图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: TPS62170DSGT
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

TPS62170DSGT产品简介:

ICGOO电子元器件商城为您提供TPS62170DSGT由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TPS62170DSGT价格参考。Texas InstrumentsTPS62170DSGT封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 可调式 降压 开关稳压器 IC 正 0.9V 1 输出 500mA 8-WFDFN 裸露焊盘。您可以下载TPS62170DSGT参考资料、Datasheet数据手册功能说明书,资料中有TPS62170DSGT 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC REG BUCK SYNC ADJ 0.5A 8WSON稳压器—开关式稳压器 3-17V 0.5A 2.5MHZ SD Converter

产品分类

PMIC - 稳压器 - DC DC 开关稳压器

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

电源管理 IC,稳压器—开关式稳压器,Texas Instruments TPS62170DSGTDCS-Control™

数据手册

点击此处下载产品Datasheet

产品型号

TPS62170DSGT

PCN其它

点击此处下载产品Datasheet

PWM类型

混合物

产品种类

稳压器—开关式稳压器

供应商器件封装

8-WSON (2x2)

其它名称

296-30229-2
TPS62170DSGT-ND

包装

带卷 (TR)

同步整流器

商标

Texas Instruments

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

8-WFDFN 裸露焊盘

封装/箱体

WSON-8

工作温度

-40°C ~ 85°C

工作温度范围

- 40 C to + 85 C

工厂包装数量

250

开关频率

2.25 MHz

拓扑结构

Buck

最大输入电压

17 V

最小工作温度

- 40 C

标准包装

250

电压-输入

3 V ~ 17 V

电压-输出

0.9 V ~ 6 V

电流-输出

500mA

类型

降压(降压)

系列

TPS62170

设计资源

http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176

输出数

1

输出电压

900 mV to 6 V

输出电流

500 mA

输出端数量

1 Output

输出类型

可调式

配用

/product-detail/zh/TPS62170EVM-627/296-37523-ND/2833453

频率-开关

2.25MHz

推荐商品

型号:XC9235A30CER-G

品牌:Torex Semiconductor Ltd

产品名称:集成电路(IC)

获取报价

型号:LM2672MX-12

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LTC3619BEDD#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LTC3407AIDD#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LM2575-5.0YN

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:LTC3630AHMSE#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LM2576TV-012G

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:BD9325FJ-E2

品牌:Rohm Semiconductor

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
TPS62170DSGT 相关产品

LT1941EFE#PBF

品牌:Linear Technology/Analog Devices

价格:

MAX16903SAUE33/V+

品牌:Maxim Integrated

价格:

LTC3526LBEDC-2#TRMPBF

品牌:Linear Technology/Analog Devices

价格:

LM2575T-12/NOPB

品牌:Texas Instruments

价格:¥9.35-¥11.83

MC34063ADRJR

品牌:Texas Instruments

价格:

LM2574N-12

品牌:Texas Instruments

价格:

REG710NA-3/3KG4

品牌:Texas Instruments

价格:

MCP16323T-330E/NG

品牌:Microchip Technology

价格:

PDF Datasheet 数据手册内容提取

Product Order Technical Tools & Support & Reference Folder Now Documents Software Community Design TPS62170,TPS62171,TPS62172,TPS62173 SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 TPS6217x 3-V to 17-V, 0.5-A Step-Down Converters with DCS-Control™ 1 Features 3 Description • DCS-Control™Topology The TPS6217x device family are easy to use 1 synchronous step-down DC-DC converters optimized • InputVoltageRangefrom3Vto17V for applications with high power density. A high • Upto500-mAOutputCurrent switching frequency of typically 2.25 MHz allows the • AdjustableOutputVoltagefrom0.9Vto6V use of small inductors and provides fast transient response as well as high output voltage accuracy by • FixedOutputVoltageVersions utilizationoftheDCS-Control™topology. • SeamlessPowerSaveModeTransition With its wide operating input voltage range of 3 V to • Typically17-µAQuiescentCurrent 17 V, the devices are ideally suited for systems • PowerGoodOutput powered from either a Li-Ion or other battery as well • 100%DutyCycleMode as from 12-V intermediate power rails. It supports up to 0.5-A continuous output current at output voltages • ShortCircuitProtection between0.9Vand6V(with100%dutycyclemode). • OverTemperatureProtection Power sequencing is also possible by configuring the • PintoPinCompatiblewithTPS62160and enableandopen-drainpowergoodpins. TPS62125 • Availableina2-mm× 2-mm8-PinWSON In power save mode, the devices show quiescent current of about 17 μA from VIN. Power save mode, Package entered automatically and seamlessly if the load is • CreateaCustomDesignusingtheTPS62170with small, maintains high efficiency over the entire load theWEBENCH®PowerDesigner range. In shutdown mode, the device is turned off andshutdowncurrentconsumptionislessthan2 μA. 2 Applications The device, available in adjustable and fixed output • Standard12-VRailSupplies voltage versions, is packaged in a 2-mm × 2-mm 8- • POLSupplyfromSingleorMultipleLi-IonBattery pinWSONpackage(DSG). • LDOReplacement DeviceInformation(1) • EmbeddedSystems PARTNUMBER PACKAGE BODYSIZE(NOM) • DigitalStillCamera,Video TPS6217x WSON(8) 2.00mmx2.00mm • MobilePCs,Tablet-PCs,Modems (1) For all available packages, see the orderable addendum at theendofthedatasheet. TypicalApplicationSchematic EfficiencyvsOutputCurrent (3..17)V 2.2µH 1.8V/0.5A VIN SW EN VOS 100k 10uF TPS62171 22uF AGND PG PGND FB %) ncy ( e Effici 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

TPS62170,TPS62171,TPS62172,TPS62173 SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 www.ti.com Table of Contents 1 Features.................................................................. 1 9 ApplicationandImplementation........................ 12 2 Applications........................................................... 1 9.1 ApplicationInformation............................................12 3 Description............................................................. 1 9.2 TypicalApplication..................................................12 4 RevisionHistory..................................................... 2 9.3 SystemExamples...................................................21 5 DeviceVoltageOptions......................................... 3 10 PowerSupplyRecommendations..................... 24 6 PinConfigurationandFunctions......................... 3 11 Layout................................................................... 25 11.1 LayoutGuidelines.................................................25 7 Specifications......................................................... 4 11.2 LayoutExample....................................................25 7.1 AbsoluteMaximumRatings......................................4 11.3 ThermalConsiderations........................................26 7.2 ESDRatings..............................................................4 12 DeviceandDocumentationSupport................. 27 7.3 RecommendedOperatingConditions.......................4 7.4 ThermalInformation..................................................4 12.1 DeviceSupport......................................................27 7.5 ElectricalCharacteristics...........................................5 12.2 DocumentationSupport........................................27 7.6 TypicalCharacteristics..............................................6 12.3 RelatedLinks........................................................27 12.4 CommunityResources..........................................28 8 DetailedDescription.............................................. 7 12.5 Trademarks...........................................................28 8.1 Overview...................................................................7 12.6 ElectrostaticDischargeCaution............................28 8.2 FunctionalBlockDiagram.........................................7 12.7 Glossary................................................................28 8.3 FeatureDescription...................................................8 13 Mechanical,Packaging,andOrderable 8.4 DeviceFunctionalModes........................................10 Information........................................................... 28 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionD(October2014)toRevisionE Page • AddedlinktoWEBENCH®Designer .................................................................................................................................... 1 • Added"SW(AC),lessthan10ns"specificationtoAbsoluteMaximumRatingstable .......................................................... 4 • ChangedT MAXspecfrom"125"to"150"........................................................................................................................... 4 J • ChangedElectricalCharacteristicsConditionsfrom"free-airtemperaturerange"to"junctiontemperaturerange" .............5 • AddedI andI specifications ............................................................................................................................................. 5 Q SD • Added125°CplotlineinFigure1andFigure4TypicalCharacteristicsgraphicentities. .................................................... 6 • AddedPowerGoodPinLogicTable ..................................................................................................................................... 9 ChangesfromRevisionC(August2013)toRevisionD Page • AddedPinConfigurationandFunctionssection,ESDRatingstable,FeatureDescriptionsection,DeviceFunctional Modes,ApplicationandImplementationsection,PowerSupplyRecommendationssection,Layoutsection,Device andDocumentationSupportsection,andMechanical,Packaging,andOrderableInformationsection .............................. 1 ChangesfromRevisionB(August2013)toRevisionC Page • Changed50mV/μsto50mV/sinEnableandShutdown(EN)section .................................................................................. 8 ChangesfromRevisionA(April2012)toRevisionB Page • AddeddiodetoFigure41..................................................................................................................................................... 24 ChangesfromOriginal(November2011)toRevisionA Page • ChangedTable2.................................................................................................................................................................. 13 2 SubmitDocumentationFeedback Copyright©2011–2017,TexasInstrumentsIncorporated ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 www.ti.com SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 5 Device Voltage Options OUTPUTVOLTAGE(1) PARTNUMBER PACKAGE adjustable TPS62170 1.8V TPS62171 WSON(8) 3.3V TPS62172 5.0V TPS62173 (1) Contactthefactorytocheckavailabilityofotherfixedoutputvoltageversions. 6 Pin Configuration and Functions DSGPackage 8-PinWSONWithExposedThermalPad TopView PGND 1 8 PG VIN 2 Exposed 7 SW Thermal Pad EN 3 6 VOS AGND 4 5 FB PinFunctions PIN(1) I/O DESCRIPTION NAME NO. PGND 1 — Powerground VIN 2 IN Supplyvoltage EN 3 IN Enableinput(High=enabled,Low=disabled) AGND 4 — Analogground Voltagefeedbackofadjustableversion.Connectresistivevoltagedividertothispin.Itisrecommendedto FB 5 IN connectFBtoAGNDonfixedoutputvoltageversionsforimprovedthermalperformance. VOS 6 IN Outputvoltagesensepinandconnectionforthecontrolloopcircuitry. Switchnode,whichisconnectedtotheinternalMOSFETswitches.ConnectinductorbetweenSWandoutput SW 7 OUT capacitor. Outputpowergood(High=VOUTready,Low=VOUTbelownominalregulation);opendrain(requirespull- PG 8 OUT upresistor;goeshighimpedance,whendeviceisswitchedoff) Exposed MustbeconnectedtoAGND.Mustbesolderedtoachieveappropriatepowerdissipationandmechanical — ThermalPad reliability. (1) Formoreinformationaboutconnectingpins,seeDetailedDescriptionandApplicationInformationsections. Copyright©2011–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings(1) MIN MAX UNIT VIN –0.3 20 V EN,SW(DC) –0.3 V +0.3 Pinvoltagerange(2) IN V SW(AC),lessthan10ns(3) –2 24.5 FB,PG,VOS –0.3 7 V Powergoodsinkcurrent PG 10 mA Operatingjunctiontemperature,T –40 150 °C J Storagetemperature,T –65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) Allvoltagesarewithrespecttonetworkgroundterminal. (3) Whileswitching. 7.2 ESD Ratings VALUE UNIT Humanbodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±2000 V Electrostaticdischarge V (ESD) Chargeddevicemodel(CDM),perJEDECspecificationJESD22-C101(2) ±500 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 7.3 Recommended Operating Conditions MIN NOM MAX UNIT SupplyVoltage,V 3 17 V IN OutputVoltage,V 0.9 6 V OUT Operatingjunctiontemperature,T –40 125 °C J 7.4 Thermal Information TPS6217x THERMALMETRIC(1) DSG(WSON) UNIT 8PINS R Junction-to-ambientthermalresistance 61.8 °C/W θJA R Junction-to-case(top)thermalresistance 61.3 °C/W θJC(top) R Junction-to-boardthermalresistance 15.5 °C/W θJB ψ Junction-to-topcharacterizationparameter 0.4 °C/W JT ψ Junction-to-boardcharacterizationparameter 15.4 °C/W JB R Junction-to-case(bottom)thermalresistance 8.6 °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report,SPRA953. 4 SubmitDocumentationFeedback Copyright©2011–2017,TexasInstrumentsIncorporated ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 www.ti.com SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 7.5 Electrical Characteristics Overjunctiontemperaturerange(T =–40°Cto+125°C),typicalvaluesatV =12VandT =25°C(unlessotherwisenoted) J IN J PARAMETER TESTCONDITIONS MIN TYP MAX UNIT SUPPLY V Inputvoltagerange(1) 3 17 V IN EN=High,I =0mA, 17 30 I Operatingquiescentcurrent OUT µA Q devicenotswitching T =-40°Cto+85°C 17 25 J 1.5 25 I Shutdowncurrent(2) EN=Low µA SD T =-40°Cto+85°C 1.5 4 J Fallinginputvoltage 2.6 2.7 2.82 V V Undervoltagelockoutthreshold UVLO Hysteresis 180 mV Thermalshutdowntemperature risingtemperature 160 T °C SD Thermalshutdownhysteresis fallingtemperature 20 CONTROL(EN,PG) Highlevelinputthresholdvoltage V 0.9 0.6 V EN_H (EN) Lowlevelinputthresholdvoltage V 0.56 0.3 V EN_L (EN) I LKG_E Inputleakagecurrent(EN) EN=V orGND 0.01 1 µA IN N VTH_P Powergoodthresholdvoltage Rising(%VOUT) 92% 95% 98% G Falling(%VOUT) 87% 90% 93% V OL_P Powergoodoutputlowvoltage I =–2mA 0.07 0.3 V PG G I LKG_P Inputleakagecurrent(PG) V =1.8V 1 400 nA PG G POWERSWITCH V ≥6V 300 600 IN High-sideMOSFETON-resistance mΩ RDS(O VIN=3V 430 N) VIN≥6V 120 200 Low-sideMOSFETON-resistance mΩ V =3V 165 IN High-sideMOSFETforward ILIMF currentlimit(3) VIN=12V,TJ=25°C 0.85 1.05 1.35 A OUTPUT V Internalreferencevoltage(4) 0.8 V REF I LKG_F Pinleakagecurrent(FB) TPS62170,V =1.2V 5 400 nA FB B Outputvoltagerange(TPS62170) V ≥V 0.9 6.0 V IN OUT PWMmodeoperation,V ≥V +1V –3% 3% IN OUT Initialoutputvoltageaccuracy(5) -3.5 Powersavemodeoperation,C =22µF 4% V OUT % OUT DCoutputvoltageloadregulation V =12V,V =3.3V,PWMmodeoperation 0.05 %/A IN OUT 3V≤V ≤17V,V =3.3V,I =0.5A,PWMmode DCoutputvoltagelineregulation IN OUT OUT 0.02 %/V operation (1) Thedeviceisstillfunctionaldowntoundervoltagelockout(seeparameterV ). UVLO (2) CurrentintoVINpin. (3) Thisisthestaticcurrentlimit.Itcanbetemporarilyhigherinapplicationsduetointernalpropagationdelay(seeCurrentLimitandShort CircuitProtection). (4) ThisisthevoltageregulatedattheFBpin. (5) Thisistheaccuracyprovidedbythedeviceitself(lineandloadregulationeffectsarenotincluded).Forfixedvoltageversions,the (internal)resistivefeedbackdividerisincluded. Copyright©2011–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 www.ti.com 7.6 Typical Characteristics Figure1.QuiescentCurrent Figure2.ShutdownCurrent 600.0 250.0 550.0 125°C 225.0 500.0 85°C 200.0 125°C Wm) 450.0 Wm) 175.0 85°C Side ( 345000..00 25°C Side ( 150.0 25°C n High− 235000..00 −20°C n Low− 110205..00 −20°C o 200.0 o S S 75.0 RD 150.0 RD 50.0 −40°C 100.0 −40°C 50.0 25.0 0.0 0.0 3.0 6.0 9.0 12.0 15.0 18.0 3.0 6.0 9.0 12.0 15.0 18.0 20.0 Input Voltage (V) Input Voltage (V) G001 G001 Figure3.High-SideSwitch Figure4.Low-SideSwitch 6 SubmitDocumentationFeedback Copyright©2011–2017,TexasInstrumentsIncorporated ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 www.ti.com SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 8 Detailed Description 8.1 Overview The TPS6217x synchronous step-down DC-DC converters are based on DCS-Control™ (Direct Control with Seamless transition into power save mode), an advanced regulation topology, that combines the advantages of hysteretic, voltage mode and current mode control including an AC loop directly associated to the output voltage. This control loop takes information about output voltage changes and feeds it directly to a fast comparator stage. It sets the switching frequency, which is constant for steady state operating conditions, and provides immediate response to dynamic load changes. To get accurate DC load regulation, a voltage feedback loop is used. The internally compensated regulation network achieves fast and stable operation with small external components andlowESRcapacitors. The DCS-Control™ topology supports pulse width modulation (PWM) mode for medium and heavy load conditions and a power save mode at light loads. During PWM mode, it operates at its nominal switching frequency in continuous conduction mode. This frequency is typically about 2.25 MHz with a controlled frequency variation depending on the input voltage. If the load current decreases, the converter enters power save mode to sustain high efficiency down to very light loads. In power save mode, the switching frequency decreases linearly with the load current. Since DCS-Control™ supports both operation modes within one single building block, the transitionfromPWMtopowersavemodeisseamlesswithouteffectsontheoutputvoltage. Fixed output voltage versions provide smallest solution size and lowest current consumption, requiring only 3 externalcomponents.Aninternalcurrentlimitsupportsnominaloutputcurrentsofupto500mA. The TPS6217x family offers both excellent DC voltage and superior load transient regulation, combined with very lowoutputvoltageripple,minimizinginterferencewithRFcircuits. 8.2 Functional Block Diagram PG VIN Soft Thermal UVLO PGcontrol start Shtdwn HSlim comp power gate EN* controllogic control drive SW comp LSlim VOS directcontrol & ramp compensation _ FB comparator timertON error + amplifier DCS-ControlTM *Thispinisconnectedtoapulldownresistorinternally AGND PGND (seeDetailedDescriptionsection). Figure5. TPS62170(AdjustableOutputVoltage) Copyright©2011–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 www.ti.com Functional Block Diagram (continued) PG VIN Soft Thermal UVLO PGcontrol start Shtdwn HSlim comp power gate EN* controllogic control drive SW comp LSlim VOS directcontrol & ramp compensation _ FB* comparator timertON error + amplifier DCS-ControlTM *Thispinisconnectedtoapulldownresistorinternally AGND PGND (seeDetailedDescriptionsection). Figure6. TPS62171/TPS62172/TPS62173(FixedOutputVoltage) 8.3 Feature Description 8.3.1 EnableandShutdown(EN) Whenenable(EN)issethigh,thedevicestartsoperation. Shutdown is forced if EN is pulled low with a shutdown current of typically 1.5 µA. During shutdown, the internal power MOSFETs as well as the entire control circuitry are turned off. The internal resistive divider pulls down the output voltage smoothly. If the EN pin is low, an internal pull-down resistor of about 400 kΩ is connected and keepsitlow,toavoidbouncing. Connecting the EN pin to an appropriate output signal of another power rail provides sequencing of multiple powerrails. 8.3.2 CurrentLimitandShortCircuitProtection The TPS6217x devices are protected against heavy load and short circuit events. At heavy loads, the current limit determines the maximum output current. If the current limit is reached, the high-side FET is turned off. Avoiding shoot-through current, the low-side FET is switched on to allow the inductor current to decrease. The high-side FET turns on again, only if the current in the low-side FET decreases below the low-side current limit thresholdoftypically0.7A. The output current of the device is limited by the current limit (see Electrical Characteristics). Due to internal propagation delay, the actual current can exceed the static current limit during that time. The dynamic current limitiscalculatedasfollows: space 8 SubmitDocumentationFeedback Copyright©2011–2017,TexasInstrumentsIncorporated ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 www.ti.com SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 Feature Description (continued) V I = I + L ×t peak(typ) LIMF L PD where • I isthestaticcurrentlimit,specifiedinElectricalCharacteristics LIMF • Listheinductorvalue • V isthevoltageacrosstheinductor L • t istheinternalpropagationdelay (1) PD space Thedynamichigh-sideswitchpeakcurrentiscalculatedasfollows: space ( ) V -V I = I + IN OUT ×30ns peak(typ) LIMF L (2) space Takecarewiththecurrentlimit,iftheinputvoltageishighandverysmallinductancesareused. 8.3.3 PowerGood(PG) The TPS6217x has a built in power good (PG) function to indicate whether the output voltage has reached its appropriate level or not. The PG signal can be used for startup sequencing of multiple rails. The PG pin is an open-drain output that requires a pull-up resistor (to any voltage below 7 V). It can sink 2 mA of current and maintain its specified logic low level. It is high impedance when the device is turned off due to EN, UVLO or thermalshutdown.Ifnotused,thePGpinshouldbeconnectedtoGNDbutmaybeleftfloating. space Table1.PowerGoodPinLogicTable PGLogicStatus DeviceState HighImpedance Low V ≥V √ FB TH_PG Enable(EN=High) V ≤V √ FB TH_PG Shutdown(EN=Low) √ UVLO 0.7V<V <V √ IN UVLO ThermalShutdown T >T √ J SD PowerSupplyRemoval V <0.7V √ IN space 8.3.4 UndervoltageLockout(UVLO) If the input voltage drops, the under voltage lockout prevents misoperation of the device by switching off both the power FETs. The under voltage lockout threshold is set typically to 2.7 V. The device is fully operational for voltages above the UVLO threshold and turns off if the input voltage trips the threshold. The converter starts operationagainoncetheinputvoltageexceedsthethresholdbyahysteresisoftypically180mV. 8.3.5 ThermalShutdown The junction temperature (T) of the device is monitored by an internal temperature sensor. If T exceeds 160°C j j (typical), the device goes into thermal shut down. Both the high-side and low-side power FETs are turned off and PG goes high impedance. When T decreases below the hysteresis amount, the converter resumes normal j operation, beginning with soft start. To avoid unstable conditions, a hysteresis of typically 20°C is implemented onthethermalshutdowntemperature. Copyright©2011–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 www.ti.com 8.4 Device Functional Modes 8.4.1 SoftStart The internal soft start circuitry controls the output voltage slope during startup. This avoids excessive inrush current and ensures a controlled output voltage rise time. It also prevents unwanted voltage drops from high- impedance power sources or batteries. When EN is set to start device operation, the device starts switching after a delay of about 50 µs and V rises with a slope of about 25 mV/µs. See Figure 30 and Figure 31 for typical OUT startupoperation. The TPS6217x can start into a pre-biased output. During monotonic pre-biased startup, the low-side MOSFET is notallowedtoturnonuntilthedevice'sinternalrampsetsanoutputvoltageabovethepre-biasvoltage. 8.4.2 PulseWidthModulation(PWM)Operation The TPS6217x operates with pulse width modulation in continuous conduction mode (CCM) with a nominal switching frequency of about 2.25 MHz. The frequency variation in PWM is controlled and depends on V , V IN OUT and the inductance. The device operates in PWM mode as long the output current is higher than half the inductor's ripple current. To maintain high efficiency at light loads, the device enters power save mode at the boundary to discontinuous conduction mode (DCM). This happens if the output current becomes smaller than halftheinductor'sripplecurrent. 8.4.3 PowerSaveModeOperation The TPS6217x's built in power save mode is entered seamlessly, if the load current decreases. This secures a high efficiency in light load operation. The device remains in power save mode as long as the inductor current is discontinuous. In power save mode the switching frequency decreases linearly with the load current maintaining high efficiency. The transition into and out of power save mode happens within the entire regulation scheme and is seamless in bothdirections. TPS6217xincludesafixedon-timecircuitry.Thison-time,insteady-stateoperation,isestimatedas: space V t = OUT ×420ns ON V IN (3) space For very small output voltages, the on-time increases beyond the result of Equation 3, to stay above an absolute minimum on-time, t , which is around 80 ns, to limit switching losses. The peak inductor current in PSM is ON(min) approximatedby: space (V -V ) I = IN OUT ×t LPSM(peak) L ON (4) space WhenV decreasestotypically15%aboveV ,theTPS6217xdoesnotenterpowersavemode,regardlessof IN OUT theloadcurrent.ThedevicemaintainsoutputregulationinPWMmode. 8.4.4 100%Duty-CycleOperation The duty cycle of the buck converter is given by D = V /V and increases as the input voltage comes close to OUT IN the output voltage. In this case, the device starts 100% duty cycle operation turning on the high-side switch 100% of the time. The high-side switch stays turned on as long as the output voltage is below the internal setpoint.Thisallowstheconversionofsmallinputtooutputvoltagedifferences,suchasforthelongestoperation timeofbattery-poweredapplications.In100%dutycyclemode,thelow-sideFETisswitchedoff. The minimum input voltage to maintain output voltage regulation, depending on the load current and the output voltagelevel,iscalculatedas: 10 SubmitDocumentationFeedback Copyright©2011–2017,TexasInstrumentsIncorporated ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 www.ti.com SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 Device Functional Modes (continued) space ( ) V =V +I R +R IN(min) OUT(min) OUT DS(on) L where • I istheoutputcurrent OUT • R istheR ofthehigh-sideFET DS(on) DS(on) • R istheDCresistanceoftheinductorused (5) L Copyright©2011–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 9.1 Application Information The TPS6217x device family are easy to use synchronous step-down DC-DC converters optimized for applications with high power density. A high switching frequency of typically 2.25 MHz allows the use of small inductors and provides fast transient response as well as high output voltage accuracy by utilization of the DCS- Control™ topology. With its wide operating input voltage range of 3 V to 17 V, the devices are ideally suited for systems powered from either a Li-Ion or other battery as well as from 12-V intermediate power rails. It supports upto0.5-Acontinuousoutputcurrentatoutputvoltagesbetween0.9Vand6V(with100%dutycyclemode). 9.2 Typical Application space VIN 2.2µH VOUT VIN SW EN VOS R3 R1 C1 TPS62170 C2 AGND PG R2 PGND FB Figure7. TPS62170AdjustablePowerSupply space 9.2.1 DesignRequirements The design guideline provides a component selection to operate the device within the Recommended Operating Conditions. 9.2.2 DetailedDesignProcedure 9.2.2.1 CustomDesignwithWEBENCH®Tools ClickheretocreateacustomdesignusingtheTPS62170devicewiththe WEBENCH® PowerDesigner. 1. StartbyenteringyourV ,V ,andI requirements. IN OUT OUT 2. Optimize your design for key parameters like efficiency, footprint and cost using the optimizer dial and comparethisdesignwithotherpossiblesolutionsfromTexasInstruments. 3. The WEBENCH Power Designer provides you with a customized schematic along with a list of materials with realtimepricingandcomponentavailability. 4. Inmostcases,youwillalsobeableto: – Runelectricalsimulationstoseeimportantwaveformsandcircuitperformance – Runthermalsimulationstounderstandthethermalperformanceofyourboard – ExportyourcustomizedschematicandlayoutintopopularCADformats – PrintPDFreportsforthedesign,andshareyourdesignwithcolleagues 5. GetmoreinformationaboutWEBENCHtoolsatwww.ti.com/WEBENCH. 12 SubmitDocumentationFeedback Copyright©2011–2017,TexasInstrumentsIncorporated ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 www.ti.com SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 Typical Application (continued) 9.2.2.2 ProgrammingtheOutputVoltage WhiletheoutputvoltageoftheTPS62170isadjustable,theTPS62171/TPS62172/TPS62173areprogrammedto fixed output voltages. For fixed output versions, the FB pin is pulled down internally and may be left floating. it is recommended to connect it to AGND to improve thermal resistance. The adjustable version can be programmed for output voltages from 0.9 V to 6 V by using a resistive divider from VOUT to AGND. The voltage at the FB pin is regulated to 800 mV. The value of the output voltage is set by the selection of the resistive divider from Equation 6. It is recommended to choose resistor values which allow a current of at least 2 uA, meaning the value of R2 should not exceed 400 kΩ. Lower resistor values are recommended for highest accuracy and most robust design. For applications requiring lowest current consumption, the use of fixed output voltage versions is recommended. spacing æV ö R =R ç OUT -1÷ 1 2è 0.8V ø (6) spacing IncasetheFBpingetsopened,thedeviceclampstheoutputvoltageattheVOSpintoabout7.4V. 9.2.2.3 ExternalComponentSelection The external components have to fulfill the needs of the application, but also the stability criteria of the devices control loop. The TPS6217x is optimized to work within a range of external components. The LC output filter's inductance and capacitance have to be considered together, creating a double pole, responsible for the corner frequency of the converter (see Output Filter and Loop Stability). Table 2 can be used to simplify the output filter component selection. Checked cells represent combinations that are proven for stability by simulation and lab test.Furthercombinationsshouldbecheckedforeachindividualapplication. space Table2.RecommendedLCOutputFilterCombinations(1) 4.7µF 10µF 22µF 47µF 100µF 200µF 400µF 1µH 2.2µH √ √(2) √ √ √ 3.3µH √ √ √ √ 4.7µH (1) Thevaluesinthetablearenominalvalues.Variationsoftypically±20%duetotolerance,saturationandDCbiasareassumed. (2) ThisLCcombinationisthestandardvalueandrecommendedformostapplications. space MoredetailedinformationonfurtherLCcombinationscanbefoundinSLVA463. 9.2.2.3.1 InductorSelection The inductor selection is affected by several effects like inductor ripple current, output ripple voltage, PWM-to- PSM transition point and efficiency. In addition, the inductor selected has to be rated for appropriate saturation current and DC resistance (DCR). Equation 7 and Equation 8 calculate the maximum inductor current under staticloadconditions. spacing DI I = I + L(max) L(max) OUT(max) 2 (7) spacing spacing Copyright©2011–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 www.ti.com æ V ö ç1- OUT ÷ ç V ÷ DI =V ×ç IN(max) ÷ L(max) OUT L × f ç (min) SW ÷ ç ÷ è ø where • I (max)isthemaximuminductorcurrent L • ΔI isthepeak-to-peakinductorripplecurrent L • L(min)istheminimumeffectiveinductorvalue • f istheactualPWMswitchingfrequency (8) SW spacing Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation current of the inductor needed. A margin of about 20% is recommended to add. A larger inductor value is also useful to get lower ripple current, but increases the transient response time and size as well. Table 3 lists inductorsthatarerecommendedforusewiththeTPS6217x. Table3.ListofInductors Type Inductance[µH] Current[A](1) Dimensions[LxBxH]mm MANUFACTURER VLF3012ST-2R2M1R4 2.2µH,±20% 1.9A 3.0x2.8x1.2 TDK VLF302512MT-2R2M 2.2µH,±20% 1.9A 3.0x2.5x1.2 TDK VLS252012-2R2 2.2µH,±20% 1.3A 2.5x2.0x1.2 TDK XFL3012-222MEC 2.2µH,±20% 1.9A 3.0x3.0x1.2 Coilcraft XFL3012-332MEC 3.3µH,±20% 1.6A 3.0x3.0x1.2 Coilcraft XPL2010-222MLC 2.2µH,±20% 1.3A 1.9x2.0x1.0 Coilcraft XPL2010-332MLC 3.3µH,±20% 1.1A 1.9x2.0x1.0 Coilcraft LPS3015-332ML 3.3µH,±20% 1.4A 3.0x3.0x1.4 Coilcraft PFL2512-222ME 2.2µH,±20% 1.0A 2.8x2.3x1.2 Coilcraft PFL2512-333ME 3.3µH,±20% 0.78A 2.8x2.3x1.2 Coilcraft 744028003 3.3µH,±30% 1.0A 2.8x2.8x1.1 Wuerth PSI25201B-2R2MS 2.2uH,±20% 1.3A 2.0x2.5x1.2 Cyntec NR3015T-2R2M 2.2uH,±20% 1.5A 3.0x3.0x1.5 TaiyoYuden BRC2012T2R2MD 2.2µH,±20% 1.0A 2.0x1.25x1.4 TaiyoYuden BRC2012T3R3MD 3.3µH,±20% 0.87A 2.0x1.25x1.4 TaiyoYuden (1) I at40°CriseorI at30%drop. RMS SAT TPS6217x can operate with an inductor as low as 2.2 µH. However, for applications running with low input voltages, 3.3 µH is recommended, to allow the full output current. The inductor value also determines the load currentatwhichpowersavemodeisentered: 1 I = DI load(PSM) 2 L (9) UsingEquation8,thiscurrentlevelisadjustedbychangingtheinductorvalue. 14 SubmitDocumentationFeedback Copyright©2011–2017,TexasInstrumentsIncorporated ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 www.ti.com SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 9.2.2.4 CapacitorSelection 9.2.2.4.1 OutputCapacitor The recommended value for the output capacitor is 22 µF. The architecture of the TPS6217x allows the use of tiny ceramic output capacitors with low equivalent series resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low resistance up to high frequencies and to get narrow capacitance variation with temperature, it is recommended to use an X7R or X5R dielectric. Using a higher value can have some advantages like smaller voltage ripple and a tighter DC output accuracy in power save mode (seeSLVA463). Note: In power save mode, the output voltage ripple depends on the output capacitance, its ESR and the peak inductorcurrent.UsingceramiccapacitorsprovidessmallESRandlowripple. 9.2.2.4.2 InputCapacitor For most applications, 10 µF is sufficient and is recommended, though a larger value reduces input current ripple further. The input capacitor buffers the input voltage for transient events and also decouples the converter from the supply. A low ESR multilayer ceramic capacitor is recommended for best filtering and should be placed betweenVINandPGNDascloseaspossibletothosepins. spacing NOTE DC bias effect: High capacitance ceramic capacitors have a DC bias effect, which has a strong influence on the final effective capacitance. Therefore the right capacitor value has to be chosen carefully. Package size and voltage rating in combination with dielectric material are responsible for differences between the rated capacitor value and the effectivecapacitance. spacing 9.2.2.5 OutputFilterandLoopStability The devices of the TPS6217x family are internally compensated to be stable with L-C filter combinations correspondingtoacornerfrequencycalculatedwithEquation10: space 1 f = LC 2p L×C (10) space Proven nominal values for inductance and ceramic capacitance are given in Table 2 and are recommended for use. Different values may work, but care has to be taken on the loop stability which is affected. More information includingadetailedL-CstabilitymatrixisfoundinSLVA463. The TPS6217x devices, both fixed and adjustable versions, include an internal 25 pF feed forward capacitor, connected between the VOS and FB pins. This capacitor impacts the frequency behavior and sets a pole and zerointhecontrolloopwiththeresistorsofthefeedbackdivider,perEquation11 andEquation12: space 1 f = zero 2p ×R ×25pF 1 (11) space 1 æ 1 1 ö f = ×ç + ÷ ç ÷ pole 2p ×25pF èR R ø 1 2 (12) space Copyright©2011–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 www.ti.com Though the TPS6217x devices are stable without the pole and zero being in a particular location, adjusting their location to the specific needs of the application can provide better performance in power save mode and/or improved transient response. An external feed-forward capacitor can also be added. A more detailed discussion ontheoptimizationforstabilityvs.transientresponsecanbefoundinSLVA289andSLVA466. If using ceramic capacitors, the DC bias effect has to be considered. The DC bias effect results in a drop in effectivecapacitanceasthevoltageacrossthecapacitorincreases(see NOTEinCapacitorselectionsection). 9.2.2.6 TPS6216xComponentsList Table4showsthelistofcomponentsfortheApplicationCurves. Table4.ListofComponents REFERENCE DESCRIPTION MANUFACTURER IC 17V,0.5AStep-DownConverter,WSON TPS62170DSG,TexasInstruments L1 2.2uH,1.4A,3mmx2.8mmx1.2mm VLF3012ST-2R2M1R4,TDK C1 10µF,25V,Ceramic,0805 Standard C2 22µF,6.3V,Ceramic,0805 Standard R1 dependingonV OUT R2 dependingonV OUT R3 100kΩ,Chip,0603,1/16W,1% Standard 16 SubmitDocumentationFeedback Copyright©2011–2017,TexasInstrumentsIncorporated ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 www.ti.com SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 9.2.3 ApplicationCurves V =12V,V =3.3V,T =25°C,(unlessotherwisenoted) IN OUT A 100.0 100.0 90.0 90.0 80.0 80.0 70.0 VIN=17V 70.0 IOUT=1mA IOUT=100mA %) %) y ( 60.0 VIN=12V y ( 60.0 IOUT=10mA IOUT=500mA nc 50.0 nc 50.0 e e Effici 40.0 Effici 40.0 30.0 VIN=6V 30.0 VOUT=6.0V 20.0 VOUT=6.0V 20.0 L=2.2uH (VLF3012ST) L=2.2uH (VLF3012ST) 10.0 10.0 Cout=22uF Cout=22uF 0.0 0.0 0.0001 0.001 0.01 0.1 1 7 8 9 10 11 12 13 14 15 16 17 Output Current (A) Input Voltage (V) G001 G001 Figure8.EfficiencyvsOutputCurrent,V =6V Figure9.EfficiencyvsInputVoltage,V =6V OUT OUT 100.0 100.0 90.0 90.0 80.0 80.0 70.0 VIN=17V 70.0 IOUT=1mA IOUT=100mA %) %) y ( 60.0 VIN=12V y ( 60.0 IOUT=10mA IOUT=0.5A nc 50.0 VIN=6V nc 50.0 e e Effici 40.0 Effici 40.0 30.0 30.0 20.0 VOUT=5.0V 20.0 VOUT=5.0V L=2.2uH (VLF3012ST) L=2.2uH (VLF3012ST) 10.0 Cout=22uF 10.0 Cout=22uF 0.0 0.0 0.0001 0.001 0.01 0.1 1 7 8 9 10 11 12 13 14 15 16 17 Output Current (A) Input Voltage (V) G001 G001 Figure10.EfficiencyvsOutputCurrent,V =5V Figure11.EfficiencyvsInputVoltage,V =5V OUT OUT 100.0 100.0 IOUT=500mA 90.0 90.0 80.0 80.0 70.0 70.0 y (%) 60.0 VIN=17V y (%) 60.0 IOUT=1mA IOUT=10mA IOUT=100mA nc 50.0 VIN=12V nc 50.0 e e Effici 40.0 VIN=5V Effici 40.0 30.0 30.0 VOUT=3.3V 20.0 VOUT=3.3V 20.0 L=2.2uH (VLF3012ST) L=2.2uH (VLF3012ST) 10.0 10.0 Cout=22uF Cout=22uF 0.0 0.0 0.0001 0.001 0.01 0.1 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Output Current (A) Input Voltage (V) G001 G001 Figure12.EfficiencyvsOutputCurrent,V =3.3V Figure13.EfficiencyvsInputVoltage,V =3.3V OUT OUT Copyright©2011–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 www.ti.com V =12V,V =3.3V,T =25°C,(unlessotherwisenoted) IN OUT A 100.0 100.0 90.0 VIN=5V 90.0 IOUT=500mA 80.0 80.0 70.0 70.0 %) %) ncy ( 5600..00 VIN=17V ncy ( 5600..00 IOUT=1mA IOUT=10mA e e Effici 40.0 VIN=12V Effici 40.0 IOUT=100mA 30.0 30.0 20.0 VOUT=1.8V 20.0 VOUT=1.8V L=2.2uH (VLF3012ST) L=2.2uH (VLF3012ST) 10.0 Cout=22uF 10.0 Cout=22uF 0.0 0.0 0.0001 0.001 0.01 0.1 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Output Current (A) Input Voltage (V) G001 G001 Figure14.EfficiencyvsOutputCurrent,V =1.8V Figure15.EfficiencyvsInputVoltage,V =1.8V OUT OUT 100.0 100.0 90.0 90.0 IOUT=10mA VIN=5V IOUT=100mA IOUT=500mA 80.0 80.0 70.0 70.0 %) %) y ( 60.0 y ( 60.0 nc 50.0 VIN=17V nc 50.0 e e Effici 40.0 VIN=12V Effici 40.0 IOUT=1mA 30.0 30.0 20.0 VOUT=0.9V 20.0 VOUT=0.9V L=2.2uH (VLF3012ST) L=2.2uH (VLF3012ST) 10.0 Cout=22uF 10.0 Cout=22uF 0.0 0.0 0.0001 0.001 0.01 0.1 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Output Current (A) Input Voltage (V) G001 G001 Figure16.EfficiencyvsOutputCurrent,V =0.9V Figure17.EfficiencyvsInputVoltage,V =0.9V OUT OUT 3.35 3.35 IOUT=1mA IOUT=10mA e (V) 3.30 e (V) 3.30 g g a a olt olt V V ut VIN=5V VIN=12V VIN=17V ut IOUT=100mA IOUT=500mA p p ut 3.25 ut 3.25 O O VOUT=3.3V VOUT=3.3V L=2.2uH (VLF3012ST) L=2.2uH (VLF3012ST) Cout=22uF Cout=22uF 3.20 3.20 0.0001 0.001 0.01 0.1 1 4 7 10 13 16 Output Current (A) Input Voltage (V) G001 G001 Figure18.OutputVoltageAccuracy(LoadRegulation) Figure19.OutputVoltageAccuracy(LineRegulation) 18 SubmitDocumentationFeedback Copyright©2011–2017,TexasInstrumentsIncorporated ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 www.ti.com SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 V =12V,V =3.3V,T =25°C,(unlessotherwisenoted) IN OUT A 4 4 3.5 3.5 z) z) MH 3 MH 3 y ( y ( c 2.5 c 2.5 n n e e u u q 2 q 2 e e g Fr 1.5 g Fr 1.5 IOUT=0.5A n n hi hi witc 1 witc 1 VOUT=3.3V S S 0.5 VIN=12V, VOUT=3.3V 0.5 L=2.2uH (VLF3012ST) L=2.2uH (VLF3012ST) Cout=22uF 0 0 0 0.1 0.2 0.3 0.4 0.5 4 6 8 10 12 14 16 18 Output Current (A) Input Voltage (V) G000 G000 Figure20.SwitchingFrequencyvsOutputCurrent Figure21.SwitchingFrequencyvsInputVoltage 0.05 1.5 VOUT=3.3V, L=2.2uH (VLF3012ST) 1.2 V) 0.04 Cout=22uF VIN=17V Ripple ( 0.03 ent (A) 1 −40°C 25°C ge urr 0.8 a C put Volt 0.02 VIN=12V Output 0.5 85°C ut O 0.01 VOUT=3.3V 0.2 L=2.2uH (VLF3012ST) VIN=5V Cout=22uF 0 0 0 0.1 0.2 0.3 0.4 0.5 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Output Current (A) Input Voltage (V) G000 G000 Figure22.OutputVoltageRipple Figure23.MaximumOutputCurrent Figure24.PWMtoPSMModeTransition Figure25.PSMtoPWMModeTransition Copyright©2011–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 www.ti.com V =12V,V =3.3V,T =25°C,(unlessotherwisenoted) IN OUT A Figure26.LoadTransientResponseinPWMMode Figure27.LoadTransientResponsefrom (200mAto500mA) PowerSaveMode(100mAto500mA) Figure28.LoadTransientResponseinPWMMode Figure29.LoadTransientResponseinPWMMode (200mAto500mA),RisingEdge (200mAto500mA),FallingEdge Figure30.StartupwithI =500mA,V =3.3V Figure31.StartupwithI =500mA,V =3.3V OUT OUT OUT OUT 20 SubmitDocumentationFeedback Copyright©2011–2017,TexasInstrumentsIncorporated ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 www.ti.com SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 V =12V,V =3.3V,T =25°C,(unlessotherwisenoted) IN OUT A Figure32.TypicalOperationinPowerSaveMode Figure33.TypicalOperationinPWMmode(I =500mA) OUT (I =66mA) OUT 9.3 System Examples Figure 34 through Figure 40 show various TPS6217x devices and input voltages that provide a 0.5-A power supplywithoutputvoltageoptions. (5..17)V 2.2µH 5V/0.5A VIN SW EN VOS 100k 10uF TPS62173 22uF AGND PG PGND FB Figure34. 5-Vand0.5-APowerSupply (3.3..17)V 2.2µH 3.3V/0.5A VIN SW EN VOS 100k 10uF TPS62172 22uF AGND PG PGND FB Figure35. 3.3-Vand0.5-APowerSupply Copyright©2011–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 www.ti.com System Examples (continued) (3..17)V 2.2µH 2.5V/0.5A VIN SW EN VOS 100k 390k 10uF TPS62170 22uF AGND PG 180k PGND FB Figure36. 2.5-Vand0.5-APowerSupply (3..17)V 2.2µH 1.8V/0.5A VIN SW EN VOS 100k 10uF TPS62171 22uF AGND PG PGND FB Figure37. 1.8-Vand0.5-APowerSupply (3..17)V 2.2µH 1.5V/0.5A VIN SW EN VOS 100k 130k 10uF TPS62170 22uF AGND PG 150k PGND FB Figure38. 1.5-Vand0.5-APowerSupply 22 SubmitDocumentationFeedback Copyright©2011–2017,TexasInstrumentsIncorporated ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 www.ti.com SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 System Examples (continued) (3..17)V 2.2µH 1.2V/0.5A VIN SW EN VOS 100k 75k 10uF TPS62170 22uF AGND PG 150k PGND FB Figure39. 1.2-Vand0.5-APowerSupply (3..17)V 2.2µH 1V/0.5A VIN SW EN VOS 100k 51k 10uF TPS62170 22uF AGND PG 200k PGND FB Figure40. 1-Vand0.5-APowerSupply Copyright©2011–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 www.ti.com System Examples (continued) 9.3.1 InvertingPowerSupply The TPS6217x can be used as inverting power supply by rearranging external circuitry as shown in Figure 41. As the former GND node now represents a voltage level below system ground, the voltage difference between V andV hastobelimitedforoperationtothemaximumsupplyvoltageof17V(seeEquation13). IN OUT space V +V £V IN OUT INmax (13) space 10uF (3..12)V 2.2µH VIN SW EN VOS 100k 680k 10uF TPS62170 22uF AGND PG 130k PGND FB -5V Figure41. –5-VInvertingPowerSupply The transfer function of the inverting power supply configuration differs from the buck mode transfer function, incorporating a right half plane zero additionally. The loop stability has to be adapted and an output capacitance ofatleast22 µFisrecommended.AdetaileddesignexampleisgiveninSLVA469. 10 Power Supply Recommendations The TPS6217x device family has no special requirements for its input power supply. The input power supply's output current needs to be rated according to the supply voltage, output voltage and output current of the TPS6217x. 24 SubmitDocumentationFeedback Copyright©2011–2017,TexasInstrumentsIncorporated ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 www.ti.com SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 11 Layout 11.1 Layout Guidelines A proper layout is critical for the operation of a switched mode power supply, even more at high switching frequencies. Therefore the PCB layout of the TPS6217x demands careful attention to ensure operation and to get the performance specified. A poor layout can lead to issues like poor regulation (both line and load), stability andaccuracyweaknesses,increasedEMIradiationandnoisesensitivity. Provide low inductive and resistive paths to ground for loops with high di/dt. Therefore paths conducting the switched load current should be as short and wide as possible. Provide low capacitive paths (with respect to all other nodes) for wires with high dv/dt. Therefore the input and output capacitance should be placed as close as possible to the IC pins and parallel wiring over long distances as well as narrow traces should be avoided. Loops which conduct an alternating current should outline an area as small as possible, as this area is proportional to theenergyradiated. Also sensitive nodes like FB and VOS should be connected with short wires, not nearby high dv/dt signals (such asSW).Astheycarryinformationabouttheoutputvoltage,theyshouldbeconnectedascloseaspossibletothe actualoutputvoltage(attheoutputcapacitor).Signalsnotassignedtopowertransmission(suchasthefeedback divider)shouldrefertothesignalground(AGND)andalwaysbeseparatedfromthepowerground(PGND). In summary, the input capacitor should be placed as close as possible to the VIN and PGND pin of the IC. This connections should be done with wide and short traces. The output capacitor should be placed such that its groundisascloseaspossibletotheIC'sPGNDpins-avoidingadditionalvoltagedropintraces.Thisconnection should also be made short and wide. The inductor should be placed close to the SW pin and connect directly to the output capacitor - minimizing the loop area between the SW pin, inductor, output capacitor and PGND pin. The feedback resistors, R and R , should be placed close to the IC and connect directly to the AGND and FB 1 2 pins. Those connections (including VOUT) to the resistors and even more to the VOS pin should stay away from noise sources, such as the inductor. The VOS pin should connect in the shortest way to VOUT at the output capacitor,whiletheVOUTconnectiontothefeedbackdividercanconnectattheload. A single point grounding scheme should be implemented with all grounds (AGND, PGND and the thermal pad) connecting at the IC's exposed thermal pad. See Figure 42 for the recommended layout of the TPS6217x. More detailedinformationcanbefoundintheEVMUsersGuide,SLVU483. The exposed thermal pad must be soldered to the circuit board for mechanical reliability and to achieve appropriate power dissipation. Although the exposed thermal pad can be connected to a floating circuit board trace,thedevicehasbetterthermalperformanceifitisconnectedtoalargergroundplane.Theexposedthermal padiselectricallyconnectedtoAGND. 11.2 Layout Example GND VOUT C2 L1 PGND PG C1 VIN SW EN VOS AGND FB AGND VIN R2 R1 Figure42. LayoutExample Copyright©2011–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 www.ti.com 11.3 Thermal Considerations Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power- dissipationlimitsofagivencomponent. Threebasicapproachesforenhancingthermalperformancearelistedbelow: • ImprovingthepowerdissipationcapabilityofthePCBdesign • ImprovingthethermalcouplingofthecomponenttothePCBbysolderingtheexposedthermalpad • Introducingairflowinthesystem For more details on how to use the thermal parameters, see the application notes: Thermal Characteristics ApplicationNoteSZZA017,andSPRA953. The TPS6217x is designed for a maximum operating junction temperature (T) of 125°C. Therefore the maximum j output power is limited by the power losses that can be dissipated over the actual thermal resistance, given by the package and the surrounding PCB structures. If the thermal resistance of the package is given, the size of the surrounding copper area and a proper thermal connection of the IC can reduce the thermal resistance. To get an improved thermal behavior, it is recommended to use top layer metal to connect the device with wide and thick metal lines. Internal ground layers can connect to vias directly under the IC for improved thermal performance. Ifshortcircuitoroverloadconditionsarepresent,thedeviceisprotectedbylimitinginternalpowerdissipation. 26 SubmitDocumentationFeedback Copyright©2011–2017,TexasInstrumentsIncorporated ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 www.ti.com SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 12 Device and Documentation Support 12.1 Device Support 12.1.1 Third-PartyProductsDisclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONEORINCOMBINATIONWITHANYTIPRODUCTORSERVICE. 12.1.2 DevelopmentSupport 12.1.2.1 CustomDesignWithWEBENCH® Tools ClickheretocreateacustomdesignusingtheTPS6217xdevicewiththeWEBENCH® PowerDesigner. 1. Startbyenteringtheinputvoltage(V ),outputvoltage(V ),andoutputcurrent(I )requirements. IN OUT OUT 2. Optimizethedesignforkeyparameterssuchasefficiency,footprint,andcostusingtheoptimizerdial. 3. ComparethegenerateddesignwithotherpossiblesolutionsfromTexasInstruments. The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricingandcomponentavailability. Inmostcases,theseactionsareavailable: • Runelectricalsimulationstoseeimportantwaveformsandcircuitperformance • Runthermalsimulationstounderstandboardthermalperformance • ExportcustomizedschematicandlayoutintopopularCADformats • PrintPDFreportsforthedesign,andsharethedesignwithcolleagues GetmoreinformationaboutWEBENCHtoolsatwww.ti.com/WEBENCH. 12.2 Documentation Support 12.2.1 RelatedDocumentation Forrelateddocumentationseethefollowing: • TPS62160,3V-17V1AStep-DownConverterswithDCS-Control™,TPS62160 • TPS62125,3V-17V,300mABuckConverterWithAdjustableEnableThresholdAndHysteresis,TPS62125 • OptimizingtheTPS62130/40/50/60/70OutputFilter,SLVA463 • Optimizing Transient Response of Internally Compensated DC-DC Converters With Feedforward Capacitor, SLVA289 • UsingaFeedforwardCapacitortoImproveStabilityandBandwidthofTPS62130/40/50/60/70,SLVA466 • UsingtheTPS6215xinanInvertingBuck-BoostTopology,SLVA469 • TPS62160EVMandTPS62170EVM-627EvaluationModules,SLVU483 • ThermalCharacteristicsofLinearandLogicPackagesUsingJEDECPCBDesigns,SZZA017 12.3 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table5.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY TPS62170 Clickhere Clickhere Clickhere Clickhere Clickhere TPS62171 Clickhere Clickhere Clickhere Clickhere Clickhere TPS62172 Clickhere Clickhere Clickhere Clickhere Clickhere TPS62173 Clickhere Clickhere Clickhere Clickhere Clickhere Copyright©2011–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 27 ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

TPS62170,TPS62171,TPS62172,TPS62173 SLVSAT8E–NOVEMBER2011–REVISEDMAY2017 www.ti.com 12.4 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 12.5 Trademarks DCS-Control,E2EaretrademarksofTexasInstruments. WEBENCHisaregisteredtrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 12.6 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 12.7 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 28 SubmitDocumentationFeedback Copyright©2011–2017,TexasInstrumentsIncorporated ProductFolderLinks:TPS62170 TPS62171 TPS62172 TPS62173

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TPS62170DSGR ACTIVE WSON DSG 8 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 QUE & no Sb/Br) TPS62170DSGT ACTIVE WSON DSG 8 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 QUE & no Sb/Br) TPS62171DSGR ACTIVE WSON DSG 8 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 QUF & no Sb/Br) TPS62171DSGT ACTIVE WSON DSG 8 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 QUF & no Sb/Br) TPS62172DSGR ACTIVE WSON DSG 8 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 QUG & no Sb/Br) TPS62172DSGT ACTIVE WSON DSG 8 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 QUG & no Sb/Br) TPS62173DSGR ACTIVE WSON DSG 8 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 QUH & no Sb/Br) TPS62173DSGT ACTIVE WSON DSG 8 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 QUH & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TPS62170, TPS62171, TPS62172 : •Automotive: TPS62170-Q1, TPS62171-Q1, TPS62172-Q1 NOTE: Qualified Version Definitions: •Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 17-May-2020 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TPS62170DSGR WSON DSG 8 3000 180.0 8.4 2.3 2.3 1.15 4.0 8.0 Q2 TPS62170DSGR WSON DSG 8 3000 178.0 8.4 2.25 2.25 1.0 4.0 8.0 Q2 TPS62170DSGT WSON DSG 8 250 178.0 8.4 2.25 2.25 1.0 4.0 8.0 Q2 TPS62171DSGR WSON DSG 8 3000 180.0 8.4 2.3 2.3 1.15 4.0 8.0 Q2 TPS62171DSGT WSON DSG 8 250 180.0 8.4 2.3 2.3 1.15 4.0 8.0 Q2 TPS62172DSGR WSON DSG 8 3000 180.0 8.4 2.3 2.3 1.15 4.0 8.0 Q2 TPS62172DSGT WSON DSG 8 250 180.0 8.4 2.3 2.3 1.15 4.0 8.0 Q2 TPS62173DSGR WSON DSG 8 3000 180.0 8.4 2.3 2.3 1.15 4.0 8.0 Q2 TPS62173DSGR WSON DSG 8 3000 178.0 8.4 2.25 2.25 1.0 4.0 8.0 Q2 TPS62173DSGT WSON DSG 8 250 178.0 8.4 2.25 2.25 1.0 4.0 8.0 Q2 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 17-May-2020 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TPS62170DSGR WSON DSG 8 3000 210.0 185.0 35.0 TPS62170DSGR WSON DSG 8 3000 205.0 200.0 33.0 TPS62170DSGT WSON DSG 8 250 205.0 200.0 33.0 TPS62171DSGR WSON DSG 8 3000 210.0 185.0 35.0 TPS62171DSGT WSON DSG 8 250 210.0 185.0 35.0 TPS62172DSGR WSON DSG 8 3000 210.0 185.0 35.0 TPS62172DSGT WSON DSG 8 250 210.0 185.0 35.0 TPS62173DSGR WSON DSG 8 3000 210.0 185.0 35.0 TPS62173DSGR WSON DSG 8 3000 205.0 200.0 33.0 TPS62173DSGT WSON DSG 8 250 205.0 200.0 33.0 PackMaterials-Page2

GENERIC PACKAGE VIEW DSG 8 WSON - 0.8 mm max height 2 x 2, 0.5 mm pitch PLASTIC SMALL OUTLINE - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4224783/A www.ti.com

PACKAGE OUTLINE DSG0008A WSON - 0.8 mm max height SCALE 5.500 PLASTIC SMALL OUTLINE - NO LEAD 2.1 B A 1.9 PIN 1 INDEX AREA 2.1 1.9 0.32 0.18 0.4 0.2 ALTERNATIVE TERMINAL SHAPE TYPICAL 0.8 MAX C SEATING PLANE 0.05 0.08 C 0.00 EXPOSED THERMAL PAD 0.9 0.1 (0.2) TYP 5 4 6X 0.5 2X 9 1.5 1.6 0.1 8 1 0.32 8X PIN 1 ID 8X 0.4 0.18 0.2 0.1 C A B 0.05 C 4218900/D 04/2020 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. www.ti.com

EXAMPLE BOARD LAYOUT DSG0008A WSON - 0.8 mm max height PLASTIC SMALL OUTLINE - NO LEAD (0.9) ( 0.2) VIA 8X (0.5) TYP 1 8 8X (0.25) (0.55) SYMM 9 (1.6) 6X (0.5) 5 4 (R0.05) TYP SYMM (1.9) LAND PATTERN EXAMPLE SCALE:20X 0.07 MAX 0.07 MIN ALL AROUND ALL AROUND SOLDER MASK METAL METAL UNDER SOLDER MASK OPENING SOLDER MASK OPENING NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4218900/D 04/2020 NOTES: (continued) 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. www.ti.com

EXAMPLE STENCIL DESIGN DSG0008A WSON - 0.8 mm max height PLASTIC SMALL OUTLINE - NO LEAD 8X (0.5) SYMM METAL 1 8 8X (0.25) (0.45) SYMM 9 (0.7) 6X (0.5) 5 4 (R0.05) TYP (0.9) (1.9) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL EXPOSED PAD 9: 87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE SCALE:25X 4218900/D 04/2020 NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated