图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: TPS62665YFFR
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

TPS62665YFFR产品简介:

ICGOO电子元器件商城为您提供TPS62665YFFR由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TPS62665YFFR价格参考。Texas InstrumentsTPS62665YFFR封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 固定 降压 开关稳压器 IC 正 1.2V 1 输出 1A 6-UFBGA,DSBGA。您可以下载TPS62665YFFR参考资料、Datasheet数据手册功能说明书,资料中有TPS62665YFFR 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)

描述

IC REG BUCK SYNC 1.2V 1A 6DSBGA

产品分类

PMIC - 稳压器 - DC DC 开关稳压器

品牌

Texas Instruments

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

TPS62665YFFR

PWM类型

电压模式

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

-

供应商器件封装

6-DSBGA

其它名称

296-27852-1

包装

剪切带 (CT)

同步整流器

安装类型

表面贴装

封装/外壳

6-UFBGA,DSBGA

工作温度

-40°C ~ 85°C

标准包装

1

电压-输入

2.3 V ~ 5.5 V

电压-输出

1.2V

电流-输出

1A

类型

降压(降压)

输出数

1

输出类型

固定

频率-开关

6MHz

推荐商品

型号:RT9261-35GB

品牌:Richtek USA Inc.

产品名称:集成电路(IC)

获取报价

型号:LTC3527EUD#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LM2595T-ADJ/LF02

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT1945IMS#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LM2575M-5.0/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT1317CMS8#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LMR10520YSDE/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MCP1642BT-50I/MC

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
TPS62665YFFR 相关产品

LM2832YSDX/NOPB

品牌:Texas Instruments

价格:

LTC3622IDE#PBF

品牌:Linear Technology/Analog Devices

价格:

LTC3245MPMSE#TRPBF

品牌:Linear Technology/Analog Devices

价格:

LT1074HVIT#PBF

品牌:Linear Technology/Analog Devices

价格:

AP1506-50K5L-13

品牌:Diodes Incorporated

价格:

MP2136EG-LF-P

品牌:Monolithic Power Systems Inc.

价格:

LT3976HMSE#TRPBF

品牌:Linear Technology/Analog Devices

价格:

TC682EOA713

品牌:Microchip Technology

价格:

PDF Datasheet 数据手册内容提取

Product Sample & Technical Tools & Support & Folder Buy Documents Software Community TPS62660,TPS62665 SLVS871D–FEBRUARY2010–REVISEDJUNE2016 TPS62660 1000-mA, 6-MHz High-Efficiency Step-Down Converter in Chip Scale Packaging 1 Features 3 Description • 91%Efficiencyat6-MHzOperation The TPS6266x device is a high-frequency 1 synchronous step-down DC-DC converter optimized • 31-μAQuiescentCurrent for battery-powered portable applications. Intended • WideVIN Rangefrom2.3Vto5.5V for low-power applications, the TPS6266x supports • 6-MHzRegulatedFrequencyOperation up to 1000-mA peak load current, and allows the use oflow-costchipinductorandcapacitors. • BestinClassLoadandLineTransient • ±2%TotalDCVoltageAccuracy With a wide input voltage range of 2.3 V to 5.5 V, the device supports applications powered by Li-Ion • AutomaticPFMorPWMModeSwitching batteries with extended voltage range. Different fixed • LowRippleLight-LoadPFMMode voltage output versions are available from 1.2 V to • FastTurnonTime: <60-μsStart-UpTime 2.3V. • IntegratedActivePower-DownSequencing The TPS6266x operates at a regulated 6-MHz (Optional) switching frequency and enters the power-save mode • CurrentOverloadandThermalShutdown operation at light load currents to maintain high efficiencyovertheentireloadcurrentrange. Protection • ThreeSurface-MountExternalComponents The PFM mode extends the battery life by reducing Required(OneMLCCInductor,TwoCeramic the quiescent current to 31 μA (typical) during light Capacitors) load and standby operation. For noise-sensitive applications, the device can be forced into fixed • CompleteSub1-mmComponentProfileSolution frequency PWM mode by pulling the MODE pin high. • TotalSolutionSize <12mm2 In the shutdown mode, the current consumption is • Availableina6-PinNanoFree™(DSBGA) reducedtolessthan1μA. The TPS6266x is available in an 6-pin chip scale 2 Applications package(DSBGA). • CellPhonesandSmartPhones DeviceInformation(1) • PDAsandPocketPCs PARTNUMBER PACKAGE BODYSIZE(NOM) • PortableHardDiskDrives TPS62660 DSBGA(6) 1.30mm×0.93mm • DC-DCMicroModules (1) For all available packages, see the orderable addendum at theendofthedatasheet. SmallestSolutionSizeApplication EfficiencyvsLoadCurrent 3.0 VV B..A 5T.5 V TPS62661 L 1.8 VV @O U1T000mA 100 VI= 3.6 V, 500 VIN SW 90 VO= 1.8 V 450 0.47mH 80 400 4.7mCFI EGNNDCopyrigMhOt ©DF BE2016,Texas InstrumenC4ts.O7 InmcForporated Efficiency - % 3456700000 PFM/PPEFWffMiMc/PiPe oOnWwcpMeyerr aOLtopiosensration 122335050500000Power Loss - mW 20 100 10 50 0 0 0.1 1 10 100 1000 IO- Load Current - mA 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

TPS62660,TPS62665 SLVS871D–FEBRUARY2010–REVISEDJUNE2016 www.ti.com Table of Contents 1 Features.................................................................. 1 8.3 FeatureDescription...................................................9 2 Applications........................................................... 1 8.4 DeviceFunctionalModes........................................10 3 Description............................................................. 1 9 ApplicationandImplementation........................ 11 4 RevisionHistory..................................................... 2 9.1 ApplicationInformation............................................11 9.2 TypicalApplication .................................................11 5 PinConfigurationandFunctions......................... 3 10 PowerSupplyRecommendations..................... 19 6 Specifications......................................................... 3 11 Layout................................................................... 19 6.1 AbsoluteMaximumRatings......................................3 6.2 ESDRatings..............................................................4 11.1 LayoutGuidelines.................................................19 6.3 RecommendedOperatingConditions.......................4 11.2 LayoutExample....................................................19 6.4 ThermalInformation..................................................4 11.3 ThermalConsiderations........................................20 6.5 ElectricalCharacteristics...........................................4 12 DeviceandDocumentationSupport................. 21 6.6 DissipationRatings ..................................................5 12.1 ReceivingNotificationofDocumentationUpdates21 6.7 TypicalCharacteristics..............................................5 12.2 CommunityResources..........................................21 7 ParameterMeasurementInformation..................7 12.3 Trademarks...........................................................21 12.4 ElectrostaticDischargeCaution............................21 8 DetailedDescription.............................................. 8 12.5 Glossary................................................................21 8.1 Overview...................................................................8 13 Mechanical,Packaging,andOrderable 8.2 FunctionalBlockDiagram.........................................8 Information........................................................... 21 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionC(July2011)toRevisionD Page • AddedESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,ApplicationandImplementation section,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentationSupportsection,and Mechanical,Packaging,andOrderableInformationsection.................................................................................................. 1 • RemovedOrderingInformationtable;seePOAattheendofthedatasheet ...................................................................... 1 ChangesfromRevisionB(September2010)toRevisionC Page • ChangedinELECCHARAtable,Shutdowncurrentrow,Maxfrom1to2.5......................................................................... 4 ChangesfromRevisionA(March2010)toRevisionB Page • Deleted"ProductPreview"footnoteassociatedwithTPS62665YFFdevice....................................................................... 1 ChangesfromOriginal(February2010)toRevisionA Page • DeletedProductPreviewbannerfordevicereleasetoproduction........................................................................................ 1 2 SubmitDocumentationFeedback Copyright©2010–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 www.ti.com SLVS871D–FEBRUARY2010–REVISEDJUNE2016 5 Pin Configuration and Functions YFFPackage 6-PinDSBGA YFFPackage TopView 6-PinDSBGA BottomView MODE A1 A2 VIN VIN A2 A1 MODE SW EN B1 B2 EN B2 B1 SW FB C1 C2 GND GND C2 C1 FB PinFunctions PIN I/O DESCRIPTION NAME NO. FB C1 I Outputfeedbacksenseinput.ConnectFBtotheoutputoftheconverter. VIN A2 I Powersupplyinput. SW B1 I/O ThisistheswitchpinoftheconverterandisconnectedtothedrainoftheinternalPowerMOSFETs. Thisistheenablepinofthedevice.Connectingthispintogroundforcesthedeviceintoshutdownmode. EN B2 I PullingthispintoV enablesthedevice.Thispinmustnotbeleftfloatingandmustbeterminated. I Thisisthemodeselectionpinofthedevice.Thispinmustnotbeleftfloatingandmustbeterminated. MODE=LOW:Thedeviceisoperatinginregulatedfrequencypulsewidthmodulationmode(PWM)athigh- MODE A1 I loadcurrentsandinpulsefrequencymodulationmode(PFM)atlightloadcurrents. MODE=HIGH:Low-noisemodeenabled,regulatedfrequencyPWMoperationforced. GND C2 — Groundpin. 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN MAX UNIT VoltageatVIN,SW(2) –0.3 7 V V VoltageatFB(2) –0.3 3.6 V I VoltageatEN,MODE (2) –0.3 V +0.3 V I I Peakoutputcurrent 1000 mA O Powerdissipation Internallylimited T Operatingtemperature(3) –40 85 °C A T (max) Maximumoperatingjunctiontemperature 150 °C J T Storagetemperature –65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings onlyandfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommendedOperating Conditionsisnotimplied.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) Allvoltagevaluesarewithrespecttonetworkgroundterminal. (3) Inapplicationswherehighpowerdissipationand/orpoorpackagethermalresistanceispresent,themaximumambienttemperaturemay havetobederated.Maximumambienttemperature(T )isdependentonthemaximumoperatingjunctiontemperature(T ),the A(max) J(max) maximumpowerdissipationofthedeviceintheapplication(P ),andthejunction-to-ambientthermalresistanceofthepart/package D(max) intheapplication(R ),asgivenbythefollowingequation:T =T –(R ×P ).Toachieveoptimumperformance,itis θJA A(max) J(max) θJA D(max) recommendedtooperatethedevicewithamaximumjunctiontemperatureof105°C. Copyright©2010–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 SLVS871D–FEBRUARY2010–REVISEDJUNE2016 www.ti.com 6.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(2) ±2000 V Electrostaticdischarge(1) Charged-devicemodel(CDM),perJEDECspecificationJESD22-C101(3) ±1000 V (ESD) Machinemodel(MM) ±200 (1) Thehuman-bodymodelisa100-pFcapacitordischargedthrougha1.5-kΩresistorintoeachpin.Themachinemodelisa200-pF capacitordischargeddirectlyintoeachpin. (2) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (3) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 6.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT V Supplyvoltage 2.3 5.5 V I IOUT Maximumoutputcurrent 1000 mA Effectiveinductance 0.3 0.47 1.3 µH T Operatingambienttemperature –40 85 °C A T Operatingjunctiontemperature –40 125 °C J 6.4 Thermal Information TPS626xx THERMALMETRIC(1) YFF(DSBGA) UNIT 6PINS R Junction-to-ambientthermalresistance 130 °C/W θJA R Junction-to-case(top)thermalresistance 1.2 °C/W θJC(top) R Junction-to-boardthermalresistance 22 °C/W θJB ψ Junction-to-topcharacterizationparameter 5 °C/W JT ψ Junction-to-boardcharacterizationparameter 22 °C/W JB R Junction-to-case(bottom)thermalresistance N/A °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report. 6.5 Electrical Characteristics MinimumandmaximumvaluesareatV =2.3Vto5.5V,V =1.8V,EN=1.8V,AUTOmodeandT =–40°Cto85°C; I O A circuitintheParameterMeasurementInformation(unlessotherwisenoted).TypicalvaluesareatV =3.6V,V =1.8V,EN= I O 1.8V,AUTOmodeandT =25°C(unlessotherwisenoted). A PARAMETER TESTCONDITIONS MIN TYP MAX UNIT SUPPLYCURRENT VI Inputvoltagerange 2.3 5.5 V IO=0mA.Devicenotswitching 31 55 μA IQ Operatingquiescentcurrent IO=0mA,PWMmode 7.6 mA I(SD) Shutdowncurrent EN=GND 0.2 2.5 μA UVLO Undervoltagelockoutthreshold 2.05 2.1 V ENABLE,MODE VIH High-levelinputvoltage 1 V VIL Low-levelinputvoltage 0.4 V Ilkg Inputleakagecurrent InputconnectedtoGNDorVIN 0.01 1 μA POWERSWITCH P-channelMOSFETON- VI=V(GS)=3.6V,PWMmode 270 rDS(on) resistance TPS6266x VI=V(GS)=2.5V,PWMmode 350 mΩ Ilkg P-channelleakagecurrent,PMOS V(DS)=5.5V,–40°C≤TJ≤85°C 1 μA 4 SubmitDocumentationFeedback Copyright©2010–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 www.ti.com SLVS871D–FEBRUARY2010–REVISEDJUNE2016 Electrical Characteristics (continued) MinimumandmaximumvaluesareatV =2.3Vto5.5V,V =1.8V,EN=1.8V,AUTOmodeandT =–40°Cto85°C; I O A circuitintheParameterMeasurementInformation(unlessotherwisenoted).TypicalvaluesareatV =3.6V,V =1.8V,EN= I O 1.8V,AUTOmodeandT =25°C(unlessotherwisenoted). A PARAMETER TESTCONDITIONS MIN TYP MAX UNIT N-channelMOSFETON- VI=V(GS)=3.6V,PWMmode 140 rDS(on) resistance TPS6266x VI=V(GS)=2.5V,PWMmode 200 mΩ Ilkg N-channelleakagecurrent,NMOS V(DS)=5.5V,–40°C≤TJ≤85°C 2 μA Dischargeresistorfor rDIS power-downsequence TPS62665 15 50 Ω P-MOScurrentlimit 2.3V≤VI≤4.8V,openloop 1400 1500 1750 mA Inputcurrentlimitundershort-circuit conditions VOshortedtoground 19 mA Thermalshutdown 140 °C Thermalshutdownhysteresis 10 °C OSCILLATOR fSW Oscillatorfrequency TPS6266x IO=0mA,PWMmode 5.4 6 6.6 MHz OUTPUT 2.3V≤VI≤2.7V,0mA≤IO≤600mA 23.7VV≤≤VIV≤I≤4.38VV,,00mmAA≤≤IIOO≤≤8100000mmAA 0.98×VNOM VNOM 1.03×VNOM PFM/PWMoperation RvoelgtauglaetedDCoutput 3PFVM≤/PVWI≤M5o.5peVr,a0tiomnA≤IO≤1000mA 0.98×VNOM VNOM 1.04×VNOM V V(OUT) TPS6266x 2.3V≤VI≤2.7V,0mA≤IO≤600mA 23.7VV≤≤VIV≤I≤5.35VV,,00mmAA≤≤IIOO≤≤8100000mmAA 0.98×VNOM VNOM 1.02×VNOM PWMoperation Lineregulation VI=VO+0.5V(min2.3V)to5.5V,IO=200mA 0.13 %/V Loadregulation VI=3.6V,IO=0mAto1000mA –0.00025 %/mA Feedbackinputresistance 480 kΩ TPS62660 IO=1mA 20 Power-savemoderipple IO=1mA ΔVO voltage TPS62661 L=1μH(muRataLQM2MPN1R0NG0) 9 mVPP CO=10μF,4V0402(muRataGRM155R60G106M) TPS62665 IO=1mA 24 TPS62660 IO=0mA,timefromactiveENtoVO 120 Start-uptime μs TPS62661 RL=2Ω,timefromactiveENtoVO 55 6.6 Dissipation Ratings(1) PACKAGE R (2) R (2) POWERRATING DERATINGFACTOR θJA θJB T ≤25°C ABOVET =25°C A A YFF-6 125°C/W 53°C/W 800mW 8mW/°C (1) MaximumpowerdissipationisafunctionofT(max),R ,andT .Themaximumallowablepowerdissipationatanyallowableambient J θJA A temperatureisP =[T(max)-T ]/R . D J A θJA (2) Thisthermaldataismeasuredwithhigh-Kboard(4-layerboardaccordingtoJESD51-7JEDECstandard). 6.7 Typical Characteristics Table1.TableofGraphs FIGURE Figure1,Figure2, vsloadcurrent η Efficiency Figure3,Figure4 vsinputvoltage Figure5 Peak-to-peakoutputripplecurrent vsloadcurrent Figure6,Figure7 Copyright©2010–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 SLVS871D–FEBRUARY2010–REVISEDJUNE2016 www.ti.com Typical Characteristics (continued) 100 100 90 VO= 1.8 V (TPS62660) 90 VLO= =m 1u.R8 aVt a( TLPQSM622M66P1N)1R0NG0 80 80 70 VI= 3.6 V 70 VI= 3.6 V PFM/PWM Operation PFM/PWM Operation % 60 % 60 Efficiency - 5400 PFM/PVWIM= 4O.2p eVration PFM/PVWI=M 2 O.7p Veration Efficiency - 5400 PFM/PVWIM= 4O.2p eVration PFM/PVWI=M 2 O.7p Veration 30 VI= 3.6 V 30 Forced PWM Operation 20 20 VI= 3.6 V Forced PWM Operation 10 10 0 0 0.1 1 10 100 1000 0.1 1 10 100 1000 IO- Load Current - mA IO- Load Current - mA Figure1.EfficiencyvsLoadCurrent Figure2.EfficiencyvsLoadCurrent 100 91 VO= 1.2 V VI= 2.7 V 90 VI= 3.6 V L=Aircoil (0.5mH, DCR = 20 mW) 90 PFM/PWM Operation 89 VPFOM=/ P1.W8 MV (OTpPeSr6a2ti6o6n0) 80 88 87 70 VI= 3.6 V PFM/PWM Operation % 86 Efficiency - % 456000 VPFI=M 4/P.2W VM Operation Efficiency - 88882345 L= muRLa=ta m LuQRMa2ta1 PLNQ1MR201PN0R54 81 30 80 20 79 78 10 77 0 76 0.1 1 10 100 1000 1 10 100 1000 IO- Load Current - mA IO- Load Current - mA Figure3.EfficiencyvsLoadCurrent Figure4.EfficiencyvsLoadCurrent 100 30 98 VO= 1.8 V (TPS62660) mV 28 VO= 1.8 V (TPS62660) 96 PFM/PWM Operation e - 26 9924 Voltag 2224 VI= 4.8 V % 90 IO= 300 mA ple 20 y - 88 Rip 18 VI= 3.6 V nc 86 ut 16 e p Effici 8824 IO= 100 mA ak Out 1124 VI= 2.5 V 80 Pe 10 78 IO= 1 mA k-to- 8 76 a 6 e 74 - P 4 72 VO 2 70 0 2.3 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 0 50 100150200250 300350400450500550600 VI- Input Voltage - V IO- Load Current - mA Figure5.EfficiencyvsInputVoltage Figure6.Peak-to-PeakOutputRippleVoltagevsLoad Current 6 SubmitDocumentationFeedback Copyright©2010–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 www.ti.com SLVS871D–FEBRUARY2010–REVISEDJUNE2016 Typical Characteristics (continued) 12 11 V 10 VI= 4.2 V e - g 9 Volta 8 VI= 3.6 V e ppl 7 VI= 2.9 V k Ri 6 a Pe 5 o- k-t 4 a Pe 3 V- O 2 VLO= =1 µ1H.8 V(m (uTRPSat6a2 L6Q61M)2MPN1R0NG0) 1 CO= 10µF 4V 0402 X5R (muRata GRM155R60G106M) 0 0 50 100150200250300350400450500550600 IO- Load Current - mA Figure7.Peak-to-PeakOutputRippleVoltagevsLoadCurrent 7 Parameter Measurement Information TPS6266x L VIN SW V O EN FB V C I I CO GND MODE Listofcomponents: • L=MURATALQM21PN1R0NGR • C =MURATAGRM155R60J475M(4.7 μF,6.3V,0402,X5R) I • C =MURATAGRM155R60J475M(4.7 μF,6.3V,0402,X5R) O Copyright©2010–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 SLVS871D–FEBRUARY2010–REVISEDJUNE2016 www.ti.com 8 Detailed Description 8.1 Overview The TPS6266x is a synchronous step-down converter typically operates at a regulated 6-MHz frequency pulse width modulation (PWM) at moderate to heavy load currents. At light load currents, the TPS6266x converter operatesinpower-savemodewithpulsefrequencymodulation(PFM). The converter uses a unique frequency-locked, ring-oscillating modulator to achieve best-in-class load and line response and allows the use of tiny inductors and small ceramic input and output capacitors. At the beginning of each switching cycle, the P-channel MOSFET switch is turned on and the inductor current ramps up rising the outputvoltageuntilthemaincomparatortrips,thenthecontrollogicturnsofftheswitch. One key advantage of the non-linear architecture is that there is no traditional feedback loop. The loop response to change in V is essentially instantaneous, which explains the transient response. The absence of a traditional, O high-gaincompensatedlinearloopmeansthattheTPS6266xisinherentlystableoverarangeofLandC . O Although this type of operation normally results in a switching frequency that varies with input voltage and load current, an internal frequency lock loop (FLL) holds the switching frequency constant over a large range of operatingconditions. Combined with best in class load and line transient response characteristics, the low quiescent current of the device (ca. 31 μA) allows to maintain high efficiency at light load, while preserving fast transient response for applicationsrequiringtightoutputregulation. 8.2 Functional Block Diagram MODE EN VIN Undervoltage VIN Lockout Bias Supply Soft-Start Negative Inductor Current Detect Bandgap VREF=0.8V Power Save Mode Switching Logic Thermal Current Limit Shutdown Detect Frequency Control R1 FB - Gate Driver SW Anti R2 VREF Shoot-Through + GND Copyright © 2016,Texas Instruments Incorporated 8 SubmitDocumentationFeedback Copyright©2010–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 www.ti.com SLVS871D–FEBRUARY2010–REVISEDJUNE2016 8.3 Feature Description 8.3.1 SwitchingFrequency The magnitude of the internal ramp, which is generated from the duty cycle, reduces for duty cycles either set of 50%. Thus, there is less overdrive on the main comparator inputs which tends to slow the conversion down. The intrinsic maximum operating frequency of the converter is about 10 MHz to 12 MHz, which is controlled to approximately6MHzbyafrequency-lockedloop. When high or low duty cycles are encountered, the loop runs out of range and the conversion frequency falls below 6 MHz. The tendency is for the converter to operate more towards a constant inductor peak current rather than a constant frequency. In addition to this behavior which is observed at high duty cycles, it is also noted at lowdutycycles. Whentheconverterisrequiredtooperatetowardsthe6-MHznominalatextremedutycycles,theapplicationcan be assisted by decreasing the ratio of inductance (L) to the output capacitor's equivalent serial inductance (ESL). This increases the ESL step seen at the main comparator's feedback input, thus decreasing its propagation delay,henceincreasingtheswitchingfrequency. 8.3.2 ModeSelection The MODE pin allows to select the operating mode of the device. Connecting this pin to GND enables the automatic PWM and power-save mode operation. The converter operates in regulated frequency PWM mode at moderate to heavy loads and in the PFM mode during light loads, which maintains high efficiency over a wide- loadcurrentrange. Pulling the MODE pin high forces the converter to operate in the PWM mode even at light load currents. The advantage is that the converter operates with a fixed frequency that allows simple filtering of the switching frequency for noise-sensitive applications. In this mode, the efficiency is lower compared to the power-save modeduringlightloads. For additional flexibility, it is possible to switch from power-save mode to forced PWM mode during operation. This allows efficient power management by adjusting the operation of the converter to the specific system requirements. 8.3.3 Enable The device starts operation when EN is set high and starts up with the soft start. For proper operation, the EN pinmustbeterminatedandmustnotbeleftfloating. Pulling the EN pin low forces the device into shutdown, with a shutdown quiescent current of typically 0.1 μA. In this mode, the P- and N-channel MOSFETs are turned off, the internal resistor feedback divider is disconnected, andtheentireinternal-controlcircuitryisswitchedoff. 8.3.4 SoftStart The TPS6266x has an internal soft-start circuit that limits the inrush current during start-up. This limits input voltagedropswhenabatteryorahigh-impedancepowersourceisconnectedtotheinputoftheconverter. The soft-start system progressively increases the ON-time from a minimum pulse-width of 35 ns as a function of the output voltage. This mode of operation continues for approximately 100 μs after enable. Should the output voltage not have reached its target value by this time, such as in the case of heavy load, the soft-start transitions toasecondmodeofoperation. Theconverterthenoperatesinacurrentlimitmode,specificallytheP-MOScurrentlimitissettohalfthenominal limit, and the N-channel MOSFET remains on until the inductor current has reset. After a further 100 μs, the device ramps up to the full current limit operation if the output voltage has risen above 0.5 V (approximately). Therefore,thestart-uptimemainlydependsontheoutputcapacitorandloadcurrent. The TPS62661 device starts up immediately into a nominal current limit mode, thereby ramping up the output voltage with maximum speed (<60 μs typically). The start-up time mainly depends on the output capacitor and loadcurrent. Copyright©2010–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 SLVS871D–FEBRUARY2010–REVISEDJUNE2016 www.ti.com Feature Description (continued) 8.3.5 OutputCapacitorDischarge The TPS6266x device can actively discharge the output capacitor when it turns off. The integrated discharge resistor has a typical resistance of 15 Ω. The required time to discharge the output capacitor at the output node dependsonloadcurrentandtheoutputcapacitancevalue. 8.3.6 UndervoltageLockout The undervoltage lockout circuit prevents the device from misoperation at low input voltages. It prevents the converter from turning on the switch or rectifier MOSFET under undefined conditions. The TPS6266x device haveaUVLOthresholdsetto2.05V(typical).Fullyfunctionaloperationispermitteddownto2.1-Vinputvoltage. 8.3.7 Short-CircuitProtection The TPS6266x integrates a P-channel MOSFET current limit to protect the device against heavy load or short circuits. When the current in the P-channel MOSFET reaches its current limit, the P-channel MOSFET is turned off and the N-channel MOSFET is turned on. The regulator continues to limit the current on a cycle-by-cycle basis. As soon as the output voltage falls below approximately 0.4 V, the converter current limit is reduced to half of the nominal value. Because the short-circuit protection is enabled during start-up, the device does not deliver more than half of its nominal current limit until the output voltage exceeds approximately 0.5 V. Consider this when a loadactingasacurrentsinkisconnectedtotheoutputoftheconverter. 8.3.8 ThermalShutdown As soon as the junction temperature, T , exceeds typically 140°C, the device goes into thermal shutdown. In this J mode, the P- and N-channel MOSFETs are turned off. The device continues its operation when the junction temperatureagainfallsbelowtypically130°C. 8.4 Device Functional Modes 8.4.1 Power-SaveMode If the load current decreases, the converter enters power-save mode operation automatically. During power-save mode, the converter operates in discontinuous current (DCM) single-pulse PFM mode, which produces low outputripplecomparedwithotherPFMarchitectures. When in power-save mode, the converter resumes its operation when the output voltage trips below the nominal voltage. It ramps up the output voltage with a minimum of one pulse and goes into power-save mode when the inductor current has returned to a zero steady-state. The PFM ON-time varies inversely proportional to the input voltageandproportionaltotheoutputvoltagegivingtheregulatedswitchingfrequencywheninsteady-state. PFM mode is left and PWM operation is entered as the output current can no longer be supported in PFM mode. As a consequence, the DC output voltage is typically positioned approximately 0.5% above the nominal output voltageandthetransitionbetweenPFMandPWMisseamless. PFM Mode at Light Load PFM Ripple Nominal DC Output Voltage PWM Mode at Heavy Load Figure8. OperationinPFMModeandTransfertoPWMMode 10 SubmitDocumentationFeedback Copyright©2010–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 www.ti.com SLVS871D–FEBRUARY2010–REVISEDJUNE2016 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 9.1 Application Information TheTPS62660isahigh-efficientsynchronousstep-downconverterprovidingupto1000-mAoutputcurrent. 9.2 Typical Application VBAT TPS62661 L VOUT 3.0 V .. 5.5 V 1.8 V @ 1000mA VIN SW 0.47mH CI EN FB C O 4.7mF 4.7mF GND MODE Copyright © 2016,Texas Instruments Incorporated Figure9. TPS626611.8-VOutputVoltage 9.2.1 DesignRequirements Thedeviceoperatesoveraninputvoltagerangefrom2.3Vto5.5V. 9.2.2 DetailedDesignProcedure 9.2.2.1 InductorSelection The TPS62660 series of step-down converters have been optimized to operate with an effective inductance value in the range of 0.3 μH to 1.3 μH and with output capacitors in the range of 4.7 μF to 10 μF. The internal compensation is optimized to operate with an output filter of L = 0.47 μH and C = 4.7 μF. Larger or smaller O inductorvaluescanbeusedtooptimizetheperformanceofthedeviceforspecificoperationconditions.Formore details,seeCheckingLoopStability. The inductor value affects its peak-to-peak ripple current, the PWM-to-PFM transition point, the output voltage ripple, and the efficiency. The selected inductor must be rated for its DC resistance and saturation current. The inductorripplecurrent(ΔI )decreaseswithhigherinductanceandincreaseswithhigherV orV . L I O V V -VO DI DI = O ´ I DI =I + L L V L´f L(MAX) O(MAX) 2 I sw where • f =switchingfrequency(6MHztypical) SW • L=inductorvalue • ΔI =peak-to-peakinductorripplecurrent L • I =maximuminductorcurrent (1) L(MAX) In high-frequency converter applications, the efficiency is essentially affected by the inductor AC resistance (that is, quality factor) and to a smaller extent by the inductor DCR value. To achieve high-efficiency operation, take care in selecting inductors featuring a quality factor above 25 at the switching frequency. Increasing the inductor value produces lower RMS currents, but degrades transient response. For a given physical inductor size, increasedinductanceusuallyresultsinaninductorwithlowersaturationcurrent. Copyright©2010–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 SLVS871D–FEBRUARY2010–REVISEDJUNE2016 www.ti.com Typical Application (continued) The total losses of the coil consist of both the losses in the DC resistance (R ) and the following frequency- (DC) dependentcomponents: • Thelossesinthecorematerial(magnetichysteresisloss,especiallyathighswitchingfrequencies) • Additionallossesintheconductorfromtheskineffect(currentdisplacementathighfrequencies) • Magneticfieldlossesoftheneighboringwindings(proximityeffect) • Radiationlosses ThefollowinginductorseriesfromdifferentsuppliershavebeenusedwiththeTPS62660converters. Table2.ListofInductors MANUFACTURER SERIES DIMENSIONS LQM21PN1R0NGR 2.0×1.2×1.0max.height MURATA LQM21PNR54MGC 2.0×1.2×1.0max.height LQM2MPN1R0NG0 2.0×1.6×1.0max.height PANASONIC ELGTEAR82NA 2.0×1.2×1.0max.height TOKO MDT2012-CX1R0A 2.0×1.2×1.0max.height TAIYOYUDEN NM2012NR82,NM2012N1R0 2.0×1.2×1.0max.height FDK MIPS2012D1R0-X2 2.0×1.2×1.0max.height 9.2.2.2 OutputCapacitorSelection The advanced fast-response voltage mode control scheme of the TPS6266x allows the use of tiny ceramic capacitors. Ceramic capacitors with low ESR values have the lowest output voltage ripple and are recommended. For best performance, the device must operate within a minimum effective output capacitance of 1.6 μF. The output capacitor requires either an X7R or X5R dielectric. Y5V and Z5U dielectric capacitors, aside fromtheirwidevariationincapacitanceovertemperature,becomeresistiveathighfrequencies. Atnominalloadcurrent,thedeviceoperatesinPWMmodeandtheoveralloutputvoltagerippleisthesumofthe voltage step caused by the output capacitor ESL and the ripple current flowing through the output capacitor impedance. At light loads, the output capacitor limits the output ripple voltage and provides holdup during large load transitions. A 4.7-μF capacitor typically provides sufficient bulk capacitance to stabilize the output during large loadtransitions.Thetypicaloutputvoltagerippleis1%ofthenominaloutputvoltageV . O The output voltage ripple during PFM mode operation can be kept very small. The PFM pulse is time controlled, which allows to modify the charge transferred to the output capacitor by the value of the inductor. The resulting PFM output voltage ripple and PFM frequency depend in first order on the size of the output capacitor and the inductor value. The PFM frequency decreases with smaller inductor values and increases with larger once. Increasingtheoutputcapacitorvalueandtheeffectiveinductanceminimizestheoutputripplevoltage. 9.2.2.3 InputCapacitorSelection Because of the nature of the buck converter having a pulsating input current, a low ESR input capacitor is required to prevent large voltage transients that can cause misbehavior of the device or interferences with other circuits in the system. For most applications, a 4.7-μF capacitor is sufficient. If the application exhibits a noisy or erraticswitchingfrequency,theremedyisprobablyfoundbyexperimentingwiththevalueoftheinputcapacitor. Take care when using only ceramic input capacitors. When a ceramic capacitor is used at the input and the power is being supplied through long wires, such as from a wall adapter, a load step at the output can induce ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop instability or could even damage the part. Additional bulk capacitance (electrolytic or tantalum) must in this circumstance be placed between C and the power source lead to reduce ringing than can occur between the inductance of the power I sourceleadsandC. I 12 SubmitDocumentationFeedback Copyright©2010–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 www.ti.com SLVS871D–FEBRUARY2010–REVISEDJUNE2016 9.2.2.4 CheckingLoopStability Thefirststepofcircuitandstabilityevaluationistolookfromasteady-stateperspectiveatthefollowingsignals: • Switchingnode,SW • Inductorcurrent,I L • Outputripplevoltage,V O(AC) These are the basic signals that need to be measured when evaluating a switching converter. When the switching waveform shows large duty cycle jitter or the output voltage or inductor current shows oscillations, the regulationloopmaybeunstable.ThisisoftenaresultofboardlayoutorL-Ccombination. As a next step in the evaluation of the regulation loop, the load transient response is tested. The time between the application of the load transient and the turnon of the P-channel MOSFET, the output capacitor must supply all of the current required by the load. V immediately shifts by an amount equal to ΔI × ESR, where ESR O (LOAD) is the effective series resistance of C . ΔI begins to charge or discharge C generating a feedback error O (LOAD) O signal used by the regulator to return V to its steady-state value. The results are most easily interpreted when O thedeviceoperatesinPWMmode. During this recovery time, V can be monitored for settling time, overshoot or ringing that helps judge the O converter’sstability.Withoutanyringing,theloophasusuallymorethan45° ofphasemargin. Because the damping factor of the circuitry is directly related to several resistive parameters (for example, MOSFETr )thataretemperaturedependant,theloopstabilityanalysishastobedoneovertheinputvoltage DS(on) range,loadcurrentrange,andtemperaturerange. 9.2.3 ApplicationCurves mV/div - 1.8 V Offset mV/div - 1.8 V Offset V- 20 V OffsetO 50 to 350 mALoad Step I- 200 mA/divO V- 20 V OffsetO 50 to 350 mALoad Step I- 200 mA/divO V- 500 mV/div - 3.3 I VVIO== 3 1.6.8 V V, (TP3S.t36 - 2 tTo6i 6m30.e9) -V 5 L µinse/d SivtepMODE = Low V- 500 mV/div - 2.7 I VVIO== 3 1.6.8 V V, (TP2St.67 -2 tT6oi6m 30.)e3 -V 5 Lmisn/ed iSvteMpODE = Low Figure10.CombinedLineandLoadTransientResponse Figure11.CombinedLineandLoadTransientResponse Copyright©2010–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 SLVS871D–FEBRUARY2010–REVISEDJUNE2016 www.ti.com A/div A/div m m - 100 O 0 to 150 mALoad Step - 200 O 50 to 350 mALoad Step Offset I I V 8 V/div - 1.8 V Offset 200 mA/div V- 20 mV/div - 1.O m - V- 10 O VVIO== 3 1.6.8 V V, (TPS62660) MODE = Low IL VVIO== 3 1.6.8 V V, (TPS62660) MODE = Low t - Time - 2 ms/div t - Time - 5 µs/div Figure12.LoadTransientResponseinPFM/PWM Figure13.LoadTransientResponseinPFM/PWM Operation Operation I- 200 mA/divO 50 to 350 mALoad Step 1.8 V Offset I- 200 mA/divO 50 to 350 mALoad Step 8 V Offset div - v - 1. V/ di m V/ 0 m - 2 20 I- 200 mA/divL VVIO== 2 1.7.8 V V, (TPS62660) MODE = Low VO I- 200 mA/divL VVIO== 4 1.8.8 V V, (TPS62660) MODE = Low V- O t - Time - 5 µs/div t - Time - 5 µs/div Figure14.LoadTransientResponseinPFM/PWM Figure15.LoadTransientResponseinPFM/PWM Operation Operation I- 500 mA/divO 150 to 500 mALoad Step div - 1.8 V Offset I- 500 mA/divO 150 to 500 mALoad Step v - 1.8 V Offset V/ di m V/ 0 m - 2 20 mA/div VO 0 mA/div V- O - 200 L VI= 3.6 V, I- 20L VI= 2.7 V, I VO= 1.8 V (TPS62660) MODE = Low VO= 1.8 V (TPS62660) MODE = Low t - Time - 5 µs/div t - Time - 5 µs/div Figure16.LoadTransientResponseinPFM/PWM Figure17.LoadTransientResponseinPFM/PWM Operation Operation 14 SubmitDocumentationFeedback Copyright©2010–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 www.ti.com SLVS871D–FEBRUARY2010–REVISEDJUNE2016 I- 500 mA/divO 150 to 500 mALoad Step 1.8 V Offset I- 1000 mA/divO 400 to 1000mALoad Step 1.8 V Offset v - v - di di V/ V/ m m 0 0 2 5 v - v - A/di VO A/di VO m m 0 0 0 0 2 5 - - IL VI= 4.8 V, IL VI= 3.6 V, VO= 1.8 V (TPS62660) MODE = Low VO= 1.8 V (TPS62660) MODE = Low t - Time - 5 µs/div t - Time - 5 µs/div Figure18.LoadTransientResponseinPFM/PWM Figure19.LoadTransientResponseinPFM/PWM Operation Operation mA/div mA/div VVIO== 3 1.6.2 V V, I- 200 O 50 to 350 mALoad Step Offset I- 200 O 5 to 200 mALoad Step V Offset mV/div - 1.2 V 0 mV/div - 1.2 mA/div V- 20 O mA/div V- 2O I- 200 L VVIO== 3 1.6.2 V V, MODE = Low I- 200 L MODE = Low t - Time - 5 µs/div t - Time - 5 µs/div Figure20.LoadTransientResponseinPFM/PWM Figure21.LoadTransientResponseinPFM/PWM Operation Operation divI- 500 mA/divO 200 to 600 mALoad Step V- 20 mV/div - 1.2 V OffsetO - 200 mA/div VVIO== 31..68 VV, (T1P0S t6o2 365601 )mALoad SweMeOpDE = Low V- 10 mV/div - 1.8 V OffsetO mA/ IO - 200 mA/div IL VI= 3.6 V, 200 L= muRata LQM2MPN1R0NG0, VO= 1.2 V MODE = Low - L CO= 10μF 4V 0402 (muRata GRM155R60G106M) I t - Time - 5 µs/div t - Time - 10 µs/div Figure22.LoadTransientResponseinPFM/PWM Figure23.ACLoadTransientResponse Operation Copyright©2010–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 SLVS871D–FEBRUARY2010–REVISEDJUNE2016 www.ti.com I- 200 mA/divO VVIO== 31..68 VV, (TP1S0 6to26 36500) mALoad Sweep V- 20 mV/div - 1.8 V OffsetO vI- 200 mA/divO VVIO== 31..62 VV,10 to 375 mALoad Sweep V- 20 mV/div - 1.2 V OffsetO A/div mA/di 0 m 00 0 2 - 2L MODE = Low I- L MODE = Low I t - Time - 10 µs/div t - Time - 10 µs/div Figure24.ACLoadTransientResponse Figure25.ACLoadTransientResponse 1.836 1.224 VO= 1.8 V (TPS62660) VO= 1.2 V PFM/PWM Operation VI= 4.8 V V- DC Output Voltage - VO11..78181.288 VI= 2.5 PVFM/PVWI=M 4 O.8p VerationV,VI=I =3 .36. 6V V V- DC Output Voltage - VO11..12181.822 VI= 3.6 V VI= 2V.5I V= 3.6 V 1.764 1.176 0.1 1 10 100 1000 0.1 1 10 100 1000 IO- Load Current - mA IO- Load Current - mA Figure26.DCOutputVoltagevsLoadCurrent Figure27.DCOutputVoltagevsLoadCurrent 220 260 200 VO= 1.8 V (TPS62660) Always PWM 240 VO= 1.2 V Always PWM 220 180 PFM to PWM 200 Mode Change A 160 A Current - m 112400 MPoFdMe tCo hPaWngMe TChhea nSgweistc ahti nTgh eMsoed Beorders Current - m 111468000 TChhea nSgweistc ahti nTgh eMsoed Beorders I- Load O1068000 I- Load O11028000 60 40 PWM to PFM Mode Change Always PFM 40 PWM to PFM 20 20 Mode Change Always PFM 0 0 2.5 2.8 3.1 3.4 3.7 4.0 4.3 4.6 4.9 5.2 5.5 2.5 2.8 3.1 3.4 3.7 4.0 4.3 4.6 4.9 5.2 5.5 VI- Input Voltage - V VI- Input Voltage - V Figure28.PFM/PWMBoundaries Figure29.PFM/PWMBoundaries 16 SubmitDocumentationFeedback Copyright©2010–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 www.ti.com SLVS871D–FEBRUARY2010–REVISEDJUNE2016 50 6.5 45 TA= 85°C 6 IO= 0 mA ent -Am 3450 TA= 25°C ncy - MHz 5.55 IOIOIOI=O= =3 =4 05 060000 0m 0m m AmAAA uiescent Curr 223050 TA= -40°C ching Freque 34..545 IOIO= 5=0 1 m50A mA I- QQ15 - Swit 3 10 fs2.5 5 2 VO= 1.8V (TPS62660) 0 1.5 2.5 2.8 3.1 3.4 3.7 4.0 4.3 4.6 4.9 5.2 5.5 2.52.72.93.13.33.53.73.94.14.3 4.54.74.95.15.35.5 VI- Input Voltage - V VI- Input Voltage - V Figure30.QuiescentCurrentvsInputVoltage Figure31.SwitchingFrequencyvsInputVoltage 450 300 WSource On-Resistance - m 233334470257025050505 TA= 85°TCATPP=W S2M65 2°MC6o6Td0Ae =O -p4e0r°aCtion WSource On-Resistance - m 122227025750505 TA= 85°TTPCAPWS=M6 2 2M56T°o6CAd0e= O-4p0e°rCation Static Drain- 222025050 Static Drain- 111025050 r- DS(on) 111257505 r- DS(on) 5705 2.52.72.93.13.33.53.73.94.14.34.54.74.95.15.35.5 2.52.72.93.13.33.53.73.94.14.34.54.74.95.15.35.5 VI- Input Voltage - V VI- Input Voltage - V Figure32.P-Channelr vsInputVoltage Figure33.N-Channelr vsInputVoltage DS(ON) DS(ON) V Offset VVIO== 3 1.6.8 V V, (TPS62660), V Offset VIOI== 34.06 mV,A VO= 1.8 V (TPS62660), 1.8 IO= 100 mA 1.8 v - v - di di V- 10 mV/vO SW Node - 2 V/div V- 20 mV/divO SW Node - 2 V/div di A/ A/ m m 0 200 - 20 - L MODE = High IL MODE = Low I t - Time - 50 ns/div t - Time - 250 ns/div Figure34.PWMOperation Figure35.Power-SaveModeOperation Copyright©2010–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 SLVS871D–FEBRUARY2010–REVISEDJUNE2016 www.ti.com MODE - 2 V/div VVIOIO=== 34 1.06. 8 mV V,A (TPS62660), Offset MODE - 2 V/div VIOI== 34.06 mV,A VO= 1.8 V (TPS62660), Offset div - 1.8 V div - 1.8 V V/ V/ m m 0 0 mA/div V- 2O div V- 2O 00 mA/ I- 2L - 200 L t - Time - 1 µs/div I t - Time - 1 µs/div Figure36.ModeChangeResponse Figure37.ModeChangeResponse v I- 1.5A/divO 750 to 1800 mALoad Sweep mV/div - 1.8 V Offset - 1EN - 2 V/div V/diO VVIOIO=== 30 1. 6m.8 VA V, (TPS62660), 0 V 0 5 A/div V- O div m A/ 0 m I- 50L MODE = Low VVIO== 3 1.6.8 V V, (TPS62660) I- 200 L MODE = Low t - Time - 2 µs/div t - Time - 20 µs/div Figure38.OvercurrentFaultOperation Figure39.Start-Up v di V/ N - 2 VVIO== 3 1.6.8 V V, (TPS62661), E RL= 2Ω v di V/ 1 - O V v di A/ m 0 0 5 - L I MODE = Low L= muRata LQM2MPN1R0NG0 t - Time - 10 µs/div Figure40.Start-Up 18 SubmitDocumentationFeedback Copyright©2010–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 www.ti.com SLVS871D–FEBRUARY2010–REVISEDJUNE2016 10 Power Supply Recommendations The TPS6266x device has no special requirements for its input power supply. The input power supply output currentmustberatedaccordingtothesupplyvoltage,outputvoltage,andoutputcurrentoftheTPS6266x. 11 Layout 11.1 Layout Guidelines As for all switching power supplies, the layout is an important step in the design. High-speed operation of the TPS6266x devices demand careful attention to PCB layout. Take care in board layout to get the specified performance.Ifthelayoutisnotcarefullydone,theregulatorcouldshowpoorlineorloadregulation,stabilityand switching frequency issues, as well as EMI problems. It is critical to provide a low-inductance, impedance ground path.Therefore,usewideandshorttracesforthemaincurrentpaths. The input capacitor must be placed as close as possible to the IC pins as well as the inductor and output capacitor. In order to get an optimum ESL step, the output voltage feedback point (FB) must be taken in the output capacitor path, approximately 1 mm away for it. The feedback line must be routed away from noisy componentsandtraces(thatis,SWline). 11.2 Layout Example MODE V C IN L I MODE VIN ENABLE SW EN FB GND C O V GND OUT Figure41. SuggestedLayout(Top) Copyright©2010–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 SLVS871D–FEBRUARY2010–REVISEDJUNE2016 www.ti.com 11.3 Thermal Considerations Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires special attention to power dissipation. Many system-dependant issues such as thermal coupling, airflow, added heat sinks, and convection surfaces, and the presence of other heat-generating components, affect the power dissipationlimitsofagivencomponent Threebasicapproachesforenhancingthermalperformancearelistedbelow: • ImprovingthepowerdissipationcapabilityofthePCBdesign • ImprovingthethermalcouplingofthecomponenttothePCB • Introducingairflowinthesystem The maximum recommended junction temperature (T ) of the TPS6266x devices is 105°C. The thermal J resistance of the 6-pin DSBGA package (YFF-6) is R = 125°C/W. Regulator operation is specified to a θJA maximumambienttemperatureT of85°C.Therefore,themaximumsteady-statepowerdissipationisabout A 160mW. TJ(MAX) -TA 105°C - 85°C P = = =160mW D(MA) R 125°C/W θJA (2) 20 SubmitDocumentationFeedback Copyright©2010–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS62660 TPS62665

TPS62660,TPS62665 www.ti.com SLVS871D–FEBRUARY2010–REVISEDJUNE2016 12 Device and Documentation Support 12.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed.Forchangedetails,reviewtherevisionhistoryincludedinanyreviseddocument. 12.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 12.3 Trademarks NanoFree,E2EaretrademarksofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 12.4 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 12.5 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2010–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:TPS62660 TPS62665

PACKAGE OPTION ADDENDUM www.ti.com 20-Jul-2019 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TPS62660YFFR ACTIVE DSBGA YFF 6 3000 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 OO & no Sb/Br) TPS62660YFFT ACTIVE DSBGA YFF 6 250 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 OO & no Sb/Br) TPS62665YFFR ACTIVE DSBGA YFF 6 3000 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 RS & no Sb/Br) TPS62665YFFT ACTIVE DSBGA YFF 6 250 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 RS & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 20-Jul-2019 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 20-Jul-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TPS62660YFFR DSBGA YFF 6 3000 180.0 8.4 1.07 1.42 0.74 4.0 8.0 Q1 TPS62660YFFT DSBGA YFF 6 250 180.0 8.4 1.07 1.42 0.74 4.0 8.0 Q1 TPS62665YFFR DSBGA YFF 6 3000 180.0 8.4 1.07 1.42 0.74 4.0 8.0 Q1 TPS62665YFFT DSBGA YFF 6 250 180.0 8.4 1.07 1.42 0.74 4.0 8.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 20-Jul-2019 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TPS62660YFFR DSBGA YFF 6 3000 182.0 182.0 20.0 TPS62660YFFT DSBGA YFF 6 250 182.0 182.0 20.0 TPS62665YFFR DSBGA YFF 6 3000 182.0 182.0 20.0 TPS62665YFFT DSBGA YFF 6 250 182.0 182.0 20.0 PackMaterials-Page2

PACKAGE OUTLINE YFF0006 DSBGA - 0.625 mm max height SCALE 10.500 DIE SIZE BALL GRID ARRAY B E A BALL A1 CORNER D 0.625 MAX C SEATING PLANE 0.30 0.12 BALL TYP 0.05 C 0.4 TYP C 0.8 B SYMM D: Max = 1.33 mm, Min = 1.27 mm TYP E: Max = 0.956 mm, Min =0 .896 mm 0.4 TYP A 0.3 6X 0.2 1 2 SYMM 0.015 C A B 4223785/A 06/2017 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. www.ti.com

EXAMPLE BOARD LAYOUT YFF0006 DSBGA - 0.625 mm max height DIE SIZE BALL GRID ARRAY (0.4) TYP 6X ( 0.23) 1 2 A (0.4) TYP SYMM B C SYMM LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:30X 0.05 MAX ( 0.23) 0.05 MIN METAL UNDER METAL SOLDER MASK EXPOSED SOLDER MASK METAL EXPOSED ( 0.23) OPENING METAL SOLDER MASK OPENING NON-SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS NOT TO SCALE 4223785/A 06/2017 NOTES: (continued) 3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009). www.ti.com

EXAMPLE STENCIL DESIGN YFF0006 DSBGA - 0.625 mm max height DIE SIZE BALL GRID ARRAY (0.4) TYP 6X ( 0.25) (R0.05) TYP 1 2 A (0.4) TYP SYMM B METAL TYP C SYMM SOLDER PASTE EXAMPLE BASED ON 0.1 mm THICK STENCIL SCALE:35X 4223785/A 06/2017 NOTES: (continued) 4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TIPROVIDESTECHNICALANDRELIABILITYDATA(INCLUDINGDATASHEETS),DESIGNRESOURCES(INCLUDINGREFERENCE DESIGNS),APPLICATIONOROTHERDESIGNADVICE,WEBTOOLS,SAFETYINFORMATION,ANDOTHERRESOURCES“ASIS” ANDWITHALLFAULTS,ANDDISCLAIMSALLWARRANTIES,EXPRESSANDIMPLIED,INCLUDINGWITHOUTLIMITATIONANY IMPLIEDWARRANTIESOFMERCHANTABILITY,FITNESSFORAPARTICULARPURPOSEORNON-INFRINGEMENTOFTHIRD PARTYINTELLECTUALPROPERTYRIGHTS. TheseresourcesareintendedforskilleddevelopersdesigningwithTIproducts.Youaresolelyresponsiblefor(1)selectingtheappropriate TIproductsforyourapplication,(2)designing,validatingandtestingyourapplication,and(3)ensuringyourapplicationmeetsapplicable standards,andanyothersafety,security,orotherrequirements.Theseresourcesaresubjecttochangewithoutnotice.TIgrantsyou permissiontousetheseresourcesonlyfordevelopmentofanapplicationthatusestheTIproductsdescribedintheresource.Other reproductionanddisplayoftheseresourcesisprohibited.NolicenseisgrantedtoanyotherTIintellectualpropertyrightortoanythird partyintellectualpropertyright.TIdisclaimsresponsibilityfor,andyouwillfullyindemnifyTIanditsrepresentativesagainst,anyclaims, damages,costs,losses,andliabilitiesarisingoutofyouruseoftheseresources. TI’sproductsareprovidedsubjecttoTI’sTermsofSale(www.ti.com/legal/termsofsale.html)orotherapplicabletermsavailableeitheron ti.comorprovidedinconjunctionwithsuchTIproducts.TI’sprovisionoftheseresourcesdoesnotexpandorotherwisealterTI’sapplicable warrantiesorwarrantydisclaimersforTIproducts. MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265 Copyright©2019,TexasInstrumentsIncorporated