ICGOO在线商城 > 集成电路(IC) > PMIC - 稳压器 - DC DC 开关稳压器 > TPS63000DRCT
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
TPS63000DRCT产品简介:
ICGOO电子元器件商城为您提供TPS63000DRCT由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TPS63000DRCT价格参考。Texas InstrumentsTPS63000DRCT封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 可调式 降压升压 开关稳压器 IC 正 1.2V 1 输出 1.6A(开关) 10-VFDFN 裸露焊盘。您可以下载TPS63000DRCT参考资料、Datasheet数据手册功能说明书,资料中有TPS63000DRCT 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC REG BUCK BOOST SYNC ADJ 10SON稳压器—开关式稳压器 96% Buck Boost Converter |
DevelopmentKit | TPS63000EVM-148 |
产品分类 | |
品牌 | Texas Instruments |
产品手册 | http://www.ti.com/litv/slvs520b |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 电源管理 IC,稳压器—开关式稳压器,Texas Instruments TPS63000DRCT- |
数据手册 | |
产品型号 | TPS63000DRCT |
PWM类型 | 电流模式 |
产品种类 | 稳压器—开关式稳压器 |
供应商器件封装 | 10-SON(3x3) |
其它名称 | 296-27031-2 |
制造商产品页 | http://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&orderablePartNumber=TPS63000DRCT |
包装 | 带卷 (TR) |
单位重量 | 26.100 mg |
参考设计库 | http://www.digikey.com/rdl/4294959904/4294959903/15 |
同步整流器 | 是 |
商标 | Texas Instruments |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | 10-VFDFN 裸露焊盘 |
封装/箱体 | VSON-10 |
工作温度 | -40°C ~ 85°C |
工作温度范围 | - 40 C to + 85 C |
工厂包装数量 | 250 |
开关频率 | 1.5 MHz |
拓扑结构 | Boost, Buck |
最大工作温度 | + 85 C |
最大输入电压 | 5.5 V |
最小工作温度 | - 40 C |
标准包装 | 250 |
电压-输入 | 1.8 V ~ 5.5 V |
电压-输出 | 1.2 V ~ 5.5 V |
电流-输出 | 800mA,1.2A |
类型 | 降压(降压),升压(升压) |
系列 | TPS63000 |
设计资源 | http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176 |
输出数 | 1 |
输出电压 | Adj |
输出电流 | 1.2 A |
输出端数量 | 1 Output |
输出类型 | 可调式 |
配用 | /product-detail/zh/TPS63000EVM-148/296-19642-ND/1016475 |
频率-开关 | 1.25MHz ~ 1.5MHz |
Product Sample & Technical Tools & Support & Folder Buy Documents Software Community TPS63000,TPS63001,TPS63002 SLVS520C–MARCH2006–REVISEDOCTOBER2015 TPS6300x High-Efficient Single Inductor Buck-Boost Converter With 1.8-A Switches 1 Features 3 Description • InputVoltageRange:1.8Vto5.5V The TPS6300x devices provide a power supply 1 solution for products powered by either a two-cell or • FixedandAdjustableOutputVoltageOptionsfrom three-cell alkaline, NiCd or NiMH battery, or a one- 1.2Vto5.5V cell Li-ion or Li-polymer battery. Output currents can • Upto96%Efficiency goashighas1200mAwhileusingasingle-cellLi-ion • 1200-mAOutputCurrentat3.3VinStep-Down or Li-polymer battery, and discharge it down to 2.5 V or lower. The buck-boost converter is based on a Mode(V =3.6Vto5.5V) IN fixed frequency, pulse width modulation (PWM) • Upto800-mAOutputCurrentat3.3VinBoost controller using synchronous rectification to obtain Mode(V >2.4V) IN maximum efficiency. At low load currents, the • AutomaticTransitionBetweenStep-Downand converter enters power-save mode to maintain high BoostMode efficiency over a wide load current range. The power- save mode can be disabled, forcing the converter to • DeviceQuiescentCurrentlessthan50μA operate at a fixed switching frequency. The maximum • Power-SaveModeforImprovedEfficiencyatLow average current in the switches is limited to a typical OutputPower value of 1800 mA. The output voltage is • ForcedFixedFrequencyOperationand programmable using an external resistor divider, or is SynchronizationPossible fixed internally on the chip. The converter can be disabled to minimize battery drain. During shutdown, • LoadDisconnectDuringShutdown theloadisdisconnectedfromthebattery. • OvertemperatureProtection The TPS6300x devices operate over a free air • AvailableinaSmall3-mm× 3-mm10-PinVSON temperature range of –40°C to 85°C. The devices are Package(QFN) packaged in a 10-pin VSON package (QFN) measuring3mm×3mm(DRC). 2 Applications • AllTwo-CellandThree-CellAlkaline,NiCdor DeviceInformation(1) NiMHorSingle-CellLiBatteryPoweredProducts PARTNUMBER PACKAGE BODYSIZE(NOM) • PortableAudioPlayers TPS63000 • SmartPhones TPS63001 VSON(10) 3.00mmx3.00mm • PersonalMedicalProducts TPS63002 • WhiteLEDs (1) For all available packages, see the orderable addendum at theendofthedatasheet. TypicalApplicationSchematic EfficiencyvsOutputCurrent L1 100 2.2µH 90 L1 L2 1.85V.V5 tVoIN 10µCF1 10R03S VVEIINNNA VOFUBT 1C02µF 1C03µF V31.2O30UV0T mupA to 7800 VI= 2.4 V C4 0.1µF PGSN/TDSPYSN6C30P0G1ND cy - % 60 VI= 3.6 V VI= 4.2 V en 50 ci Effi 40 30 20 TPS63001 V = 3.3 V 10 O 0 0.001 0.01 0.1 1 IO-OutputCurrent -A 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
TPS63000,TPS63001,TPS63002 SLVS520C–MARCH2006–REVISEDOCTOBER2015 www.ti.com Table of Contents 1 Features.................................................................. 1 8 ApplicationandImplementation........................ 10 2 Applications........................................................... 1 8.1 ApplicationInformation............................................10 3 Description............................................................. 1 8.2 TypicalApplication .................................................10 4 RevisionHistory..................................................... 2 9 PowerSupplyRecommendations...................... 15 5 PinConfigurationandFunctions......................... 3 10 Layout................................................................... 16 6 Specifications......................................................... 4 10.1 LayoutGuidelines.................................................16 6.1 AbsoluteMaximumRatings......................................4 10.2 LayoutExample....................................................16 6.2 ESDRatings..............................................................4 10.3 ThermalConsiderations........................................16 6.3 RecommendedOperatingConditions.......................4 11 DeviceandDocumentationSupport................. 17 6.4 ThermalInformation..................................................4 11.1 DeviceSupport......................................................17 6.5 ElectricalCharacteristics...........................................5 11.2 RelatedLinks........................................................17 6.6 TypicalCharacteristics..............................................6 11.3 CommunityResources..........................................17 7 DetailedDescription.............................................. 7 11.4 Trademarks...........................................................17 7.1 Overview...................................................................7 11.5 ElectrostaticDischargeCaution............................17 7.2 FunctionalBlockDiagram.........................................7 11.6 Glossary................................................................17 7.3 FeatureDescription...................................................8 12 Mechanical,Packaging,andOrderable Information........................................................... 17 7.4 DeviceFunctionalModes..........................................9 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionB(August2008)toRevisionC Page • AddedESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,ApplicationandImplementation section,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentationSupportsection,and Mechanical,Packaging,andOrderableInformationsection.................................................................................................. 1 2 SubmitDocumentationFeedback Copyright©2006–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS63000 TPS63001 TPS63002
TPS63000,TPS63001,TPS63002 www.ti.com SLVS520C–MARCH2006–REVISEDOCTOBER2015 5 Pin Configuration and Functions DRCPackage 10-PinVSON TopView VOUT FB L2 GND Exposed PGND Thermal VINA Pad(1) L1 PS/SYNC VIN EN (1) TheexposedthermalpadisconnectedtoPGND. PinFunctions PIN I/O DESCRIPTION NAME NO. EN 6 IN Enableinput(1enabled,0disabled) FB 10 IN Voltagefeedbackofadjustableversions,mustbeconnectedtoVOUTonfixedoutputvoltageversions GND 9 — Control/logicground L1 4 IN Connectionforinductor L2 2 IN Connectionforinductor PGND 3 — Powerground PS/SYNC 7 IN Enable/disablepower-savemode(1disabled,0enabled,clocksignalforsynchronization) VIN 5 IN Supplyvoltageforpowerstage VINA 8 IN Supplyvoltageforcontrolstage VOUT 1 OUT Buck-boostconverteroutput Exposed — — TheexposedthermalpadisconnectedtoPGND. ThermalPad Copyright©2006–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:TPS63000 TPS63001 TPS63002
TPS63000,TPS63001,TPS63002 SLVS520C–MARCH2006–REVISEDOCTOBER2015 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN MAX UNIT InputvoltageonVIN,VINA,L1,L2,VOUT,PS/SYNC,EN,FB –0.3 7 V Operatingvirtualjunctiontemperature,T –40 150 °C J Storagetemperature,T –65 150 °C stg (1) Stressesbeyondthoselistedunderabsolutemaximumratingsmaycausepermanentdamagetothedevice.Thesearestressratings only,andfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderrecommendedoperating conditionsisnotimplied.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmyaffectdevicereliability. 6.2 ESD Ratings VALUE UNIT Electrostatic Humanbodymodel(HBM),perANSI/ESDA/JEDECJS-001,allpins(1) 2000 V V (ESD) discharge Chargeddevicemodel(CDM),perJEDECspecificationJESD22-C101,allpins(2) 1000 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 6.3 Recommended Operating Conditions MIN MAX UNIT SupplyvoltageatVIN,VINA 1.8 5.5 V Operatingfreeairtemperature,T –40 85 °C A Operatingvirtualjunctiontemperature,T –40 125 °C J 6.4 Thermal Information TPS6300x THERMALMETRIC(1) DRC(VSON) UNIT 10PINS R Junction-to-ambientthermalresistance 46.8 °C/W θJA R Junction-to-case(top)thermalresistance 62.5 °C/W θJC(top) R Junction-to-boardthermalresistance 21.4 °C/W θJB ψ Junction-to-topcharacterizationparameter 1.4 °C/W JT ψ Junction-to-boardcharacterizationparameter 21.5 °C/W JB R Junction-to-case(bottom)thermalresistance 4.1 °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report,SPRA953. 4 SubmitDocumentationFeedback Copyright©2006–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS63000 TPS63001 TPS63002
TPS63000,TPS63001,TPS63002 www.ti.com SLVS520C–MARCH2006–REVISEDOCTOBER2015 6.5 Electrical Characteristics overrecommendedfree-airtemperaturerangeandoverrecommendedinputvoltagerange(typicalatanambienttemperature rangeof25°C)(unlessotherwisenoted) PARAMETER TESTCONDITIONS MIN TYP MAX UNIT DC-DCSTAGE V Inputvoltagerange 1.8 5.5 V IN V Inputvoltagerangeforstart-up 1.9 5.5 V IN V TPS63000outputvoltagerange 1.2 5.5 V OUT V TPS63000feedbackvoltage PS/SYNC=V 495 500 505 mV FB IN f Oscillatorfrequency 1250 1500 kHz Frequencyrangeforsynchronization 1250 1800 kHz I Switchcurrentlimit V =V =3.6V,T =25°C 1600 1800 2000 mA SW IN INA A High-sideswitchON-resistance V =V =3.6V 100 mΩ IN INA Low-sideswitchON-resistance V =V =3.6V 100 mΩ IN INA Lineregulation 0.5% Loadregulation 0.5% VIN 1 1.5 μA Quiescent I =0mA,V =V =V =3.6V, I VINA OUT EN IN INA 40 50 μA q current V =3.3V OUT VOUT(adjustableoutputvoltage) 4 6 μA FBinputimpedance(fixedoutputvoltage) 1 MΩ I Shutdowncurrent V =0V,V =V =3.6V 0.1 1 μA S EN IN INA CONTROLSTAGE V Undervoltagelockoutthreshold V voltagedecreasing 1.5 1.7 1.8 V UVLO INA V EN,PS/SYNCinputlowvoltage 0.4 V IL V EN,PS/SYNCinputhighvoltage 1.2 V IH EN,PS/SYNCinputcurrent ClampedonGNDorVINA 0.01 0.1 μA Overtemperatureprotection 140 °C Overtemperaturehysteresis 20 °C Copyright©2006–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:TPS63000 TPS63001 TPS63002
TPS63000,TPS63001,TPS63002 SLVS520C–MARCH2006–REVISEDOCTOBER2015 www.ti.com 6.6 Typical Characteristics 1800 TPS63000, 1600 VO= 1.8 V mA 1400 ent - 1200 urr ut c 1000 p m out 800 TVPOS6=3 50 0V2, mu 600 TVPS=6 33.030 V1, xi O a m 400 - O I 200 0 1.8 2.6 3.4 4.2 5 VI- Input Voltage - V Figure1.MaximumOutputCurrentvsInputVoltage 6 SubmitDocumentationFeedback Copyright©2006–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS63000 TPS63001 TPS63002
TPS63000,TPS63001,TPS63002 www.ti.com SLVS520C–MARCH2006–REVISEDOCTOBER2015 7 Detailed Description 7.1 Overview The controlling circuit of the device is based on an average current mode topology. The average inductor current is regulated by a fast current regulator loop which is controlled by a voltage control loop. The controller also uses input and output voltage feedforward. Changes of input and output voltage are monitored and immediately can change the duty cycle in the modulator to achieve a fast response to those errors. The voltage error amplifier gets its feedback input from the FB pin. At adjustable output voltages a resistive voltage divider must be connected to that pin. At fixed output voltages FB must be connected to the output voltage to directly sense the voltage. Fixed output voltage versions use a trimmed internal resistive divider. The feedback voltage will be comparedwiththeinternalreferencevoltagetogenerateastableandaccurateoutputvoltage. Thecontrollercircuitalsosensestheaverageinputcurrentaswellasthepeakinputcurrent.Withthis,maximum inputpowercanbecontrolledaswellasthemaximumpeakcurrenttoachieveasafeandstableoperationunder all possible conditions. To finally protect the device from overheating, an internal temperature sensor is implemented. The device uses 4 internal N-channel MOSFETs to maintain synchronous power conversion at all possible operating conditions. This enables the device to keep high efficiency over a wide input voltage and output power range. To avoid ground shift problems due to the high currents in the switches, two separate ground pins GND and PGND are used. The reference for all control functions is the GND pin. The power switches are connected to PGND. Both grounds must be connected on the PCB at only one point, ideally close to the GND pin. Due to the 4-switchtopology,theloadisalwaysdisconnectedfromtheinputduringshutdownoftheconverter. 7.2 Functional Block Diagram L1 L2 VIN VOUT Current Sensor PGND PGND VBAT Gate VOUT Control _ VINA Modulator + FB + _ VREF PS/SYNC Oscillator + - Device Control EN Temperature Control PGND GND PGND Copyright©2006–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:TPS63000 TPS63001 TPS63002
TPS63000,TPS63001,TPS63002 SLVS520C–MARCH2006–REVISEDOCTOBER2015 www.ti.com 7.3 Feature Description 7.3.1 DeviceEnable The device is put into operation when EN is set high. It is put into a shutdown mode when EN is set to GND. In shutdown mode, the regulator stops switching, all internal control circuitry is switched off, and the load is disconnected from the input. This also means that the output voltage can drop below the input voltage during shutdown. During start-up of the converter, the duty cycle and the peak current are limited in order to avoid high peakcurrentsflowingfromtheinput. 7.3.2 UndervoltageLockout An undervoltage lockout function prevents device start-up if the supply voltage at VINA is lower than approximately its threshold (see Electrical Characteristics ). When in operation, the device automatically enters the shutdown mode if the voltage at VINA drops below the undervoltage lockout threshold. The device automaticallyrestartsiftheinputvoltagerecoverstotheminimumoperatinginputvoltage. 7.3.3 OvertemperatureProtection The device has a built-in temperature sensor which monitors the internal IC temperature. If the temperature exceeds the programmed threshold (see Electrical Characteristics ) the device stops operating. As soon as the IC temperature has decreased below the programmed threshold, it starts operating again. There is a built-in hysteresistoavoidunstableoperationatICtemperaturesattheovertemperaturethreshold. 8 SubmitDocumentationFeedback Copyright©2006–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS63000 TPS63001 TPS63002
TPS63000,TPS63001,TPS63002 www.ti.com SLVS520C–MARCH2006–REVISEDOCTOBER2015 7.4 Device Functional Modes 7.4.1 Soft-StartandShortCircuitProtection After being enabled, the device starts operating. The average current limit ramps up from an initial 400 mA following the output voltage increasing. At an output voltage of about 1.2 V, the current limit is at its nominal value. If the output voltage does not increase, the current limit will not increase. There is no timer implemented. Thus the output voltage overshoot at start-up, as well as the inrush current, is kept at a minimum. The device ramps up the output voltage in a controlled manner even if a very large capacitor is connected at the output. When the output voltage does not increase above 1.2 V, the device assumes a short circuit at the output and keeps the current limit low to protect itself and the application. At a short at the output during operation the current limit also will be decreased accordingly. At 0 V at the output, for example, the output current will not exceedabout400mA. 7.4.2 Buck-BoostOperation To regulate the output voltage properly at all possible input voltage conditions, the device automatically switches fromstep-downoperationtoboostoperationandbackasrequiredbytheconfiguration.Italwaysusesoneactive switch, one rectifying switch, one switch permanently on, and one switch permanently off. Therefore, it operates as a step-down converter (buck) when the input voltage is higher than the output voltage, and as a boost converter when the input voltage is lower than the output voltage. There is no mode of operation in which all 4 switches are permanently switching. Controlling the switches this way allows the converter to maintain high efficiency at the most important point of operation; when input voltage is close to the output voltage. The RMS currentthroughtheswitchesandtheinductoriskeptataminimum,tominimizeswitchingandconductionlosses. Switching losses are also kept low by using only one active and one passive switch. For the remaining 2 switches,oneiskeptpermanentlyonandtheotheriskeptpermanentlyoff,thuscausingnoswitchinglosses. 7.4.3 Power-SaveModeandSynchronization ThePS/SYNCpincanbeusedtoselectdifferentoperationmodes.Toenablepower-savemode,PS/SYNCmust be set low. Power-save mode is used to improve efficiency at light load. If power-save mode is enabled, the converter stops operating if the average inductor current gets lower than about 300 mA and the output voltage is at or above its nominal value. If the output voltage decreases below its nominal value, the device ramps up the output voltage again by starting operation using a programmed average inductor current higher than required by the current load condition. Operation can last for one or several pulses. The converter again stops operating oncetheconditionsforstoppingoperationaremetagain. The power-save mode can be disabled by programming high at the PS/SYNC. Connecting a clock signal at PS/SYNC forces the device to synchronize to the connected clock frequency. Synchronization is done by a phase-locked loop (PLL), so synchronizing to lower and higher frequencies compared to the internal clock works without any issues. The PLL can also tolerate missing clock pulses without the converter malfunctioning. The PS/SYNCinputsupportsstandardlogicthresholds. Copyright©2006–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:TPS63000 TPS63001 TPS63002
TPS63000,TPS63001,TPS63002 SLVS520C–MARCH2006–REVISEDOCTOBER2015 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information TheTPS6300xDC–DCconvertersareintendedforsystemspoweredbyone-cellLi-ionorLi-polymerbatterywith a typical voltage between 2.3 V and 4.5 V. They can also be used in systems powered by a double or triple cell alkaline, NiCd, or NiMH battery with a typical terminal voltage between 1.8 V and 5.5 V. Additionally, any other voltage source with a typical output voltage between 1.8 V and 5.5 V can power systems where the TPS6300x is used. 8.2 Typical Application L1 L1 L2 VIN VOUT VIN VOUT C1 R3 VINA R1 C2 EN FB C3 PS/SYNC R2 GND PGND TPS6300X Figure2. TypicalApplicationCircuitforAdjustableOutputVoltageOption 8.2.1 DesignRequirements TheTPS63000seriesofbuck-boostconvertershaveinternalloopcompensation.Therefore,theexternalLCfilter hastobeselectedaccordingtotheinternalcompensation. The design guideline provides a component selection to operate the device within the Recommended Operating Conditions. ForthefixedoutputvoltageoptionthefeedbackpinneedstobeconnectedtoVOUT. Table1showsthelistofcomponentsfortheapplicationcurves. Table1.ListofComponents REFERENCE DESCRIPTION MANUFACTURER TPS63000/TPS63001/TPS63002 TexasInstruments L1 VLF4012-2R2 TDK C1 10μF6.3V,0603,X7Rceramic C2 2×10μF6.3V,0603,X7Rceramic C3 0.1μF,X7Rceramic R3 100Ω R1,R2 DependingontheoutputvoltageatTPS63000,notusedatTPS63001/TPS63002 10 SubmitDocumentationFeedback Copyright©2006–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS63000 TPS63001 TPS63002
TPS63000,TPS63001,TPS63002 www.ti.com SLVS520C–MARCH2006–REVISEDOCTOBER2015 8.2.2 DetailedDesignProcedure 8.2.2.1 ProgrammingtheOutputVoltage Within the TPS6300x family, there are fixed and adjustable output voltage versions available. To properly configure the fixed output voltage devices, the FB pin is used to sense the output voltage. This means that it must be connected directly to VOUT. At the adjustable output voltage versions, an external resistor divider is used to adjust the output voltage. The resistor divider must be connected between VOUT, FB and GND. When the output voltage is regulated properly, the typical value of the voltage at the FB pin is 500 mV. The maximum recommendedvaluefortheoutputvoltageis5.5V.Thecurrentthroughtheresistivedividershouldbeabout100 times greater than the current into the FB pin. The typical current into the FB pin is 0.01 μA, and the voltage acrosstheresistorbetweenFBandGND,R ,istypically500mV.Basedonthosetwovalues,therecommended 2 value for R should be lower than 500 kΩ, in order to set the divider current at 1 μA or higher. TI recommends to 2 keep the value for this resistor in the range of 200 kΩ. From that, the value of the resistor connected between VOUTandFB,R ,dependingontheneededoutputvoltage(V ),canbecalculatedusingEquation1. 1 OUT æV ö R =R ´ç OUT -1÷ 1 2 V è ø FB (1) If as an example, an output voltage of 3.3 V is needed, a 1-MΩ resistor should be chosen for R . To improve 1 control performance using a feedforward capacitor in parallel to R is recommended. The value for the 1 feedforwardcapacitorcanbecalculatedusingEquation2. 2.2 μs C = ff R 1 (2) 8.2.2.2 InductorSelection The inductor selection is affected by several parameter like inductor ripple current, output voltage ripple, transitionpointintopower-savemode,andefficiency.SeeTable2fortypicalinductors. Table2.ListofRecommendedInductors VENDOR INDUCTORSERIES LPS3015 Coilcraft LPS4012 Murata LQH3NP TajoYuden NR3015 VLF3215 TDK VLF4012 For high efficiencies, the inductor should have a low DC resistance to minimize conduction losses. Especially at high-switching frequencies, the core material has a high impact on efficiency. When using small chip inductors, the efficiency is reduced mainly due to higher inductor core losses. This needs to be considered when selecting the appropriate inductor. The inductor value determines the inductor ripple current. The larger the inductor value, the smaller the inductor ripple current and the lower the conduction losses of the converter. Conversely, larger inductor values cause a slower load transient response. To avoid saturation of the inductor, the peak current for the inductor in steady-state operation is calculated using Equation 4. Only the equation which defines the switch current in boost mode is shown, because this provides the highest value of current and represents the critical currentvalueforselectingtherightinductor. Copyright©2006–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:TPS63000 TPS63001 TPS63002
TPS63000,TPS63001,TPS63002 SLVS520C–MARCH2006–REVISEDOCTOBER2015 www.ti.com V -V OUT IN DutyCycleBoost D= V OUT (3) Iout Vin ´ D I = + PEAK η ´ (1 - D) 2 ´ f ´ L where • D=DutyCycleinBoostmode • f=Converterswitchingfrequency(typical2.5MHz) • L=Inductorvalue • η=Estimatedconverterefficiency(usethenumberfromtheefficiencycurvesor0.90asanassumption) (4) NOTE The calculation must be done for the minimum input voltage which is possible to have in boostmode. Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation current of the inductor needed. ITI recommends to choose an inductor with a saturation current 20% higher than thevaluecalculatedusingEquation4.PossibleinductorsarelistedinTable2. 8.2.2.3 CapacitorSelection 8.2.2.3.1 InputCapacitor At least a 4.7-μF input capacitor is recommended to improve transient behavior of the regulator and EMI behavior of the total power supply circuit. A ceramic capacitor placed as close as possible to the VIN and PGND pinsoftheICisrecommended. 8.2.2.3.2 OutputCapacitor For the output capacitor, use of a small ceramic capacitors placed as close as possible to the VOUT and PGND pinsoftheICisrecommended.Therecommendednominaloutputcapacitancevalueis15 µF. There is also no upper limit for the output capacitance value. Larger capacitors causes lower output voltage rippleaswellasloweroutputvoltagedropduringloadtransients. 8.2.3 ApplicationCurves 100 100 V= 3.6 V 90 90 I 80 80 70 VI= 2.4 V 70 Efficiency - % 456000 VI= 3.6 V VI= 4.2 V Efficiency - % 546000 VI= 4.2 V VI= 2.4 V 30 30 20 20 TPS63001 TPS63002 10 VO= 3.3 V 10 VO= 5 V 0 0 0.001 0.01 0.1 1 0.001 0.01 0.1 1 IO-OutputCurrent -A IO- Output Current -A VO=3.3V PowerSaveenabled VO=5V PowerSaveenabled Figure3.EfficiencyvsOutputCurrent(TPS63001) Figure4.EfficiencyvsOutputCurrent(TPS63002) 12 SubmitDocumentationFeedback Copyright©2006–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS63000 TPS63001 TPS63002
TPS63000,TPS63001,TPS63002 www.ti.com SLVS520C–MARCH2006–REVISEDOCTOBER2015 100 100 95 IO= 500 mA 95 IO= 500 mA 90 90 85 85 ency - % 7850 IO= 100 mA ciency - % 7850 Effici 70 IO= 10 mA Effi 70 IO= 100 mA 65 65 IO= 10 mA 60 60 TPS63001 TPS63002 55 VO= 3.3 V 55 VO= 5 V 50 50 1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.3 1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.3 VI- input voltage - V VI- Input Voltage - V VO=3.3V PowerSaveenabled VO=5V PowerSaveenabled Figure5.EfficiencyvsInputVoltage(TPS63001) Figure6.EfficiencyvsInputVoltage(TPS63002) 3.400 5.150 TPS63002 TPS63001 VO= 3.3 V VO= 5 V 5.100 3.350 V V e - e - 5.050 ag ag VI= 3.6 V ut Volt 3.300 VI= 3.6 V ut Volt 5 p p ut ut O O - - 4.950 O O V 3.250 V 4.900 3.200 4.850 0.001 0.01 0.1 1 0.001 0.01 0.1 1 IO- Output Current -A IO- Output Current -A V =3.3V V =5V O O Figure7.OutputVoltagevsOutputCurrent(TPS63001) Figure8.OutputVoltagevsOutputCurrent(TPS63002) Output Voltage Output Voltage 10 mV/div 10 mV/div L1 Voltage L1 Voltage 5 V/div 5 V/div L2 Voltage L2 Voltage 5 V/div 5 V/div Inductor Current 500 mA/div Inductor Current 500 mA/div TPS63001 VI= 4.2 V, TPS63001, VO= 3.3 V IO= 500 mA VO= 3.3 V VI=2.4V,IO=500mA Timebase 500 ns/div Timebase 500 ns/Div VO=3.3V VI=4.2V IO=500mA VO=3.3V VI=2.4V IO=500mA Figure9.OutputVoltageinContinuousCurrentMode Figure10.OutputVoltageinContinuousCurrentMode (TPS63001,VIN>VOUT) (TPS63001,VIN>VOUT) Copyright©2006–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:TPS63000 TPS63001 TPS63002
TPS63000,TPS63001,TPS63002 SLVS520C–MARCH2006–REVISEDOCTOBER2015 www.ti.com Output Voltage 10 mV/div Output Voltage 100 mV/div L1 Voltage 5 V/div L2 Voltage 5 V/div Inductor Current Inductor Current 500 mA/div,dc 500 mA/div TPS63001, VO= 3.3 V VI= 3.3 V, IO= 500 mA TVPOS=6 33.030 V1, VI= 4.2 V, IO= 50 mA Timebase 500 ns/div Timebase 5ms/Div VO=3.3V VI=3.3V IO=500mA VO=3.3V VI=4.2V IO=50mA Figure11.OutputVoltageinContinuousCurrentMode Figure12.OutputVoltageinPower-SaveMode (TPS63001,VIN=VOUT) (TPS63001,VIN>VOUT) Output Voltage Output Voltage 100 mV/div, ac 100 mV/div, ac Output Current 200 mA/div, dc Inductor Current 500 mA/div, dc TPS63001, TPS63001, VO= 3.3 V VI= 3.6 V, VO= 3.3 V VI= 2.4 V, IO= 50 mA IO= 200 mAto 600 mA Timebase 2 ms/div Timebase5ms/div V =3.3V V =3.6V I =200mAto600 O I O VO=3.3V VI=2.4V IO=50mA mA Figure13.OutputVoltageinPower-SaveMode Figure14.LoadTransientResponse (TPS63001,VIN<VOUT) (TPS63001,VIN>VOUT) Output Voltage Output Voltage 100 mV/div, ac 10 mV/div,ac Output Current 200 mA/div,dc Input Voltage 1 V/div,dc TPS63001, VI= 3 V, VO= 3.3 V IO= 200 mAto 600 mA TPS63001, VI= 3 V to 3.6 V, VO= 3.3 V IO= 300 mA Timebase 2 ms/div VO=3.3V VI=3V IO=200mAto600 Timebase 2 ms/div mA V =3.3V V =3Vto3.6V I =300mA O I O Figure15.LoadTransientResponse Figure16.LineTransientResponse (TPS63001,VIN<VOUT) (TPS63001,IOUT=300mA) 14 SubmitDocumentationFeedback Copyright©2006–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS63000 TPS63001 TPS63002
TPS63000,TPS63001,TPS63002 www.ti.com SLVS520C–MARCH2006–REVISEDOCTOBER2015 Enable 2 V/div,dc Output Voltage 1 V/div,dc Output Voltage 20 mV/div,ac Inductor Current 200 mA/div,dc Input Voltage 1 V/div,dc Voltage at L1 TVPOS=6 33.030 V1, VIOI== 36 0V0 tmo A3.6 V, TVPOS=6 23.050 V0, VI= 3.3 V, IO= 300 mA 2 V/div, dc Timebase 2 ms/div Timebase 50ms/div VO=3.3V VI=3Vto3.6V IO=600mA VO=2.5V VI=3.3V IO=300mA Figure17.LineTransientResponse Figure18.Start-UpAfterEnable(TPS63000,V =2.5V) OUT (TPS63001,I =600mA) OUT Enable 2 V/div, dc Output Voltage 2 V/div, dc Inductor Current 500 mA/div, dc Voltage at L2 TPS63002, 2 V/div,dc VO= 5 V VI= 2.4 V, IO= 300 mA Timebase 100ms/div V =5V V =2.4V I =300mA O I O Figure19.Start-UpAfterEnable(TPS63002) 9 Power Supply Recommendations The TPS6300x devices have no special requirements for its input power supply. The output current of the input power supply needs to be rated according to the supply voltage, output voltage and output current of the TPS6300x. Copyright©2006–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:TPS63000 TPS63001 TPS63002
TPS63000,TPS63001,TPS63002 SLVS520C–MARCH2006–REVISEDOCTOBER2015 www.ti.com 10 Layout 10.1 Layout Guidelines As for all switching power supplies, the layout is an important step in the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground tracks. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the IC. Use a common ground node for power ground and a different one for control ground to minimize the effects of groundnoise.ConnectthesegroundnodesatanyplaceclosetooneofthegroundpinsoftheIC. The feedback divider should be placed as close as possible to the control ground pin of the IC. To lay out the control ground, TI recommends to use short traces as well, separated from the power ground traces. This avoids ground shift problems, which can occur due to superimposition of power ground current and control ground current. 10.2 Layout Example L1 VIN VIN L1 PGND L2 VOUT VOUT C1 C2 C3 GND EN PS/SYNC VINA GND FB GND R2 R1 Figure20. LayoutRecommendation 10.3 Thermal Considerations Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power- dissipationlimitsofagivencomponent. Threebasicapproachesforenhancingthermalperformancearelistedbelow: • ImprovingthepowerdissipationcapabilityofthePCBdesign • ImprovingthethermalcouplingofthecomponenttothePCBbysolderingtheexposedthermalpad • Introducingairflowinthesystem The maximum recommended junction temperature (T ) of the TPS6300x devices is 125°C. The thermal J resistance of the 10-pin QFN 3 mm × 3 mm package (DRC) is R = 48.7°C/W, if the exposed thermal pad is θJA soldered. Specified regulator operation is assured to a maximum ambient temperature T of 85°C. Therefore, the A maximum power dissipation is about 820 mW, as calculated in Equation 5. More power can be dissipated if the maximumambienttemperatureoftheapplicationislower. T -T 125°C-85°C P = J(MAX) A = =820 mW D(MAX) R 48.7 °C W θJA (5) 16 SubmitDocumentationFeedback Copyright©2006–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS63000 TPS63001 TPS63002
TPS63000,TPS63001,TPS63002 www.ti.com SLVS520C–MARCH2006–REVISEDOCTOBER2015 11 Device and Documentation Support 11.1 Device Support 11.1.1 Third-PartyProductsDisclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONEORINCOMBINATIONWITHANYTIPRODUCTORSERVICE. 11.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table3.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY TPS63000 Clickhere Clickhere Clickhere Clickhere Clickhere TPS63001 Clickhere Clickhere Clickhere Clickhere Clickhere TPS63002 Clickhere Clickhere Clickhere Clickhere Clickhere 11.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 11.4 Trademarks E2EisatrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 11.5 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 11.6 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2006–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:TPS63000 TPS63001 TPS63002
PACKAGE OPTION ADDENDUM www.ti.com 24-Aug-2018 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TPS63000DRCR ACTIVE VSON DRC 10 3000 Green (RoHS CU NIPDAU Level-2-260C-1 YEAR -40 to 85 BPT & no Sb/Br) TPS63000DRCRG4 ACTIVE VSON DRC 10 3000 Green (RoHS CU NIPDAU Level-2-260C-1 YEAR -40 to 85 BPT & no Sb/Br) TPS63000DRCT ACTIVE VSON DRC 10 250 Green (RoHS CU NIPDAU Level-2-260C-1 YEAR -40 to 85 BPT & no Sb/Br) TPS63000DRCTG4 ACTIVE VSON DRC 10 250 Green (RoHS CU NIPDAU Level-2-260C-1 YEAR -40 to 85 BPT & no Sb/Br) TPS63001DRCR ACTIVE VSON DRC 10 3000 Green (RoHS CU NIPDAU Level-2-260C-1 YEAR -40 to 85 BPU & no Sb/Br) TPS63001DRCRG4 ACTIVE VSON DRC 10 3000 Green (RoHS CU NIPDAU Level-2-260C-1 YEAR -40 to 85 BPU & no Sb/Br) TPS63001DRCT ACTIVE VSON DRC 10 250 Green (RoHS CU NIPDAU Level-2-260C-1 YEAR -40 to 85 BPU & no Sb/Br) TPS63002DRCR ACTIVE VSON DRC 10 3000 Green (RoHS CU NIPDAU Level-2-260C-1 YEAR -40 to 85 BPV & no Sb/Br) TPS63002DRCT ACTIVE VSON DRC 10 250 Green (RoHS CU NIPDAU Level-2-260C-1 YEAR -40 to 85 BPV & no Sb/Br) TPS63002DRCTG4 ACTIVE VSON DRC 10 250 Green (RoHS CU NIPDAU Level-2-260C-1 YEAR -40 to 85 BPV & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 24-Aug-2018 (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TPS63000 : •Automotive: TPS63000-Q1 NOTE: Qualified Version Definitions: •Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 10-Oct-2018 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TPS63000DRCR VSON DRC 10 3000 330.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 TPS63000DRCT VSON DRC 10 250 180.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 TPS63001DRCR VSON DRC 10 3000 330.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 TPS63001DRCT VSON DRC 10 250 180.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 TPS63002DRCR VSON DRC 10 3000 330.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 TPS63002DRCT VSON DRC 10 250 180.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 TPS63002DRCT VSON DRC 10 250 180.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 10-Oct-2018 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TPS63000DRCR VSON DRC 10 3000 367.0 367.0 35.0 TPS63000DRCT VSON DRC 10 250 210.0 185.0 35.0 TPS63001DRCR VSON DRC 10 3000 367.0 367.0 35.0 TPS63001DRCT VSON DRC 10 250 210.0 185.0 35.0 TPS63002DRCR VSON DRC 10 3000 367.0 367.0 35.0 TPS63002DRCT VSON DRC 10 250 210.0 185.0 35.0 TPS63002DRCT VSON DRC 10 250 210.0 185.0 35.0 PackMaterials-Page2
GENERIC PACKAGE VIEW DRC 10 VSON - 1 mm max height PLASTIC SMALL OUTLINE - NO LEAD Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4204102-3/M
PACKAGE OUTLINE DRC0010J VSON - 1 mm max height SCALE 4.000 PLASTIC SMALL OUTLINE - NO LEAD 3.1 B A 2.9 PIN 1 INDEX AREA 3.1 2.9 1.0 C 0.8 SEATING PLANE 0.05 0.00 0.08 C 1.65 0.1 2X (0.5) (0.2) TYP EXPOSED 4X (0.25) THERMAL PAD 5 6 2X 11 SYMM 2 2.4 0.1 10 1 8X 0.5 0.30 10X 0.18 PIN 1 ID SYMM 0.1 C A B (OPTIONAL) 0.5 0.05 C 10X 0.3 4218878/B 07/2018 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance. www.ti.com
EXAMPLE BOARD LAYOUT DRC0010J VSON - 1 mm max height PLASTIC SMALL OUTLINE - NO LEAD (1.65) (0.5) 10X (0.6) 1 10 10X (0.24) 11 SYMM (2.4) (3.4) (0.95) 8X (0.5) 6 5 (R0.05) TYP ( 0.2) VIA TYP (0.25) (0.575) SYMM (2.8) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:20X 0.07 MIN 0.07 MAX EXPOSED METAL ALL AROUND ALL AROUND EXPOSED METAL SOLDER MASK METAL METAL UNDER SOLDER MASK OPENING SOLDER MASK OPENING NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4218878/B 07/2018 NOTES: (continued) 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. www.ti.com
EXAMPLE STENCIL DESIGN DRC0010J VSON - 1 mm max height PLASTIC SMALL OUTLINE - NO LEAD 2X (1.5) (0.5) SYMM EXPOSED METAL 11 TYP 10X (0.6) 1 10 (1.53) 10X (0.24) 2X (1.06) SYMM (0.63) 8X (0.5) 6 5 (R0.05) TYP 4X (0.34) 4X (0.25) (2.8) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL EXPOSED PAD 11: 80% PRINTED SOLDER COVERAGE BY AREA SCALE:25X 4218878/B 07/2018 NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. www.ti.com
IMPORTANTNOTICEANDDISCLAIMER TIPROVIDESTECHNICALANDRELIABILITYDATA(INCLUDINGDATASHEETS),DESIGNRESOURCES(INCLUDINGREFERENCE DESIGNS),APPLICATIONOROTHERDESIGNADVICE,WEBTOOLS,SAFETYINFORMATION,ANDOTHERRESOURCES“ASIS” ANDWITHALLFAULTS,ANDDISCLAIMSALLWARRANTIES,EXPRESSANDIMPLIED,INCLUDINGWITHOUTLIMITATIONANY IMPLIEDWARRANTIESOFMERCHANTABILITY,FITNESSFORAPARTICULARPURPOSEORNON-INFRINGEMENTOFTHIRD PARTYINTELLECTUALPROPERTYRIGHTS. TheseresourcesareintendedforskilleddevelopersdesigningwithTIproducts.Youaresolelyresponsiblefor(1)selectingtheappropriate TIproductsforyourapplication,(2)designing,validatingandtestingyourapplication,and(3)ensuringyourapplicationmeetsapplicable standards,andanyothersafety,security,orotherrequirements.Theseresourcesaresubjecttochangewithoutnotice.TIgrantsyou permissiontousetheseresourcesonlyfordevelopmentofanapplicationthatusestheTIproductsdescribedintheresource.Other reproductionanddisplayoftheseresourcesisprohibited.NolicenseisgrantedtoanyotherTIintellectualpropertyrightortoanythird partyintellectualpropertyright.TIdisclaimsresponsibilityfor,andyouwillfullyindemnifyTIanditsrepresentativesagainst,anyclaims, damages,costs,losses,andliabilitiesarisingoutofyouruseoftheseresources. TI’sproductsareprovidedsubjecttoTI’sTermsofSale(www.ti.com/legal/termsofsale.html)orotherapplicabletermsavailableeitheron ti.comorprovidedinconjunctionwithsuchTIproducts.TI’sprovisionoftheseresourcesdoesnotexpandorotherwisealterTI’sapplicable warrantiesorwarrantydisclaimersforTIproducts. MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265 Copyright©2018,TexasInstrumentsIncorporated