ICGOO在线商城 > 集成电路(IC) > PMIC - 稳压器 - DC DC 开关稳压器 > TPS62061DSGT
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
TPS62061DSGT产品简介:
ICGOO电子元器件商城为您提供TPS62061DSGT由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TPS62061DSGT价格参考。Texas InstrumentsTPS62061DSGT封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 固定 降压 开关稳压器 IC 正 1.8V 1 输出 1.6A 8-WFDFN 裸露焊盘。您可以下载TPS62061DSGT参考资料、Datasheet数据手册功能说明书,资料中有TPS62061DSGT 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC REG BUCK SYNC 1.8V 1.6A 8WSON稳压器—开关式稳压器 3MHz,1.6A Step-Down Converter |
产品分类 | |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 电源管理 IC,稳压器—开关式稳压器,Texas Instruments TPS62061DSGT- |
数据手册 | |
产品型号 | TPS62061DSGT |
PCN组件/产地 | |
PWM类型 | 电压模式 |
产品种类 | 稳压器—开关式稳压器 |
供应商器件封装 | 8-WSON (2x2) |
其它名称 | 296-28459-1 |
包装 | 剪切带 (CT) |
同步整流器 | 是 |
商标 | Texas Instruments |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | 8-WFDFN 裸露焊盘 |
封装/箱体 | WSON-8 |
工作温度 | -40°C ~ 85°C |
工作温度范围 | - 40 C to + 85 C |
工厂包装数量 | 250 |
开关频率 | 3 MHz |
拓扑结构 | Buck |
最大工作温度 | + 85 C |
最大输入电压 | 6 V |
最小工作温度 | - 40 C |
最小输入电压 | 2.7 V |
标准包装 | 1 |
电压-输入 | 2.7 V ~ 6 V |
电压-输出 | 1.8V |
电流-输出 | 1.6A |
类型 | 降压(降压) |
系列 | TPS62061 |
负载调节 | - 0.5 % |
输入电压 | 2.7 V to 6 V |
输出数 | 1 |
输出电压 | 1.8 V |
输出电流 | 1.6 A |
输出端数量 | 1 Output |
输出类型 | 固定 |
频率-开关 | 3MHz |
Product Sample & Technical Tools & Support & Folder Buy Documents Software Community TPS62060,TPS62061,TPS62063 SLVSA95B–MARCH2010–REVISEDJULY2015 TPS6206x 3-MHz, 1.6-A, Step Down Converter in 2-mm × 2-mm WSON Package 1 Features 3 Description • 3-MHzSwitchingFrequency The TPS6206x is a family of highly efficient 1 synchronous step-down DC-DC converters. They • V Rangefrom2.7Vto6V IN provideupto1.6-Aoutputcurrent. • 1.6-AOutputCurrent With an input voltage range of 2.7 V to 6 V, the • Upto97%Efficiency device is a perfect fit for power conversion from a • PowerSaveModeand3-MHzFixedPWMMode single Li-Ion battery as well from 5-V or 3.3-V system • OutputVoltageAccuracyinPWMMode±1.5% supply rails. The TPS6206x operates at 3-MHz fixed frequency and enters power save mode operation at • OutputDischargeFunction light load currents to maintain high efficiency over the • Typical18-µAQuiescentCurrent entire load current range. The power save mode is • 100%DutyCycleforLowestDropout optimized for low output voltage ripple. For low noise applications, the device can be forced into fixed • VoltagePositioning frequencyPWMmodebypullingtheMODEpinhigh. • ClockDithering In the shutdown mode, the current consumption is • SupportsMaximum1-mmHeightSolutions reduced to less than 1 µA and an internal circuit • Availableina2mm×2mm× 0.75mmWSON dischargestheoutputcapacitor. 2 Applications TPS6206x family is optimized for operation with a tiny 1-µH inductor and a small 10-µF output capacitor to • PointofLoad(POL) achieve smallest solution size and high regulation • Notebooks,PocketPCs performance. • PortableMediaPlayers The TPS6206x operates over a free air temperature • DSPSupplies of –40°C to 85°C. The device is available in a small 2-mm × 2-mm × 0.75-mm 8-pin WSON PowerPAD™ integratedcircuitpackage. DeviceInformation(1) PARTNUMBER PACKAGE BODYSIZE(NOM) TPS62060 TPS62061 WSON(8) 2.00mm×2.00mm TPS62063 (1) For all available packages, see the orderable addendum at theendofthedatasheet. TypicalApplicationSchematic EfficiencyvsLoadCurrent TPS62060 L VOUT= 1.8 V VIN= 2.7 V to 6 V 1.0µH up to 1.6A 100 V = 3.7 V PVIN SW IN 95 AVIN R1 Cff COUT EN 360 kΩ 22 pF 10µF 90 V = 5 V C FB VIN= 4.2 V IN 10µFIN MAGONDDE 180 kRΩ2 85 PGND % 80 y - nc 75 e ci Effi 70 65 L= 1.2mH (NRG4026T 1R2), 60 C = 22mF (0603 size), OUT V = 3.3 V, OUT 55 Mode:Auto PFM/PWM 50 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 I - Load Current -A L 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
TPS62060,TPS62061,TPS62063 SLVSA95B–MARCH2010–REVISEDJULY2015 www.ti.com Table of Contents 1 Features.................................................................. 1 8.3 FeatureDescription...................................................8 2 Applications........................................................... 1 8.4 DeviceFunctionalModes..........................................8 3 Description............................................................. 1 9 ApplicationandImplementation........................ 11 4 RevisionHistory..................................................... 2 9.1 ApplicationInformation............................................11 9.2 TypicalApplication .................................................11 5 DeviceComparisonTable..................................... 3 10 PowerSupplyRecommendations..................... 17 6 PinConfigurationandFunctions......................... 3 11 Layout................................................................... 17 7 Specifications......................................................... 4 11.1 LayoutGuidelines.................................................17 7.1 AbsoluteMaximumRatings......................................4 11.2 LayoutExample....................................................17 7.2 ESDRatings..............................................................4 12 DeviceandDocumentationSupport................. 18 7.3 RecommendedOperatingConditions.......................4 7.4 ThermalInformation..................................................4 12.1 DeviceSupport......................................................18 7.5 ElectricalCharacteristics...........................................5 12.2 RelatedLinks........................................................18 7.6 DissipationRatings...................................................5 12.3 CommunityResources..........................................18 7.7 TypicalCharacteristics..............................................6 12.4 Trademarks...........................................................18 12.5 ElectrostaticDischargeCaution............................18 8 DetailedDescription.............................................. 7 12.6 Glossary................................................................18 8.1 Overview...................................................................7 13 Mechanical,Packaging,andOrderable 8.2 FunctionalBlockDiagram.........................................7 Information........................................................... 18 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionA(January2011)toRevisionB Page • AddedPinConfigurationandFunctionssection,ESDRatingstable,FeatureDescriptionsection,DeviceFunctional Modes,ApplicationandImplementationsection,PowerSupplyRecommendationssection,Layoutsection,Device andDocumentationSupportsection,andMechanical,Packaging,andOrderableInformationsection .............................. 1 2 SubmitDocumentationFeedback Copyright©2010–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS62060 TPS62061 TPS62063
TPS62060,TPS62061,TPS62063 www.ti.com SLVSA95B–MARCH2010–REVISEDJULY2015 5 Device Comparison Table(1) FUNCTION OUTPUT MAXIMUMOUTPUT PACKAGE PACKAGE PARTNUMBER VOLTAGE(1) MODE PowerGood CURRENT DESIGNATOR MARKING (PG) TPS62060 Adjustable Selectable No 1.6A CGY TPS62061 1.8Vfix Selectable No 1.6A CGX DSG TPS62063 3.3Vfix Selectable No 1.6A QXD TPS6206x(1) Adjustable no yes 1.6A — (1) Forthemostcurrentpackageandorderinginformation,seetheMechanical,Packaging,andOrderableInformationsectionattheendof thisdocument,orseetheTIwebsiteatwww.ti.com. (1) ContactTIforfixedoutputvoltageoptions/PowerGoodoutputoptions 6 Pin Configuration and Functions DSGPackage 8-PinWSONWithPowerPAD TopView PGND 1 8 PVIN D SW 2 AP 7 AVIN AGND 3 rew 6 MODE o FB 4 P 5 EN PinFunctions PIN TYPE DESCRIPTION NAME NO. AGND 3 I AnalogGNDsupplypinforthecontrolcircuit. AVIN 7 I AnalogV powersupplyforthecontrolcircuit.MustbeconnectedtoPVINandinputcapacitor. IN Thisistheenablepinofthedevice.Pullingthispintolowforcesthedeviceintoshutdownmode. EN 5 I Pullingthispintohighenablesthedevice.Thispinmustbeterminated Feedbackpinfortheinternalregulationloop.Connecttheexternalresistordividertothispin.Incase FB 4 I offixedoutputvoltageoption,connectthispindirectlytotheoutputcapacitor WhenMODEpin=HighforcesthedevicetooperateinfixedfrequencyPWMmode.WhenMODEpin MODE 6 I =LowenablesthepowersavemodewithautomatictransitionfromPFMmodetofixedfrequency PWMmode. PGND 1 PWR GNDsupplypinfortheoutputstage. PVIN 8 PWR V powersupplypinfortheoutputstage. IN ThisistheswitchpinandisconnectedtotheinternalMOSFETswitches.Connecttheexternal SW 2 O inductorbetweenthisterminalandtheoutputcapacitor. Forgoodthermalperformance,thisPADmustbesolderedtothelandpatternonthePCB.ThisPAD PowerPAD — shouldbeusedasdeviceGND. Copyright©2010–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:TPS62060 TPS62061 TPS62063
TPS62060,TPS62061,TPS62063 SLVSA95B–MARCH2010–REVISEDJULY2015 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN MAX UNIT AVIN,PVIN –0.3 7 Voltage(2) EN,MODE,FB –0.3 V +0.3<7 V IN SW –0.3 7 Current(source) Peakoutput Internallylimited A Junction,T –40 125 J Temperature °C Storage,T –65 150 stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) Allvoltagevaluesarewithrespecttonetworkgroundterminal. 7.2 ESD Ratings VALUE UNIT Humanbodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±2000 V(ESD) Electrostaticdischarge Charged-devicemodel(CDM),perJEDECspecificationJESD22- V C101(2) ±1000 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 7.3 Recommended Operating Conditions MIN NOM MAX UNIT AV ,PV Supplyvoltage 2.7 6 V IN IN Outputcurrentcapability 1600 mA Outputvoltageforadjustablevoltage 0.8 V V IN L Effectiveinductance 0.7 1 1.6 µH C Effectiveoutputcapacitance 4.5 10 22 µF OUT T Operatingambienttemperature(1) –40 85 °C A T Operatingjunctiontemperature –40 125 °C J (1) Inapplicationswherehighpowerdissipationand/orpoorpackagethermalresistanceispresent,themaximumambienttemperaturemay havetobederated.Maximumambienttemperature(T )isdependentonthemaximumoperatingjunctiontemperature(T ),the A(max) J(max) maximumpowerdissipationofthedeviceintheapplication(PD(max)),andthejunction-to-ambientthermalresistanceofthe part/packageintheapplication(θ ),asgivenbythefollowingequation:T )=T –(θ ×P ) JA A(max J(max) JA D(max) 7.4 Thermal Information TPS62060, TPS62061, THERMALMETRIC(1) TPS62063 UNIT DSG(WSON) 8PINS R Junction-to-ambientthermalresistance 64.68 °C/W θJA R Junction-to-case(top)thermalresistance 80.6 °C/W θJC(top) R Junction-to-boardthermalresistance 34.63 °C/W θJB ψ Junction-to-topcharacterizationparameter 1.65 °C/W JT ψ Junction-to-boardcharacterizationparameter 35.02 °C/W JB R Junction-to-case(bottom)thermalresistance 6.61 °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report,SPRA953. 4 SubmitDocumentationFeedback Copyright©2010–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS62060 TPS62061 TPS62063
TPS62060,TPS62061,TPS62063 www.ti.com SLVSA95B–MARCH2010–REVISEDJULY2015 7.5 Electrical Characteristics Overfulloperatingambienttemperaturerange,typicalvaluesareatT =25°C.Unlessotherwisenoted,specificationsapply A forconditionV =EN=3.6V.ExternalcomponentsC =10μF0603,C =10μF0603,L=1μH,seetheparameter IN IN OUT measurementinformation. PARAMETER TESTCONDITIONS MIN TYP MAX UNIT SUPPLY V Inputvoltagerange 2.7 6 V IN I =0mA,deviceoperatinginPFMmode I Operatingquiescentcurrent OUT 18 25 μA Q anddevicenotswitching I Shutdowncurrent EN=GND,currentintoAVINandPVIN 0.1 1 μA SD Falling 1.73 1.78 1.83 V Undervoltagelockoutthreshold V UVLO Rising 1.9 1.95 1.99 ENABLE,MODE V Highlevelinputvoltage 2.7V≤V ≤6V 1 6 V IH IN V Lowlevelinputvoltage 2.7V≤V ≤6V 0 0.4 V IL IN I Inputbiascurrent PintiedtoGNDorVIN 0.01 1 μA IN POWERSWITCH V =3.6V (1) 120 180 IN High-sideMOSFETon-resistance mΩ V =5V(1) 95 150 IN R DS(on) V =3.6V(1) 90 130 IN Low-sideMOSFETon-resistance mΩ V =5V(1) 75 100 IN ForwardcurrentlimitMOSFET I 2.7V≤V ≤6V 1800 2250 2700 mA LIMF high-sideandlow-side IN Thermalshutdown Increasingjunctiontemperature 150 °C T SD Thermalshutdownhysteresis Decreasingjunctiontemperature 10 °C OSCILLATOR f Oscillatorfrequency 2.7V≤V ≤6V 2.6 3 3.4 MHz SW IN OUTPUT V Referencevoltage 600 mV ref PWMoperation,MODE=V , V FeedbackvoltagePWMmode IN –1.5% 0% 1.5% FB(PWM) 2.7V≤V ≤6V,0mAload IN FeedbackvoltagePFMmode, deviceinPFMmode,voltagepositioningactive(2) V 1% FB(PFM) voltagepositioning Loadregulation –0.5 %/A V FB Lineregulation 0 %/V ActivatedwithEN=GND,2V≤V ≤6V,0.8≤ R Internaldischargeresistor IN 75 200 1450 Ω (Discharge) V ≤3.6V OUT t Start-uptime TimefromactiveENtoreach95%ofV 500 μs START OUT (1) MaximumvalueappliesforT =85°C J (2) InPFMmode,theinternalreferencevoltageissettotyp.1.01×V .Seetheparametermeasurementinformation. ref 7.6 Dissipation Ratings(1)(2) POWERRATING DERATINGFACTOR PACKAGE R θJA T =≤25°C ABOVET =25°C A A DSG 75°C/W 1300mW 13mW/°C (1) MaximumpowerdissipationisafunctionofT ,θ andT .Themaximumallowablepowerdissipationatanyallowableambient J(max) JA A temperatureisPD=(T –T )/θ . J(max) A JA (2) Thisthermaldatameasuredwithhigh-Kboard(4layersaccordingtoJESD51-7JEDECStandard). Copyright©2010–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:TPS62060 TPS62061 TPS62063
TPS62060,TPS62061,TPS62063 SLVSA95B–MARCH2010–REVISEDJULY2015 www.ti.com 7.7 Typical Characteristics 1 25 A TA= 85°C 20 TA= 85°C m 0.75 nt - Am TA= 25°C n Curre urrent - 15 TA= -40°C w 0.50 C hutdo esent 10 - S Qui ISHDN0.25 TA= -40°CTA= 25°C I- q 5 0 0 2.5 3 3.5 4 4.5 5 5.5 6 2.5 3 3.5 4 4.5 5 5.5 6 VI- Input Voltage - V VI- Input Voltage - V Figure1.ShutdownCurrentvsInputVoltageandAmbient Figure2.QuiescentCurrentvsInputVoltage Temperature 3.1 0.12 MHz 3.05 TA= 85°C 0.1 TJ= 85°C y - TA= 25°C TJ= 25°C enc 3 0.08 TJ= -40°C qu W Oscillator Fre 2.29.59 TA= -40°C R-DSON00..0046 - C S fO2.85 0.02 2.8 0 2.5 3 3.5 4 4.5 5 5.5 6 2.5 3 3.5 4 4.5 5 5.5 6 VI- Input Voltage - V VI- Input Voltage - V Figure3.OscillatorFrequencyvsInputVoltage Figure4.R Low-SideSwitch DSON 0.2 600 0.18 500 0.16 0.14 TJ= 85°C VO= 3.3 V 400 W 0.12 TJ= 25°C W- R-DSON0.00.81 TJ= -40°C Discharge300 VO= 1.8 V R 200 0.06 0.04 VO= 1.2 V 100 0.02 0 0 2.5 3 3.5 4 4.5 5 5.5 6 2.5 3 3.5 4 4.5 5 5.5 6 VI- Input Voltage - V VI- Input Voltage - V Figure5.RDSONHigh-SideSwitch Figure6.RDISCHARGEvsInputVoltage 6 SubmitDocumentationFeedback Copyright©2010–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS62060 TPS62061 TPS62063
TPS62060,TPS62061,TPS62063 www.ti.com SLVSA95B–MARCH2010–REVISEDJULY2015 8 Detailed Description 8.1 Overview The TPS62060 step down converter operates with typically 3-MHz fixed frequency pulse width modulation (PWM) at moderate to heavy load currents. At light load currents the converter can automatically enter power savemodeandoperatestheninpulsefrequencymodulation(PFM)mode. During PWM operation the converter use a unique fast response voltage mode controller scheme with input voltage feed-forward to achieve good line and load regulation allowing the use of small ceramic input and output capacitors. At the beginning of each clock cycle initiated by the clock signal, the high-side MOSFET switch is turned on. The current flows now from the input capacitor through the high-side MOSFET switch through the inductortotheoutputcapacitorandload.Duringthisphase,thecurrentrampsupuntilthePWMcomparatortrips and the control logic will turn off the switch. The current limit comparator will also turn off the switch in case the current limit of the high-side MOSFET switch is exceeded. After a dead time preventing shoot through current, the low-side MOSFET rectifier is turned on and the inductor current ramps down. The current flows now from the inductor to the output capacitor and to the load. It returns back to the inductor through the low-side MOSFET rectifier. The next cycle will be initiated by the clock signal again turning off the low-side MOSFET rectifier and turning on thehigh-sideMOSFETswitch. 8.2 Functional Block Diagram AVIN PVIN Current Limit Comparator Thermal Undervoltage Shutdown Lockout 1.8V Limit High Side PFM Comparator Reference 0.6V VREF FB VREF Softstart VOUTRAMP ErrorAmp. Control Gate Driver CONTROL Stage Anti VREF Shoot-Through SW Integrator FB PWM Zero-Pole Comp. AMP. Internal FB Network* Limit Low Side MODE * Sawtooth 3MHz Generator Clock PG Current MODE/ Limit Comparator FB PG VREF R Discharge PG Comparator* AGND EN PGND *Functiondependsondeviceoption Copyright©2010–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:TPS62060 TPS62061 TPS62063
TPS62060,TPS62061,TPS62063 SLVSA95B–MARCH2010–REVISEDJULY2015 www.ti.com 8.3 Feature Description 8.3.1 ModeSelection TheMODEpinallowsmodeselectionbetweenforcedPWMmodeandpowersavemode. Connecting this pin to GND enables the power save mode with automatic transition between PWM and PFM mode. Pulling the MODE pin high forces the converter to operate in fixed frequency PWM mode even at light loadcurrents.Thisallowssimplefilteringoftheswitchingfrequencyfornoisesensitiveapplications.Inthismode, theefficiencyislowercomparedtothepowersavemodeduringlightloads. The condition of the MODE pin can be changed during operation and allows efficient power management by adjustingtheoperationmodeoftheconvertertothespecificsystemrequirements. 8.3.2 Enable The device is enabled by setting EN pin to high. At first, the internal reference is activated and the internal analog circuits are settled. Afterwards, the soft start is activated and the output voltage is ramped up. The output voltages reaches 95% of its nominal value within t of typically 500 µs after the device has been enabled. START The EN input can be used to control power sequencing in a system with various DC-DC converters. The EN pin can be connected to the output of another converter, to drive the EN pin high and getting a sequencing of supply rails. With EN = GND, the device enters shutdown mode. In this mode, all circuits are disabled and the SW pin is connectedtoPGNDthroughaninternalresistortodischargetheoutput. 8.3.3 ClockDithering To reduce the noise level of switch frequency harmonics in the higher RF bands, the TPS6206x family has a built-in clock-dithering circuit. The oscillator frequency is slightly modulated with a sub clock causing a clock ditheroftypically6ns. 8.3.4 UndervoltageLockout The undervoltage lockout circuit prevents the device from malfunctioning at low input voltages and from excessive discharge of the battery. It disables the output stage of the converter once the falling V trips the IN undervoltage lockout threshold V . The undervoltage lockout threshold V for falling V is typically 1.78 V. UVLO UVLO IN The device starts operation once the rising V trips undervoltage lockout threshold V again at typically 1.95 IN UVLO V. 8.3.5 ThermalShutdown As soon as the junction temperature, T , exceeds 150°C (typical) the device goes into thermal shutdown. In this J mode, the high-side and low-side MOSFETs are turned off. The device continues its operation when the junction temperaturefallsbelowthethermalshutdownhysteresis. 8.4 Device Functional Modes 8.4.1 SoftStart The TPS6206x has an internal soft start circuit that controls the ramp up of the output voltage. Once the converter is enabled and the input voltage is above the undervoltage lockout threshold V the output voltage UVLO rampsupfrom5%to95%ofitsnominalvaluewithint oftypically250µs. Ramp This limits the inrush current in the converter during start-up and prevents possible input voltage drops when a batteryorhighimpedancepowersourceisused. During soft start, the switch current limit is reduced to 1/3 of its nominal value I until the output voltage LIMF reaches 1/3 of its nominal value. Once the output voltage trips this threshold, the device operates with its nominalcurrentlimitI . LIMF 8 SubmitDocumentationFeedback Copyright©2010–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS62060 TPS62061 TPS62063
TPS62060,TPS62061,TPS62063 www.ti.com SLVSA95B–MARCH2010–REVISEDJULY2015 Device Functional Modes (continued) 8.4.2 PowerSaveMode In TPS6206x pulling the MODE pin low enables power save mode. If the load current decreases, the converter enters power save mode operation automatically. During power save mode the converter skips switching and operateswithreducedfrequencyinPFMmodewithaminimumquiescentcurrenttomaintainhighefficiency.The converter positions the output voltage typically 1% above the nominal output voltage. This voltage positioning featureminimizesvoltagedropscausedbyasuddenloadstep. The transition from PWM mode to PFM mode occurs once the inductor current in the low-side MOSFET switch becomeszero,whichindicatesdiscontinuousconductionmode. During the power save mode the output voltage is monitored with a PFM comparator. As the output voltage falls belowthePFMcomparatorthresholdofV +1%,thedevicestartsaPFMcurrentpulse.Forthisthehigh- OUTnominal side MOSFET switch will turn on and the inductor current ramps up. After the on-time expires the switch will be turnedoffandthelow-sideMOSFETswitchwillbeturnedonuntiltheinductorcurrentbecomeszero. The converter effectively delivers a current to the output capacitor and the load. If the load is below the delivered current the output voltage will rise. If the output voltage is equal or higher than the PFM comparator threshold, thedevicestopsswitchingandentersasleepmodewithtypically18 µAcurrentconsumption. In case the output voltage is still below the PFM comparator threshold, further PFM current pulses will be generated until the PFM comparator threshold is reached. The converter starts switching again once the output voltagedropsbelowthePFMcomparatorthresholdduetotheloadcurrent. The PFM mode is exited and PWM mode entered in case the output current can no longer be supported in PFM mode. 8.4.3 DynamicVoltagePositioning This feature reduces the voltage undershoots and overshoots at load steps from light to heavy load and vice versa. It is active in power save mode and regulates the output voltage 1% higher than the nominal value. This providesmoreheadroomforboththevoltagedropataloadstep,andthevoltageincreaseataloadthrow-off. Output voltage V + 1% OUT Voltage Positioning PFM Comparator threshold Light load PFM Mode V (PWM) OUT Moderate to heavy load PWM Mode Figure7. PowerSaveModeOperationwithAutomaticModeTransition 8.4.4 100%DutyCycleLowDropoutOperation Thedevicestartstoenter100%dutycyclemodeastheinputvoltagecomesclosetothenominaloutputvoltage. Tomaintaintheoutputvoltage,thehigh-sideMOSFETswitchisturnedon100%foroneormorecycles. With further decreasing V the high-side MOSFET switch is turned on completely. In this case the converter IN offers a low input-to-output voltage difference. This is particularly useful in battery-powered applications to achievelongestoperationtimebytakingfulladvantageofthewholebatteryvoltagerange. Copyright©2010–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:TPS62060 TPS62061 TPS62063
TPS62060,TPS62061,TPS62063 SLVSA95B–MARCH2010–REVISEDJULY2015 www.ti.com Device Functional Modes (continued) The minimum input voltage to maintain regulation depends on the load current and output voltage, and can be calculatedas: V min=V max+I max×(R max+R ) IN O O DS(on) L where • I max=maximumoutputcurrent O • R max=maximumP-channelswitchR DS(on) DS(on) • R =DCresistanceoftheinductor L • V max=nominaloutputvoltageplusmaximumoutputvoltagetolerance (1) O 8.4.5 InternalCurrentLimitandFold-BackCurrentLimitforShortCircuitProtection During normal operation the high-side and low-side MOSFET switches are protected by its current limits I . LIMF Once the high-side MOSFET switch reaches its current limit, it is turned off and the low-side MOSFET switch is turned on. The high-side MOSFET switch can only turn on again, once the current in the low-side MOSFET switch decreases below its current limit I . The device is capable to provide peak inductor currents up to its LIMF internalcurrentlimit . ILIMF. As soon as the switch current limits are hit and the output voltage falls below 1/3 of the nominal output voltage due to overload or short circuit condition, the foldback current limit is enabled. In this case the switch current limit isreducedto1/3ofthenominalvalueI . LIMF Due to the short circuit protection is enabled during start-up, the device does not deliver more than 1/3 of its nominal current limit I until the output voltage exceeds 1/3 of the nominal output voltage. This needs to be LIMF consideredwhenaloadisconnectedtotheoutputoftheconverter,whichactsasacurrentsink. 8.4.6 OutputCapacitorDischarge With EN = GND, the devices enter shutdown mode and all internal circuits are disabled. The SW pin is connectedtoPGNDthroughaninternalresistortodischargetheoutputcapacitor. 10 SubmitDocumentationFeedback Copyright©2010–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS62060 TPS62061 TPS62063
TPS62060,TPS62061,TPS62063 www.ti.com SLVSA95B–MARCH2010–REVISEDJULY2015 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 9.1 Application Information The TPS62060, TPS62061 and TPS62063 are highly efficient synchronous step down DC-DC converters providingupto1.6-Aoutputcurrent. 9.2 Typical Application TPS62060 L VOUT= 1.8 V V = 2.7 V to 6 V 1.0µH up to 1.6A IN PVIN SW AVIN R1 Cff COUT 360 kΩ 22 pF 10µF EN C FB IN MODE R 10µF 2 AGND 180 kΩ PGND Figure8. TPS620601.8-VAdjustableOutputVoltageConfiguration 9.2.1 DesignRequirements The device operates over an input voltage range from 2.7 V to 6 V. The output voltage is adjustable using an externalfeedbackdivider. 9.2.2 DetailedDesignProcedure 9.2.2.1 OutputVoltageSetting Theoutputvoltagecanbecalculatedto: æ R ö VOUT = VREF´ç1+R1 ÷ è 2 ø (2) withaninternalreferencevoltageV typically0.6V. REF To minimize the current through the feedback divider network, R should be within the range of 120 kΩ to 360 2 kΩ.ThesumofR andR shouldnotexceed~1MΩ,tokeepthenetworkrobustagainstnoise.Anexternalfeed- 1 2 forward capacitor C is required for optimum regulation performance. Lower resistor values can be used. R1 and ff C placesazerointheloop.TherightvalueforC canbecalculatedas: ff ff 1 f = =25kHz z 2 ´ p ´ R ´ C 1 ff (3) Therefore,thefeedforwardcapacitorcanbecalculatedto: 1 C = ff 2 ´ p ´ R ´ 25kHz 1 (4) Copyright©2010–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:TPS62060 TPS62061 TPS62063
TPS62060,TPS62061,TPS62063 SLVSA95B–MARCH2010–REVISEDJULY2015 www.ti.com Typical Application (continued) 9.2.2.2 OutputFilterDesign(InductorandOutputCapacitor) TheinternalcompensationnetworkofTPS6206xisoptimizedforaLCoutputfilterwithacornerfrequencyof: 1 f = =50kHz c 2´p´ (1μH ´10μF) (5) The device operates with nominal inductors of 1 µH to 1.2 µH and with 10 µF to 22 µF small X5R and X7R ceramiccapacitors.Refertothelistsofinductorsandcapacitors.Thedeviceisoptimizedfora1 µHinductorand 10µFoutputcapacitor. 9.2.2.2.1 InductorSelection The inductor value has a direct effect on the ripple current. The selected inductor must be rated for its DC resistance and saturation current. The inductor ripple current (ΔI ) decreases with higher inductance and L increaseswithhigherV orV . IN OUT Equation 6 calculates the maximum inductor current in PWM mode under static load conditions. The saturation current of the inductor should be rated higher than the maximum inductor current as calculated with Equation 7. Thisisrecommendedbecauseduringheavyloadtransienttheinductorcurrentrisesabovethecalculatedvalue. Vout 1- DI = Vout´ Vin L L´ƒ (6) DI I =I + L Lmax outmax 2 where • f=Switchingfrequency(3MHztypical) • L=Inductorvalue • ΔI =Peak-to-peakinductorripplecurrent L • I =Maximuminductorcurrent Lmax • I =Maximumoutputcurrent (7) outmax Amoreconservativeapproachistoselecttheinductorcurrentratingjustfortheswitchcurrentoftheconverter. Accepting larger values of ripple current allows the use of lower inductance values, but results in higher output voltageripple,greatercorelosses,andloweroutputcurrentcapability. The total losses of the coil have a strong impact on the efficiency of the DC-DC conversion and consist of both thelossesintheDCresistanceR andthefollowingfrequency-dependentcomponents: (DC) • Thelossesinthecorematerial(magnetichysteresisloss,especiallyathighswitchingfrequencies) • Additionallossesintheconductorfromtheskineffect(currentdisplacementathighfrequencies) • Magneticfieldlossesoftheneighboringwindings(proximityeffect) • Radiationlosses Table1.ListofInductors DIMENSIONS[mm3] INDUCTANCEμH INDUCTORTYPE SUPPLIER 3.2×2.5×1.2max 1 MIPSAZ3225D FDK 3.2×2.5×1max 1 LQM32PN(MLCC) Murata 3.7×4×1.8max 1 LQH44(wirewound) Murata 4×4×2.6max 1.2 NRG4026T(wirewound) TaiyoYuden 3.5×3.7×1.8max 1.2 DE3518(wirewound) TOKO 12 SubmitDocumentationFeedback Copyright©2010–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS62060 TPS62061 TPS62063
TPS62060,TPS62061,TPS62063 www.ti.com SLVSA95B–MARCH2010–REVISEDJULY2015 9.2.2.2.2 OutputCapacitorSelection The advanced fast-response voltage mode control scheme of the TPS6206x allows the use of tiny ceramic capacitors. Ceramic capacitors with low ESR values have the lowest output voltage ripple and are recommended. The output capacitor requires either an X7R or X5R dielectric. Y5V and Z5U dielectric capacitors, aside from their wide variation in capacitance over temperature, become resistive at high frequencies and may not be used. For most applications a nominal 10 µF or 22 µF capacitor is suitable. At small ceramic capacitors, the DC-bias effect decreases the effective capacitance. Therefore a 22 µF capacitor can be used for output voltageshigherthan2V,seelistofcapacitors. IncaseadditionalceramiccapacitorsinthesuppliedsystemareconnectedtotheoutputoftheDC-DCconverter, the output capacitor C must be decreased in order not to exceed the recommended effective capacitance OUT range.Inthiscasealoopstabilityanalysismustbeperformedasdescribedlater. Atnominalloadcurrent,thedeviceoperatesinPWMmodeandtheRMSripplecurrentiscalculatedas: V 1- out V 1 I = V ´ in ´ RMSCout out L´ƒ 2´ 3 (8) 9.2.2.2.3 InputCapacitorSelection Because of the nature of the buck converter having a pulsating input current, a low ESR input capacitor is required for best input voltage filtering and minimizing the interference with other circuits caused by high input voltage spikes. For most applications a 10 µF ceramic capacitor is recommended. The input capacitor can be increasedwithoutanylimitforbetterinputvoltagefiltering. Takecarewhenusingonlysmallceramicinputcapacitors.Whenaceramiccapacitorisusedattheinputandthe power is being supplied through long wires, such as from a wall adapter, a load step at the output or VIN step on the input can induce ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop instabilityorcouldevendamagethepartbyexceedingthemaximumratings. Table2.ListofCapacitors CAPACITANCE TYPE SIZE[mm3] SUPPLIER 10μF GRM188R60J106M 0603:1.6x0.8x0.8 Murata 22μF GRM188R60G226M 0603:1.6x0.8x0.8 Murata 22µF CL10A226MQ8NRNC 0603:1.6x0.8x0.8 Samsung 10µF CL10A106MQ8NRNC 0603:1.6x0.8x0.8 Samsung 9.2.2.3 CheckingLoopStability Thefirststepofcircuitandstabilityevaluationistolookfromasteady-stateperspectiveatthefollowingsignals • Switchingnode,SW • Inductorcurrent,I L • Outputripplevoltage,V OUT(AC) These are the basic signals that must be measured when evaluating a switching converter. When the switching waveform shows large duty cycle jitter or the output voltage or inductor current shows oscillations, the regulation loop may be unstable. This is often a result of board layout and/or wrong L-C output filter combinations. As a next step in the evaluation of the regulation loop, the load transient response is tested. The time between the applicationoftheloadtransientandtheturnonoftheP-channelMOSFET,theoutputcapacitormustsupplyallof thecurrentrequiredbytheload.V immediatelyshiftsbyanamountequalto Δ xESR,whereESRisthe OUT I(LOAD) effective series resistance of C . Δ begins to charge or discharge C generating a feedback error OUT I(LOAD) OUT signal used by the regulator to return V to its steady-state value. The results are most easily interpreted when OUT thedeviceoperatesinPWMmodeatmediumtohighloadcurrents. During this recovery time, V can be monitored for settling time, overshoot, or ringing; that helps evaluate OUT stabilityoftheconverter.Withoutanyringing,theloophasusuallymorethan45° ofphasemargin. Copyright©2010–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:TPS62060 TPS62061 TPS62063
TPS62060,TPS62061,TPS62063 SLVSA95B–MARCH2010–REVISEDJULY2015 www.ti.com 9.2.3 ApplicationCurves 100 100 95 95 90 VIN= 5 V 90 VIN= 5 V VIN= 4.2 V 85 VIN= 4.2 V 85 VIN= 3 V Efficiency - % 778050 VIN= 3 VVIN= 3.3 VVIN= 3.6 V Efficiency - % 778050 VIN= 3.3 V VIN= 3.6 V 65 65 L= 1.2mH (NRG4026T 1R2), L= 1.2mH (NRG4026T 1R2), 60 COUT= 10mF (0603 size), 60 COUT= 10mF (0603 size), 55 VOUT= 1.2 V, 55 VOUT= 1.8 V, Mode:Auto PFM/PWM Mode:Auto PFM/PWM 50 50 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 IL- Load Current -A IL- Load Current -A Figure9.EfficiencyvsLoadCurrent Figure10.EfficiencyvsLoadCurrent V =1.2V,AutoPFM/PWMMode, V =1.8V,AutoPFM/PWMMode, OUT OUT LinearScale LinearScale 100 100 VIN= 3.7 V Auto PFM/PWM Mode 95 90 Efficiency - % 7788905050 VIN= 4.2 V VIN= 5 V Efficiency - % 4567800000 VVVIIIVNNNIN=== =334... 3625 VVVV VVVVFIIIINNNNor====c e3345d... 362V P VVVWM Mode 65 30 L= 1.2mH (NRG4026T 1R2), 60 COUT= 22mF (0603 size), 20 L= 1.2mH (NRG4026T 1R2), 55 VMOoUdTe:=A 3u.3to V P,FM/PWM 10 CVOOUUTT== 110.8m VF (0603 size), 50 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0.001 0.01 0.1 1 10 IL- Load Current -A IL- Load Current -A Figure11.EfficiencyvsLoadCurrent Figure12.EfficiencyvsLoadCurrent V =3.3V,AutoPFM/PWMMode, AutoPFM/PWMModevs.ForcedPWMMode, OUT LinearScale LogarithmicScale 1.890 1.890 L= 1mH, 1.872 1.872 COUT= 10mF, 1.854 Voltage Positioning PFM Mode 1.854 VOUT= 1.8 V, Mode: Forced PWM V V C - 1.836 C - 1.836 D D - Output Voltage O1111....778868014208 VIN=V I5N V=V I4N.2=V VI3N.6= V3.3 V PWM Mode - Output Voltage O1111....778868014208 VIN=V I4NV.2=I N V3=.6 3 V.3 V V1.746 LCO=U 1Tm=H 1,0mF, V1.746 VIN= 5 V 1.728 VOUT= 1.8 V, 1.728 Mode:Auto PFM/PWM 1.710 1.710 0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10 IL- Load Current -A IL- Load Current -A Figure13.OutputVoltageAccuracyvsLoadCurrent Figure14.OutputVoltageAccuracyvsLoadCurrent AutoPFM/PWMMode ForcedPWMMode 14 SubmitDocumentationFeedback Copyright©2010–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS62060 TPS62061 TPS62063
TPS62060,TPS62061,TPS62063 www.ti.com SLVSA95B–MARCH2010–REVISEDJULY2015 VOUT50mV/Div VOUT50mV/Div VVIOIONUUT=T= 3= 2. 610 . V8m VA MLCO=OU D1T.E2= =m 1 HG0NmFD SW 2V/Div SW 2V/Div ICOIL500mA/Div VVIOIONUUT=T= 3= 5. 610 .0V8 mVA MLCO=OU D1T.E2= =m 1 HG0NmFD ICOIL200mA/Div Time Base - 100ns/Div Time Base - 4ms/Div Figure15.TypicalOperation(PWMMode) Figure16.TypicalOperation(PFMMode) VIN= 3.6 V, VOUT= 1.2 V, VOUT100 mV/Div VOUT100 mV/Div IOUT= 20 mAto 250 mA SW 2V/Div SW 2V/Div ICOIL1A/Div ICOIL1A/Div VIN= 3.6 V, VOUT= 1.2 V, IOUT= 0.2Ato 1A ILOAD500 mA/Div MODE = VIN ILOAD500 mA/Div Time Base - 10µs/Div Time Base - 10µs/Div Figure17.LoadTransientResponse Figure18.LoadTransient PWMMode0.2Ato1A PFMMode20mAto250mA VVILOUIO=NTUT==1 = .352 .106m.0 8HV mV ,to,A 4.2 V, 200 mV/Div 500 mV/Div 2A/Div VIN= 3.6 V, 50 mV/Div VOUT= 1.8 V, L= 1.2mH 1A/Div COUT= 10mF IOUT200 mAto 1500 mA Time Base - 100ms/Div Time Base - 100ms/Div Figure19.LoadTransientResponse Figure20.LineTransientResponsePWMMode 200mAto1500mA Copyright©2010–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:TPS62060 TPS62061 TPS62063
TPS62060,TPS62061,TPS62063 SLVSA95B–MARCH2010–REVISEDJULY2015 www.ti.com 500 mV/Div 2 V/Div 1 V/Div 2A/Div 500 mA/Div 50 mV/Div VVILCOIOO=NUUU T1=TT.= 23== 5. m 6110H .0 V8m, mVtAoF,, 4.2 V, 500 mA/Div VVLoIONaUd=T =3= . 261R .V82, V,LCO=U 1T.2=m 1H0,mF Time Base - 100ms/Div Time Base - 100ms/Div Figure21.LineTransientPFMMode Figure22.Start-UpintoLoad–V 1.8V OUT EN 1 V/Div VIN= 3.6 V, VOUT= 1.8 V, COUT= 10mF, No Load SW 2 V/Div VOUT 1 V/Div Time Base - 2ms/Div Figure23.OutputDischarge 16 SubmitDocumentationFeedback Copyright©2010–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS62060 TPS62061 TPS62063
TPS62060,TPS62061,TPS62063 www.ti.com SLVSA95B–MARCH2010–REVISEDJULY2015 10 Power Supply Recommendations The power supply to the TPS6206x must have a current rating according to the supply voltage, output voltage, andoutputcurrentoftheTPS6206x. 11 Layout 11.1 Layout Guidelines As for all switching power supplies, the layout is an important step in the design. Proper function of the device demands careful attention to PCB layout. Take care in board layout to get the specified performance. If the layout is not carefully done, the regulator could show poor line and/or load regulation, stability issues as well as EMI and thermal problems. It is critical to provide a low inductance, impedance ground path. Therefore, use wide and short traces for the main current paths. The input capacitor should be placed as close as possible to the IC pinsaswellastheinductorandoutputcapacitor. Connect the AGND and PGND pins of the device to the PowerPAD™ land of the PCB and use this pad as a star point. Use a common power PGND node and a different node for the signal AGND to minimize the effects of ground noise. The FB divider network should be connected right to the output capacitor and the FB line must be routedawayfromnoisycomponentsandtraces(forexample,SWline). Due to the small package of this converter and the overall small solution size the thermal performance of the PCB layout is important. To get a good thermal performance a four or more Layer PCB design is recommended. The PowerPAD™ of the IC must be soldered on the power pad area on the PCB to get a proper thermal connection.Forgoodthermalperformancethe PowerPAD™onthePCBneedstobeconnectedtoaninnerGND planewithsufficientviaconnections.Refertothedocumentationoftheevaluationkit. 11.2 Layout Example 5.08 mm e ebl da on ME V IN GND C C V IN OUT OUT 7.19 mm 2.54 mm L R2 R1 C FF D N G 3.81 mm Figure24. PCBLayout Copyright©2010–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:TPS62060 TPS62061 TPS62063
TPS62060,TPS62061,TPS62063 SLVSA95B–MARCH2010–REVISEDJULY2015 www.ti.com 12 Device and Documentation Support 12.1 Device Support 12.1.1 Third-PartyProductsDisclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONEORINCOMBINATIONWITHANYTIPRODUCTORSERVICE. 12.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table3.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY TPS62060 Clickhere Clickhere Clickhere Clickhere Clickhere TPS62061 Clickhere Clickhere Clickhere Clickhere Clickhere TPS62063 Clickhere Clickhere Clickhere Clickhere Clickhere 12.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 12.4 Trademarks PowerPAD,E2EaretrademarksofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 12.5 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 12.6 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 18 SubmitDocumentationFeedback Copyright©2010–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS62060 TPS62061 TPS62063
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TPS62060DSGR ACTIVE WSON DSG 8 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 CGY & no Sb/Br) TPS62060DSGT ACTIVE WSON DSG 8 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 CGY & no Sb/Br) TPS62061DSGR ACTIVE WSON DSG 8 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 CGX & no Sb/Br) TPS62061DSGT ACTIVE WSON DSG 8 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 CGX & no Sb/Br) TPS62063DSGR ACTIVE WSON DSG 8 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 QXD & no Sb/Br) TPS62063DSGT ACTIVE WSON DSG 8 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 QXD & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 20-Jul-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TPS62060DSGR WSON DSG 8 3000 180.0 8.4 2.3 2.3 1.15 4.0 8.0 Q2 TPS62060DSGR WSON DSG 8 3000 178.0 8.4 2.25 2.25 1.0 4.0 8.0 Q2 TPS62060DSGT WSON DSG 8 250 178.0 8.4 2.25 2.25 1.0 4.0 8.0 Q2 TPS62061DSGR WSON DSG 8 3000 180.0 8.4 2.3 2.3 1.15 4.0 8.0 Q2 TPS62061DSGT WSON DSG 8 250 180.0 8.4 2.3 2.3 1.15 4.0 8.0 Q2 TPS62063DSGR WSON DSG 8 3000 180.0 8.4 2.3 2.3 1.15 4.0 8.0 Q2 TPS62063DSGT WSON DSG 8 250 180.0 8.4 2.3 2.3 1.15 4.0 8.0 Q2 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 20-Jul-2019 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TPS62060DSGR WSON DSG 8 3000 210.0 185.0 35.0 TPS62060DSGR WSON DSG 8 3000 205.0 200.0 33.0 TPS62060DSGT WSON DSG 8 250 205.0 200.0 33.0 TPS62061DSGR WSON DSG 8 3000 210.0 185.0 35.0 TPS62061DSGT WSON DSG 8 250 210.0 185.0 35.0 TPS62063DSGR WSON DSG 8 3000 210.0 185.0 35.0 TPS62063DSGT WSON DSG 8 250 210.0 185.0 35.0 PackMaterials-Page2
GENERIC PACKAGE VIEW DSG 8 WSON - 0.8 mm max height 2 x 2, 0.5 mm pitch PLASTIC SMALL OUTLINE - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4224783/A www.ti.com
PACKAGE OUTLINE DSG0008A WSON - 0.8 mm max height SCALE 5.500 PLASTIC SMALL OUTLINE - NO LEAD 2.1 B A 1.9 PIN 1 INDEX AREA 2.1 1.9 0.32 0.18 0.4 0.2 ALTERNATIVE TERMINAL SHAPE TYPICAL 0.8 MAX C SEATING PLANE 0.05 0.08 C 0.00 EXPOSED THERMAL PAD 0.9 0.1 (0.2) TYP 5 4 6X 0.5 2X 9 1.5 1.6 0.1 8 1 0.32 8X PIN 1 ID 8X 0.4 0.18 0.2 0.1 C A B 0.05 C 4218900/D 04/2020 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. www.ti.com
EXAMPLE BOARD LAYOUT DSG0008A WSON - 0.8 mm max height PLASTIC SMALL OUTLINE - NO LEAD (0.9) ( 0.2) VIA 8X (0.5) TYP 1 8 8X (0.25) (0.55) SYMM 9 (1.6) 6X (0.5) 5 4 (R0.05) TYP SYMM (1.9) LAND PATTERN EXAMPLE SCALE:20X 0.07 MAX 0.07 MIN ALL AROUND ALL AROUND SOLDER MASK METAL METAL UNDER SOLDER MASK OPENING SOLDER MASK OPENING NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4218900/D 04/2020 NOTES: (continued) 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. www.ti.com
EXAMPLE STENCIL DESIGN DSG0008A WSON - 0.8 mm max height PLASTIC SMALL OUTLINE - NO LEAD 8X (0.5) SYMM METAL 1 8 8X (0.25) (0.45) SYMM 9 (0.7) 6X (0.5) 5 4 (R0.05) TYP (0.9) (1.9) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL EXPOSED PAD 9: 87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE SCALE:25X 4218900/D 04/2020 NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. www.ti.com
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated