ICGOO在线商城 > 集成电路(IC) > PMIC - 稳压器 - DC DC 开关稳压器 > TPS60500DGS
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
TPS60500DGS产品简介:
ICGOO电子元器件商城为您提供TPS60500DGS由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TPS60500DGS价格参考¥询价-¥询价。Texas InstrumentsTPS60500DGS封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 可调式 充电泵 开关稳压器 IC 正 0.8V 1 输出 250mA 10-TFSOP,10-MSOP(0.118",3.00mm 宽)。您可以下载TPS60500DGS参考资料、Datasheet数据手册功能说明书,资料中有TPS60500DGS 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC REG BUCK SWITCHED CAP 10MSOP稳压器—开关式稳压器 250-mA Adj Hi-Eff Step-Dwn Chrg Pump |
产品分类 | |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 电源管理 IC,稳压器—开关式稳压器,Texas Instruments TPS60500DGS- |
数据手册 | |
产品型号 | TPS60500DGS |
PCN设计/规格 | |
PWM类型 | - |
产品种类 | 稳压器—开关式稳压器 |
供应商器件封装 | 10-VSSOP |
其它名称 | 296-12513-5 |
包装 | 管件 |
单位重量 | 18.800 mg |
同步整流器 | 无 |
商标 | Texas Instruments |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
宽度 | 3 mm |
封装 | Tube |
封装/外壳 | 10-TFSOP,10-MSOP(0.118",3.00mm 宽) |
封装/箱体 | VSSOP-10 |
工作温度 | -40°C ~ 85°C |
工作温度范围 | - 40 C to + 85 C |
工厂包装数量 | 80 |
开关频率 | 800 kHz |
拓扑结构 | Buck |
最大工作温度 | + 85 C |
最大输入电压 | 6.5 V |
最小工作温度 | - 40 C |
最小输入电压 | 1.8 V |
标准包装 | 80 |
电压-输入 | 1.8 V ~ 6.5 V |
电压-输出 | 0.8 V ~ 3.3 V |
电流-输出 | 250mA |
电源电流 | 40 uA |
类型 | 降压(降压),切换电容(充电泵) |
系列 | TPS60500 |
输入电压 | 1.8 V to 6.5 V |
输出数 | 1 |
输出电压 | 0.8 V to 3.3 V |
输出电流 | 250 mA |
输出端数量 | 1 Output |
输出类型 | 可调式 |
配用 | /product-detail/zh/TPS60500EVM-193/296-13581-ND/486539 |
频率-开关 | 800kHz |
Product Sample & Technical Tools & Support & Folder Buy Documents Software Community TPS60500,TPS60501,TPS60502,TPS60503 SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 TPS6050x High-Efficiency, 250-mA Step-Down Charge Pump 1 Features 3 Description • WideInputVoltageRangeFrom1.8Vto6.5V The TPS6050x devices are a family of switched 1 capacitor voltage converters, designed specifically for • Regulated3.3-V,1.8-V,1.5-V,orAdjustable space-criticalbattery-poweredapplications. OutputVoltage The TPS6050x step-down charge pumps generate a • Upto250-mAOutputCurrent regulated, fixed 3.3-V, 1.8-V, 1.5-V, or adjustable • Upto90%Efficiency outputvoltage.Onlyfoursmallceramiccapacitorsare • OutputVoltageTolerance3%OverLine,Load, required to build a complete high-efficiency DC–DC andTemperatureVariation charge pump converter. To achieve the high efficiency over a wide input voltage range, the charge • DeviceQuiescentCurrentLessThan40µA pump automatically selects between three different • OutputVoltageSupervisorIncluded(PowerGood) conversion modes. The output can deliver a • InternalSoftStart maximum of 250-mA output current. The power good • LoadIsolatedFromBatteryDuringShutdown function supervises the output voltage and goes high when the output voltage rises to 97% of the nominal • OvertemperatureandOvercurrentProtected value. • Micro-Small10-PinVSSOPPackage The TPS6050x devices come in a micro-small 10-pin • EVMAvailable,TPS60500EVM-193 VSSOPpackage. 2 Applications DeviceInformation(1) • MobilePhones PARTNUMBER PACKAGE BODYSIZE(NOM) • PortableInstruments TPS60500 TPS60501 • InternetAudioPlayer VSSOP(10) 3.05mm×4.98mm TPS60502 • PCPeripherals TPS60503 • USBPoweredApplications (1) For all available packages, see the orderable addendum at theendofthedatasheet. TypicalApplicationSchematic EfficiencyvsInputVoltage C1F C2F 100 1μF 1μF 90 100mA 50mA 80 8 6 3 4 70 C1F−C1F+ C2F− C2F+ 1.8 V % 60 INPUT OUT 7 150 mA ency− 50 150mA LDO Li-ion cellCi 5 VIN + C10oμF Effici 3400 2.2μF 10 20 FB 10 1 EN R 02 2.5 3 3.5 4 4.5 5 5.5 6 6.5 OFF/ON 2 VI−InputVoltage−V PG GND 9 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
TPS60500,TPS60501,TPS60502,TPS60503 SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 www.ti.com Table of Contents 1 Features.................................................................. 1 8.4 DeviceFunctionalModes..........................................8 2 Applications........................................................... 1 9 ApplicationandImplementation........................ 11 3 Description............................................................. 1 9.1 ApplicationInformation............................................11 4 RevisionHistory..................................................... 2 9.2 TypicalApplications................................................11 9.3 SystemExamples...................................................17 5 DeviceComparisonTable..................................... 3 10 PowerSupplyRecommendations..................... 21 6 PinConfigurationandFunctions......................... 3 11 Layout................................................................... 21 7 Specifications......................................................... 4 11.1 LayoutGuidelines.................................................21 7.1 AbsoluteMaximumRatings......................................4 11.2 LayoutExamples...................................................21 7.2 ESDRatings ............................................................4 12 DeviceandDocumentationSupport................. 23 7.3 RecommendedOperatingConditions.......................4 7.4 ThermalInformation..................................................4 12.1 DeviceSupport......................................................23 7.5 ElectricalCharacteristics...........................................5 12.2 RelatedLinks........................................................23 7.6 TypicalCharacteristics..............................................6 12.3 CommunityResources..........................................23 12.4 Trademarks...........................................................23 8 DetailedDescription.............................................. 7 12.5 ElectrostaticDischargeCaution............................23 8.1 Overview...................................................................7 12.6 Glossary................................................................23 8.2 FunctionalBlockDiagram.........................................7 13 Mechanical,Packaging,andOrderable 8.3 FeatureDescription...................................................7 Information........................................................... 23 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionB(February2002)toRevisionC Page • AddedPinConfigurationandFunctionssection,ESDRatingstable,FeatureDescriptionsection,DeviceFunctional Modes,ApplicationandImplementationsection,PowerSupplyRecommendationssection,Layoutsection,Device andDocumentationSupportsection,andMechanical,Packaging,andOrderableInformationsection .............................. 1 2 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 www.ti.com SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 5 Device Comparison Table PARTNUMBER(1) OUTPUTVOLTAGE[V] MINIMUMINPUTVOLTAGEFORI =150mA OUT TPS60500DGS Adjustable(0.8Vto3.3V) V >V +1 IN OUT TPS60501DGS 3.3 V >4.3V IN TPS60502DGS 1.8 V >2.8V IN TPS60503DGS 1.5 V >2.5V IN (1) TheDGSpackageisavailabletapedandreeled.AddRsuffixtodevicetype(forexample,TPS60500DGSR)toorderquantitiesof2500 devicesperreel. 6 Pin Configuration and Functions DGSPackage 10-PinVSSOP TopView EN 1 10 FB PG 2 9 GND C2F− 3 8 C1F− C2F+ 4 7 OUT VIN 5 6 C1F+ PinFunctions PIN I/O DESCRIPTION NAME NO. C1F+ 6 – PositiveterminaloftheflyingcapacitorC1F C1F− 8 – NegativeterminaloftheflyingcapacitorC1F C2F+ 4 – PositiveterminaloftheflyingcapacitorC2F C2F− 3 – NegativeterminaloftheflyingcapacitorC2F EN 1 I Device-enableInput. −EN=Highdisablesthedevice.Outputandinputareisolatedinshutdownmode. −EN=Lowenablesthedevice. GND 9 – Ground FB 10 O TPS60500:connectviavoltagedividertoV O TPS60501toTPS60503:connectdirectlytoV O OUT 7 O Regulated3.3V,1.8V,1.5V,oradjustablepoweroutput BypassOUTtoGNDwiththeoutputfiltercapacitorC . o PG 2 O Opendrainpowergooddetectoroutput.AssoonasthevoltageonOUTreachesabout97%ofitsnominal valuethispingoeshigh. VIN 5 I SupplyInput.Connecttoaninputsupplyinthe1.8-Vto6.5-Vrange. Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings Overoperatingfree-airtemperaturerange(unlessotherwisenoted) (1) MIN MAX UNIT VoltageatVIN,EN,PGtoGND(2) −0.3 7 V VoltageatOUT,FBtoGND −0.3 3.6 V VoltageatC1F+,C1F−,C2F+,C2F−toGND −0.3 7 V OutputcurrentatOUT 300 mA T Maximumjunctiontemperature 150 °C J T Storagetemperature −55 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) ThevoltageatEN,andPGcanexceedVINuptothemaximumratedvoltagewithoutincreasingtheleakagecurrentdrawnbythese modeselectinputs. 