图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: TPS60403QDBVRQ1
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

TPS60403QDBVRQ1产品简介:

ICGOO电子元器件商城为您提供TPS60403QDBVRQ1由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TPS60403QDBVRQ1价格参考。Texas InstrumentsTPS60403QDBVRQ1封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 固定 充电泵 开关稳压器 IC 正或负 -Vin,2Vin,Vin/2 1 输出 60mA SC-74A,SOT-753。您可以下载TPS60403QDBVRQ1参考资料、Datasheet数据手册功能说明书,资料中有TPS60403QDBVRQ1 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC REG SWITCHED CAP INV SOT23-5稳压器—开关式稳压器 Unreg 60 m-A Charge Pump Voltage Reg

产品分类

PMIC - 稳压器 - DC DC 开关稳压器

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

电源管理 IC,稳压器—开关式稳压器,Texas Instruments TPS60403QDBVRQ1-

数据手册

点击此处下载产品Datasheet

产品型号

TPS60403QDBVRQ1

PWM类型

-

产品目录页面

点击此处下载产品Datasheet

产品种类

稳压器—开关式稳压器

供应商器件封装

SOT-23-5

其它名称

296-18036-6

包装

Digi-Reel®

单位重量

13 mg

同步整流器

商标

Texas Instruments

安装类型

表面贴装

安装风格

SMD/SMT

宽度

1.6 mm

封装

Reel

封装/外壳

SC-74A,SOT-753

封装/箱体

SOT-23-5

工作温度

-40°C ~ 125°C

工作温度范围

- 40 C to + 125 C

工厂包装数量

3000

开关频率

250 kHz

拓扑结构

Inverting Buck-Boost

最大工作温度

+ 125 C

最大输入电压

5.25 V

最小工作温度

- 40 C

最小输入电压

1.8 V

标准包装

1

电压-输入

1.8 V ~ 5.25 V

电压-输出

-1.8 V ~ 5.25 V

电流-输出

60mA

电源电流

700 uA

类型

切换式电容器(充电泵),反相

系列

TPS60403-Q1

输入电压

1.8 V to 5.25 V

输出数

1

输出电压

- 1.8 V to - 5.25 V

输出电流

60 mA

输出端数量

1 Output

输出类型

可调式

配用

/product-detail/zh/TPS60400EVM-178/296-13580-ND/486538

频率-开关

250kHz

推荐商品

型号:LT3980IMSE#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LTC3615MPFE-1#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LM2734YQMKE/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TPS54328DRCT

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:AP1515-SL-13

品牌:Diodes Incorporated

产品名称:集成电路(IC)

获取报价

型号:LM2591HVSX-ADJ/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TLV61224DCKR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MAX17501EATB+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
TPS60403QDBVRQ1 相关产品

NJM2360D

品牌:NJR Corporation/NJRC

价格:¥4.82-¥9.23

MCP1642B-33I/MC

品牌:Microchip Technology

价格:

CS5172GDR8G

品牌:ON Semiconductor

价格:

TPS54286PWP

品牌:Texas Instruments

价格:¥16.35-¥30.38

LT8580IMS8E#PBF

品牌:Linear Technology/Analog Devices

价格:

IR3840AMTRPBF

品牌:Infineon Technologies

价格:

AOZ1110QI

品牌:Alpha & Omega Semiconductor Inc.

价格:

AOZ1017AI

品牌:Alpha & Omega Semiconductor Inc.

价格:

PDF Datasheet 数据手册内容提取

Product Sample & Technical Tools & Support & Folder Buy Documents Software Community TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 SGLS246B–JUNE2004–REVISEDOCTOBER2016 TPS6040x-Q1 Unregulated 60-mA Charge Pump Voltage Inverter 1 Features 3 Description • QualifiedforAutomotiveApplications The TPS6040x-Q1 family of devices generate an 1 unregulated negative output voltage from an input • AEC-Q100TestGuidanceWiththeFollowing voltage ranging from 1.8 V to 5.25 V. The devices are Results: typically supplied by a preregulated supply rail of 5 V – DeviceTemperatureGrade1: –40°Cto or 3.3 V. Due to its wide-input voltage range, two or +125°CAmbientOperatingTemperature three NiCd, NiMH, or alkaline battery cells, as well as Range oneLi-Ioncell,canalsopowerthem. – DeviceHBMESDClassificationLevel2 Only three external 1-μF capacitors are required to – DeviceCDMESDClassificationLevelC6 build a complete DC-DC charge pump inverter. Assembled in a 5-pin SOT-23 package, the complete • InvertsInputSupplyVoltage converter can be built on a 50-mm2 board area. • Upto60-mAOutputCurrent Replacing the Schottky diode typically needed for • OnlyThreeSmall1-µFCeramicCapacitors start-up into load with integrated circuitry can achieve Needed additional board area and component count reduction. • InputVoltageRangeFrom1.8Vto5.25V • PowerSave-ModeforImprovedEfficiencyatLow The TPS6040x-Q1 can deliver a maximum output current of 60 mA, with a typical conversion efficiency OutputCurrents(TPS60400-Q1) ofgreaterthan90%overawideoutputcurrentrange. • DeviceQuiescentCurrentTypical:100µA Three device options TPS60401/2/3-Q1 with 20-kHz, • IntegratedActiveSchottky-DiodeforStart-UpInto 50-kHz, and 250-kHz fixed frequency operation are Load available. TPS60400-Q1 device comes with a variable switching frequency to reduce operating • Small5-PinSOT23Package current in applications with a wide load range and • EvaluationModuleAvailable:TPS60400EVM-178 enablesthedesignwithlow-valuecapacitors. 2 Applications DeviceInformation(1) • AutomotiveInfotainment PARTNUMBER PACKAGE BODYSIZE(NOM) • AutomotiveCluster TPS6040x-Q1 SOT-23(5) 2.80mm×2.90mm • LCDDisplays (1) For all available packages, see the orderable addendum at theendofthedatasheet. • NegativeSupplyVoltages TypicalApplicationCircuit OutputVoltagevsInputVoltage C(fly) 1µF 0 3 5 IO= 60 mA CFLY− CFLY+ V −1 IO= 30 mA 1.8Vto5I.n2p5uVt 1µCFI 2 IN TPSG60N4D00-Q1OUT 1 C1OµF O−M1ua.tx6p 6uV0t t om−A5 V, Voltage− −2 IO= 1 mA 4 ut utp −3 Copyright © 2016,Texas Instruments Incorporated O − O V −4 T = 25°C A −5 0 1 2 3 4 5 V−InputVoltage−V I 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 SGLS246B–JUNE2004–REVISEDOCTOBER2016 www.ti.com Table of Contents 1 Features.................................................................. 1 8.4 DeviceFunctionalModes........................................11 2 Applications........................................................... 1 9 ApplicationandImplementation........................ 13 3 Description............................................................. 1 9.1 ApplicationInformation............................................13 4 RevisionHistory..................................................... 2 9.2 TypicalApplications................................................13 9.3 SystemExamples...................................................15 5 DeviceComparisonTable..................................... 3 10 PowerSupplyRecommendations..................... 21 6 PinConfigurationandFunctions......................... 3 11 Layout................................................................... 21 7 Specifications......................................................... 3 11.1 LayoutGuidelines.................................................21 7.1 AbsoluteMaximumRatings......................................3 11.2 LayoutExample....................................................21 7.2 ESDRatings ............................................................4 12 DeviceandDocumentationSupport................. 22 7.3 RecommendedOperatingConditions.......................4 7.4 ThermalInformation..................................................4 12.1 RelatedLinks........................................................22 7.5 ElectricalCharacteristics...........................................4 12.2 ReceivingNotificationofDocumentationUpdates22 7.6 TypicalCharacteristics..............................................5 12.3 CommunityResources..........................................22 12.4 Trademarks...........................................................22 8 DetailedDescription............................................ 