图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: TPS61090RSAR
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

TPS61090RSAR产品简介:

ICGOO电子元器件商城为您提供TPS61090RSAR由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TPS61090RSAR价格参考。Texas InstrumentsTPS61090RSAR封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 可调式 升压 开关稳压器 IC 正 1.8V 1 输出 2A(开关) 16-VQFN 裸露焊盘。您可以下载TPS61090RSAR参考资料、Datasheet数据手册功能说明书,资料中有TPS61090RSAR 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC REG BST SYNC ADJ 0.5A 16VQFN稳压器—开关式稳压器 Adj 500-mA 96% Eff Boost Converter

DevelopmentKit

TPS61090EVM-029

产品分类

PMIC - 稳压器 - DC DC 开关稳压器

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

电源管理 IC,稳压器—开关式稳压器,Texas Instruments TPS61090RSAR-

数据手册

点击此处下载产品Datasheet

产品型号

TPS61090RSAR

PWM类型

-

产品目录页面

点击此处下载产品Datasheet

产品种类

稳压器—开关式稳压器

供应商器件封装

16-QFN(4x4)

其它名称

296-15259-2

包装

带卷 (TR)

单位重量

41.500 mg

参考设计库

http://www.digikey.com/rdl/4294959904/4294959903/94

同步整流器

商标

Texas Instruments

安装类型

表面贴装

安装风格

SMD/SMT

宽度

4 mm

封装

Reel

封装/外壳

16-VQFN 裸露焊盘

封装/箱体

VQFN-16

工作温度

-40°C ~ 85°C

工作温度范围

- 40 C to + 85 C

工厂包装数量

3000

开关频率

700 kHz

拓扑结构

Boost

最大工作温度

+ 85 C

最大输入电压

5.5 V

最小工作温度

- 40 C

最小输入电压

1.8 V

标准包装

3,000

电压-输入

1.8 V ~ 5.5 V

电压-输出

1.8 V ~ 5.5 V

电流-输出

500mA

类型

升压(升压)

系列

TPS61090

负载调节

0.6 %

输出数

1

输出电压

5.5 V

输出电流

2 A

输出端数量

1

输出类型

可调式

配用

/product-detail/zh/TPS61090EVM-029/296-18972-ND/863794

频率-开关

500kHz ~ 700kHz

推荐商品

型号:TPS54616PWPG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TLV62130ARGTR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MAX15032ATA+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:LT8570IDD-1#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:TPS63030DSKT

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:ISL85413FRTZ-T

品牌:Renesas Electronics America Inc.

产品名称:集成电路(IC)

获取报价

型号:TPS54341DPRR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT3506IFE#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
TPS61090RSAR 相关产品

NCV890203MWTXG

品牌:ON Semiconductor

价格:

LTC3103IMSE#PBF

品牌:Linear Technology/Analog Devices

价格:

MAX1692EUB+

品牌:Maxim Integrated

价格:

TPS63020DSJT

品牌:Texas Instruments

价格:

LM2833XSD/NOPB

品牌:Texas Instruments

价格:¥7.10-¥14.49

ISL8023IRTAJZ-T7A

品牌:Renesas Electronics America Inc.

价格:

LT3976IMSE#TRPBF

品牌:Linear Technology/Analog Devices

价格:

TPS62243DRVTG4

品牌:Texas Instruments

价格:

PDF Datasheet 数据手册内容提取

Product Sample & Technical Tools & Support & Folder Buy Documents Software Community TPS61090,TPS61091,TPS61092 SLVS484C–JUNE2003–REVISEDDECEMBER2014 TPS6109x Synchronous Boost Converter With 2-A Switch 1 Features 3 Description • Synchronous(96%Efficient)BoostConverter The TPS6109x devices provide a power supply 1 solution for products powered by either a one-cell Li- With500-mAOutputCurrentFrom1.8-VInput Ion or Li-Polymer, or a two-cell alkaline, NiCd or • Availableina16-PinVQFN4x4Package NiMH battery and required supply currents up to or • DeviceQuiescentCurrent:20 µA(Typ) higher than 1 A. The converter generates a stable • InputVoltageRange:1.8Vto5.5V output voltage that is either adjusted by an external resistor divider or fixed internally on the chip. It • AdjustableOutputVoltageUpto5.5VFixed provides high efficient power conversion and is OutputVoltageOptions capable of delivering output currents up to 0.5 A at 5 • PowerSaveModeforImprovedEfficiencyatLow V at a supply voltage down to 1.8 V. The OutputPower implemented boost converter is based on a fixed frequency, pulse-width- modulation (PWM) controller • LowBatteryComparator using a synchronous rectifier to obtain maximum • LowEMI-Converter(IntegratedAntiringingSwitch) efficiency. Boost switch and rectifier switch are • LoadDisconnectDuringShutdown connected internally to provide the lowest leakage • Over-TemperatureProtection inductance and best EMI behavior possible. The maximum peak current in the boost switch is limited 2 Applications toavalueof2500mA. • AllSingleCellLiorDualCellBatteryorUSB The converter can be disabled to minimize battery drain. During shutdown, the load is completely PoweredOperatedProducts disconnected from the battery. A low-EMI mode is – MP3Player implemented to reduce ringing and, in effect, lower – PDAs radiated electromagnetic energy when the converter entersthediscontinuousconductionmode. – OtherPortableEquipment The output voltage can be programmed by an external resistor divider or is fixed internally on the chip. The device is packaged in a 16-pin VQFN 4-mm x 4- mm(16RSA)package. DeviceInformation(1) PARTNUMBER PACKAGE BODYSIZE(NOM) TPS61090 TPS61091 VQFN(10) 4.00mm×4.00mm TPS61092 (1) For all available packages, see the orderable addendum at theendofthedatasheet. SimplifiedApplicationSchematic L1 e.g. 5 V up to SW VOUT 6.8 m H 500 mA C2 C3 VBAT R3 2.2 m F 100 m F 1.8 V to 5 V C1 R1 EN FB Input 10 m F LBI R4 R5 R2 SYNC LBO Low Battery Output GND PGND TPS6109x 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

TPS61090,TPS61091,TPS61092 SLVS484C–JUNE2003–REVISEDDECEMBER2014 www.ti.com Table of Contents 1 Features.................................................................. 1 9.4 DeviceFunctionalModes........................................12 2 Applications........................................................... 1 10 ApplicationandImplementation........................ 13 3 Description............................................................. 1 10.1 ApplicationInformation..........................................13 4 RevisionHistory..................................................... 2 10.2 TypicalApplications..............................................13 5 DeviceComparisonTable..................................... 3 11 PowerSupplyRecommendations..................... 19 6 PinConfigurationandFunctions......................... 3 12 Layout................................................................... 19 12.1 LayoutGuidelines.................................................19 7 Specifications......................................................... 4 12.2 LayoutExample....................................................19 7.1 AbsoluteMaximumRatings......................................4 12.3 ThermalConsiderations........................................20 7.2 ESDRatings..............................................................4 13 DeviceandDocumentationSupport................. 21 7.3 RecommendedOperatingConditions.......................4 7.4 ElectricalCharacteristics...........................................4 13.1 DeviceSupport......................................................21 7.5 TypicalCharacteristics..............................................6 13.2 RelatedLinks........................................................21 13.3 Trademarks...........................................................21 8 ParameterMeasurementInformation..................9 13.4 ElectrostaticDischargeCaution............................21 9 DetailedDescription............................................ 10 13.5 Glossary................................................................21 9.1 Overview.................................................................10 14 Mechanical,Packaging,andOrderable 9.2 FunctionalBlockDiagram.......................................10 Information........................................................... 21 9.3 FeatureDescription.................................................11 4 Revision History ChangesfromRevisionB(April2005)toRevisionC Page • AddedPinConfigurationandFunctionssection,ESDRatingstable,FeatureDescriptionsection,DeviceFunctional Modes,ApplicationandImplementationsection,PowerSupplyRecommendationssection,Layoutsection,Device andDocumentationSupportsection,andMechanical,Packaging,andOrderableInformationsection .............................. 1 2 SubmitDocumentationFeedback Copyright©2003–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 www.ti.com SLVS484C–JUNE2003–REVISEDDECEMBER2014 5 Device Comparison Table T OUTPUTVOLTAGEDC-DC(1) PACKAGE PARTNUMBER(2) A Adjustable 16-pinVQFN4mm×4mm TPS61090RSA 40°Cto85°C 3.3V 16-pinVQFN4mm×4mm TPS61091RSA 5V 16-pinVQFN4mm×4mm TPS61092RSA (1) Contactthefactorytocheckavailabilityofotherfixedoutputvoltageversions. (2) SeeMechanical,Packaging,andOrderableInformationfororderinginformationandtapeandreeloptions. 6 Pin Configuration and Functions RSAPackage 10Pins TopView T T U U D O O B N V V F G VOUT LBO NC EN SW SYNC SW LBI D D D T N N N A G G G B P P P V PinFunctions PIN I/O DESCRIPTION NAME NO. EN 11 I Enableinput.(1/VBATenabled,0/GNDdisabled) FB 14 I Voltagefeedbackofadjustableversions GND 13 I/O Control/logicground LBI 9 I Lowbatterycomparatorinput(comparatorenabledwithEN) LBO 12 O Lowbatterycomparatoroutput(opendrain) NC 2 Notconnected PGND 5,6,7 I/O Powerground PowerPAD™ — — Mustbesolderedtoachieveappropriatepowerdissipation.ShouldbeconnectedtoPGND. SYNC 10 I Enable/disablepowersavemode(1:VBATdisabled,0:GNDenabled,clocksignalfor synchronization) SW 3,4 I Boostandrectifyingswitchinput VBAT 8 I Supplyvoltage VOUT 1,15,16 O DC-DCoutput Copyright©2003–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 SLVS484C–JUNE2003–REVISEDDECEMBER2014 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN MAX UNIT InputvoltageonLBI –0.3 3.6 V InputvoltageonSW,VOUT,LBO,VBAT,SYNC,EN,FB –0.3 7 V T Operatingfreeairtemperature –40 85 °C A T Maximumjunctiontemperature 150 °C J T Storagetemperature –65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,andfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommendedOperating Conditionsisnotimplied.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. 7.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±2000 V(ESD) Electrostaticdischarge Charged-devicemodel(CDM),perJEDECspecificationJESD22- ±1000 V C101(2) (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess.Manufacturingwith lessthan500-VHBMispossiblewiththenecessaryprecautions.Pinslistedas±XXXVmayactuallyhavehigherperformance. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess.Manufacturingwith lessthan250-VCDMispossiblewiththenecessaryprecautions.Pinslistedas±YYYVmayactuallyhavehigherperformance. 7.3 Recommended Operating Conditions MIN NOM MAX UNIT V SupplyvoltageatVBAT 1.8 5.5 V I L Inductance 2.2 6.8 µH C Input,capacitance 10 i µF C Outputcapacitance 22 100 o T Operatingfreeairtemperature –40 85 A °C T Operatingvirtualjunctiontemperature –40 125 J 7.4 Electrical Characteristics overrecommendedfree-airtemperaturerangeandoverrecommendedinputvoltagerange(typicalvaluesareatanambient temperaturerangeof25°C)(unlessotherwisenoted) PARAMETER TESTCONDITIONS MIN TYP MAX UNIT DC-DCSTAGE V Inputvoltagerange 1.8 5.5 I V V TPS61090outputvoltagerange 1.8 5.5 O V TPS61090feedbackvoltage 490 500 510 mV FB f Oscillatorfrequency 500 600 700 kHz Frequencyrangeforsynchronization 500 700 I Switchcurrentlimit VOUT=5V 2000 2200 2500 SW mA Start-upcurrentlimit 0.4xI SW Boostswitchonresistance VOUT=5V 55 mΩ Rectifyingswitchonresistance VOUT=5V 55 Totalaccuracy –3% 3% Lineregulation 0.6% Loadregulation 0.6% 4 SubmitDocumentationFeedback Copyright©2003–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 www.ti.com SLVS484C–JUNE2003–REVISEDDECEMBER2014 Electrical Characteristics (continued) overrecommendedfree-airtemperaturerangeandoverrecommendedinputvoltagerange(typicalvaluesareatanambient temperaturerangeof25°C)(unlessotherwisenoted) PARAMETER TESTCONDITIONS MIN TYP MAX UNIT into I =0mA,V =VBAT=1.8V,VOUT=5V 10 25 VBAT O EN Quiescentcurrent into µA I =0mA,V =VBAT=1.8V,VOUT=5V 10 20 VOUT O EN Shutdowncurrent V =0V,VBAT=2.4V 0.1 1 EN CONTROLSTAGE V Undervoltagelockoutthreshold V voltagedecreasing 1.5 V UVL LBI O V LBIvoltagethreshold V voltagedecreasing 490 500 510 IL LBI mV LBIinputhysteresis 10 LBIinputcurrent EN=VBATorGND 0.01 0.1 µA LBOoutputlowvoltage V =3.3V,I =100µA 0.04 0.4 V O OI LBOoutputlowcurrent 100 µA LBOoutputleakagecurrent V =7V 0.01 0.1 LBO V EN,SYNCinputlowvoltage 0.2× IL VBAT V V EN,SYNCinputhighvoltage 0.8× IH VBAT EN,SYNCinputcurrent ClampedonGNDorVBAT 0.01 0.1 µA Overtemperatureprotection 140 °C Copyright©2003–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 SLVS484C–JUNE2003–REVISEDDECEMBER2014 www.ti.com 7.5 Typical Characteristics Table1.TableofGraphs DC-DCConverter Figure Figure1, Maximumoutputcurrent vsInputvoltage Figure2 vsOutputcurrent(TPS61090)(V =2.5V,V =1.8V,VSYNC=0V) Figure3 O I vsOutputcurrent(TPS61091)(V =3.3V,V =1.8V,2.4V,VSYNC=0V) Figure4 O I Efficiency vsOutputcurrent(TPS61092)(V =5.0V,V =2.4V,3.3V,VSYNC=0V) Figure5 O I vsOutputcurrent(TPS61091)(I =10mA,100mA,500mA,VSYNC=0V) Figure6 O vsOutputcurrent(TPS61092)(I =10mA,100mA,500mA,VSYNC=0V) Figure7 O vsOutputcurrent(TPS61091)(V =2.4V) Figure8 I Outputvoltage vsOutputcurrent(TPS61092)(V =3.3V) Figure9 I No-loadsupplycurrentintoVBAT Voltage(TPS61092) Figure10 No-loadsupplycurrentintoVOUT vsInputvoltage(TPS61092) Figure11 MinimumLoadResistanceatStart-Up vsInputVoltage(TPS61092)(V =3.3V) Figure12 I 2.5 2.5 2 A 2 A - - nt nt e e Curr 1.5 Curr 1.5 ut ut p p ut ut O O m 1 m 1 u u m m xi xi a a M M 0.5 0.5 0 0 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5 VI-Input Voltage-V VI-Input Voltage-V Figure1.TPS61091MaximumOutputCurrentvsInput Figure2.TPS61092MaximumOutputCurrentvsInput Voltage Voltage 100 100 VI= 2.4 V 90 90 80 80 VI= 1.8 V 70 70 % 60 % 60 - - Efficiency 4500 Efficiency 4500 30 30 20 20 10 VVOI== 1 2.8.5 V V 10 VO= 3.3 V 0 0 1 10 100 1000 10000 1 10 100 1000 10000 IO-Output Current-mA IO-Output Current-mA Figure3.TPS61090EfficiencyvsOutputCurrent Figure4.TPS61091EfficiencyvsOutputCurrent 6 SubmitDocumentationFeedback Copyright©2003–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 www.ti.com SLVS484C–JUNE2003–REVISEDDECEMBER2014 100 100 VI= 3.3 V IO= 100 mA 90 VI= 2.4 V 80 90 IO= 10 mA IO= 500 mA 70 % 60 % 80 - - Efficiency 4500 Efficiency 70 30 20 60 10 VO= 5 V VO= 5 V 0 50 1 10 100 1000 10000 1.8 2 2.2 2.4 2.6 2.8 3 3.2 IO-Output Current-mA VI-Input Voltage-V Figure5.TPS61092EfficiencyvsOutputCurrent Figure6.TPS61091EfficiencyvsOutputCurrent 100 3.35 IO= 100 mA VBAT = 2.4 V 95 90 IO= 500 mA 85 IO= 10 mA -V 3.3 Efficie-%ncy 778050 oOutput Vltage 3.25 - 65 O V 60 55 50 3.2 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5 10 100 1000 10000 VI-Input Voltage-V IO-Output Current-mA Figure7.TPS61092EfficiencyvsOutputCurrent Figure8.TPS61091EfficiencyvsOutputCurrent 5.1 16 VBAT = 3.3 V A 14 85°C 5.05 μ T-A 12 25°C V VB uoltage-t V 4.955 urrent Into 108 -40°C p C Out ply 6 -O 4.9 Sup V d 4 a o 4.85 L o- 2 N 4.8 0 10 100 1000 10000 2 3 4 5 IO-Output Current-mA VI-Input Voltage-V Figure9.TPS61092OutputVoltagevsOutputCurrent Figure10.TPS61092No-LoadSupplyCurrentIntoVBAT Voltage Copyright©2003–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 SLVS484C–JUNE2003–REVISEDDECEMBER2014 www.ti.com 16 25 85°C μA 14 -OUT 12 25°C -artup 20 nt Into V 10 -40°C nce at St 15 No-Load Supply Curre 2468 Minimum Load resista 105 0 0 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5 VI-Input Voltage-V VI-Input Voltage-V Figure11.TPS61092No-LoadSupplyCurrentIntoVOUTvs Figure12.MinimumLoadResistanceatStart-UpvsInput InputVoltage Voltage 8 SubmitDocumentationFeedback Copyright©2003–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 www.ti.com SLVS484C–JUNE2003–REVISEDDECEMBER2014 8 Parameter Measurement Information L1 6.8mH SW VOUT VOUT C2 C3 Boost Output VBAT R3 2.2mF 100mF Power C1 R1 EN FB Supply 10mF LBI R4 R5 R2 SYNC LBO Low Battery Output GND PGND List of Components: TPS6109x U1 = TPS6109xRSA L1 = Sumida CDRH103R-6R8 C1, C2 = X7R/X5R Ceramic C3 = Low ESR Tantalum Figure13. ParameterSchematic Copyright©2003–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 SLVS484C–JUNE2003–REVISEDDECEMBER2014 www.ti.com 9 Detailed Description 9.1 Overview The TPS6109x synchronous step-up converter typically operates at a 600-kHz frequency pulse width modulation (PWM) at moderate to heavy load currents. The converter enters power save mode at low load currents to maintain a high efficiency over a wide load. The power save mode can also be disabled, forcing the converter to operate at a fixed switching frequency. The TPS6109x family is based on a fixed frequency with multiple feed forward controller topology. Input voltage, output voltage, and voltage drop on the NMOS switch are monitored and forwarded to the regulator. The peak current of the NMOS switch is also sensed to limit the maximum current flowing through the switch and the inductor. It can also operate synchronized to an external clock signal that is applied to the SYNC pin. Additionally, TPS6109x integrated the low-battery detector circuit typically used to supervise the battery voltage and to generate an error flag when the battery voltage drops below a user-set thresholdvoltage. 9.2 Functional Block Diagram SW VOUT Anti- VBAT Ringing PGND PGND Gate Control PGND 100 k 10 pF ErrorAmplifier _ FB Regulator + + VREF= 0.5 V _ Control Logic Oscillator GND Temperature EN Control SYNC GND LBI + Low Battery Comparator _ LBO + _ VREF= 0.5 V GND 10 SubmitDocumentationFeedback Copyright©2003–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 www.ti.com SLVS484C–JUNE2003–REVISEDDECEMBER2014 9.3 Feature Description 9.3.1 SynchronousRectifier The device integrates an N-channel and a P-channel MOSFET transistor to realize a synchronous rectifier. Because the commonly used discrete Schottky rectifier is replaced with a low RDS(ON) PMOS switch, the power conversion efficiency reaches 96%. To avoid ground shift due to the high currents in the NMOS switch, two separate ground pins are used. The reference for all control functions is the GND pin. The source of the NMOS switch is connected to PGND. Both grounds must be connected on the PCB at only one point close to the GND pin. A special circuit is applied to disconnect the load from the input during shutdown of the converter. In conventional synchronous rectifier circuits, the backgate diode of the high-side PMOS is forward biased in shutdown and allows current flowing from the battery to the output. This device however uses a special circuit which takes the cathode of the backgate diode of the high-side PMOS and disconnects it from the source when theregulatorisnotenabled(EN=low). The benefit of this feature for the system design engineer is that the battery is not depleted during shutdown of the converter. No additional components have to be added to the design to make sure that the battery is disconnectedfromtheoutputoftheconverter. 9.3.2 ControllerCircuit The controller circuit of the device is based on a fixed frequency multiple feedforward controller topology. Input voltage, output voltage, and voltage drop on the NMOS switch are monitored and forwarded to the regulator. So changes in the operating conditions of the converter directly affect the duty cycle and must not take the indirect andslowwaythroughthecontrolloopandtheerroramplifier.Thecontrolloop,determinedbytheerroramplifier, only has to handle small signal errors. The input for it is the feedback voltage on the FB pin or, at fixed output voltage versions, the voltage on the internal resistor divider. It is compared with the internal reference voltage to generateanaccurateandstableoutputvoltage. ThepeakcurrentoftheNMOSswitchisalsosensedtolimitthemaximumcurrentflowingthroughtheswitchand theinductor.Thetypicalpeakcurrentlimitissetto2200mA. An internal temperature sensor prevents the device from getting overheated in case of excessive power dissipation. 9.3.3 DeviceEnable The device is put into operation when EN is set high. It is put into a shutdown mode when EN is set to GND. In shutdown mode, the regulator stops switching, all internal control circuitry including the low-battery comparator is switched off, and the load is isolated from the input (as described in the Synchronous Rectifier Section). This also means that the output voltage can drop below the input voltage during shutdown. During start-up of the converter, the duty cycle and the peak current are limited in order to avoid high peak currents drawn from the battery. 9.3.4 UndervoltageLockout An undervoltage lockout function prevents device start-up if the supply voltage on VBAT is lower than typically 1.6 V. When in operation and the battery is being discharged, the device automatically enters the shutdown mode if the voltage on VBAT drops below approximately 1.6 V. This undervoltage lockout function is implementedinordertopreventthemalfunctioningoftheconverter. 9.3.5 Softstart When the device enables the internal startup cycle starts with the first step, the precharge phase. During precharge, the rectifying switch is turned on until the output capacitor is charged to a value close to the input voltage.Therectifyingswitchcurrentislimitedinthatphase.Thisalsolimitstheoutputcurrentundershort-circuit conditions at the output. After charging the output capacitor to the input voltage the device starts switching. Until the output voltage is reached, the boost switch current limit is set to 40% of its nominal value to avoid high peak currents at the battery during startup. When the output voltage is reached, the regulator takes control and the switchcurrentlimitissetbackto100%. Copyright©2003–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 SLVS484C–JUNE2003–REVISEDDECEMBER2014 www.ti.com Feature Description (continued) 9.3.6 PowerSaveModeandSynchronization The SYNC pin can be used to select different operation modes. To enable power save, SYNC must be set low. Power save mode is used to improve efficiency at light load. In power save mode the converter only operates when the output voltage trips below a set threshold voltage. It ramps up the output voltage with one or several pulses and goes again into power save mode once the output voltage exceeds the set threshold voltage. This powersavemodecanbedisabledbysettingtheSYNCtoVBAT. Applying an external clock with a duty cycle between 30% and 70% at the SYNC pin forces the converter to operate at the applied clock frequency. The external frequency has to be in the range of about ±20% of the nominalinternalfrequency.Detailedvaluesareshownintheelectricalcharacteristicsectionofthedatasheet. 9.3.7 LowBatteryDetectorCircuit—LBI/LBO The low-battery detector circuit is typically used to supervise the battery voltage and to generate an error flag when the battery voltage drops below a user-set threshold voltage. The function is active only when the device is enabled. When the device is disabled, the LBO pin is high-impedance. The switching threshold is 500 mV at LBI. During normal operation, LBO stays at high impedance when the voltage, applied at LBI, is above the threshold. ItisactivelowwhenthevoltageatLBIgoesbelow500mV. The battery voltage, at which the detection circuit switches, can be programmed with a resistive divider connected to the LBI pin. The resistive divider scales down the battery voltage to a voltage level of 500 mV, which is then compared to the LBI threshold voltage. The LBI pin has a built-in hysteresis of 10 mV. See the application section for more details about the programming of the LBI threshold. If the low-battery detection circuit is not used, the LBI pin should be connected to GND (or to VBAT) and the LBO pin can be left unconnected.DonotlettheLBIpinfloat. 9.3.8 Low-EMISwitch The device integrates a circuit that removes the ringing that typically appears on the SW node when the converterentersdiscontinuouscurrentmode.Inthiscase,thecurrentthroughtheinductorrampstozeroandthe rectifying PMOS switch is turned off to prevent a reverse current flowing from the output capacitors back to the battery. Due to the remaining energy that is stored in parasitic components of the semiconductor and the inductor, a ringing on the SW pin is induced. The integrated antiringing switch clamps this voltage to VBAT and thereforedampensringing. 9.4 Device Functional Modes Table2.TPS61090OperationMode MODE DESCRIPTION CONDITION SYNCpinishigh,acrosswholeloadSYNCpinislow, PWM Boostinnormalswitchingoperation mediumtoheavyload. PFM Boostinpowersaveoperation SYNCpinislow,lightload. 12 SubmitDocumentationFeedback Copyright©2003–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 www.ti.com SLVS484C–JUNE2003–REVISEDDECEMBER2014 10 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 10.1 Application Information The devices are designed to operate from an input voltage supply range between 1.8 V and 5.5 V with a maximum switch current limit up to 2500 mA. The SYNC pin can be used to select different operation modes. To enable power save, SYNC must be set low. The devices operate in PWM mode from the medium to heavy load conditions and in power save mode at light load condition. In PWM mode, the TPS6109x converter operates with the nominal switching frequency of 600 kHz. As the load current decreases, the converter enters power save mode, reducing the switching frequency and minimizing the IC quiescent current to achieve high efficiency over the entire load current range. The power save mode can be disabled by setting the SYNC to VBAT, TPS6109x converter always operates with the nominal switching frequency of 600 kHz across the whole load range. Applying an external clock with a duty cycle at the SYNC pin forces the converter to operate at the applied clock frequency. 10.2 Typical Applications 10.2.1 TypicalApplicationCircuitforAdjustableOutputVoltageOption L1 SW VOUT VOUT Boost Output C2 C3 VBAT R3 Power C1 R1 EN FB Supply LBI R4 R5 R2 SYNC Low Battery LBO Output GND PGND TPS6109x Figure14. TypicalApplicationCircuitforAdjustableOutputVoltageOptionSchematic 10.2.1.1 DesignRequirements Table3.TPS6109x5VOutputDesignParameters DESIGN TYPICALVALUES PARAMETERS InputVoltageRange 1.8Vto5.0V OutputVoltage 5.0V OutputVoltageRipple ±3%VOUT TransientResponse ±10%VOUT InputVoltageRipple ±200mV OutputCurrentRating 500mA OperatingFrequency 600kHz Copyright©2003–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 SLVS484C–JUNE2003–REVISEDDECEMBER2014 www.ti.com 10.2.1.2 DetailedDesignProcedure TheTPS6109xDC-DCconvertersareintendedforsystemspoweredbyadualortriplecellNiCdorNiMHbattery with a typical terminal voltage between 1.8 V and 5.5 V. They can also be used in systems powered by one-cell Li-Ion with a typical stack voltage between 2.5 V and 4.2 V. Additionally, two or three primary and secondary alkalinebatterycellscanbethepowersourceinsystemswheretheTPS6109xisused. 10.2.1.2.1 ProgrammingtheOutputVoltage The output voltage of the TPS61090 DC-DC converter section can be adjusted with an external resistor divider. The typical value of the voltage on the FB pin is 500 mV. The maximum allowed value for the output voltage is 5.5 V. The current through the resistive divider should be about 100 times greater than the current into the FB pin.ThetypicalcurrentintotheFBpinis0.01 µA,andthevoltageacrossR4istypically500mV.Basedonthose two values, the recommended value for R4 should be lower than 500 kΩ, in order to set the divider current at 1 µA or higher. Because of internal compensation circuitry the value for this resistor should be in the range of 200 kΩ. From that, the value of resistor R3, depending on the needed output voltage (V ), can be calculated using O Equation1: R3 = R4 × (VO – 1) = 200kΩ ×( VO – 1) V 500mV FB (1) If as an example, an output voltage of 5.0 V is needed, a 1.8-MΩ resistor should be chosen for R3. If for any reason the value for R4 is chosen significantly lower than 200 kΩ additional capacitance in parallel to R3 is recommended.TherequiredcapacitancevaluecanbeeasilycalculatedusingEquation2 ( ) 200kΩ C = 10pF × –1 parR3 R4 (2) 10.2.1.2.2 ProgrammingtheLBI/LBOThresholdVoltage The current through the resistive divider should be about 100 times greater than the current into the LBI pin. The typical current into the LBI pin is 0.01 µA, and the voltage across R2 is equal to the LBI voltage threshold that is generated on-chip, which has a value of 500 mV. The recommended value for R2is therefore in the range of 500 kΩ. From that, the value of resistor R1, depending on the desired minimum battery voltage V can be BAT, calculatedusingEquation3. (cid:4) V (cid:5) (cid:4) V (cid:5) R1(cid:3)R2(cid:1) BAT (cid:2)1 (cid:3)390k(cid:1)(cid:1) BAT (cid:2)1 V 500mV LBI(cid:2)threshold (3) The output of the low battery supervisor is a simple open-drain output that goes active low if the dedicated battery voltage drops below the programmed threshold voltage on LBI. The output requires a pullup resistor with a recommended value of 1 MΩ. The maximum voltage which is used to pull up the LBO outputs should not exceedtheoutputvoltageoftheDC-DCconverter.Ifnotused,theLBOpincanbeleftfloatingortiedtoGND. 10.2.1.2.3 InductorSelection A boost converter normally requires two main passive components for storing energy during the conversion. A boost inductor and a storage capacitor at the output are required. To select the boost inductor, it is recommended to keep the possible peak inductor current below the current limit threshold of the power switch in the chosen configuration. For example, the current limit threshold of the TPS6109x's switch is 2500 mA at an output voltage of 5 V. The highest peak current through the inductor and the switch depends on the output load, theinput(V ),andtheoutputvoltage(V ).Estimationofthemaximumaverageinductorcurrentcanbedone BAT OUT usingEquation4: V I (cid:2)I (cid:1) OUT L OUT V (cid:1)0.8 BAT (4) For example, for an output current of 500 mA at 5 V, at least 1750 mA of average current flows through the inductorataminimuminputvoltageof1.8V. 14 SubmitDocumentationFeedback Copyright©2003–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 www.ti.com SLVS484C–JUNE2003–REVISEDDECEMBER2014 The second parameter for choosing the inductor is the desired current ripple in the inductor. Normally, it is advisable to work with a ripple of less than 20% of the average inductor current. A smaller ripple reduces the magnetic hysteresis losses in the inductor, as well as output voltage ripple and EMI. But in the same way, regulation time at load changes rises. In addition, a larger inductor increases the total system costs. With those parameters,itispossibletocalculatethevaluefortheinductorbyusingEquation5: VBAT(cid:1)(cid:3)VOUT–VBAT(cid:4) L(cid:2) (cid:1)IL(cid:1)ƒ(cid:1)VOUT (5) Parameter f is the switching frequency and ΔI is the ripple current in the inductor, i.e., 20% × I . In this example, L L the desired inductor has the value of 5.5 µH. With this calculated value and the calculated currents, it is possible to choose a suitable inductor. Care has to be taken that load transients and losses in the circuit can lead to higher currents as estimated in equation 4. Also, the losses in the inductor caused by magnetic hysteresis losses andcopperlossesareamajorparameterfortotalcircuitefficiency. ThefollowinginductorseriesfromdifferentsuppliershavebeenusedwiththeTPS6109xconverters: Table4.ListofInductors VENDOR INDUCTORSERIES CDRH6D28 Sumida CDRH6D38 CDRH103R WurthElektronik WE-PDtypeL WE-PDtypeXL EPCOS B82464G 10.2.1.2.4 CapacitorSelection 10.2.1.2.4.1 InputCapacitor At least a 10-µF input capacitor is recommended to improve transient behavior of the regulator and EMI behavior of the total power supply circuit. A ceramic capacitor or a tantalum capacitor with a 100-nF ceramic capacitor in parallel,placedclosetotheIC,isrecommended. 10.2.1.2.4.2 OutputCapacitorDC-DCConverter The major parameter necessary to define the minimum value of the output capacitor is the maximum allowed output voltage ripple in steady state operation of the converter. This ripple is determined by two parameters of the capacitor, the capacitance and the ESR. It is possible to calculate the minimum capacitance needed for the definedripple,supposingthattheESRiszero,byusingequationEquation6: IOUT(cid:1)(cid:4)VOUT(cid:2)VBAT(cid:5) Cmin(cid:3) ƒ(cid:1)(cid:1)V(cid:1)VOUT (6) ParameterfistheswitchingfrequencyandΔVisthemaximumallowedripple. With a chosen ripple voltage of 10 mV, a minimum capacitance of 53 µF is needed. The total ripple is larger due totheESRoftheoutputcapacitor.ThisadditionalcomponentoftheripplecanbecalculatedusingEquation7: (cid:1)V (cid:2)I (cid:1)R ESR OUT ESR (7) Anadditionalrippleof40mVistheresultofusingatantalumcapacitorwithalowESRof80mΩ.Thetotalripple is the sum of the ripple caused by the capacitance and the ripple caused by the ESR of the capacitor. In this example, the total ripple is 50 mV. Additional ripple is caused by load transients. This means that the output capacitance needs to be larger than calculated above to meet the total ripple requirements. The output capacitor has to completely supply the load during the charging phase of the inductor. A reasonable value of the output capacitance depends on the speed of the load transients and the load current during the load change. With the calculated minimum value of 53 µF and load transient considerations, a reasonable output capacitance value is in a 100 µF range. For economical reasons this usually is a tantalum capacitor. Because of this the control loop hasbeenoptimizedforusingoutputcapacitorswithanESRofabove30mΩ. Copyright©2003–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 SLVS484C–JUNE2003–REVISEDDECEMBER2014 www.ti.com 10.2.1.2.4.3 SmallSignalStability When using output capacitors with lower ESR, like ceramics, it is recommended to use the adjustable voltage version. The missing ESR can be easily compensated there in the feedback divider. Typically a capacitor in the range of 10 pF in parallel to R3 helps to obtain small signal stability with lowest ESR output capacitors. For more detailed analysis the small signal transfer function of the error amplifier and regulator, which is given is Equation8,canbeused. d d5(R3 + R4) AREG = V AREG = R4 × (1 + i × ω ×2.3µs) FB (8) 10.2.1.3 ApplicationCurves VI= 3.3 V, RL= 10Ω VI= 3.3 V, RL=100Ω Output Voltage 50 mV/Div,AC Output Voltage 20 mV/Div Inductor Current Inductor Current 200 mA/Div, DC 200 mA/Div Timebase-1μs/Div Timebase-100μs/Div Figure15.OutputVoltageinContinuousMode Figure16.OutputVoltageinPowerSaveMode VI= 2.5 V, IL=200 mAto 400 mA VI= 2.2 V to 2.7 V, RL=50Ω Input Voltage 500 mV/Div, DC Output Current 500 mA/Div, DC Output Voltage 20 mV/Div,AC Output Voltage 50 mV/Div,AC Timebase-2 ms/Div Timebase-2 ms/Div Figure17.LoadTransientResponse Figure18.LineTransientResponse Enable 5 V/Div, DC Output Voltage 2 V/Div, DC Inductor Current 500 mA/Div, DC Voltage at SW 2 V/Div, DC VI= 2.4 V, RL=50Ω Timebase-200μs/Div Figure19.DC-DCConverterStart-UpAfterEnable 16 SubmitDocumentationFeedback Copyright©2003–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 www.ti.com SLVS484C–JUNE2003–REVISEDDECEMBER2014 10.2.2 TPS6109xApplicationSchematicof5V WithMaximumOutputPower out L1 SW VOUT VCC 5 V 6.8 m H Boost Output C2 C3 Battery VBAT 2.2 m F 100 m F Input C1 R1 EN FB 10 m F LBI R5 R2 SYNC LBO LBO GND PGND TPS61092 List of Components: U1 = TPS6109xRSA L1 = Sumida CDRH103R-6R8 C1, C2 = X7R,X5R Ceramic C3 = Low ESR Tantalum Figure20. PowerSupplySolutionforMaximumOutputPowerSchematic 10.2.3 TPS6109xApplicationSchematicof5V andAuxiliary10V WithChargePump out out VCC2 10 V C5 DS1 Unregulated Auxiliary Output C6 0.1 m F 1 m F L1 6.8 m H SW VOUT C2 C3 VBCoCo1s t5 M Vain Output Battery VBAT 2.2 m F 100 m F Input C1 R1 EN 10 m F LBI FB R5 R2 SYNC LBO LBO GND PGND TPS61092 List of Components: U1 = TPS6109xRSA L1 = Sumida CDRH103R-6R8 C1, C2, C5, C6, = X7R,X5R Ceramic C3 = Low ESR Tantalum DS1 = BAT54S Figure21. PowerSupplySolutionWithAuxiliaryPositiveOutputVoltageSchematic Copyright©2003–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 SLVS484C–JUNE2003–REVISEDDECEMBER2014 www.ti.com 10.2.4 TPS6109xApplicationSchematicof5V andAuxiliary-5V WithChargePump out out VCC2 -5 V C5 DS1 Unregulated C6 Auxiliary Output 1 m F 0.1 m F L1 6.8 m H SW VOUT C2 C3 VBCoCo1s t5 M Vain Output Battery VBAT 2.2 m F 100 m F Input C1 R1 EN 10 m F LBI FB R5 R2 SYNC LBO LBO GND PGND List of Components: TPS61092 U1 = TPS6109xRSA L1 = Sumida CDRH103R-6R8 C1, C2, C5, C6 = X7R,X5R Ceramic C3 = Low ESR Tantalum DS1 = BAT54S Figure22. PowerSupplySolutionWithAuxiliaryNegativeOutputVoltageSchematic 18 SubmitDocumentationFeedback Copyright©2003–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 www.ti.com SLVS484C–JUNE2003–REVISEDDECEMBER2014 11 Power Supply Recommendations Thedeviceisdesignedtooperatefromaninputvoltagesupplyrangebetween1.8Vand5.5V.Thisinputsupply must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic or tantalum capacitor withavalueof47 μFisatypicalchoice. 12 Layout 12.1 Layout Guidelines As for all switching power supplies, the layout is an important step in the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground tracks. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the IC. Use a common ground node for power ground and a different one for control ground to minimize the effects of groundnoise.ConnectthesegroundnodesatanyplaceclosetooneofthegroundpinsoftheIC. The feedback divider should be placed as close as possible to the control ground pin of the IC. To lay out the control ground, it is recommended to use short traces as well, separated from the power ground traces. This avoids ground shift problems, which can occur due to superimposition of power ground current and control groundcurrent. 12.2 Layout Example VIAto Ground Plane Input Capacitor VIAto VBATPlane AT ND ND ND Inductor B G G G V P P P LBI Resistors1 LBI SW SYNC SW Output LBI Exposed PAD Capacitor 2 Resistors2 EN NC LBO VOUT GND G F V V N B O O D U U T T Feedback Feedback Output Resistors2 Resistors1 LBO Resistor Capacitor 1 GND Figure23. LayoutExampleSchematic Copyright©2003–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 SLVS484C–JUNE2003–REVISEDDECEMBER2014 www.ti.com 12.3 Thermal Considerations Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power- dissipationlimitsofagivencomponent. Threebasicapproachesforenhancingthermalperformancearelistedbelow. • ImprovingthepowerdissipationcapabilityofthePCBdesign • ImprovingthethermalcouplingofthecomponenttothePCB • Introducingairflowinthesystem The maximum junction temperature (T ) of the TPS6109x devices is 150°C. The thermal resistance of the 16-pin J QFN PowerPAD package (RSA) isR = 38.1 °C/W, if the PowerPAD is soldered and the board layout is ΘJA optimized. Specified regulator operation is assured to a maximum ambient temperature T of 85°C. Therefore, A the maximum power dissipation is about 1700 mW. More power can be dissipated if the maximum ambient temperatureoftheapplicationislower. TJ(MAX) – TA 150°C – 85°C P = = = 1700mW D(MAX) RθJA 38.1k/W (9) If designing for a lower junction temperature of 125°C, which is recommended, maximum heat dissipation is lower.Usingtheaboveequation(8)resultsin1050mWpowerdissipation. 20 SubmitDocumentationFeedback Copyright©2003–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS61090 TPS61091 TPS61092

TPS61090,TPS61091,TPS61092 www.ti.com SLVS484C–JUNE2003–REVISEDDECEMBER2014 13 Device and Documentation Support 13.1 Device Support 13.1.1 Third-PartyProductsDisclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONEORINCOMBINATIONWITHANYTIPRODUCTORSERVICE. 13.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table5.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY TPS61090 Clickhere Clickhere Clickhere Clickhere Clickhere TPS61091 Clickhere Clickhere Clickhere Clickhere Clickhere TPS61092 Clickhere Clickhere Clickhere Clickhere Clickhere 13.3 Trademarks PowerPADisatrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 13.4 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 13.5 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2003–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:TPS61090 TPS61091 TPS61092

PACKAGE MATERIALS INFORMATION www.ti.com 12-Feb-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TPS61090RSAR QFN RSA 16 3000 330.0 12.4 4.3 4.3 1.5 8.0 12.0 Q2 TPS61091RSAR QFN RSA 16 3000 330.0 12.4 4.3 4.3 1.5 8.0 12.0 Q2 TPS61092RSAR QFN RSA 16 3000 330.0 12.4 4.3 4.3 1.5 8.0 12.0 Q2 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 12-Feb-2019 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TPS61090RSAR QFN RSA 16 3000 350.0 350.0 43.0 TPS61091RSAR QFN RSA 16 3000 350.0 350.0 43.0 TPS61092RSAR QFN RSA 16 3000 350.0 350.0 43.0 PackMaterials-Page2

None

None

None

IMPORTANTNOTICEANDDISCLAIMER TIPROVIDESTECHNICALANDRELIABILITYDATA(INCLUDINGDATASHEETS),DESIGNRESOURCES(INCLUDINGREFERENCE DESIGNS),APPLICATIONOROTHERDESIGNADVICE,WEBTOOLS,SAFETYINFORMATION,ANDOTHERRESOURCES“ASIS” ANDWITHALLFAULTS,ANDDISCLAIMSALLWARRANTIES,EXPRESSANDIMPLIED,INCLUDINGWITHOUTLIMITATIONANY IMPLIEDWARRANTIESOFMERCHANTABILITY,FITNESSFORAPARTICULARPURPOSEORNON-INFRINGEMENTOFTHIRD PARTYINTELLECTUALPROPERTYRIGHTS. TheseresourcesareintendedforskilleddevelopersdesigningwithTIproducts.Youaresolelyresponsiblefor(1)selectingtheappropriate TIproductsforyourapplication,(2)designing,validatingandtestingyourapplication,and(3)ensuringyourapplicationmeetsapplicable standards,andanyothersafety,security,orotherrequirements.Theseresourcesaresubjecttochangewithoutnotice.TIgrantsyou permissiontousetheseresourcesonlyfordevelopmentofanapplicationthatusestheTIproductsdescribedintheresource.Other reproductionanddisplayoftheseresourcesisprohibited.NolicenseisgrantedtoanyotherTIintellectualpropertyrightortoanythird partyintellectualpropertyright.TIdisclaimsresponsibilityfor,andyouwillfullyindemnifyTIanditsrepresentativesagainst,anyclaims, damages,costs,losses,andliabilitiesarisingoutofyouruseoftheseresources. TI’sproductsareprovidedsubjecttoTI’sTermsofSale(www.ti.com/legal/termsofsale.html)orotherapplicabletermsavailableeitheron ti.comorprovidedinconjunctionwithsuchTIproducts.TI’sprovisionoftheseresourcesdoesnotexpandorotherwisealterTI’sapplicable warrantiesorwarrantydisclaimersforTIproducts. MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265 Copyright©2019,TexasInstrumentsIncorporated