ICGOO在线商城 > 集成电路(IC) > 线性 - 音頻放大器 > TS4995EIJT
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
TS4995EIJT产品简介:
ICGOO电子元器件商城为您提供TS4995EIJT由STMicroelectronics设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TS4995EIJT价格参考。STMicroelectronicsTS4995EIJT封装/规格:线性 - 音頻放大器, Amplifier IC 1-Channel (Mono) Class AB 9-FlipChip。您可以下载TS4995EIJT参考资料、Datasheet数据手册功能说明书,资料中有TS4995EIJT 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC) |
描述 | IC AMP AUDIO PWR 1.2W 9FLIPCHIP |
产品分类 | |
品牌 | STMicroelectronics |
数据手册 | |
产品图片 | |
产品型号 | TS4995EIJT |
rohs | 无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | - |
不同负载时的最大输出功率x通道数 | 1.2W x 1 @ 8 欧姆 |
产品目录页面 | |
供应商器件封装 | 9-覆晶 |
其它名称 | 497-6101-1 |
其它有关文件 | http://www.st.com/web/catalog/sense_power/FM125/CL1503/SC977/SS1622/PF138439?referrer=70071840 |
包装 | 剪切带 (CT) |
安装类型 | 表面贴装 |
封装/外壳 | 9-UFBGA,FCBGA |
工作温度 | -40°C ~ 85°C (TA) |
标准包装 | 1 |
特性 | 消除爆音、差分输入,待机,热保护 |
电压-电源 | 2.5 V ~ 5.5 V |
类型 | AB 类 |
输出类型 | 1-通道(单声道) |
TS4995 1.2 W fully differential audio power amplifier with selectable standby and 6 dB fixed gain Features ■ Differential inputs TS4995 - Flip chip 9 ■ 90dB PSRR @ 217Hz with grounded inputs Pin connections (top view) ■ Operates from V = 2.5V to 5.5V CC ■ 1.2W rail-to-rail output power @ V =5V, CC THD+N=1%, F=1kHz, with an 8Ω load GGnndd ■ 6dB integrated fixed gain VV 77 66 55 VV ■ Ultra-low consumption in standby mode OO-- OO++ (10nA) ■ Selectable standby mode (active low or active BByyppaassss 88 99 44 SSttddbbyy high) ■ Ultra-fast startup time: 10ms typ. at VCC=3.3V VVIINN++ 11 22 33 VVIINN-- ■ Available in 9-bump flip chip (300mm bump diameter) VV SSttddbbyyMMooddee CCCC ■ Ultra-low pop and click Applications The TS4995 features an internal fixed gain at 6dB ■ Mobile phones (cellular / cordless) which reduces the number of external components on the application board. ■ PDAs The device is equipped with common mode ■ Laptop / notebook computers feedback circuitry allowing outputs to be always ■ Portable audio devices biased at V /2 regardless of the input common CC mode voltage. Description The TS4995 is specifically designed for high quality audio applications such as mobile phones The TS4995 is an audio power amplifier capable and requires few external components. of delivering 1.2W of continuous RMS output power into an 8Ω load at 5V. Thanks to its differential inputs, it exhibits outstanding noise immunity. An external standby mode control reduces the supply current to less than 10nA. A STBY MODE pin allows the standby pin to be active high or low. An internal thermal shutdown protection is also provided, making the device capable of sustaining short-circuits. March 2008 Rev 3 1/26 www.st.com 26
Contents TS4995 Contents 1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3 2 Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Common mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.5 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.6 Wake-up time t WU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.7 Shutdown time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.8 Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.9 Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2/26
TS4995 Absolute maximum ratings and operating conditions 1 Absolute maximum ratings and operating conditions Table 1. A bsolute maximum ratings (AMR) Symbol Parameter Value Unit V Supply voltage (1) 6 V CC V Input voltage (2) GND to V V in CC T Operating free air temperature range -40 to + 85 °C oper T Storage temperature -65 to +150 °C stg T Maximum junction temperature 150 °C j R Thermal resistance junction to ambient (3) 200 °C/W thja P Power dissipation Internally limited W diss MM: machine model (4) 200 V ESD HBM: human body model (5) 1.5 kV Latch-up Latch-up immunity 200 mA - Lead temperature (soldering, 10sec) 260 °C 1. All voltage values are measured with respect to the ground pin. 2. The magnitude of input signal must never exceed V + 0.3V / GND - 0.3V. CC 3. The device is protected in case of over temperature by a thermal shutdown activated at 150°C. 4. Machine model: a 200pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω), done for all couples of pin combinations with other pins floating. 5. Human body model: 100pF discharged through a 1.5kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating. Table 2. O perating conditions Symbol Parameter Value Unit V Supply voltage 2.5 to 5.5 V CC Standby mode voltage input: VSM Standby Active LOW VSM=GND V Standby Active HIGH V =V SM CC Standby voltage input: VSTBY Device ON (VSM=GND) or Device OFF (VSM=VCC) 1.5 ≤ VSTBY ≤ VCC V Device OFF (V =GND) or Device ON (V =V ) GND ≤ V ≤ 0.4 (1) SM SM CC STBY T Thermal shutdown temperature 150 °C SD R Load resistor ≥ 4 Ω L R Thermal resistance junction to ambient 100 °C/W thja 1. The minimum current consumption (ISTBY) is guaranteed when VSTB Y= GND or VCC (the supply rails) for the whole temperature range. 3/26
Typical application schematics TS4995 2 Typical application schematics T able 3. External component descriptions Component Functional description C Supply bypass capacitor that provides power supply filtering. s C Bypass capacitor that provides half supply filtering. b Optional input capacitor that forms a high pass filter together with R . C in in (F = 1 / (2 x π x R x C ) cl in in Figure 1. Typical application VCC Cs1 1uF 2 TS4995 FlipChip TS4995 Vcc Optional Vin- Cin1 3 Vin- Vo- 7 P1 330nF Cin2 P2 1 Vin+ + Vo+ 5 8 Ohms Vin+ 330nF 8 BYPASS BIAS 1uF STBY D N Cbypass1 STDBY STDBY MODE G 4 9 6 ation DE 2 er 2 O VCC p M Y / O DBY B T 3 1 TD 3 1 S S 4/26
TS4995 Electrical characteristics 3 Electrical characteristics Table 4. V = +5V, GND = 0V, T = 25°C (unless otherwise specified) CC amb Symbol Parameter Test conditions Min. Typ. Max. Unit I Supply current No input signal, no load 4 7 mA CC No input signal, V = V = GND, R = 8Ω I Standby current STBY SM L 10 1000 nA STBY No input signal, V = V = V , R = 8Ω STBY SM CC L Differential output offset V No input signal, R = 8Ω 0.1 10 mV oo voltage L V Input common mode voltage 0 4.5 V IC P Output power THD = 1% Max, F= 1kHz, R = 8Ω 0.8 1.2 W o L Total harmonic distortion + THD + N P = 850mW rms, 20Hz ≤ F ≤ 20kHz, R = 8Ω 0.5 % noise o L Power supply rejection ratio F = 217Hz, R = 8Ω, C = 4.7µF, C =1µF PSRR in b 75(2) 90 dB IG with inputs grounded(1) V = 200mV ripple PP F = 217Hz, R = 8Ω, C = 4.7µF, C =1µF CMRR Common mode rejection ratio L in b 60 dB V = 200mV ic PP A-weighted filter SNR Signal-to-noise ratio dB R = 8Ω, THD +N < 0.7%, 20Hz ≤ F ≤ 20kHz 100 L GBP Gain bandwidth product R = 8Ω 2 MHz L 20Hz ≤ F ≤ 20kHz, R = 8Ω L Unweighted 11 VN Output voltage noise A-weighted 7 µVRMS Unweighted, standby 3.5 A-weighted, standby 1.5 Z Input impedance 15 20 25 kΩ in - Gain mismatch 5.5 6 6.5 dB t Wake-up time(3) C =1µF 15 ms WU b 1. Dynamic measurements - 20*log(rms(V )/rms (V )). V is the super-imposed sinus signal relative to V . out ripple ripple CC 2. Guaranteed by design and evaluation. 3. Transition time from standby mode to fully operational amplifier. 5/26
Electrical characteristics TS4995 Table 5. V = +3.3V (all electrical values are guaranteed with correlation measurements at CC 2.6V and 5V), GND = 0V, T = 25°C (unless otherwise specified) amb Symbol Parameter Test conditions Min. Typ. Max. Unit I Supply current No input signal, no load 3 7 mA CC No input signal, V = V = GND, R = 8Ω I Standby current STBY SM L 10 1000 nA STBY No input signal, V = V = V , R = 8Ω STBY SM CC L Differential output offset V No input signal, R = 8Ω 0.1 10 mV oo voltage L V Input common mode voltage 0.4 2.3 V IC P Output power THD = 1% max, F= 1kHz, R = 8Ω 300 500 mW o L Total harmonic distortion + THD + N P = 300mW rms, 20Hz ≤ F ≤ 20kHz, R = 8Ω 0.5 % noise o L Power supply rejection ratio F = 217Hz, R = 8Ω, C = 4.7µF, C =1µF PSRR in b 75(2) 90 dB IG with inputs grounded(1) V = 200mV ripple PP F = 217Hz, R = 8Ω, C = 4.7µF, C =1µF CMRR Common mode rejection ratio L in b 60 dB V = 200mV ic PP A-weighted filter SNR Signal-to-noise ratio dB R = 8Ω, THD +N < 0.7%, 20Hz ≤ F ≤ 20kHz 100 L GBP Gain bandwidth product R = 8Ω 2 MHz L 20Hz ≤ F ≤ 20kHz, R = 8Ω L Unweighted 11 VN Output voltage noise A weighted 7 µVRMS Unweighted, standby 3.5 A weighted, standby 1.5 Z Input impedance 15 20 25 kΩ in - Gain mismatch 5.5 6 6.5 dB t Wake-up time(3) C =1µF 10 ms WU b 1. Dynamic measurements - 20*log(rms(V )/rms (V )). V is the super-imposed sinus signal relative to V . out ripple ripple CC 2. Guaranteed by design and evaluation. 3. Transition time from standby mode to fully operational amplifier. 6/26
TS4995 Electrical characteristics Table 6. V = +2.6V, GND = 0V, T = 25°C (unless otherwise specified) CC amb Symbol Parameter Test conditions Min. Typ. Max. Unit I Supply current No input signal, no load 3 7 mA CC No input signal, V = V = GND, R = 8Ω I Standby current STBY SM L 10 1000 nA STBY No input signal, V = V = V , R = 8Ω STBY SM CC L Differential output offset V No input signal, R = 8Ω 0.1 10 mV oo voltage L V Input common mode voltage 0.6 1.5 V IC P Output power THD = 1% max, F= 1kHz, R = 8Ω 200 300 mW o L Total harmonic distortion + THD + N Po = 225mW rms, 20Hz ≤ F ≤ 20kHz, R = 8Ω 0.5 % noise L Power supply rejection ratio F = 217Hz, R = 8Ω, C = 4.7μF, C =1µF PSRR in b 75(2) 90 dB IG with inputs grounded(1) V = 200mV ripple PP Common mode rejection F = 217Hz, R = 8Ω, C = 4.7μF, C =1µF CMRR L in b 60 dB ratio V = 200mV ic PP A-weighted filter SNR Signal-to-noise ratio dB R = 8Ω, THD +N < 0.7%, 20Hz ≤ F ≤ 20kHz 100 L GBP Gain bandwidth product R = 8Ω 2 MHz L 20Hz ≤ F ≤ 20kHz, R = 8Ω L Unweighted 11 VN Output voltage noise A weighted 7 µVRMS Unweighted, standby 3.5 A weighted, standby 1.5 Z Input impedance 15 20 25 kΩ in - Gain mismatch 5.5 6 6.5 dB t Wake-up time(3) C =1µF 10 ms WU b 1. Dynamic measurements - 20*log(rms(V )/rms (V )). V is the super-imposed sinus signal relative to V . out ripple ripple CC 2. Guaranteed by design and evaluation. 3. Transition time from standby mode to fully operational amplifier. 7/26
Electrical characteristics TS4995 Figure 2. T HD+N vs. output power Figure 3. THD+N vs. output power 10 10 RL = 8Ω RL = 8Ω G = 6dB Vcc=5V G = 6dB Vcc=5V F = 20Hz F = 20Hz Cb = 1μF Vcc=3.3V Cb = 0 Vcc=3.3V 1 BW < 125kHz 1 BW < 125kHz %) Tamb = 25°C Vcc=2.6V %) Tamb = 25°C Vcc=2.6V N ( N ( + + D D TH 0.1 TH 0.1 0.01 0.01 1E-3 0.01 0.1 1 1E-3 0.01 0.1 1 Output power (W) Output power (W) Figure 4. T HD+N vs. output power Figure 5. THD+N vs. output power 10 10 RL = 16Ω RL = 16Ω G = 6dB Vcc=5V G = 6dB Vcc=5V F = 20Hz F = 20Hz Cb = 1μF Vcc=3.3V Cb = 0 Vcc=3.3V 1 BW < 125kHz 1 BW < 125kHz %) Tamb = 25°C %) Tamb = 25°C Vcc=2.6V N ( Vcc=2.6V N ( + + D D TH 0.1 TH 0.1 0.01 0.01 1E-3 0.01 0.1 1 1E-3 0.01 0.1 1 Output power (W) Output power (W) Figure 6. T HD+N vs. output power Figure 7. THD+N vs. output power 10 10 RL = 4Ω RL = 4Ω G = 6dB Vcc=5V G = 6dB Vcc=5V F = 1kHz F = 1kHz Cb = 0 Cb = 1μF BW < 125kHz BW < 125kHz %) Tamb = 25°C Vcc=3.3V %) Tamb = 25°C Vcc=3.3V N ( 1 N ( 1 + + HD Vcc=2.6V HD Vcc=2.6V T T 0.1 1E-3 0.01 0.1 1 0.1 1E-3 0.01 0.1 1 Output power (W) Output power (W) 8/26
TS4995 Electrical characteristics Figure 8. T HD+N vs. output power Figure 9. THD+N vs. output power 10 10 RL = 8Ω RL = 8Ω G = 6dB Vcc=5V G = 6dB Vcc=5V F = 1kHz F = 1kHz Cb = 1μF Vcc=3.3V Cb = 0 Vcc=3.3V 1 BW < 125kHz 1 BW < 125kHz %) Tamb = 25°C Vcc=2.6V %) Tamb = 25°C Vcc=2.6V N ( N ( + + D D TH 0.1 TH 0.1 0.01 0.01 1E-3 0.01 0.1 1 1E-3 0.01 0.1 1 Output power (W) Output power (W) Figure 10. T HD+N vs. output power Figure 11. THD+N vs. output power 10 10 RL = 16Ω Vcc=5V RL = 16Ω Vcc=5V G = 6dB G = 6dB F = 1kHz F = 1kHz Cb = 1μF Vcc=3.3V Cb = 0 Vcc=3.3V 1 BW < 125kHz 1 BW < 125kHz %) Tamb = 25°C %) Tamb = 25°C N ( Vcc=2.6V N ( Vcc=2.6V + + D D TH 0.1 TH 0.1 0.01 0.01 1E-3 0.01 0.1 1 1E-3 0.01 0.1 1 Output power (W) Output power (W) Figure 12. T HD+N vs. output power Figure 13. THD+N vs. output power 10 10 RL = 4Ω RL = 4Ω G = 6dB Vcc=5V G = 6dB Vcc=5V F = 20kHz F = 20kHz Cb = 1μF Cb = 0 BW < 125kHz BW < 125kHz Vcc=3.3V Vcc=3.3V %) Tamb = 25°C %) Tamb = 25°C N ( 1 N ( 1 + Vcc=2.6V + Vcc=2.6V D D H H T T 0.1 0.1 1E-3 0.01 0.1 1 1E-3 0.01 0.1 1 Output power (W) Output power (W) 9/26
Electrical characteristics TS4995 Figure 14. T HD+N vs. output power Figure 15. THD+N vs. output power 10 10 RL = 8Ω RL = 8Ω G = 6dB Vcc=5V G = 6dB Vcc=5V F = 20kHz F = 20kHz Cb = 1μF Cb = 0 Vcc=3.3V Vcc=3.3V BW < 125kHz BW < 125kHz %) 1 Tamb = 25°C %) 1 Tamb = 25°C N ( Vcc=2.6V N ( Vcc=2.6V + + D D H H T T 0.1 0.1 1E-3 0.01 0.1 1 1E-3 0.01 0.1 1 Output power (W) Output power (W) Figure 16. T HD+N vs. output power Figure 17. THD+N vs. output power 10 10 RL = 16Ω Vcc=5V RL = 16Ω Vcc=5V G = 6dB G = 6dB F = 20kHz F = 20kHz Cb = 1μF Vcc=3.3V Cb = 0 Vcc=3.3V 1 BW < 125kHz 1 BW < 125kHz %) Tamb = 25°C %) Tamb = 25°C + N ( Vcc=2.6V + N ( Vcc=2.6V D D TH 0.1 TH 0.1 0.01 0.01 1E-3 0.01 0.1 1 1E-3 0.01 0.1 1 Output power (W) Output power (W) Figure 18. T HD+N vs. frequency Figure 19. THD+N vs. frequency 10 10 RL = 4Ω RL = 4Ω G = 6dB G = 6dB Cb = 1μF Cb = 0 Vcc=5V, Po=1000mW Vcc=5V, Po=1000mW BW < 125kHz BW < 125kHz 1 Tamb = 25°C 1 Tamb = 25°C Vcc=2.6V, Po=280mW Vcc=2.6V, Po=280mW %) %) N ( N ( + + D D H H T 0.1 T 0.1 Vcc=3.3V, Po=500mW Vcc=3.3V, Po=500mW 0.01 0.01 100 1000 10000 100 1000 10000 Frequency (Hz) Frequency (Hz) 10/26
TS4995 Electrical characteristics Figure 20. T HD+N vs. frequency Figure 21. THD+N vs. frequency 10 10 RL = 8Ω RL = 8Ω G = 6dB G = 6dB Cb = 1μF Cb = 0 BW < 125kHz BW < 125kHz 1 Tamb = 25C Vcc=2.6V, Po=225mW 1 Tamb = 25C Vcc=2.6V, Po=225mW %) %) + N ( Vcc=5V, Po=850mW + N ( Vcc=5V, Po=850mW D D H H T 0.1 T 0.1 Vcc=3.3V, Po=300mW Vcc=3.3V, Po=300mW 0.01 0.01 100 1000 10000 100 1000 10000 Frequency (Hz) Frequency (Hz) Figure 22. T HD+N vs. frequency Figure 23. THD+N vs. frequency 10 10 RL = 16Ω RL = 16Ω G = 6dB G = 6dB Cb = 1μF Cb = 0 BW < 125kHz BW < 125kHz 1 Tamb = 25C 1 Tamb = 25C %) Vcc=5V, Po=500mW %) Vcc=5V, Po=500mW N ( N ( + + D D H Vcc=2.6V, Po=125mW H Vcc=2.6V, Po=125mW T 0.1 T 0.1 Vcc=3.3V, Po=225mW Vcc=3.3V, Po=225mW 0.01 0.01 100 1000 10000 100 1000 10000 Frequency (Hz) Frequency (Hz) Figure 24. O utput power vs. power supply Figure 25. Output power vs. power supply voltage voltage 10 RL = 16Ω 2,4 Cb = 1μF G = 6dB W) 2,2 F = 1kHz CBWb = < 1 1μ2F5kHz + N ( 12,,80 BTaWm <b 1=2 255 k°CHz 4Ω 1 Tamb = 25C HD 1,6 %) Vcc=5V, Po=500mW % T 1,4 THD + N ( 0.1 Vcc=2.6V, Po=125mW wer at 10 011,,,802 8Ω po 0,6 16Ω ut 0,4 p Vcc=3.3V, Po=225mW Out 0,2 32Ω 0,0 0.01 2,5 3,0 3,5 4,0 4,5 5,0 5,5 100 1000 10000 Vcc (V) Frequency (Hz) 11/26
Electrical characteristics TS4995 Figure 26. O utput power vs. power supply Figure 27. Power derating curves voltage 2,0 1,8 Cb = 1μF W) 1.2 + N (W) 11,,46 FBTa W=m 1<bk 1H=2 z255 k°CHz 4Ω sipation ( 1.0 Heat sink surface ≈ 100mm2 THD 1,2 8Ω er Dis 0.8 1% 1,0 Pow 0.6 wer at 00,,68 16Ω ackage 0.4 o P Output p 00,,24 32Ω Flip-Chip 00..02 No Heat sink 0,0 0 25 50 75 100 125 2,5 3,0 3,5 4,0 4,5 5,0 5,5 Ambiant Temperature (°C) Vcc (V) Figure 28. O utput power vs. load resistance Figure 29. Power dissipation vs. output power 2000 1.4 Vcc=5.5V THD+N = 1% Vcc=5V 1800 F = 1kHz 1.2 F=1kHz ower (W) 1111024600000000 Vcc=5VVcc=4.5VVcc=4VVcc=3CBT.3aWbVm = <b 1 1=μ2 F255k°HCz ssipation (W) 01..80 THD+N<1% RL=4Ω put p 800 Vcc=2.6V er Di 0.6 Out 600 Pow 0.4 RL=8Ω 400 200 0.2 RL=16Ω 0 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Load Resistance (Ω) Output Power (W) Figure 30. P ower dissipation vs. output power Figure 31. Power dissipation vs. output power 0.6 0.40 Vcc=3.3V Vcc=2.6V F=1kHz 0.35 F=1kHz 0.5 THD+N<1% RL=4Ω THD+N<1% W) W) 0.30 RL=4Ω on ( 0.4 on ( 0.25 ssipati 0.3 ssipati 0.20 ower Di 0.2 RL=8Ω ower Di 00..1105 RL=8Ω P P 0.1 0.05 RL=16Ω RL=16Ω 0.0 0.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 Output Power (W) Output Power (W) 12/26
TS4995 Electrical characteristics Figure 32. P SSR vs. frequency Figure 33. PSSR vs. frequency 0 0 -10 Vcc = 2.6V -10 Vcc = 2.6V Vripple = 200mVpp Vripple = 200mVpp -20 RL ≥ 8Ω -20 RL ≥ 8Ω -30 G = 6dB, Cin = 4.7μF -30 G = 6dB -40 Inputs grounded -40 Inputs floating B) -50 Tamb = 25°C Cb=0 B) -50 Tamb = 25°C R (d -60 R (d -60 Cb=0 R R PS -70 Cb=1μF, 0.47μF, 0.1μF PS -70 -80 -80 -90 -90 -100 -100 Cb=1μF, 0.47μF, 0.1μF -110 -110 20 100 1000 10000 20 100 1000 10000 Frequency (Hz) Frequency (Hz) Figure 34. P SSR vs. frequency Figure 35. PSSR vs. frequency 0 0 -10 Vcc = 3.3V -10 Vcc = 3.3V Vripple = 200mVpp Vripple = 200mVpp -20 -20 RL ≥ 8Ω RL ≥ 8Ω -30 G = 6dB, Cin = 4.7μF -30 G = 6dB -40 Inputs grounded -40 Inputs floating B) -50 Tamb = 25°C Cb=0 B) -50 Tamb = 25°C d d Cb=0 R ( -60 R ( -60 R R PS -70 Cb=1μF, 0.47μF, 0.1μF PS -70 -80 -80 -90 -90 Cb=1μF, 0.47μF, 0.1μF -100 -100 -110 -110 20 100 1000 10000 20 100 1000 10000 Frequency (Hz) Frequency (Hz) Figure 36. P SSR vs. frequency Figure 37. PSSR vs. frequency 0 0 -10 Vcc = 5V -10 Vcc = 5V Vripple = 200mVpp Vripple = 200mVpp -20 -20 RL ≥ 8Ω RL ≥ 8Ω -30 G = 6dB, Cin = 4.7μF -30 G = 6dB -40 Inputs grounded Cb=0 -40 Inputs floating B) -50 Tamb = 25°C B) -50 Tamb = 25°C d d R ( -60 R ( -60 Cb=0 R R PS -70 Cb=1μF, 0.47μF, 0.1μF PS -70 -80 -80 -90 -90 Cb=1, 0.47, 0.1μF -100 -100 -110 -110 20 100 1000 10000 20 100 1000 10000 Frequency (Hz) Frequency (Hz) 13/26
Electrical characteristics TS4995 Figure 38. P SSR vs. common mode input Figure 39. PSSR vs. common mode input voltage voltage 20 20 Vcc = 5V Vcc = 3.3V Vripple = 200mVpp Vripple = 200mVpp 0 F = 217Hz 0 F = 217Hz G = 6dB G = 6dB -20 RL ≥ 8Ω -20 RL ≥ 8Ω dB) -40 Tamb = 25°C CCbb==00..14μ7FμF dB) -40 Tamb = 25°C CCbb==00..14μ7FμF R ( Cb=0 Cb=1μF R ( Cb=0 Cb=1μF R R S -60 S -60 P P -80 -80 -100 -100 0 1 2 3 4 5 0.0 0.6 1.2 1.8 2.4 3.0 Common Mode Input Voltage (V) Common Mode Input Voltage (V) Figure 40. P SSR vs. common mode input Figure 41. CMRR vs. frequency voltage 20 0 Vcc = 2.6V Vcc = 5V 0 VF r=ip 2p1le7 =H z200mVpp -10 GVi c= =6 d2B00mVpp G = 6dB -20 RL ≥ 8Ω Cb=1μF -20 RL ≥ 8Ω Cin = 470μF Cb=0.47μF R (dB) -40 Tamb = 25°CCb=0 Cb=0.1μF R (dB) --4300 Tamb = 25°C CCbb==00.1μF SR -60 Cb=0.47μF MR -50 P Cb=1μF C -80 -60 -70 -100 -80 0.0 0.5 1.0 1.5 2.0 2.5 100 1000 10000 Common Mode Input Voltage (V) Frequency (dB) Figure 42. C MRR vs. frequency Figure 43. CMRR vs. frequency 0 0 Vcc = 3.3V Vcc = 2.6V -10 G = 6dB -10 G = 6dB Vic = 200mVpp Vic = 200mVpp -20 RL ≥ 8Ω Cb=1μF -20 RL ≥ 8Ω Cb=1μF Cin = 470μF Cb=0.47μF Cin = 470μF Cb=0.47μF B) -30 Tamb = 25°C Cb=0.1μF B) -30 Tamb = 25°C Cb=0.1μF R (d -40 Cb=0 R (d -40 Cb=0 R R M -50 M -50 C C -60 -60 -70 -70 -80 -80 100 1000 10000 100 1000 10000 Frequency (dB) Frequency (dB) 14/26
TS4995 Electrical characteristics Figure 44. C MRR vs. common mode input Figure 45. CMRR vs. common mode input voltage voltage 20 20 Vic = 200mVpp Vic = 200mVpp 10 F = 217Hz 10 F = 217Hz 0 Cb = 1μF 0 Cb = 0 RL ≥ 8Ω RL ≥ 8Ω -10 -10 Tamb = 25°C Tamb = 25°C -20 -20 dB) -30 Vcc=2.6V Vcc=5V dB) -30 Vcc=2.6V Vcc=5V R ( -40 R ( -40 R R CM -50 CM -50 -60 -60 -70 Vcc=3.3V -70 Vcc=3.3V -80 -80 -90 -90 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Common Mode Input Voltage (V) Common Mode Input Voltage (V) Figure 46. C urrent consumption vs. power Figure 47. Differential DC output voltage vs. supply voltage common mode input voltage 5.0 No loads G = 6dB 4.5 Tamb = 25°C Tamb = 25°C 0.1 4.0 mA) 3.5 Vcc=2.6V n ( 0.01 Vcc=3.3V consumptio 223...050 |Voo| (dB) 1E-3 Vcc=5V nt 1.5 urre 1.0 1E-4 C 0.5 1E-5 0.0 0 1 2 3 4 5 0 1 2 3 4 5 6 Common Mode Input Voltage (V) Power Supply Voltage (V) Figure 48. Current consumption vs. standby Figure 49. Current consumption vs. standby voltage voltage 4.0 4.0 3.5 3.5 A) 3.0 Standby mode=0V A) 3.0 m m on ( 2.5 on ( 2.5 Standby mode=0V pti Standby mode=5V pti Standby mode=3.3V m 2.0 m 2.0 u u s s n n o 1.5 o 1.5 C C nt nt e 1.0 e 1.0 urr Vcc = 5V urr Vcc = 3.3V C 0.5 No load C 0.5 No load Tamb = 25°C Tamb = 25°C 0.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 Standby Voltage (V) Standby Voltage (V) 15/26
Electrical characteristics TS4995 Figure 50. C urrent consumption vs. standby Figure 51. Frequency response voltage 4.0 8 3.5 7 Cin=4.7μF A) 3.0 6 m on ( 2.5 Standby mode=0V 5 mpti 2.0 Standby mode=2.6V dB) 4 su n ( Cin=330nF Con 1.5 Gai 3 nt e 1.0 2 Vcc = 5V urr Vcc = 2.6V Gain = 6dB C 0.5 No load 1 ZL = 8Ω + 500pF Tamb = 25°C Tamb = 25°C 0.0 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 20 100 1000 10000 20k Standby Voltage (V) Frequency (Hz) Figure 52. F requency response Figure 53. Frequency response 8 8 7 Cin=4.7μF 7 Cin=4.7μF 6 6 5 5 B) B) d 4 d 4 n ( Cin=330nF n ( Cin=330nF Gai 3 Gai 3 2 Vcc = 3.3V 2 Vcc = 2.6V Gain = 6dB Gain = 6dB 1 ZL = 8Ω + 500pF 1 ZL = 8Ω + 500pF Tamb = 25°C Tamb = 25°C 0 0 20 100 1000 10000 20k 20 100 1000 10000 20k Frequency (Hz) Frequency (Hz) Figure 54. S NR vs. power supply voltage with Figure 55. SNR vs. power supply voltage with unweighted filter A-weighted filter 120 120 F = 1kHz F = 1kHz 118 G = 6dB 118 G = 6dB 116 Cb = 1μF 116 Cb = 1μF B) THD + N < 0.7% B) THD + N < 0.7% o (d 114 Tamb = 25°C RL=16Ω o (d 114 Tamb = 25°C ati 112 ati 112 R R e 110 e 110 RL=8Ω s s Noi 108 Noi 108 al to 106 RL=8Ω al to 106 RL=16Ω n n Sig 104 Sig 104 102 102 100 100 2.5 3.0 3.5 4.0 4.5 5.0 5.5 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Power Supply Voltage (V) Power Supply Voltage (V) 16/26
TS4995 Application information 4 Application information 4.1 Differential configuration principle The TS4995 is a monolithic full-differential input/ output power amplifier with fixed +6 dB gain. The TS4995 also includes a common mode feedback loop that controls the output bias value to average it at V /2 for any DC common mode input voltage. This allows maximum CC output voltage swing, and therefore, to maximize the output power. Moreover, as the load is connected differentially instead of single-ended, output power is four times higher for the same power supply voltage. The advantages of a full-differential amplifier are: ● Very high PSRR (power supply rejection ratio) ● High common mode noise rejection ● Virtually no pop and click without additional circuitry, giving a faster start-up time compared to conventional single-ended input amplifiers ● Easier interfacing with differential output audio DAC ● No input coupling capacitors required due to common mode feedback loop In theory, the filtering of the internal bias by an external bypass capacitor is not necessary. However, to reach maximum performance in all tolerance situations, it is recommended to keep this option. 4.2 Common mode feedback loop limitations As explained previously, the common mode feedback loop allows the output DC bias voltage to be averaged at V /2 for any DC common mode bias input voltage. CC Due to the V limitation of the input stage (see Table4 on page5), the common mode IC feedback loop can fulfil its role only within the defined range. 4.3 Low frequency response The input coupling capacitors block the DC part of the input signal at the amplifier inputs. C in and R form a first-order high pass filter with -3dB cut-off frequency. in 1 F = (Hz) CL 2×π×R ×C in in Note: The input impedance for the TS4995 is typically 20kΩ and there is tolerance around this value. From Figure56, you can easily establish the C value required for a -3dB cut-off frequency. in 17/26
Application information TS4995 Figure 56. -3dB lower cut-off frequency vs. input capacitance All gain setting Tamb=25°C z) 100 H y ( nc Minimum Input ue Impedance q e Fr Off ut Typical Input C Impedance B d 10 3 w - Maximum Input o Impedance L 0.1 0.5 1 Input Capacitor Cin (μF) 4.4 Power dissipation and efficiency Assumptions: ● Load voltage and current are sinusoidal (V and I ) out out ● Supply voltage is a pure DC source (V ) CC The output voltage is: V = V sinωt (V) out peak and V I = -----o---u---t-- (A) out R L and 2 V P = -----p---e---a---k------- (W) out 2R L Therefore, the average current delivered by the supply voltage is: Equation 1 V Icc = 2-----p---e---a---k--- (A) AVG πR L The power delivered by the supply voltage is: Equation 2 P = V I (W) supply CC ccAVG 18/26
TS4995 Application information Therefore, the power dissipated by each amplifier is: P = P - P (W) diss supply out 2 2V P = ----------------C----C-- P –P diss π R out out L and the maximum value is obtained when: ∂Pdiss --------------------- = 0 ∂P out and its value is: Equation 3 2Vcc2 Pdissmax= (W) π2R L Note: This maximum value is only dependent on the power supply voltage and load values. The efficiency is the ratio between the output power and the power supply: Equation 4 P πV η = ---------o---u---t---- =----------p---e---a---k- P 4V supply CC The maximum theoretical value is reached when V = V , so: peak CC η = π----- = 78.5% 4 The maximum die temperature allowable for the TS4995 is 125°C. However, in case of overheating, a thermal shutdown set to 150°C, puts the TS4995 in standby until the temperature of the die is reduced by about 5°C. To calculate the maximum ambient temperature T allowable, you need to know: amb ● The power supply voltage, V CC ● The load resistor value, R L ● The package type, R thja Example: V =5V, R =8Ω, R =100°C/W (100mm2 copper heatsink). CC L thja-flipchip Using the power dissipation formula given above in Equation 3, this gives a result of: P = 633mW dissmax T is calculated as follows: amb Equation 5 T = 125°C–R × P amb thja dissmax Therefore, the maximum allowable value for T is: amb T = 125-100x0.633=61.7°C amb 19/26
Application information TS4995 4.5 Decoupling of the circuit Two capacitors are needed to correctly bypass the TS4995: a power supply bypass capacitor C and a bias voltage bypass capacitor C . S b The C capacitor has particular influence on the THD+N at high frequencies (above 7kHz) S and an indirect influence on power supply disturbances. With a value for C of 1µF, one can S expect THD+N performance similar to that shown in the datasheet. In the high frequency region, if C is lower than 1µF, then THD+N increases and S disturbances on the power supply rail are less filtered. On the other hand, if C is greater than 1µF, then those disturbances on the power supply S rail are more filtered. The C capacitor has an influence on the THD+N at lower frequencies, but also impacts b PSRR performance (with grounded input and in the lower frequency region). 4.6 Wake-up time t WU When the standby is released to put the device ON, the bypass capacitor C is not charged b immediately. Because C is directly linked to the bias of the amplifier, the bias will not work b properly until the C voltage is correct. The time to reach this voltage is called the wake-up b time or t and is specified in Table4 on page5, with C =1µF. During the wake-up phase, WU b the TS4995 gain is close to zero. After the wake-up time, the gain is released and set to its nominal value. If C has a value different from 1µF, then refer to the graph in Figure57 to establish the b corresponding wake-up time. Figure 57. Startup time vs. bypass capacitor 15 Tamb=25°C Vcc=5V ms) 10 e ( m Ti p u Start 5 Vcc=3.3V Vcc=2.6V 0 0.0 0.4 0.8 1.2 1.6 2.0 Bypass Capacitor Cb (μF) 20/26
TS4995 Application information 4.7 Shutdown time When the standby command is set, the time required to put the two output stages in high impedance and the internal circuitry in shutdown mode is a few microseconds. Note: In shutdown mode, the Bypass pin and V +, V - pins are shorted to ground by internal in in switches. This allows a quick discharge of C and C . b in 4.8 Pop performance Due to its fully differential structure, the pop performance of the TS4995 is close to perfect. However, due to mismatching between internal resistors R , R , and external input in feed capacitors C , some noise might remain at startup. To eliminate the effect of mismatched in components, the TS4995 includes pop reduction circuitry. With this circuitry, the TS4995 is close to zero pop for all possible common applications. In addition, when the TS4995 is in standby mode, due to the high impedance output stage in this configuration, no pop is heard. 4.9 Single-ended input configuration It is possible to use the TS4995 in a single-ended input configuration. However, input coupling capacitors are needed in this configuration. The schematic diagram in Figure58 shows an example of this configuration. 21/26
Application information TS4995 Figure 58. Typical single-ended input application VCC Cs1 1uF 2 TS4995 FlipChip TS4995 Vcc Ve Cin1 3 Vin- Vo- 7 P1 330nF Cin2 1 Vin+ + Vo+ 5 8 Ohms 330nF 8 BYPASS BIAS 1uF STBY D N Cbypass1 STDBY STDBY MODE G 4 9 6 ation DE VCC 2 per 2 MO Y / O DBY 3 1 TDB 3 1 ST S 22/26
TS4995 Package information 5 Package information To meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com. Figure 59. 9-bump flip-chip package mechanical drawing 11..6633 mmmm – Die size: 1.63mm x 1.63mm ± 30µm – Die height (including bumps): 600µm – Bumps diameter: 315µm ±50µm 11..6633 mmmm – Bump diameter before reflow: 300µm ±10µm 00..55mmmm – Bumps height: 250µm ±40µm – Die height: 350µm ±20µm – Pitch: 500µm ±50µm – Coplanarity: 60µm max 00..55mmmm ∅∅00..2255mmmm 660000µµmm Figure 60. Tape and reel schematics 44 11..55 11 11 AA AA mm 88 + 70µ+ 70µ Y Y Die size Die size DDiiee ssiizzee XX ++ 7700µµmm 44 AAllll ddiimmeennssiioonnss aarree iinn mmmm UUsseerr ddiirreeccttiioonn ooff ffeeeedd 23/26
Package information TS4995 Figure 61. Pin out (top view) Figure 62. Marking (top view) GGnndd EE VV 77 66 55 VV OO-- OO++ BByyppaassss 88 99 44 SSttddbbyy 9AA5 9944 VVIINN++ 11 22 33 VVIINN-- YYWWWW VV SSttddbbyyMMooddee CCCC – Balls are underneath 24/26
TS4995 Ordering information 6 Ordering information T a ble 7. Order code Temperature Order code Package Packing Marking range TS4995EIJT -40° C to +85° C Lead free flip chip 9 Tape & reel 95 7 Revision history T able 8. Document revision history Date Revision Changes 1-Jun-2006 1 Final datasheet. 25-Oct-2006 2 Additional information for 4Ω load. Modified Figure60: Tape and reel schematics to correct die 25-Mar-2008 3 orientation. 25/26
TS4995 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 26/26