Threshold Voltage VTCD VSEN = 6.0V, VIN = 6.0V 2.9 3.0 3.1 V ⑦ Unspecified Operating VUNS VIN = VSEN = 0V ~ 1.0V - 0.3 0.4 V ⑧ Voltage (*6) VIN = 6.0V, VSEN = 6.0V→ 0.0V Detect Delay Time (*7) tDF0 30 230 μs ⑨ Cd: Open VIN = 6.0V, VSEN = 0.0V→ 6.0V Release Delay Time (*8) tDR0 30 200 μs ⑨ Cd: Open NOTE: *1: VDF(T): Nominal detect voltage *2: Current flows the sense resistor is not included. *3: The Pch values are applied only to the XC6108C series (CMOS output). *4: Calculated from the voltage value and the current value of the VSEN. *5: Calculated from the voltage value of the VIN and the current value of the Cd. *6: The maximum voltage of the VOUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited This value is applied only to the XC6108C series (CMOS output). *7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin. *8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin. 6/22

XC6108 XC6108 series is Not Recommended for New Designs. Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XC6108xxxC Ta=25℃ PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNITS CIRCUITS Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V (*1) 1.0 - 6.0 V - Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V ① Hysteresis Width VHYS VIN = 1.0 ~ 6.0V E-2 V ① Detect Voltage ΔVDF / VIN = 1.0 ~ 6.0V - ±0.1 - %/V ① Line Regulation (ΔVIN・VDF) VSEN = VIN = 1.0V - 0.6 1.5 Supply Current 1 (*2) ISS1 μA ② VDF x 0.9 VIN = 6.0V - 0.7 1.6 VSEN = VIN = 1.0V - 0.8 1.7 Supply Current 2 (*2) ISS2 μA ② VDF x 1.1 VIN = 6.0V - 0.9 1.8 VIN = 1.0V 0.1 0.7 VIN = 2.0V 0.8 1.6 VSEN =0V VIN = 3.0V 1.2 2.0 IOUT1 VDS = 0.5V - mA ③ VIN = 4.0V 1.6 2.3 (N-ch) VIN = 5.0V 1.8 2.4 Output Current (*3) VIN = 6.0V 1.9 2.5 VSEN = 6.0V VIN = 1.0V - -0.30 -0.08 IOUT2 VDS = 0.5V mA ④ (P-ch) VIN = 6.0V - -2.00 -0.70 CMOS 0.20 - Leakage Output VIN=6.0V, VSEN=6.0V, ILEAK - μA ③ Current Nch Open VOUT=6.0V, Cd: Open 0.20 0.40 Drain Output ΔVDF/ ppm/ Temperature Characteristics -40 ℃ ≦ Ta ≦ 85℃ - ±100 - ① (ΔTopr・VDF) ℃ Sense Resistance (*4) RSEN VSEN = 5.0V, VIN = 0V E-4 M ⑤ Unspecified Operating VUNS VIN = VSEN = 0V ~ 1.0V - 0.3 0.4 V ⑦ Voltage (*5) Detect Delay Time (*6) tDF0 VIN = 6.0V, VSEN = 6.0V→ 0.0V 30 230 μs ⑨ Release Delay Time (*7) tDR0 VIN = 6.0V, VSEN = 0.0V→ 6.0V 30 200 μs ⑨ NOTE: *1: VDF(T): Nominal detect voltage *2: Current flows the sense resistor is not included. *3: The Pch values are applied only to the XC6108C series (CMOS output). *4: Calculated from the voltage value and the current value of the VSEN. *5: The maximum voltage of the VOUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited This value is applied only to the XC6108C series (CMOS output). *6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls. *7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises. 7/22

XC6108 series is Not Recommended XC6108 Series for New Designs. ■ELECTRICAL CHARACTERISTICS (Continued) ●XC6108xxxD Ta=25℃ PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNITS CIRCUITS Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V (*1) 1.0 - 6.0 V - Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V 1 Hysteresis Width VHYS1 VIN = 1.0 ~ 6.0V E-3 V 1 Detect Voltage ΔVDF / VIN = 1.0 ~ 6.0V - ±0.1 - %/V 1 Line Regulation (ΔVIN・VDF) VSEN = VIN = 1.0V - 0.6 1.5 Supply Current 1 (*2) ISS1 μA 2 VDF x 0.9 VIN = 6.0V - 0.7 1.6 VSEN = VIN = 1.0V - 0.8 1.7 Supply Current 2 (*2) ISS2 μA 2 VDF x 1.1 VIN = 6.0V - 0.9 1.8 VIN = 1.0V 0.1 0.7 VIN = 2.0V 0.8 1.6 VSEN =0V VIN = 3.0V 1.2 2.0 IOUT1 VDS = 0.5V - mA 3 VIN = 4.0V 1.6 2.3 (N-ch) VIN = 5.0V 1.8 2.4 VIN = 6.0V 1.9 2.5 Output Current (*3) VIN = 1.0V - -0.30 -0.08 VSEN = 6.0V IOUT2 VDS = 0.5V mA 4 (P-ch) VIN = 6.0V - -2.00 -0.70 CMOS 0.20 - Leakage Output VIN=6.0V, VSEN=6.0V, ILEAK - μA 3 Current Nch Open VOUT=6.0V, Cd: Open 0.20 0.40 Drain Output ΔVDF / ppm/ Temperature Characteristics -40 ℃ ≦ Ta ≦ 85℃ - ±100 - 1 (ΔTopr・VDF) ℃ Sense Resistance (*4) RSEN VSEN = 5.0V, VIN = 0V E-4 M 5 Unspecified Operating VUNS VIN = VSEN = 0V ~ 1.0V - 0.3 0.4 V 7 Voltage (*5) Detect Delay Time (*6) tDF0 VIN = 6.0V, VSEN = 6.0V→ 0.0V 30 230 μs 9 Release Delay Time (*7) tDR0 VIN = 6.0V, VSEN = 0.0V→ 6.0V 30 200 μs 9 NOTE: *1: VDF(T): Nominal detect voltage *2: Current flows the sense resistor is not included. *3: The Pch values are applied only to the XC6108C series (CMOS output). *4: Calculated from the voltage value and the current value of the VSEN. *5: The maximum voltage of the VOUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited This value is applied only to the XC6108C series (CMOS output). *6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls. *7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises. 8/22

XC6108 XC6108 series is Not Recommended for New Designs. Series ■VOLTAGE CHART SYMBOL E-1 E-2 E-3 E-4 HYSTERESIS HYSTERESIS SENSE NOMINAL DETECT DETECT VOLTAGE (*1) RANGE RANGE RESISTANCE VOLTAGE (V) (V) (V) (MΩ) VDF(T) VDF VHYS VHYS RSEN (V) MIN. MAX. MIN. MAX. MIN. MAX. MIN. TYP. 0.8 0.770 0.830 0.015 0.066 0.008 0.9 0.870 0.930 0.017 0.074 0.009 1.0 0.970 1.030 0.019 0.082 0.010 1.1 1.070 1.130 0.021 0.090 0.011 1.2 1.170 1.230 0.023 0.098 0.012 1.3 1.270 1.330 0.025 0.106 0.013 10 20 1.4 1.370 1.430 0.027 0.114 0.014 1.5 1.470 1.530 0.029 0.122 0.015 1.6 1.568 1.632 0.031 0.131 0.016 1.7 1.666 1.734 0.033 0.085 0.017 1.8 1.764 1.836 0.035 0.147 0.018 1.9 1.862 1.938 0.037 0.155 0.019 2.0 1.960 2.040 0.039 0.163 0.020 2.1 2.058 2.142 0.041 0.171 0.021 2.2 2.156 2.244 0.043 0.180 0.022 2.3 2.254 2.346 0.045 0.188 0.023 2.4 2.352 2.448 0.047 0.196 0.024 2.5 2.450 2.550 0.049 0.204 0.026 2.6 2.548 2.652 0.051 0.212 0.027 2.7 2.646 2.754 0.053 0.220 0.028 2.8 2.744 2.856 0.055 0.228 0.029 2.9 2.842 2.958 0.057 0.237 0 0.030 13 24 3.0 2.940 3.060 0.059 0.245 0.031 3.1 3.038 3.162 0.061 0.253 0.032 3.2 3.136 3.264 0.063 0.261 0.033 3.3 3.234 3.366 0.065 0.269 0.034 3.4 3.332 3.468 0.067 0.277 0.035 3.5 3.430 3.570 0.069 0.286 0.036 3.6 3.528 3.672 0.071 0.294 0.037 3.7 3.626 3.774 0.073 0.302 0.038 3.8 3.724 3.876 0.074 0.310 0.039 3.9 3.822 3.978 0.076 0.318 0.040 4.0 3.920 4.080 0.078 0.326 0.041 4.1 4.018 4.182 0.080 0.335 0.042 4.2 4.116 4.284 0.082 0.343 0.043 4.3 4.214 4.386 0.084 0.351 0.044 4.4 4.312 4.488 0.086 0.359 0.045 4.5 4.410 4.590 0.088 0.367 0.046 15 28 4.6 4.508 4.692 0.090 0.375 0.047 4.7 4.606 4.794 0.092 0.384 0.048 4.8 4.704 4.896 0.094 0.392 0.049 4.9 4.802 4.998 0.096 0.400 0.050 5.0 4.900 5.100 0.098 0.408 0.051 NOTE: *1: When VDF(T)≦1.4V, the detection accuracy is ±30mV. When VDF(T)≧1.5V, the detection accuracy is ±2%. 9/22

XC6108 series is Not Recommended XC6108 Series for New Designs. ■TEST CIRCUITS Circuit 1 R=100kΩ (No resistor needed for CMOS output products) XC6108 Series Circuit 2 XC6108 Series Circuit 3 XC6108 Series Circuit 4 XC6108 Series Circuit 5 XC6108 Series 10/22

XC6108 XC6108 series is Not Recommended for New Designs. Series ■TEST CIRCUITS (Continued) Circuit 6 XC6108 Series Circuit 7 (No resistor needed for CMOS output products) XC6108 Series Circuit 8 XC6108 Series Circuit 9 (No resistor needed for CMOS output products) Waveform Measurement Point XC6108 Series *No delay capacitance pin available in the XC6108xxxC/D series. 11/22

XC6108 series is Not Recommended XC6108 Series for New Designs. ■OPERATIONAL EXPLANATION A typical circuit example is shown in Figure 1, and the timing chart of Figure 1 is shown in Figure 2 on page 14. ① As an early state, the sense pin is applied sufficiently high voltage (6.0V MAX.) and the delay capacitance (Cd) is charged to the power supply input voltage, (VIN: 1.0V MIN., 6.0V MAX.). While the sense pin voltage (VSEN) starts dropping to reach the detect voltage (VDF) (VSEN>VDF), the output voltage (VOUT) keeps the “High” level (=VIN). * If a pull-up resistor of the XC6108N series (N-ch open drain) is connected to added power supply different from the input voltage pin, the “High” level will be a voltage value where the pull-up resistor is connected. ② When the sense pin voltage keeps dropping and becomes equal to the detect voltage (VSEN =VDF), an N-ch transistor (M1) for the delay capacitance (Cd) discharge is turned ON, and starts to discharge the delay capacitance (Cd). An inverter (Inv.1) operates as a comparator of the reference voltage VIN, and the output voltage changes into the “Low” level (=VSS). The detect delay time [tDF] is defined as time which ranges from VSEN=VDF to the VOUT of “Low” level (especially, when the Cd pin is not connected: tDF0). ③ While the sense pin voltage keeps below the detect voltage, the delay capacitance (Cd) is discharged to the ground voltage (=VSS) level. Then, the output voltage maintains the “Low” level while the sense pin voltage increases again to reach the release voltage (VSEN< VDF +VHYS). ④ When the sense pin voltage continues to increase up to the release voltage level (VDF+VHYS), the N-ch transistor (M1) for the delay capacitance (Cd) discharge will be turned OFF, and the delay capacitance (Cd) will start discharging via a delay resistor (Rdelay). The inverter (Inv.1) will operate as a comparator (Rise Logic Threshold: VTLH=VTCD, Fall Logic Threshold: VTHL=VSS) while the sense pin voltage keeps higher than the detect voltage (VSEN > VDF). ⑤ While the delay capacitance pin voltage (VCD) rises to reach the delay capacitance pin threshold voltage (VTCD) with the sense pin voltage equal to the release voltage or higher, the sense pin will be charged by the time constant of the RC series circuit. Assuming the time to the release delay time (tDR), it can be given by the formula (1). tDR = -Rdelay×Cd×In (1-VTCD / VIN) …(1) * In = a natural logarithm The release delay time can also be briefly calculated with the formula (2) because the delay resistance is 2.0MΩ(TYP.) and the delay capacitance pin voltage is VIN /2 (TYP.) tDR = Rdelay×Cd×0.69…(2) *:Rdelay is 2.0MΩ(TYP.) As an example, presuming that the delay capacitance is 0.68μF, tDR is : 2.0×106×0.68×10-6×0.69=938(ms) * Note that the release delay time may remarkably be short when the delay capacitance (Cd) is not discharged to the ground (=VSS) level because time described in ③ is short. ⑥ When the delay capacitance pin voltage reaches to the delay capacitance pin threshold voltage (VCD=VTCD), the inverter (Inv.1) will be inverted. As a result, the output voltage changes into the “High” (=VIN) level. tDR0 is defined as time which ranges from VSEN=VDF+VHYS to the VOUT of “High” level without connecting to the Cd. ⑦ While the sense voltage is higher than the detect voltage (VSEN > VDF), the delay capacitance pin is charged until the delay capacitance pin voltage becomes the input voltage level. Therefore, the output voltage maintains the “High”(=VIN) level. 12/22

XC6108 XC6108 series is Not Recommended for New Designs. Series ■OPERATIONAL EXPLANATION (Continued) ● Function Chart TRANSITION OF VOUT CONDITION *1 VSEN Cd ① ② L L H L ⇒ L L H H L ⇒ L L H ⇒ H L H H ⇒ H *1: VOUT transits from condition ① to ② because of the combination of VSEN and Cd. ●Example ex. 1) VOUT ranges from ‘L’ to ‘H’ in case of VSEN = ‘H’ (VDR≧VSEN), Cd=’H’ (VTCD≧Cd) while VOUT is ‘L’. ex. 2) VOUT maintains ‘H’ when Cd ranges from ‘H’ to ‘L’, VSEN=’H’ and Cd=’L’ when VOUT becomes ‘H’ in ex.1. ●Release Delay Time Chart RELEASE DELAY TIME [tDR] RELEASE DELAY TIME [tDR] *2 DELAY CAPACITANCE [Cd] (TYP.) (MIN. ~ MAX.) (μF) (ms) (ms) 0.010 13.8 11.0 ~ 16.6 0.022 30.4 24.3 ~ 36.4 0.047 64.9 51.9 ~ 77.8 0.100 138 110 ~ 166 0.220 304 243~ 364 0.470 649 519 ~ 778 1.000 1380 1100 ~ 1660 * The release delay time values above are calculated by using the formula (2). *2: The release delay time (t ) is influenced by the delay capacitance Cd. DR 13/22

XC6108 series is Not Recommended XC6108 Series for New Designs. ■OPERATIONAL EXPLANATION (Continued) Figure 1: Typical application circuit example *The XC6108N series (N-ch open VIN drain output) requires a pull-up M2 resistor for pulling up output. M4 RSEN=R1+R2+R3 VSEN Comparator Rdelay Inverter R1 VOUT VIN VSEN R2 Vref M3 M1 M5 R3 VSS Cd Cd Figure 2: The timing chart of Figure 1 VSEN (MIN.:0V, MAX.:6.0V) VDF+VHYS VDF VCD(MIN.:VSS, MAX.:VIN) VTCD VOUT (MIN.:VSS, MAX:VIN) 14/22

XC6108 XC6108 series is Not Recommended for New Designs. Series ■NOTES ON USE 1. Use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent damage to the device. 2. The power supply input pin voltage drops by the resistance between power supply and the VIN pin, and by through current at operation of the IC. At this time, the operation may be wrong if the power supply input pin voltage falls below the minimum operating voltage range. In CMOS output, for output current, drops in the power supply input pin voltage similarly occur. Moreover, in CMOS output, when the VIN pin and the sense pin are short-circuited and used, oscillation of the circuit may occur if the drops in voltage, which caused by through current at operation of the IC, exceed the hysteresis voltage. Note it especially when you use the IC with the VIN pin connected to a resistor. 3. When the setting voltage is less than 1.0V, be sure to separate the VIN pin and the sense pin, and to apply the voltage over 1.0V to the VIN pin. 4. Note that a rapid and high fluctuation of the power supply input pin voltage may cause a wrong operation. 5. Power supply noise may cause operational function errors, Care must be taken to put the capacitor between VIN-GND and test on the board carefully. 6. When there is a possibility of which the power supply input pin voltage falls rapidly (e.g.: 6.0V to 0V) at release operation with the delay capacitance pin (Cd) connected to a capacitor, use a schottky barrier diode connected between the VIN pin and the Cd pin as the Figure 3 shown below. 6. In N channel open drain output, VOUT voltage at detect and release is determined by resistance of a pull up resistor connected at the VOUT pin. Please choose proper resistance values with reffering to Figure 4; During detection : VOUT = Vpull / (1+Rpull / RON) Vpull: Pull up voltage RON(※1):On resistance of N channel driver M3 can be calculated as VDS / IOUT1 from electrical characteristics, For example, when (※2) RON = 0.5 / 0.8×10-3 = 625Ω(MIN.)at VIN=2.0V, Vpull = 3.0V and VOUT ≦0.1V at detect, Rpull= (Vpull /VOUT-1)×RON= (3 / 0.1-1)×625≒18kΩ In this case, Rpull should be selected higher or equal to 18kΩ in order to keep the output voltage less than 0.1V during detection. (※1) RON is bigger when VIN is smaller, be noted. (※2) For calculation, Minimum VIN should be chosen among the input voltage range. During releasing:VOUT = Vpull / (1 + Rpull / Roff) Vpull:Pull up voltage Roff:On resistance of N channel driver M3 is 15MΩ(MIN.) when the driver is off (as to VOUT / ILEAK) For example:when Vpull = 6.0V and VOUT ≧ 5.99V, Rpull = (Vpull / VOUT-1)×Roff = (6/5.99-1)×15×106 ≒25kΩ In this case, Rpull should be selected smaller or equal to 25kΩ in order to obtain output voltage higher than 5.99V during releasing. Figure 3: Circuit example with the delay capacitance pin (Cd) connected to a schottky barrier diode Figure 4: Circuit example of XC6108N Series Vpull VIN M2 VIN (NoR =re1s0is0tkoΩr needed for VSEN RSEN=R1+R2+R3 Rpull VSEN CMOS output products) Comparator Rdelay Inverter R1 ILKEA VIN VSEN VOUT VOUT VIN VSEN VOUT R2 M3 Cd Vref Cd VSS R3 M5 M1 VSS Cd NOTE: Roff=VOUT/ILEAK Figure 3 Figure 4 15/22

XC6108 series is Not Recommended XC6108 Series for New Designs. ■TYPICAL PERFORMANCE CHARACTERISTICS (1) Supply Current vs. Sense Voltage XC6108C25AGR VIN=3.0V 2.0 μA) μA) 1.5 Ta=85℃ SS (SS ( 25℃ Current : ICurrent: I 1.0 Supply Supply 0.5 -40℃ 0.0 0 1 2 3 4 5 6 SSeennssee VVoollttaaggee :: VVSSEENN ((VV)) (2) Supply Current vs. Input Voltage XC6108C25AGR XC6108C25AGR VSEN=2.25V VSEN=2.75V 1.2 1.2 Ta=85℃ 1.0 1.0 μply Current : ISS (A) Supply Current: ISS (μA) 0000....2468 Ta2=-4580℃5℃℃ μpply Current : ISS (A) Supply Current: ISS (μA) 0000....2468 -40℃25℃ up Su S 0.0 0.0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 IInnppuutt V Vooltaltgaeg e: :V VININ ( V(V) ) IInnppuutt VVooltlataggee :: VVININ ( V(V) ) (3) Detect Voltage vs. Ambient Temperature (4) Detect Voltage vs. Input Voltage XC6108C25AGR XC6108C25AGR VIN=4.0V 2.55 2.55 Ta=25℃ ge : VDF (V) ge: VDF (V)2.50 e : VDF (V) ge: VDF (V)2.50 85℃ aa ga VoltVolt oltaVolt Detect Detect etect VDetect D -40℃ 2.45 2.45 -50 -25 0 25 50 75 100 1.0 2.0 3.0 4.0 5.0 6.0 AAmmbbieienntt TTeemmppeerraattuurree: :T Taa ( (℃℃)) Input Voltage: VIN (V) Input Voltage : VIN (V) 16/22

XC6108 XC6108 series is Not Recommended for New Designs. Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (5) Hysteresis Voltage vs. Ambient Temperature (6) CD Pin Sink Current vs. Input Voltage XC6108C25AGR XC6108C25AGR VIN=4.0V VSEN=0V, VDS=0.5V V) 0.20 3.0 Hysteresis Voltage : VHYS (Hysteresis Voltage:VHYS (V)00..1105 N Sink Current : ICD (mA) PIN Sink Current: ICD (mA) 01122.....50505 25℃ Ta=-4805℃℃ PId d C C 0.05 0.0 -50 -25 0 25 50 75 100 0 1 2 3 4 5 6 AAmmbbieiennt tT Teemmppeeraratuturere :: TTaa ( (℃℃) ) InInppuut tV Voollttaaggee: : VVIINN ((VV)) (7) Output Voltage vs. Sense Voltage (8) Output Voltage vs. Input Voltage XC6108C25AGR XC6108N25AGR Ta=25℃ VSEN=VIN Pull-up=VIN R=100kΩ 7.0 4.0 6.0 ) T (V) T (V) 5.0 VIN=6.0V T (V) UT (V 3.0 ge : VOUge: VOU 34..00 4.0V ge : VOUge: VO 2.0 Ta=852℃5℃ ut Voltaut Volta 12..00 ut Volta Volta 1.0 -40℃ OutpOutp 0.0 1.0V OutpOutput 0.0 -1.0 -1.0 0 0.5 1 1.5 2 2.5 3 0 1 2 3 4 5 6 SSeennssee V Voollttaaggee: :V VSSEENN ( V(V)) SInpuuptp Vloyl taVgoel t:a VgINe :( VV) IN (V) (9) Output Current vs. Input Voltage XC6108C25AGR XC6108C25AGR VDS(Nch)=0.5V VDS(Pch)=0.5V 4.0 0.0 3.5 OUT (mA) OUT (mA) 23..50 Ta=-40℃ 25℃ OUT (mA)UT (mA) -0.5 Ta=85℃ Output Current : IOutput Current: I 0112....5050 85℃ Output Current: Iutput Current : IO --11..50 25℃ -40℃ O 0.0 -2.0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 IInnppuutt VVooltlataggee :: VVININ ((VV) ) InIpnuptu Vt oVltoalgtaeg :e V: IVNI N(V ()V ) 17/22

XC6108 series is Not Recommended XC6108 Series for New Designs. ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (10) Delay Resistance vs. Ambient Temperature (11) Release Delay Time vs. Delay Capacitance XC6108C25AGR XC6108C25AGR Ta=25℃ VSEN=6.0V VCD=0.0V VIN=5.0V Delay Resistance: RdelayΩDelay Resistance : Rdelay (M) Ω(M) 123...1234555 Release Delay Time : TDR (ms) Release Delay time: TDR (ms) 10101000001.000011 VIN=361...T000DVVVR=Cd×2.0×106×0.69 0.0001 0.001 0.01 0.1 1 -50 -25 0 25 50 75 100 AAmmbbieientn Tt eTmepmerpaeturraet :u Trae :( ℃Ta) (℃) DDeellaayy CCaappaacictaitnocre: :C Cdd ((μμFF)) (12) Detect Delay Time vs. Delay Capacitance (13) Leakage Current vs. Ambient Temperature XC6108C25AGR XC6108N25AGR Ta=25℃ 1000 VIN=VSEN=6.0V VOUT=6.0V μetect Delay Time : TDF (s) Detect Delay Time: TDF (s) 10100 VIN=643...000VVV 1.0V 2.0V μeak Carrent: ILEAK (A) 000...122505 D L 0.10 1 -50 -25 0 25 50 75 100 0.0001 0.001 0.01 0.1 1 Ambient Temperature: Ta (℃) DeDlealya yC aCpaapcaitcaitnacnec :e C: Cdd ( μ(FF)) (14) Leakage Current vs. Supply Voltage XC6108N25AGR VIN=VSEN=6.0V 0.25 ) A μ ( K A 0.20 E L nt: I e urr 0.15 C k a e L 0.10 0 1 2 3 4 5 6 Output Voltage: VOUT (V) 18/22

XC6108 XC6108 series is Not Recommended for New Designs. Series ■PACKAGING INFORMATION ●USP-4 * Soldering fillet surface is not formed because the sides of the pins are plated. ●SOT-25 2.9±0.2 +0.1 0.4-0.05 5 4 0~0.1 1 2 3 +0.1 (0.95) 0.15-0.05 1.9±0.2 19/22

XC6108 series is Not Recommended XC6108 Series for New Designs. ■PACKAGING INFORMATION (Continued) ●USP-4 Reference Pattern Layout ●USP-4 Reference Metal Mask Design 20/22

XC6108 XC6108 series is Not Recommended for New Designs. Series ■MARKING RULE ●SOT-25 ① represents output configuration and integer number of detect voltage CMOS Output (XC6108C Series) N-ch Open Drain Output (XC6108N Series) 5 4 MARK VOLTAGE (V) MARK VOLTAGE (V) A 0.x K 0.x B 1.x L 1.x ① ② ③ ④ C 2.x M 2.x D 3.x N 3.x E 4.x P 4.x 1 2 3 F 5.x R 5.x SOT-25 (TOP VIEW) ② represents decimal number of detect voltage (ex.) MARK VOLTAGE (V) PRODUCT SERIES 3 x.3 XC6108xx3xxx 0 x.0 XC6108xx0xxx ③ represents options MARK OPTIONS PRODUCT SERIES Built-in delay capacitance pin with hysteresis 5% (TYP.) A XC6108xxxAxx (Standard) Built-in delay capacitance pin with hysteresis less than 1% B XC6108xxxBxx (Standard) No built-in delay capacitance pin with hysteresis 5% (TYP.) C XC6108xxxCxx (Semi-custom) No built-in delay capacitance pin with hysteresis less than 1% D XC6108xxxDxx (Semi-custom) ④ represents production lot number 0 to 9, A to Z or inverted characters of 0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded) ●USP-4 ① represents output configuration and integer number of detect voltage CMOS Output (XC6108C Series) N-ch Open Drain Output (XC6108N Series) 1 ③ ① 4 MARK VOLTAGE (V) MARK VOLTAGE (V) A 0.x K 0.x ④ ② 2 3 B 1.x L 1.x C 2.x M 2.x USP-4 D 3.x N 3.x (TOP VIEW) E 4.x P 4.x F 5.x R 5.x ② represents decimal number of detect voltage (ex.) MARK VOLTAGE (V) PRODUCT SERIES 3 x.3 XC6108xx3xxx 0 x.0 XC6108xx0xxx ③ represents options PRODUCT MARK OPTIONS SERIES Built-in delay capacitance pin with hysteresis 5% (TYP.) A XC6108xxxAxx (Standard) Built-in delay capacitance pin with hysteresis less than 1% B XC6108xxxBxx (Standard) No built-in delay capacitance pin with hysteresis 5% (TYP.) C XC6108xxxCxx (Semi-custom) No built-in delay capacitance pin with hysteresis less than 1% D XC6108xxxDxx (Semi-custom) ④ represents production lot number 0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded) *No character inversion used. 21/22

XC6108 series is Not Recommended XC6108 Series for New Designs. 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet. 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this datasheet within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD. 22/22