7.2 ESD Ratings VALUE UNIT Humanbodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±2000 V(ESD) Electrostaticdischarge Charged-devicemodel(CDM),perJEDECspecificationJESD22- V C101(2) ±500 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 7.3 Recommended Operating Conditions Overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT V InputvoltageatVIN 1.8 6.5 V IM I OutputcurrentatOUT 250 mA OUT C Inputcapacitor 2.2 µF IN C1F, Flyingcapacitors 1 µF C2F C forI ≤150mA 4.7 OUT OUT Outputcapacitor µF C for150mA<I <250mA 22 OUT OUT T Operatingjunctiontemperature −40 125 °C J 7.4 Thermal Information TPS6050x THERMALMETRIC(1) DGS(VSSOP) UNIT 10PINS R Junction-to-ambientthermalresistance 157 °C/W θJA R Junction-to-case(top)thermalresistance 53 °C/W θJC(top) R Junction-to-boardthermalresistance 76 °C/W θJB ψ Junction-to-topcharacterizationparameter 5.5 °C/W JT ψ Junction-to-boardcharacterizationparameter 75 °C/W JB R Junction-to-case(bottom)thermalresistance — °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report,SPRA953. 4 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 www.ti.com SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 7.5 Electrical Characteristics atC =4.7µF,C1F=C2F=1µF,C =10µF,T =−40°Cto85°C,V =5V,V =GND(unlessotherwisenoted) IN OUT A IN (EN) PARAMETER TESTCONDITIONS MIN TYP MAX UNIT V Supplyvoltage 1.8 6.5 V IN V =1.8Vto2.7V,V −V >1V 50 IN IN OUT V ≥2.7V,V −V >1V 150 IN IN OUT I Maximumoutputcurrent V =1.5V,V ≥3.1V 250 mA OUT OUT IN V ≥3.7V,1.8V≤V ≤2.5V 250 IN OUT V >2.5V,V >V +1.2V 250 OUT IN OUT TPS60500 0.8 3.3 V >2.7V;V −V >1V IN IN OUT TPS60501 atI ≤150mA, 3.3 V Outputvoltage OUT V OUT TPS60502 VIN>1.8V;VIN−VOUT>1V 1.8 atI ≤50mA TPS60503 OUT 1.5 V Feedbackvoltage TPS60500 0.8 V (FB) TPS60501 I =0mAto150mA,C =47µF –4% 3% OUT OUT I =0mAto150mA,C =47µF 3% TPS60500 OUT OUT Toleranceofoutputvoltage TPS60502 I =0mAto150mA,C =10µF 4% OUT OUT TPS60503 I =0mAto250mA,C =47µF 4% OUT OUT V OutputvoltagerippleatOUT I =150mA,V =1.5V 30 mV pp OUT OUT PP I Quiescentcurrent(no-loadinputcurrent) I =0mA 40 75 µA Q OUT T Thermalshutdowntemperature 150 °C (SD) I Shutdownsupplycurrent V =V 0.05 0.5 µA OUT(SD) (EN) IN f Internalswitchingfrequency 600 800 1200 kHz (OSC) 0.3× V ENinputlowvoltage V IL V IN 0.7× V ENinputhighvoltage V IH V IN I ENinputleakagecurrent V =0VorV 0.01 0.1 µA lkg(SD) (EN) IN I FBinputleakagecurrent TPS60500 0.1 µA lkg(FB) Maximumresistanceofthe R TPS60500 R1+R2atFBpin 1 MΩ (max) externalvoltagedivider Shortcircuitcurrent(start-upcurrent) V =6.5V,V =0V 100 300 mA IN OUT Outputcurrentlimit V >0.6V 500 mA OUT Noloadstart-uptime 80 µs FORPOWERGOODCOMPARATOR: V Powergoodtripvoltage See (1) Vml– V (PG) 2% t V rampingpositive 100 200 µs d,r OUT Powergooddelaytime t V rampingnegative 50 100 µs d,f OUT V Powergoodoutputvoltagelow V =0V,I =1mA 0.3 V OL OUT (PG) I Powergoodleakagecurrent V =3.3V,V =3.3V 0.01 0.1 µA lkg OUT (PG) (1) V istheoutputvoltageatthemaximumloadcurrent.V isnotaJEDECsymbol. ml ml Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 www.ti.com 7.6 Typical Characteristics 45 40 μA TA= 85°C − ent 35 TA= 25°C urr C cent 30 TA=−40°C s e ui Q 25 20 1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.3 5.8 6.3 VI−InputVoltage−V Figure1.QuiescentCurrentvsInputVoltage 6 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 www.ti.com SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 8 Detailed Description 8.1 Overview The TPS6050x charge pumps provide a regulated output voltage in the range of 0.8 V to 3.3 V from an input voltage of 1.8 V to 6.5 V. The devices use switched capacitor fractional conversion to achieve high efficiency over the entire input and output voltage range. Regulation is achieved by sensing the output voltage and enabling the internal switches as needed to maintain the selected output voltage. This skip-mode regulation is used over a load range from 0 mA to 150 mA. At a higher output current, the device works in a linear regulation mode. The TPS6050x circuits consist of an oscillator, a voltage reference, an internal resistive feedback circuit (fixed- voltage version only), an error amplifier, two charge pump stages with MOSFET switches, a shutdown or start-up circuit,andacontrolcircuit. 8.2 Functional Block Diagram VIN VIN 2/3 Skip 1/2 Gear EN 800KHz Logic CLK Driver 1/3 C1F C2F EN = OUT ON/OFF Thermal and EN Start−up Short-Circuit OUT Current Limit FB Skip Regulator V_REG PG Amplifier PG Bandgap 0.8 V EN 8.3 Feature Description 8.3.1 Short-CircuitCurrentLimitandThermalProtection Whentheoutputvoltageislowerthan0.6V,theoutputcurrentislimitedto300mAtypically. The device also has a thermal protection which reduces the output current when the temperature of the chip exceeds150°C.Theoutputcurrentdeclinesto0mAwhenthechiptemperaturerisesto160°C. 8.3.2 Enable Driving EN high disables the converter. This disables all internal circuits, reducing input current to only 0.05 µA. Leakage current drawn from the output pin OUT is a maximum of 1 µA. The device exits shutdown once EN is set low (see Start-up Procedure). The typical no-load start-up time is 80 µs. When the device is disabled, the load is isolated from the input, an important feature in battery-operated products because it extends the battery shelflife. Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 www.ti.com Feature Description (continued) 8.3.3 PowerGoodDetector Thepowergood(PG)outputisanopen-drainoutputonallTPS6050xdevices.ThePGoutputpullslowwhenthe output is out of regulation. When the output rises above 97% nominal V , the power good output is pulled high out by resistor. In shutdown, power good is pulled low. In normal operation, an external pullup resistor is typically usedtoconnectthePGpintoV orV .IfthePGoutputisnotused,itshouldremainunconnected. OUT IN VO V(NOM) VIT td,r t PG td,r td,f 1 0 t EN 1 0 t Figure2. PowerGoodTimingDiagram 8.4 Device Functional Modes 8.4.1 Start-upProcedure The device is enabled when EN is set from logic high to logic low. The charge pump stages immediately start switching to transfer energy to the output. In start-up until the output voltage has reached 0.6 V, the input current islimitedto300mAtypically. 8.4.2 ConversionModes The TPS6050x devices use fractional conversion to achieve high efficiency over a wide input and output voltage range. Depending on the input to output voltage ratio and output current, internal circuitry switches between an LDOmode,a2/3xmode,a0.5xmode,anda1/3xmode. 8.4.2.1 LDOConversionMode In the LDO mode, the flying capacitors are no longer used for transferring energy. The switches 1, 2, 5, and 6 are closed and connect the input directly with the output. This mode is automatically selected if the input to output voltage ratio does not allow the use of another conversion mode with higher efficiency. In LDO mode, the regulation is done by switching off MOSFET 2 and 6 until the output current reaches the linear-skip current (150 mA typical). At a higher output current, the output voltage is regulated by controlling the resistance of the switch. Theminimuminputtooutputvoltagedifferencerequiredforregulationis1V. 8 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 www.ti.com SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 Device Functional Modes (continued) VIN SW1 SW3 SW5 SW7 C1F SW9 C2F + + SW2 SW4 SW6 SW8 OUT + Co Figure3. LDOConversionMode 8.4.2.2 2/3xConversionMode In the first cycle, the two flying capacitors are connected in parallel and are charged up in series with the output capacitor.Inthesecondcycle,theflyingcapacitorsareconnectedinseries.Thismodeprovideshigherefficiency than the LDO mode because the current into VIN is only 2/3 of the output current. The mode is automatically selectediftheinputvoltageishigherthan3/2oftheselectedoutputvoltage. VIN VIN SW1 SW3 SW5 SW7 SW1 SW3 SW5 SW7 C1F SW9 C2F C1F SW9 C2F + + + + SW2 SW4 SW6 SW8 SW2 SW4 SW6 SW8 OUT OUT + + Co Co Phase1:ChargingofFlyingCaps Phase2:DischargingofFlyingCaps Figure4. 2/3xConversionMode Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 www.ti.com Device Functional Modes (continued) 8.4.2.3 0.5xConversionMode This conversion mode is internally selected if the input to output voltage ratio is greater than two (for example, 3.6-V to 1.5-V conversion). In the 0.5x mode, the flying capacitors and the switches always work in parallel, which reduces the resistance of the circuit compared to the other modes. In the first cycle, the flying capacitors are charged in series with the output capacitors. In the second cycle, the flying capacitors are connected in parallelwiththeoutputcapacitor,whichdischargestheflyingcapacitors. VIN VIN SW1 SW3 SW5 SW7 SW1 SW3 SW5 SW7 C1F SW9 C2F C1F SW9 C2F + + + + SW2 SW4 SW6 SW8 SW2 SW4 SW6 SW8 OUT OUT + + Co Co Phase1:ChargingofFlyingCaps Phase2:DischargingofFlyingCaps Figure5. 0.5xConversionMode 8.4.2.4 1/3xConversionMode This mode was implemented to provide high efficiency even with an input to output voltage ratio greater than three(forexample,5-Vto1.5-Vconversion).Inthefirstcycle,thetwoflyingcapacitorsarechargedinserieswith the output capacitor. In the next step, the flying capacitors which are charged to VIN/3, are connected in parallel totheoutputcapacitor. VIN VIN SW1 SW3 SW5 SW7 SW1 SW3 SW5 SW7 C1F SW9 C2F C1F SW9 C2F + + + + SW2 SW4 SW6 SW8 SW2 SW4 SW6 SW8 OUT OUT + + Co Co Phase1:ChargingofFlyingCaps Phase2:DischargingofFlyingCaps Figure6. 1/3xConversionMode 10 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 www.ti.com SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 9.1 Application Information The TPS6050x devices are switched capacitor voltage converters providing fractional conversion to achieve high efficiencyoverawideinputandoutputvoltagerange.Theysupportregulatedoutputvoltagesof3.3V,1.8Vand 1.5Voradjustableoutputvoltagesfroma1.8-Vto6.5-Vinputvoltagerange. 9.2 Typical Applications 9.2.1 TypicalApplicationCircuitforFixed-VoltageandAdjustable-VoltageVersions Figure7. TypicalOperatingCircuit – TPS60500,AdjustableOutputVoltage Figure8. TypicalOperatingCircuit – TPS60503,Maximum150-mAOutputCurrent Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 www.ti.com Typical Applications (continued) Figure9. TypicalOperatingCircuit – TPS60503,Maximum250-mAOutputCurrent 9.2.1.1 DesignRequirements The Detailed Design Procedure provides a component selection to operate the device within the recommended operatingconditions Figure 7, Figure 8 and Figure 9 show the typical operation circuits. The TPS60501 to TPS60503 devices use an internal resistor divider for sensing the output voltage. The FB pin must be connected externally with the output. For maximum output current and best performance, four ceramic capacitors are recommended. For lower currents or higher allowed output voltage ripple, other capacitors can also be used. TI recommends that the minimum value of the output capacitor be 4.7 µF. This value is necessary to maintain a stable operation of the system. Flying capacitors lower than 1 µF can be used, but this decreases the maximum output power. This means that the device works in linear mode with lower output currents. The device works in the linear mode for an output current of greater than 150 mA. With an output current greater than 150 mA, an output capacitor of ≥22 µFmustbeused.Figure9showsthattwo10-µFcapacitorscanalsobeusedinparallel. 9.2.1.2 DetailedDesignProcedure 9.2.1.2.1 CapacitorSelection Designed specifically for space-critical battery-powered applications, the complete converter requires only four external capacitors. The capacitor values are closely linked to the required output current, output noise, and ripple requirements. The input capacitor improves system efficiency by reducing the input impedance, and it also stabilizes the input current. The value of the output capacitor, C , influences the stability of the voltage regulator. O The minimum required capacitance for C is 4.7 µF. Depending on the maximum allowed output ripple voltage O and load current, larger values can be chosen. For an output current greater than 150 mA, a minimum output capacitor of 22 µF is required. Table 2 shows ceramic capacitor values recommended for low output voltage ripple. Table1.RecommendedCapacitorValues I C C C OUT,MAX IN (xF) OUT [mA] [µF] [µF] [µF] 50 2.2 0.22 4.7 150 4.7 1 10 250 4.7 1 22 12 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 www.ti.com SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 Table2.RecommendedCapacitors MANUFACTURER PARTNUMBER SIZE CAPACITANCE TYPE LMK212BJ105KG 805 1µF Ceramic LMK212BJ225MG 805 2.2µF Ceramic TaiyoYuden EMK316BJ225KL 1206 2.2µF Ceramic LMK316BJ475KL 1206 4.7µF Ceramic JMK316BJ106KL 1206 10µF Ceramic C2012X5R1C105M 805 1µF Ceramic TDK C2012X5R1A225M 805 2.2µF Ceramic C2012X5R0J106M 805 10µF/6.3V Ceramic Table 3 contains a list of manufacturers of ceramic capacitors. Ceramic capacitors provide the lowest output voltageripplebecausetheytypicallyhavethelowestESR-rating. Table3.RecommendedCapacitorManufacturers MANUFACTURER CAPACITORTYPE INTERNET TaiyoYuden X7R/X5Rceramic www.t−yuden.com TDK X7R/X5Rceramic www.component.tdk.com Vishay X7R/X5Rceramic www.vishay.com Kemet X7R/X5Rceramic www.kemet.com 9.2.1.2.2 ResistorCombinations Table4.ResistorCombinations NOMINALOUTPUTVOLTAGE EQUATION POSSIBLEE24RESISTORCOMBINATIONS 1.2V R1=0.5R2 R1=100kΩ,R2=200kΩ,(1.20V) 1.5V R1=0.875R2 R1=160kΩ,R2=180kΩ,(1.51V) 1.6V R1=R2 any 1.8V R1=1.25R2 R1=150kΩ,R2=120kΩ,(1.80V) R1=510kΩ,R2=240kΩ,(2.50V) 2.5V R1=2.125R2 R1=470kΩ,R2=220kΩ,(2.51V) Equations: (R1+R2) V - ´ V OUT FB R2 V =0.8 V FB (1) æV ö R1-R2ç OUT ÷-R2 V è FB ø (2) Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 www.ti.com 9.2.1.3 ApplicationCurves 3.40 3.6 VOThreshold: VOThreshold: 3.20 VOnom−3% = 1.455 V 3.4 VOnom−3% = 1.746 V V 3 V 3.2 −Input Voltage− 222...468000 TA= 25°CTA= 85°C −Input Voltage− 22..368 25°C −40°C min)2.20 min) 2.4 VI( 2 TA=−40°C VI( 2.2 85°C 1.80 2 1.60 1.8 0 50 100 150 200 250 0 50 100 150 200 250 IO−Output Current−mA IO−Output Current−mA Figure10.TPS60503 Figure11.TPS60502 MinimumInputVoltagevsOutputCurrent MinimumInputVoltagevsOutputCurrent 4.3 2.6 4.2 VVOOTnohmres−h3o%ld := 3.201 V 22..45 VVOOTnohmres−h3o%ld := 0.776 V −V 4.1 −40°C −V 2.3 age 4 25°C age 2.2 85°C Volt 3.9 Volt 2.1 ut 3.8 ut 2 25°C p p −In 3.7 85°C −In 1.9 n) n) 1.8 mi 3.6 mi VI( 3.5 VI( 1.7 −40°C 1.6 3.4 1.5 3.3 1.4 0 50 100 150 200 250 0 50 100 150 200 250 IO−Output Current−mA IO−Output Current−mA Figure12.TPS60501 Figure13.TPS60500 MinimumInputVoltagevsOutputCurrent MinimumInputVoltagevsOutputCurrent 100 100 100 mA 10mA 90 150 mA 90 80 80 70 70 % % − 60 10mA 200 mA − 60 200 mA ncy 50 ncy 50 150mA ficie 40 250mA ficie 40 100mA 250 mA Ef Ef 30 30 20 20 10 10 0 0 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 VI−InputVoltage−V VI−InputVoltage−V Figure14.TPS60503 Figure15.TPS60502 EfficiencyvsInputVoltage EfficiencyvsInputVoltage 14 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 www.ti.com SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 100 100 90 10mA 90 10mA 80 80 200 mA 70 150 mA 70 250mA −% 60 100mA 200 mA −% 60 Efficiency 4500 250mA Efficiency 4500 100mA 150 mA 30 30 50mA 20 20 VOAdjusted to 0.8 V, 10 10 Co= 47μF, 0 0 3.5 4 4.5 5 5.5 6 6.5 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 V −InputVoltage−V VI−InputVoltage−V Figure16.TPS60501 Figure17.TPS60500 EfficiencyvsInputVoltage EfficiencyvsInputVoltage 1.55 1.84 1.54 Co= 10μF, 1.83 Co= 10μF, VI= 5 V 1.53 1.82 Voltage−V 11..155.125 VI= 3.6V VI= 5 V Voltage−V 111...788901 VI= 3.6 V Output 1.49 Output 1.78 VI= 3.3 V −VO11..4478 VI= 3.3 V V−O 11..7767 1.46 1.75 1.45 1.74 0.1 1 10 100 1000 0.1 1 10 100 1000 IO−Output Current−mA IO−Output Current−mA Figure18.TPS60503 Figure19.TPS60502 OutputVoltagevsOutputCurrent OutputVoltagevsOutputCurrent 0.86 3.36 0.85 VOAdjusted to 0.8 V Co= 10μF 3.34 VI= 5 V 0.84 V VI= 3.6 V V 3.32 − 0.83 − OutputVoltage 000...888012 VI= 2.4 V VI= 5 V Output Voltage 333...223680 −VO 0.79 VI= 3.3 V V−O3.24 0.78 3.22 0.77 0.76 3.20 0.1 1 10 100 1000 0.1 1 10 100 1000 IO−Output Current−mA IO−Output Current−mA Figure20.TPS60500 Figure21.TPS60501 OutputVoltagevsOutputCurrent OutputVoltagevsOutputCurrent Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 www.ti.com 90 90 80 VI= 3.3 V VI= 3.6 V VI= 3.3 V 80 VI= 5 V 70 70 −% 60 VI= 3.6 V −% VI= 5 V Efficiency 50 Efficiency 5600 40 40 30 20 30 0.1 1 10 100 1000 0.1 1 10 100 1000 IO−Output Current−mA IO−Output Current−mA Figure22.TPS60503 Figure23.TPS60502 EfficiencyvsOutputCurrent EfficiencyvsOutputCurrent 100 80 90 VI= 5 V VI= 2.4 V VI= 3.3 V 70 80 % 70 % 60 − − VI= 3.6 V Efficiency 5600 Efficiency 4500 VI= 5 V 40 30 30 VOAdjusted to 0.8 V 20 20 0.1 1 10 100 1000 0.1 1 10 100 1000 IO−Output Current−mA IO−Output Current−mA Figure24.TPS60501 Figure25.TPS60500 EfficiencyvsOutputCurrent EfficiencyvsOutputCurrent −LE)V VVIOIO=== 31 1.03.05 V mVA Co= 10μF, E)−V IVTOAO=== 5 2105. 5°mC VA Co= 10μF, GE (RIPP TA= 25°C E (RIPPL VO 50mV/division A G T A L T OUTPUTVO 10mV/division OUTPUTVOL VI= 2.5 V to 3.5 V to 2.5 V − − VO VO 1 V/division 1μs / division 10μs / division Figure26.OutputVoltage(Ripple)vsTime Figure27.LineTransientResponse 16 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 www.ti.com SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 V VI= 3.3 V Co= 10μF, − VO= 1.5 V LE) TA= 25°C PP 50mV/division E (RI VO G A T L O V T PU IO= 15 mAto 135 mAto 15 mA T U O − O V 100mA/division 10μs / division Figure28.LoadTransientResponse 9.3 System Examples 9.3.1 DSPSupplyWithSequencing This application shows a power supply for a typical digital signal processor (DSP). DSPs usually have core voltages in the 1-V to 2.5-V range, whereas the voltage at the I/O-pins (I/O voltage) is typically 3.3 V to interface with external logic and converters. Therefore, a power supply with two output voltages is required. The application works with an input voltage in the range of 3.5 V to 6.5 V. The maximum output current is 150 mA on eachoutput. The supply is enabled by pulling the enable pin (EN of the TPS60503) to GND. The step-down charge pump starts and its power good (PG) output goes high. This enables the LDO which powers the I/O lines and generatesaresetsignalfortheDSP.Figure29showsthetimingdiagramofthestart-uporshutdownprocedure. VI/O V(NOM) TPS77133 VIT VI VIN OUT t 10 MΩ 1 MΩ VIN OFUBT 47kΩ VV(C(NOORME)) EN RESET VIT GND 3.3 V 10μF† VI/O RS‡ t 1 TPS60503 RESET 0 VIN PG td t 47μF 1 MΩ OFUBT 1.5 V V(CORE) PG1 td td C1F+ 10μF† 0 ENABLE EN C1F− 1μF t EN C2F+ 1 GND C2F− 1μF GND 0 t †Recommendedvalueforstability,DSPmayrequirehighercapacitance. ‡RSis the RESEToutput of theTPS77133. Figure29. DSPSupplyWithSequencing Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 www.ti.com System Examples (continued) 9.3.2 LC-PostFilter Iftheoutputvoltagerippleofthestep-downchargepumpistohigh,anLCpostfiltercanbeused. C1F C2F 1μF 1μF 8 6 3 4 C1F− C1F+ C2F−C2F+ 7 L(P) max 150 mA INPUT OUT 2.5 V to 6.5 VCi 5 VIN TPS60503 +C10oμF C(P) VP(out) 2.2μF 10 FB 1 EN R OFF/ON 2 PG GND 9 Figure30. LC-PostFilter Table5.MeasurementResultsonDifferentC( ,C ,L Combinations;BW=500MHz fly) (P) (P) CI C(XF) CO C(P) TYPICAL VI IO [µF] [µF] [µF] L(P) [µF] VO V TYPICALVO(RMS) [V] [mA] [µH] [V] P(Out) [mV] CERAMIC CERAMIC CERAMIC CERAMIC VPP[mV] 5 50 2.2 0.22 4.7 — 0.1(X7R) 3.3 50 8 5 50 2.2 0.22 4.7 — 0.1(X7R) 1.5 30 9 5 150 4.7 1 10 — 0.1(X7R) 1.5 50 6 5 250 4.7 1 2x10 — 0.1(X7R) 1.5 45 8 5 100 4.7 1 10 0.1 0.1(X7R) 1.5 20 4 9.3.3 PowerSupplyWithDynamicVoltageScaling Dynamic voltage scaling of the core can be used to reduce power consumption of a digital signal processor (DSP). During the periods, in which the maximum DSP performance is not required, the core voltage can be reduced when the DSP operates at a lower clock-rate. This function is called runtime power control (RPC) and is supported by modern DSPs. RPC extends battery lifetime in handheld applications, like MP3 players and digital cameras. The supply of DSPs is separated into I/O interface and core supply. Interface is mostly powered by a 3.3-V system supply, whereas core supply achieves voltages far below 1.5 V. The TPS60500 is powered by the 3.3-V systemsupply.TheDSPitselfselectstheappliedcorevoltage. The core voltage is switched between 1.5 V and 1.1 V by changing the feedback resistor network. A MOSFET modifies the voltage divider at the feedback (FB) pin by switching a resistor. In this application, a general- purpose MOSFET BSS138 is used with a V of 1.6 V. A DSP 3.3-V I/O port drives the gate. The feedback GS(th) resistornetworkconsistsofR2,R3andR4.C isthefast-forwardcapacitorforimprovedlineregulation. (ff) Generalrequirementsfortheapplication: • Outputvoltage1(DSPcore):1.5V ±0.08V • Outputvoltage2(DSPcore):1.1V+0.1V –0.05V • Inputvoltage:3Vto3.3V • Outputcurrent:150mA(10Rload) 18 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 www.ti.com SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 C1F C2F 1μF 1μF 8 6 3 4 C1F− C1F+ C2F− C2F+ Input OUT 7 1.5 V / 1.1 V 3.3 V 5 VIN Co R2 C(ff) 150 mA Ci 10μF 150 pF 2.2μF TPS60500 10 FB R3 R4 1 EN R1 T1 DVS in OFF/ON R5 BSS138 2 GND PG 330 kΩ C6 9 470 pF Figure31. DynamicVoltageScalingApplication Tokeepcurrentthroughtheadjustmentresistornetworkaslowaspossible,theresistorsarecalculatedto: V adjustedbyR2andR3 out1 V = 1.1V, out1 V R2 =1 80 kW, R3= FB V -V V = 0.80 V, out1 FB ref R2 ®R3=470 kW (3) V adjustedbyR2andRx=R3||R4 out2 V = 1.5 V, out2 V ´R2 Rx = FB ®Rx = 206 kW (V2-V ) FB (4) 1 1 1 1 = + ®R4= ®R4=360 kW Rx R3 R4 1 1 - Rx R3 (5) Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 www.ti.com 9.3.4 InternetAudioPowerSupply The input voltage from a single or dual NiCd, NiMH or alkaline cell is boosted to 3.3 V. This voltage is used as system supply for the application and as an input voltage for the step-down charge pump which is used to providethecorevoltageforaDSP. L1 10μH Ci 10μF 7 SW 6 5 VO= 3.3 V VBAT VOUT IO≥100mA Co R1 22μF R5 R3 9 LBI 10 Low Battery LBO R2 Output TPS61010 FB 1 EN Single or dual NiMNHiC odr, 8 ADEN COMP 2 R(C) R4 Alkaline Cell GND Cc1 100 kΩ Cc2 9 10 pF 10 nF C1F C2F 1μF 1μF 8 6 3 4 C1F− C1F+ C2F− C2F+ 7 OUT VO= 1.5 V 5 VIN Co IO≤150mA Ci 10μF 2.2μF TPS60503 10 FB 1 EN R OFF/ON 2 Power Good PG GND Output 9 Figure32. InternetAudioPowerSupply 20 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 www.ti.com SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 10 Power Supply Recommendations The TPS6050x devices have no special requirements for its input power supply. The output currents of the input power supply need to be rated according to the supply voltage, output voltage and output current of the TPS6050x. 11 Layout 11.1 Layout Guidelines All capacitors must be soldered as close as possible to the IC. A PCB layout proposal for a two-layer board is shown in Figure 33. Connect all capacitors as close as possible to the circuit to achieve optimized output voltage rippleperformance. 11.2 Layout Examples Top GND Plane V OUT connection Ceramic output capacitor as close to device as possible V connection Ceramic input IN capacitor as close to device as possible Figure33. RecommendedPCBLayoutforTPS6050x(TopLayer) Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 www.ti.com Layout Examples (continued) Bottom GND Plane Figure34. RecommendedPCBLayoutforTPS6050x(BottomLayer) F F 2 1 C C Figure35. TopSilkscreen 22 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
TPS60500,TPS60501,TPS60502,TPS60503 www.ti.com SLVS391C–OCTOBER2001–REVISEDSEPTEMBER2015 12 Device and Documentation Support 12.1 Device Support 12.1.1 Third-PartyProductsDisclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONEORINCOMBINATIONWITHANYTIPRODUCTORSERVICE. 12.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table6.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY TPS60500 Clickhere Clickhere Clickhere Clickhere Clickhere TPS60501 Clickhere Clickhere Clickhere Clickhere Clickhere TPS60502 Clickhere Clickhere Clickhere Clickhere Clickhere TPS60503 Clickhere Clickhere Clickhere Clickhere Clickhere 12.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 12.4 Trademarks E2EisatrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 12.5 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 12.6 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:TPS60500 TPS60501 TPS60502 TPS60503
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TPS60500DGS ACTIVE VSSOP DGS 10 80 Green (RoHS NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 85 AVB & no Sb/Br) TPS60500DGSG4 ACTIVE VSSOP DGS 10 80 Green (RoHS NIPDAUAG Level-1-260C-UNLIM -40 to 85 AVB & no Sb/Br) TPS60500DGSR ACTIVE VSSOP DGS 10 2500 Green (RoHS NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 85 AVB & no Sb/Br) TPS60500DGSRG4 ACTIVE VSSOP DGS 10 2500 Green (RoHS NIPDAUAG Level-1-260C-UNLIM -40 to 85 AVB & no Sb/Br) TPS60501DGS ACTIVE VSSOP DGS 10 80 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 AVC & no Sb/Br) TPS60501DGSR ACTIVE VSSOP DGS 10 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 AVC & no Sb/Br) TPS60502DGS ACTIVE VSSOP DGS 10 80 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 AVD & no Sb/Br) TPS60502DGSR ACTIVE VSSOP DGS 10 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 AVD & no Sb/Br) TPS60502DGSRG4 ACTIVE VSSOP DGS 10 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 AVD & no Sb/Br) TPS60503DGS ACTIVE VSSOP DGS 10 80 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 AVE & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 10-May-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TPS60500DGSR VSSOP DGS 10 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 TPS60501DGSR VSSOP DGS 10 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 TPS60502DGSR VSSOP DGS 10 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 10-May-2019 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TPS60500DGSR VSSOP DGS 10 2500 350.0 350.0 43.0 TPS60501DGSR VSSOP DGS 10 2500 350.0 350.0 43.0 TPS60502DGSR VSSOP DGS 10 2500 350.0 350.0 43.0 PackMaterials-Page2
PACKAGE OUTLINE DGS0010A VSSOP - 1.1 mm max height SCALE 3.200 SMALL OUTLINE PACKAGE C 5.05 4.75 TYP SEATING PLANE A PIN 1 ID 0.1 C AREA 8X 0.5 10 1 3.1 2X 2.9 NOTE 3 2 5 6 0.27 10X 0.17 B 3.1 0.1 C A B 1.1 MAX 2.9 NOTE 4 0.23 TYP SEE DETAIL A 0.13 0.25 GAGE PLANE 0.15 0.7 0 - 8 0.05 0.4 DETAIL A TYPICAL 4221984/A 05/2015 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. 5. Reference JEDEC registration MO-187, variation BA. www.ti.com
EXAMPLE BOARD LAYOUT DGS0010A VSSOP - 1.1 mm max height SMALL OUTLINE PACKAGE 10X (1.45) 10X (0.3) SYMM (R0.05) TYP 1 10 SYMM 8X (0.5) 5 6 (4.4) LAND PATTERN EXAMPLE SCALE:10X SOOPLEDNEINRG MASK METAL MSOELTDAEL RU NMDAESRK SOOPLEDNEINRG MASK 0.05 MAX 0.05 MIN ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS NOT TO SCALE 4221984/A 05/2015 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN DGS0010A VSSOP - 1.1 mm max height SMALL OUTLINE PACKAGE 10X (1.45) SYMM (R0.05) TYP 10X (0.3) 1 10 SYMM 8X (0.5) 5 6 (4.4) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:10X 4221984/A 05/2015 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated