ICGOO在线商城 > 射频/IF 和 RFID > RF 混频器 > UPC8172TB-A
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
UPC8172TB-A产品简介:
ICGOO电子元器件商城为您提供UPC8172TB-A由CEL设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 UPC8172TB-A价格参考。CELUPC8172TB-A封装/规格:RF 混频器, RF Mixer IC Cellular, DCS, PCS, W-CDMA, WLAN Up Converter 50MHz ~ 400MHz 6-SuperMiniMold。您可以下载UPC8172TB-A参考资料、Datasheet数据手册功能说明书,资料中有UPC8172TB-A 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
描述 | IC MIXER 50-400MHZ UP CONV 6SMD上下转换器 2.5GHz Freq Upconvrt |
产品分类 | |
品牌 | CEL |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | RF集成电路,上下转换器,CEL UPC8172TB-AUPC8172TB |
数据手册 | |
产品型号 | UPC8172TB-A |
RF类型 | 手机,DCS,PCS,W-CDMA,WLAN |
中频 | 50 MHz to 400 MHz |
产品 | Up Converters |
产品目录页面 | |
产品种类 | 上下转换器 |
供应商器件封装 | 6-SuperMiniMold |
其它名称 | UPC8172TBA |
功率增益 | 9.5 dB |
包装 | 散装 |
商标 | CEL |
噪声系数 | 9.5 dB |
增益 | 9.5dB |
安装风格 | SMD/SMT |
封装/外壳 | 6-TSSOP,SC-88,SOT-363 |
封装/箱体 | SOT-363 |
射频 | 0.8 GHz to 2.5 GHz |
工作电源电压 | 2.7 V to 3.3 V |
工作电源电流 | 9 mA |
最大功率耗散 | 270 mW |
最大工作温度 | + 85 C |
最小工作温度 | - 40 C |
标准包装 | 1 |
混频器数 | 1 |
电压-电源 | 2.7 V ~ 3.3 V |
电流-电源 | 13mA |
辅助属性 | 升频器 |
频率 | 50MHz ~ 400MHz |
DATA SHEET BIPOLAR ANALOG INTEGRATED CIRCUIT m mmm PC8172TB T SILICON MMIC 2.5 GHz FREQUENCY UP-CONVERTER FOR WIRELESS TRANSCEIVER U DESCRIPTION The m PC8172TB is a silicon monolithic integrated circuit designed as frequency up-converter for wireless transceiver transmitter stage. O This IC is as same circuit current as conventional m PC8106TB, but operates at higher frequency, higher gain and lower distortion. Consequently this IC is suitable for mobile communications. FEATURES - • Recommended operating frequency : fRFout = 0.8 to 2.5 GHz • Higher IP3 : CG = 9.5 dB TYEP., OIP3 = +7.5 dBm TYP. @ fRFout = 0.9 GHz • High-density surface mounting : 6-pin super minimold package • Supply voltage : VCC = 2.7 to 3.3 V APPLICATIONS S • PCS1900M • 2.4 GHz band transmitter/receiver system (wireless LAN etc.) ORDERING INFORMATION A Part Number Package Marking Supplying Form mPC8172TB-E3 6-pin super minimold C3A • Embossed tape 8 mm wide. • Pin 1, 2, 3 face the tape perforation side. • Qty 3 kpcs/reel. H Remark To order evaluation samples, please contact your nearby sales office. (Part number for sample order: m PC8172TB-A) P Caution Electro-static sensitive devices Document No. P14729EJ2V0DS00 (2nd edition) The mark shows major revised points. Date Published September 2000 N CP(K)
m mmm PC8172TB PIN CONNECTIONS Pin No. Pin Name (Top View) (Bottom View) 1 IFinput T 3 A 4 4 3 2 GND 3 3 LOinput 2 5 5 2 C 4 PS U 1 6 6 1 5 VCC 6 RFoutput SERIES PRODUCTS (T = +25°C, V = V = 3.0 V, Z = Z = 50W WWW ) A CC RFout S L O ICC fRFout CG (dB) Part Number (mA) (GHz) @RF 0.9 GHzNote @RF 1.9 GHz @RF 2.4 GHz mPC8172TB 9 0.8 to 2.5 9.5 8.5 8.0 mPC8106TB 9 0.4 to 2.0 9 7 - mPC8109TB 5 0.4 to.2.0 6 4 -- mPC8163TB 16.5 0.8 to 2.0 9 5.5 - E PO(sat) (dBm) OIP3 (dBm) Part Number @RF 0.9 GHzNote @RF 1.9 GHz @RF 2.4 GHz @RF 0.9 GHzNote @RF 1.9 GHz @RF 2.4 GHz mPC8172TB +0.5 0 - 0.5 +7.5 +6.0 +4.0 S mPC8106TB - 2 - 4 - +5.5 +2.0 - mPC8109TB - 5.5 - 7.5 - +1.5 - 1.0 - mPC8163TB +0.5 - 2 - +9.5 +6.0 - Note fRFout = 0.83 GHz @ m PC8163TBA Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail. To know the associated product, please refer to each latest data sheet. H BLOCK DIAGRAM (FOR THE m mmm PC8172TB) (Top View) P LOinput PS GND VCC IFinput RFoutput 2 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB SYSTEM APPLICATION EXAMPLES (SCHEMATICS OF IC LOCATION IN THE SYSTEM) Wireless Transceiver T Low Noise Tr. I RX DEMOD. Q U VCO ÷N PLL SW O PLL - I 0° TX E Phase shifter 90° PA m PC8172TB Q S To know the associated products, please refer to each latest data sheet. A H P 3 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB CONTENTS 1. PIN EXPLANATION.......................................................................................................................... 5 T 2. ABSOLUTE MAXIMUM RATINGS.................................................................................................. 6 3. RECOMMENDED OPERATING CONDITIONS..............................................................U................. 6 4. ELECTRICAL CHARACTERISTICS................................................................................................ 6 5. OTHER CHARACTERISTICS, FOR REFERENCE PURPOSES ONLY...................................... 7 O 6. TEST CIRCUIT.................................................................................................................................. 8 6.1 TEST CIRCUIT 1 (fRFout = 900 MHz).................................................................................... 8 6.2 TEST CIRCUIT 2 (fRFout = 1.9 GHz)..................................................................................... 9 6.3 TEST CIRCUIT 3 (fRFout = 2.4 GHz)..................................................................................... 10 - 7. TYPICAL CHARACTERISTICS........................................................................................................ 12 E 8. PACKAGE DIMENSIONS................................................................................................................. 24 9. NOTE ON CORRECT USE............................................................................................................. 25 S 10. RECOMMENDED SOLDERING CONDITIONS............................................................................... 25 A H P 4 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB 1. PIN EXPLANATION Applied Pin Pin Pin No. Name Voltage Voltage Function and Explanation Equivalent Circuit T (V) (V)Note 1 IFinput - 1.4 This pin is IF input to double bal- anced mixer (DBM). The input is designed as high impedance. U The circuit contributes to sup- press spurious signal. Also this symmetrical circuit can keep specified performance insensitive to process-condition distribution. For above reason, double bal- O 5 anced mixer is adopted. 6 2 GND GND - GND pin. Ground pattern on the 3 board should be formed as wide as possible. Track Length should be kept as short as possible to 1 - minimize ground impedance. 3 LOinput - 2.3 Local input pin. Recommendable E input level is - 10 to 0 dBm. 5 VCC 2.7 to 3.3 - Supply voltage pin. 2 6 RFoutput Same - This pin is RF output from DBM. bias as This pin is designed as open VCC coSllector. Due to the high imped- through ance output, this pin should be external externally equipped with LC inductor matching circuit to next stage. 4 PS VCC/GND A- Power save control pin. Bias VCC 5 controls operation as follows. Pin bias Control 4 VCC Operation H GND Power Save GND 2 Note Each pin voltage is measured with VCC = VPS = VRFout = 3.0 V. P 5 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB 2. ABSOLUTE MAXIMUM RATINGS Parameter Symbol Test Conditions Rating Unit T Supply Voltage VCC TA = +25°C 3.6 V PS pin Input Voltage VPS TA = +25°C 3.6 V Power Dissipation of Package PD Mounted on double-side copperclad 50 · 50 · 1.6 270 mW mm epoxy glass PWB U (TA = +85°C) Operating Ambient Temperature TA - 40 to +85 °C Storage Temperature Tstg - 55 to +150 °C Input Power Pin +10 dBm O 3. RECOMMENDED OPERATING CONDITIONS Parameter Symbol Test Conditions MIN. TYP. MAX. Unit Supply Voltage VCC The same voltage should be- applied 2.7 3.0 3.3 V to pin 5 and 6 Operating Ambient Temperature TA E - 40 +25 +85 °C Local Input Level PLOin ZS = 50 W (without matching) - 10 - 5 0 dBm RF Output Frequency fRFout With external matching circuit 0.8 - 2.5 GHz IF Input Frequency fIFin 50 - 400 MHz S 4. ELECTRICAL CHARACTERISTICS (TA = +25°C, VCC = VRFout = 3.0 V, fIFin = 240 MHz, PLOin =- --- 5 dBm, and VPS‡ ‡‡‡ 2.7 V unless otherwise specified) Parameter SymbAol Test ConditionsNote MIN. TYP. MAX. Unit Circuit Current ICC No Signal 5.5 9.0 13 mA Circuit Current In Power Save ICC(PS) VPS = 0 V - - 2 mA Mode Conversion Gain H CG1 fRFout = 0.9 GHz, PIFin = - 30 dBm 6.5 9.5 12.5 dB CG2 fRFout = 1.9 GHz, PIFin = - 30 dBm 5.5 8.5 11.5 dB CG3 fRFout = 2.4 GHz, PIFin = - 30 dBm 5 8.0 11.0 dB Saturated RF Output Power PO(sat)1 fRFout = 0.9 GHz, PIFin = 0 dBm - 2.5 +0.5 - dBm P PO(sat)2 fRFout = 1.9 GHz, PIFin = 0 dBm - 3.5 0 - dBm PO(sat)3 fRFout = 2.4 GHz, PIFin = 0 dBm - 4 - 0.5 - dBm Note fRFout < fLoin @ fRFout = 0.9 GHz fLoin < fRFout @ fRFout = 1.9 GHz/2.4 GHz 6 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB 5. OTHER CHARACTERISTICS, FOR REFERENCE PURPOSES ONLY (TA = +25°C, VCC = VRFout = 3.0 V, PLOin =- --- 5 dBm, and VPS‡ ‡‡‡ 2.7 V unless otherwise specified) Parameter Symbol Test ConditionsNote DataTUnit Output Third-Order Distortion OIP31 fRFout = 0.9 GHz +7.5 dBm Intercept Point fIFin1 = 240 MHz OIP32 fRFout = 1.9 GHz +6.0 dBm fIFin2 = 241 MHz OIP33 fRFout = 2.4 GHz +4.0 dBm U Input Third-Order Distortion IIP31 fRFout = 0.9 GHz - 2.0 dBm Intercept Point IIP32 fRFout = 1.9 GHz fIFin1 = 240 MHz - 2.5 dBm fIFin2 = 241 MHz IIP33 fRFout = 2.4 GHz - 4.0 dBm SSB Noise Figure SSB•NF1 fRFout = 0.9 GHz, fIFin = 240 MHz O 9.5 dB SSB•NF2 fRFout = 1.9 GHz, fIFin = 240 MHz 10.4 dB SSB•NF3 fRFout = 2.4 GHz, fIFin = 240 MHz 10.6 dB Power Save Rise time TPS(rise) VPS: GND fi VCC 1 ms Response Time Fall time TPS(fall) VPS: VCC fi GND 1.5 ms - Note fRFout < fLOin @ fRFout = 0.9 GHz E fLOin < fRFout @ fRFout = 1.9 GHz/2.4 GHz S A H P 7 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB 6. TEST CIRCUIT 6.1 TEST CIRCUIT 1 (f = 900 MHz) RFout T Strip Line Spectrum Analyzer Signal Generator 100 pF 1 pF 100 pF 6 RFoutput IFinput 1 50 W C3 C8 L 10 nH C1 U50 W 5 VCC GND 2 Signal Generator 100 pF 1 000 pF 4 PS LOinput 3 CO2 50 W VCC C5 C7 C6 C4 1 000 pF 1 m F 68 pF 1 m F EXAMPLE OF TEST CIRCUIT 1 ASSEMBLED ON EVALUATION BOARD - E PS bias C4 LOinput C2 S PS C5 GND VCC C7 A C6 L Voltage Supply C 8 IFinput C1 H C3 RFoutput m PC8172TB P COMPONENT LIST Form Symbol Value (* 1) 35 · 42 · 0.4 mm polyimide board, double-sided copper clad Chip capacitor C1, C2, C3 100 pF (* 2) Ground pattern on rear of the board C4 1 000 pF (* 3) Solder plated patterns C5, C6 1 mF (* 4) : Through holes C7 68 pF C8 1 pF Chip inductor L 10 nHNote Note 10 nH: LL1608-FH10N (TOKO Co., Ltd.) 8 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB 6.2 TEST CIRCUIT 2 (f = 1.9 GHz) RFout Strip Line Spectrum Analyzer Signal TGenerator 100 pF 100 pF C3 6 RFoutput IFinput 1 50 W 2.75 pF C8 L 470 nH C1 50 W 5 VCC GND 2 U Signal Generator 100 pF 1 000 pF 4 PS LOinput 3 C2 50 W VCC C5 C7 C6 C4 1 000 pF 1 m F 30 pF 1 m F O EXAMPLE OF TEST CIRCUIT 2 ASSEMBLED ON EVALUATION BOARD - E C4 LOinput C2 PS bias PS S C5 GND VCC C7 L C6 Voltage Supply A IFinput C1 C3 RFoutput C8 H m PC8172TB COMPONENT LIST P Form Symbol Value (* 1) 35 · 42 · 0.4 mm polyimide board, double-sided copper clad Chip capacitor C1, C2, C3 100 pF (* 2) Ground pattern on rear of the board C4 1 000 pF (* 3) Solder plated patterns C5, C6 1 mF (* 4) : Through holes C7 30 pF C8 2.75 pF Chip inductor L 470 nHNote Note 470 nH: LL2012-FR47 (TOKO Co., Ltd.) 9 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB 6.3 TEST CIRCUIT 3 (f = 2.4 GHz) RFout Strip Line Spectrum Analyzer Signal GeneraTtor 100 pF 100 pF C3 6 RFoutput IFinput 1 50 W 1.75 pF C8 L 470 nH C1 50 W 5 VCC GND 2 U Signal Generator 100 pF 1 000 pF 4 PS LOinput 3 C2 50 W VCC C5 C7 C6 C4 1 000 pF 1 m F 10 pF 1 m F O EXAMPLE OF TEST CIRCUIT 3 ASSEMBLED ON EVALUATION BOARD - E C4 LOinput C2 PS bias PS S C5 GND VCC C7 L C6 Voltage Supply A IFinput C1 C3 RFoutput C8 H m PC8172TB COMPONENT LIST P Form Symbol Value (* 1) 35 · 42 · 0.4 mm polyimide board, double-sided copper clad Chip capacitor C1, C2, C3 100 pF (* 2) Ground pattern on rear of the board C4 1 000 pF (* 3) Solder plated patterns C5, C6 1 mF (* 4) : Through holes C7 10 pF C8 1.75 pF Chip inductor L 470 nHNote Note 470 nH: LL2012-FR47 (TOKO Co., Ltd.) 10 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB Caution The test circuits and board pattern on data sheet are for performance evaluation use only (They are not recommended circuits). In the case of actual design-in, matching circuit should be de- termined using S-parameter of desired frequency in accordance to actual mounting pattern. T U O - E S A H P 11 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB 7. TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25(cid:176) (cid:176)(cid:176)(cid:176) C, VCC = VRFout) CIRCUIT CURRENT vs. CIRCUIT CURRENT vs. SUPPLY VOLTAGE OPERATING AMBIENT TEMPERATURE 12 12 T VCC = 3.3 V 10 10 A) A) ent I (mCC 86 TA = +85°C ent I (mCC 86 VCC = 2.7 V VCC = 3U.0 V Curr TA = +25°C Curr uit 4 uit 4 c c Cir TA = –40°C Cir 2 2 O no signal no signal VCC = VPS VCC = VPS 0 0 0 1 2 3 4 –40 –20 0 20 40 60 80 Supply Voltage VCC (V) Operating Ambient Temperature TA (°C) - CIRCUIT CURRENT vs. PS PIN INPUT VOLTAGE E 12 10 A) m (C 8 C S ent I 6 urr C uit 4 c Cir 2 A VCC = 3.0 V 0 0 1 2 3 4 PS Pin Input Voltage VPS (V) H PS PIN CONTROL RESPONSE TIME REF LVL = 0 dBm P ATT = 10 dB 10 dB/DIV (Vertical axis) CENTER = 0.9 GHz SPAN = 0 Hz RBW = 3 MHz VBW = 3 MHz SWP = 50 m sec 5 m sec/DIV (Horizontal axis) 12 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB S-PARAMETERS FOR EACH PORT (VCC = VPS = VRFout = 3.0 V) (The parameters are monitored at DUT pins) LO port RF port (without matching) T S11 Z S22 Z REF 1.0 Units REF 1.0 Units 1 200.0 mUnits/ 1 200.0 mUnits/ 21.625 W –91.148 W 71.5 W –240.34 W hp hp U MARKER 1 MARKER 1 1.15 GHz 900.0 MHz MARKER 2 MARKER 2 1.65 GHz 1.9 GHz MARKER 3 MARKER 3 2.15 GHz 2.5 GHz O 1 1 - 2 3 3 2 E START 0.400000000 GHz START 0.400000000 GHz STOP 2.500000000 GHz STOP 2.500000000 GHz S IF port S11 Z REF 1.0 Units 1 200.0 mUnits/ A 332.63 W –601.34 W hp MARKER 1 240.0 MHz H 1 P START 0.100000000 GHz STOP 1.000000000 GHz 13 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB S-PARAMETERS FOR MATCHED RF OUTPUT (VCC = VPS = VRFout = 3.0 V)- --- ON EVALUATION BOARD- --- (S22 data are monitored at RF connector on board) 900 MHz (matched in test circuit 1) 1.9 GHz (matched in test circuit 2) T S22 Z S22 Z REF 1.0 Units REF 1.0 Units 1 200.0 mUnits/ 1 200.0 mUnits/ 55.615 W 2.2849 W 38.584 W –2.2656 W hp hp C C U MARKER 1 MARKER 1 900.0 MHz 1.9 GHz D D O 1 1 - E START 0.400000000 GHz START 1.400000000 GHz STOP 1.400000000 GHz STOP 2.400000000 GHz S S22 log MAG. S22 log MAG. REF 0.0 dB REF 0.0 dB 1 10.0 dB/ A 1 10.0 dB/ –24.754 dB –18.196 dB hp hp C C MARKER 1 MARKER 1 900.0 MHz 1.9 GHz D D H 1 1 1 P START 0.400000000 GHz START 1.400000000 GHz STOP 1.400000000 GHz STOP 2.400000000 GHz 14 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB S-PARAMETERS FOR MATCHED RF OUTPUT (VCC = VPS = VRFout = 3.0 V)- --- ON EVALUATION BOARD- --- (S22 data are monitored at RF connector on board) 2.4 GHz (matched in test circuit 3) T S22 Z REF 1.0 Units 1 200.0 mUnits/ 47.975 W –7.1113 W hp U C MARKER 1 2.4 GHz D O 1 - E START 1.900000000 GHz STOP 2.900000000 GHz S S22 log MAG. REF 0.0 dB A 1 10.0 dB/ –22.326 dB hp C MARKER 1 2.4 GHz D H 1 1 P START 1.900000000 GHz STOP 2.900000000 GHz 15 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB CONVERSION GAIN vs. LOCAL INPUT LEVEL RF OUTPUT LEVEL vs. IF INPUT LEVEL 15 5 VCC = 3.3 V VCC = 3.3 V 10 m) 0 B) B n CG (d 5 VCCV =C C3 .=0 2V.7 V P (dRFout –5 VCC =V 3C.C0 =V 2.7 VT Gai 0 el –10 v n e o L Conversi ––150 ffRLOFoinu t= = 1 9 10400 M MHHzz F Output ––1250 ffRLOFUoinu t= = 1 9 10400 M MHHzz PIFin = –30 dBm R PLOin = –5 dBm VCC = VPS VCC = VPS –15 –25 –30 –25 –20 –15 –10 –5 0 5 10 –30 –25 –20 –15 –10 –5 0 5 10 O Local Input Level PLOin (dBm) IF Input Level PIFin (dBm) CONVERSION GAIN vs. LOCAL INPUT LEVEL RF OUTPUT LEVEL vs. IF INPUT LEVEL 15 5- 10 m) 0 dB) TA = –40°C dBE CG ( 5 (Fout –5 TA = –40°C Gain 0 TA = +85°C el PR –10 TA = +85°C n ev Conversio ––150 TA = +25°C ffRLOFoinu t= = 1 9 10400 M MHHzz S F Output L ––1250 TA = +25°C ffRLOFoinu t= = 1 9 10400 M MHHzz PIFin = –30 dBm R PLOin = –5 dBm VCC = VPS = 3.0 V VCC = VPS = 3.0 V –15 –25 –30 –25 –20 –15 –10 –5 0 5 10 –30 –25 –20 –15 –10 –5 0 5 10 A Local Input Level PLOin (dBm) IF Input Level PIFin (dBm) H P 16 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB CONVERSION GAIN vs. LOCAL INPUT LEVEL RF OUTPUT LEVEL vs. IF INPUT LEVEL 15 5 VCC = 3.3 V VCC = 3.3 V 10 m) 0 B) B n CG (d 5 VVCCCC == 23..70 VV P (dRFout –5 VCC V=C 3CT .=0 2V.7 V Gai 0 el –10 v n e o L ersi –5 put –15 U Conv –10 ffRLOFoinu t= = 1 1 6.96 0G MHzHz F Out –20 ffRLOFoinu t= = 1 1 6.96 0G MHzHz PIFin = –30 dBm R PLOin = –5 dBm –15 VCC = VPS –25 VCC = VPS –30 –25 –20 –15 –10 –5 0 5 10 –30 –25 –20 –15 –10 –5 0 5 10 O Local Input Level PLOin (dBm) IF Input Level PIFin (dBm) CONVERSION GAIN vs. LOCAL INPUT LEVEL RF OUTPUT LEVEL vs. IF INPUT LEVEL 15 -5 10 m) 0 B) EB CG (d 5 TA = –40°C (dFout –5 TA = –40°C n PR Conversion Gai ––1050 TA = T+A8 =5 °+C25°C ffRLOFoinu t= = 1 1 6.96 0G SMHzHz F Output Level –––112050 TTAA == ++8255°°CC ffRLOFoinu t= = 1 1 6.96 0G MHzHz PIFin = –30 dBm R PLOin = –5 dBm –15 VCC = VPS = 3.0 V –25 VCC = VPS = 3.0 V –30 –25 –20 –15 –10 –5 0 5 10 –30 –25 –20 –15 –10 –5 0 5 10 A Local Input Level PLOin (dBm) IF Input Level PIFin (dBm) H P 17 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB CONVERSION GAIN vs. LOCAL INPUT LEVEL RF OUTPUT LEVEL vs. IF INPUT LEVEL 15 5 VCC = 3.3 V VCC = 3.3 V 10 m) 0 B) B d d T n CG ( 5 VVCCCC == 23..70 VV P (RFout –5 VVCCCC == 32..07 VV Gai 0 el –10 v n e o L Conversi ––150 ffRLOFoinu t= = 2 2 1.46 0G MHzHz F Output ––1250 ffRLUOFoinu t= = 2 2 1.46 0G MHzHz PIFin = –30 dBm R PLOin = –5 dBm VCC = VPS VCC = VPS –15 –25 –30 –25 –20 –15 –10 –5 0 5 10 –30 –25 –20 –15 –10 –5 0 5 10 O Local Input Level PLOin (dBm) IF Input Level PIFin (dBm) CONVERSION GAIN vs. LOCAL INPUT LEVEL RF OUTPUT LEVEL vs. IF INPUT LEVEL 15 5- 10 m) 0 dB) dBE CG ( 5 TA = –40°C (Fout –5 TA = –40°C n PR Gai 0 el –10 n TA = +25°C ev TA = +25°C o L Conversi ––150 TA = +85°C ffRLOFoinu t= = 2 2 1.46 0G MHzHz S F Output ––1250 TA = +85°C ffRLOFoinu t= = 2 2 1.46 0G MHzHz PIFin = –30 dBm R PLOin = –5 dBm VCC = VPS = 3.0 V VCC = VPS = 3.0 V –15 –25 –30 –25 –20 –15 –10 –5 0 5 10 –30 –25 –20 –15 –10 –5 0 5 10 A Local Input Level PLOin (dBm) IF Input Level PIFin (dBm) H P 18 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB m) IM3, RF OUTPUT LEVEL vs. IF INPUT LEVEL m) IM3, RF OUTPUT LEVEL vs. IF INPUT LEVEL Bm) 10 Bm) 10 dB dB n IM (3 (dRFout –100 n IM (3 (dRFout –100 oP oP T stortione –20 stortione –20 ation DiEach T ––3400 TA = +25°C ation DiEach T ––3400 TA = –40°C modulvel of –50 VfRCFoCu t= = V 9P0S 0= M 2H.7z V modulvel of –50 UVfRCFoCu t= = V 9P0S 0= M 3H.0z V erLe –60 fIFin1 = 240 MHz erLe –60 fIFin1 = 240 MHz Order IntF Output ––7800 ffPILFOLinOin2i n = == 1 2– 41514 d 0MB MmHHzz Order IntF Output ––7800 ffPILFOLinOin2i n = == 1 2– 41514 d 0MB MmHHzz d R –30 –25 –20 –15 –10 –5 0 5 d R –30 –25 –20 –15 –10 –5 0 5 3r 3r O IF Input Level PIFin (dBm) IF Input Level PIFin (dBm) m) IM3, RF OUTPUT LEVEL vs. IF INPUT LEVEL m) IM3, RF OUTPUT LEVEL vs. IF INPUT LEVEL dBBm) 10 dB-Bm) 10 on IM (3P (dRFout –100 Eon IM (3P (dRFout –100 stortione –20 stortione –20 DiT DiT modulation vel of Each –––345000 VTfRACF oC=u t= += V2 95P0S°S 0C= M 3H.0z V modulation vel of Each –––345000 VTfRACF oC=u t= += V2 95P0S° 0C= M 3H.0z V 3rd Order InterRF Output Le –––678000–30 –25 –20 –15 A–10fffPIILFFOLiinnOin12–i n =5 === 1 22– 4415014 d 00MMB MmHHHzzz5 3rd Order InterRF Output Le –––678000–30 –25 –20 –15 –10fffPIILFFOLiinnOin12i n =– ===5 1 22– 4415014 d 0MMB0 MmHHHzzz 5 IF Input Level PIFin (dBm) IF Input Level PIFin (dBm) Bm)m) 10 IM3, RF OHUTPUT LEVEL vs. IF INPUT LEVEL Bm)m) 10 IM3, RF OUTPUT LEVEL vs. IF INPUT LEVEL dB dB n IM (3 (dRFout –100 n IM (3 (dRFout –100 oP oP stortione –20 stortione –20 ation DiEach TP––3400 TA = +25°C ation DiEach T ––3400 TA = +85°C modulvel of –50 VfRCFoCu t= = V 9P0S 0= M 3H.3z V modulvel of –50 VfRCFoCu t= = V 9P0S 0= M 3H.0z V erLe –60 fIFin1 = 240 MHz erLe –60 fIFin1 = 240 MHz Order IntF Output ––7800 ffPILFOLinOin2i n = == 1 2– 41514 d 0MB MmHHzz Order IntF Output ––7800 ffPILFOLinOin2i n = == 1 2– 41514 d 0MB MmHHzz d R –30 –25 –20 –15 –10 –5 0 5 d R –30 –25 –20 –15 –10 –5 0 5 3r 3r IF Input Level PIFin (dBm) IF Input Level PIFin (dBm) 19 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB m) IM3, RF OUTPUT LEVEL vs. IF INPUT LEVEL m) IM3, RF OUTPUT LEVEL vs. IF INPUT LEVEL Bm) 10 Bm) 10 dB dB n IM (3 (dRFout –100 n IM (3 (dRFout –100 oP oP T stortione –20 stortione –20 ation DiEach T ––3400 TA = +25°C ation DiEach T ––3400 TA = –40°C modulvel of –50 VfRCFoCu t= = V 1P.S9 = G 2H.7z V modulvel of –50 VfRCFUoCu t= = V 1P.S9 = G 3H.0z V erLe –60 fIFin1 = 240 MHz erLe –60 fIFin1 = 240 MHz Order IntF Output ––7800 ffPILFOLinOin2i n = == 1 2– 46516 d 0MB MmHHzz Order IntF Output ––7800 ffPILFOLinOin2i n = == 1 2– 46516 d 0MB MmHHzz d R –30 –25 –20 –15 –10 –5 0 5 d R –30 –25 –20 –15 –10 –5 0 5 3r 3r O IF Input Level PIFin (dBm) IF Input Level PIFin (dBm) m) IM3, RF OUTPUT LEVEL vs. IF INPUT LEVEL m) IM3, RF OUTPUT LEVEL vs. IF INPUT LEVEL dBBm) 10 dBBm) 10- on IM (3P (dRFout –100 on IM (3P (dERFout –100 stortione –20 stortione –20 DiT DiT modulation vel of Each –––345000 VTfRACF oC=u t= += V2 15P.S°9 C= G 3H.0z VSmodulation vel of Each –––345000 VTfRACF oC=u t= += V2 15P.S°9 C= G 3H.0z V 3rd Order InterRF Output Le –––678000–30 –25 –20 –15 –10fffPIILFFOLiinnOin12A–i n =5 === 1 22– 4465016 d 00MMB MmHHHzzz5 3rd Order InterRF Output Le –––678000–30 –25 –20 –15 –10fffPIILFFOLiinnOin12i n =– ===5 1 22– 4465016 d 0MMB0 MmHHHzzz 5 IF Input Level PIFin (dBm) IF Input Level PIFin (dBm) Bm)m) 10 IM3, RF OUTPUTH LEVEL vs. IF INPUT LEVEL Bm)m) 10 IM3, RF OUTPUT LEVEL vs. IF INPUT LEVEL dB dB n IM (3 (dRFout –100 n IM (3 (dRFout –100 oP oP stortione –20 stortione –20 ation DiEach T ––3400 P TA = +25°C ation DiEach T ––3400 TA = +85°C modulvel of –50 VfRCFoCu t= = V 1P.S9 = G 3H.3z V modulvel of –50 VfRCFoCu t= = V 1P.S9 = G 3H.0z V erLe –60 fIFin1 = 240 MHz erLe –60 fIFin1 = 240 MHz Order IntF Output ––7800 ffPILFOLinOin2i n = == 1 2– 46516 d 0MB MmHHzz Order IntF Output ––7800 ffPILFOLinOin2i n = == 1 2– 46516 d 0MB MmHHzz d R –30 –25 –20 –15 –10 –5 0 5 d R –30 –25 –20 –15 –10 –5 0 5 3r 3r IF Input Level PIFin (dBm) IF Input Level PIFin (dBm) 20 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB m) IM3, RF OUTPUT LEVEL vs. IF INPUT LEVEL m) IM3, RF OUTPUT LEVEL vs. IF INPUT LEVEL Bm) 10 Bm) 10 dB dB n IM (3 (dRFout –100 n IM (3 (dRFout –100 oP oP T stortione –20 stortione –20 ation DiEach T ––3400 TA = +25°C ation DiEach T ––3400 TA = –40°C modulvel of –50 VfRCFoCu t= = V 2P.S4 = G 2H.7z V modulvel of –50 UVfRCFoCu t= = V 2P.S4 = G 3H.0z V erLe –60 fIFin1 = 240 MHz erLe –60 fIFin1 = 240 MHz Order IntF Output ––7800 ffPILFOLinOin2i n = == 2 2– 41516 d 0MB MmHHzz Order IntF Output ––7800 ffPILFOLinOin2i n = == 2 2– 41516 d 0MB MmHHzz d R –30 –25 –20 –15 –10 –5 0 5 d R –30 –25 –20 –15 –10 –5 0 5 3r 3r O IF Input Level PIFin (dBm) IF Input Level PIFin (dBm) m) IM3, RF OUTPUT LEVEL vs. IF INPUT LEVEL m) IM3, RF OUTPUT LEVEL vs. IF INPUT LEVEL dBBm) 10 dB-Bm) 10 n IM (3 (dRFout –100 En IM (3 (dRFout –100 oP oP stortione –20 stortione –20 modulation Divel of Each T –––345000 VTfRACF oC=u t= += V2 25P.S°4S C= G 3H.0z V modulation Divel of Each T –––345000 VTfRACF oC=u t= += V2 25P.S°4 C= G 3H.0z V erLe –60 fIFin1 = 240 MHz erLe –60 fIFin1 = 240 MHz Order IntF Output ––7800 ffPILFOLinOin2i n = == 2 2– 41516 d 0MB MmHHzz Order IntF Output ––7800 ffPILFOLinOin2i n = == 2 2– 41516 d 0MB MmHHzz d R –30 –25 –20 –15 –10 –5 0 5 d R –30 –25 –20 –15 –10 –5 0 5 3r A 3r IF Input Level PIFin (dBm) IF Input Level PIFin (dBm) Bm)m) 10 IM3, RF OHUTPUT LEVEL vs. IF INPUT LEVEL Bm)m) 10 IM3, RF OUTPUT LEVEL vs. IF INPUT LEVEL dB dB n IM (3 (dRFout –100 n IM (3 (dRFout –100 oP oP stortione –20 stortione –20 ation DiEach TP––3400 TA = +25°C ation DiEach T ––3400 TA = +85°C modulvel of –50 VfRCFoCu t= = V 2P.S4 = G 3H.3z V modulvel of –50 VfRCFoCu t= = V 2P.S4 = G 3H.0z V erLe –60 fIFin1 = 240 MHz erLe –60 fIFin1 = 240 MHz Order IntF Output ––7800 ffPILFOLinOin2i n = == 2 2– 41516 d 0MB MmHHzz Order IntF Output ––7800 ffPILFOLinOin2i n = == 2 2– 41516 d 0MB MmHHzz d R –30 –25 –20 –15 –10 –5 0 5 d R –30 –25 –20 –15 –10 –5 0 5 3r 3r IF Input Level PIFin (dBm) IF Input Level PIFin (dBm) 21 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB LOCAL LEAKAGE AT IF PIN vs. LOCAL LEAKAGE AT IF PIN vs. LOCAL INPUT FREQUENCY LOCAL INPUT FREQUENCY 0 0 m) m) B B O (dif –10 O (dif –10 T L L Pin –20 Pin –20 F F at I at I e –30 e –30 U g g a a k k a a e e cal L –40 PfRLFOouint == 9–050 d MBmHz cal L –40 PfRLFOouint == 1–.59 dGBHmz o o L VCC = VPS = 3.0 V L VCC = VPS = 3.0 V –50 –50 0 0.5 1 1.5 2 2.5 3 0 0.5 1O1.5 2 2.5 3 Local Input Frequency fLOin (GHz) Local Input Frequency fLOin (GHz) LOCAL LEAKAGE AT RF PIN vs. LOCAL LEAKAGE AT RF PIN vs. LOCAL INPUT FREQUENCY LOCAL INPUT FREQUENCY - 0 0 m) m) B B O (drf –10 O (dErf –10 L L n –20 n –20 Pi Pi F F R R e at –30 S e at –30 g g a a k k a a Le –40 fRFout = 900 MHz Le –40 fRFout = 1.9 GHz al PLOin = –5 dBm al PLOin = –5 dBm c c Lo VCC = VPS = 3.0 V Lo VCC = VPS = 3.0 V –50 –50 0 0.5 1 1.5 2 A2.5 3 0 0.5 1 1.5 2 2.5 3 Local Input Frequency fLOin (GHz) Local Input Frequency fLOin (GHz) IF LEAKAGE AT RF PIN vs. IF LEAKAGE AT RF PIN vs. H IF INPUT FREQUENCY IF INPUT FREQUENCY –50 0 fRFout = 1.9 GHz m) m) fLOin = 1 660 MHz dB –60 dB –10 PLOin = –5 dBm F (rf F (rf VCC = VPS = 3.0 V n I –70 P n I –20 Pi Pi F F R R at –80 at –30 e e g g ka fRFout = 900 MHz ka ea –90 fLOin = 1 140 MHz ea –40 L L F PLOin = –5 dBm F I I VCC = VPS = 3.0 V –100 –50 0 100 200 300 400 500 0 100 200 300 400 500 IF Input Frequency fIFin (MHz) IF Input Frequency fIFin (MHz) 22 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB LOCAL LEAKAGE AT IF PIN vs. LOCAL LEAKAGE AT RF PIN vs. LOCAL INPUT FREQUENCY LOCAL INPUT FREQUENCY 0 0 m) m) B B O (dif –10 O (drf –10 T Pin L –20 Pin L –20 F F Local Leakage at I ––3400 fPVRLCFOoCui nt= == V 2–P.5S4 = dG B3Hm.0z V Local Leakage at R ––3400 UfPVRLCFOoCui nt= == V 2–P.5S4 = dG B3Hm.0z V –50 –50 0 0.5 1 1.5 2 2.5 3 0 0O.5 1 1.5 2 2.5 3 Local Input Frequency fLOin (GHz) Local Input Frequency fLOin (GHz) IF LEAKAGE AT RF PIN vs. IF INPUT FREQUENCY - 0 fRFout = 2.4 GHz m) fLOin = 2 160 MHz dB –10 PLOin = –5 dBm E F (rf VCC = VPS = 3.0 V n I –20 Pi F R at –30 S e g a k a e –40 L F I –50 0 100 200 3A00 400 500 IF Input Frequency fIFin (MHz) Remark The graphs indicate nominal characteristics. H P 23 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB 8. PACKAGE DIMENSIONS 6-PIN SUPER MINIMOLD (UNIT: mm) T 2.1– 0.1 1.25– 0.1 U +0.1 2–0.05 2 65 0. 0. 3 0. –0 1. 2. 65 0. O 0.1 MIN. 1 0. –9 7 - 0. 0. +0.1 5–0.05 1 1 E 0. 0. o 0 t S A H P 24 Data Sheet P14729EJ2V0DS00
m mmm PC8172TB 9. NOTE ON CORRECT USE (1) Observe precautions for handling because of electrostatic sensitive devices. (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). (3) Connect a bypass capacitor (example: 1 000 pF) to the VCC pin. T (4) Connect a matching circuit to the RF output pin. (5) The DC cut capacitor must be each attached to the input and output pins. 10. RECOMMENDED SOLDERING CONDITIONS U This product should be soldered under the following recommended conditions. Soldering Method Soldering Conditions Recommended Condition Symbol O Infrared Reflow Package peak temperature: 235(cid:176) C or below IR35-00-3 Time: 30 seconds or less (at 210(cid:176) C) Count: 3, Exposure limit: NoneNote VPS Package peak temperature: 215(cid:176) C or below VP15-00-3 Time: 40 seconds or less (at 200(cid:176) C) Count: 3, Exposure limit: NoneNote - Wave Soldering Soldering bath temperature: 260(cid:176) C or below WS60-00-1 Time: 10 seconds or less E Count: 1, Exposure limit: NoneNote Partial Heating Pin temperature: 300(cid:176) C - Time: 3 seconds or less (per side of device) Exposure limit: NoneNote S Note After opening the dry pack, keep it in a place below 25(cid:176) C and 65% RH for the allowable storage period. Caution Do not use different soldering methods together (except for partial heating). A For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E). H P 25 Data Sheet P14729EJ2V0DS00
NOTICE 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. California Eastern Laboratories and Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. T 2. California Eastern Laboratories has used reasonable care in preparing the information included in this document, but California Eastern Laboratories does not warrant that such information is error free. California Eastern Laboratories and Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. 3. California Eastern Laboratories and Renesas Electronics do not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, U implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of California Eastern Laboratories or Renesas Electronics or others. 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. California Eastern Laboratories and Renesas Electronics assume no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. “Standard”: Computers; office equipment; communications O equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. California Eastern Laboratories and Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by California Eastern Laboratories or Renesas Elec-tronics. 6. You should use the Renesas Electronics products described in this document within the range specified by California Eastern Laboratories, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. California Eastern Laboratories shall have no liability for malfunEctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of S microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you. 8. Please contact a California Eastern Laboratories sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. California Eastern Laboratories and Renesas Electronics assume no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws oAr regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. 10. It is the responsibility of the buyer or distributor of California Eastern Laboratories, who distributes, disposes of, or otherwise places the Renesas Electronics product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, California Eastern Laboratories and Renesas Electronics assume no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products. H 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of California Eastern Laboratories. 12. Please contact a California Eastern Laboratories sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. NOTE 1: “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. NOTE 2: “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. NOTE 3: Products and product information are subject to change without notice. P CEL Headquarters • 4590 Patrick Henry Drive, Santa Clara, CA 95054 • Phone (408) 919-2500 • www.cel.com For a complete list of sales offices, representatives and distributors, Please visit our website: www.cel.com/contactus