10 12.5 ElectrostaticDischargeCaution............................22 8.1 Overview.................................................................10 12.6 Glossary................................................................22 8.2 FunctionalBlockDiagram.......................................10 13 Mechanical,Packaging,andOrderable 8.3 FeatureDescription.................................................11 Information........................................................... 22 4 Revision History ChangesfromRevisionA(June2008)toRevisionB Page • AddedDeviceInformationtable,ESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes, ApplicationandImplementationsection,PowerSupplyRecommendationssection,Layoutsection,Deviceand DocumentationSupportsection,andMechanical,Packaging,andOrderableInformationsection....................................... 1 • ChangedTPS6040xtoTPS6040x-Q1throughoutdocument ............................................................................................... 1 • AddedAEC-Q100TestGuidancebullets............................................................................................................................... 1 • ChangedInputvoltagerangethroughoutdocumentto1.8Vto5.25V................................................................................. 1 • Changedinputvoltage5.5Vto5.25V.................................................................................................................................. 1 • AddeddeviceoptionsTPS60401/2/3-Q1 .............................................................................................................................. 1 • DeletedAvailableOptionstableandmoveddevicefamilyproductssectionandrenamedtoDeviceComparisonTable....3 • ChangedreferencetoThermalInformation .......................................................................................................................... 3 • DeletedMachinemodel(MM)fromESDRatingstable.......................................................................................................... 4 • Addedtablenotetoreferencevalues.................................................................................................................................... 4 • DeletedDissipationRatingssectionandreplacedwithThermalInformationtable............................................................... 5 • ChangedFigure1andFigure2OutputCurrentlimitto60mA ............................................................................................ 6 • Splitequation(1)intotwoseparatenumberedequations ................................................................................................... 11 • Movedequationdefinitionstocorrespondingequation ....................................................................................................... 11 • DeletedVoltageInvertertitle ............................................................................................................................................... 13 • DeletedTable4andTable5manufacturerpartinformation............................................................................................... 13 • MovedFigure21and22toApplicationCurvessection....................................................................................................... 15 2 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 www.ti.com SGLS246B–JUNE2004–REVISEDOCTOBER2016 5 Device Comparison Table PARTNUMBER TYPICALFLYINGCAPACITOR(µF) FEATURE TPS60400-Q1 1 Variableswitchingfrequency50kHzto250kHz TPS60401-Q1 10 Fixedfrequency20kHz TPS60402-Q1 3.3 Fixedfrequency50kHz TPS60403-Q1 1 Fixedfrequency250kHz 6 Pin Configuration and Functions DBVPackage 5-PinSOT-23 TopView OUT 1 5 C FLY+ IN 2 C 3 4 GND FLY(cid:150) Not to scale PinFunctions PIN I/O DESCRIPTION NAME NO. C 5 I PositiveterminaloftheflyingcapacitorC FLY+ (fly) C 3 I NegativeterminaloftheflyingcapacitorC FLY– (fly) GND 4 GND Ground Supplyinput.Connecttoaninputsupplyinthe1.8-Vto5.25-Vrange. IN 2 PWR BypassINtoGNDwithacapacitorthathasthesamevalueastheflyingcapacitor. PoweroutputwithV =–V OUT 1 O O I BypassOUTtoGNDwiththeoutputfiltercapacitorC . O 7 Specifications 7.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN MAX UNIT INtoGND –0.3 5.5 OUTtoGND –5 0.3 Voltagerange V C toGND 0.3 V –0.3 FLY– O C toGND –0.3 V +0.3 FLY+ I Continuouspowerdissipation SeeThermalInformation Continuousoutputcurrent 80 mA Maximumjunctiontemperature,T 150 °C J Storagetemperature,T –55 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 SGLS246B–JUNE2004–REVISEDOCTOBER2016 www.ti.com 7.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM),perAECQ100-002(1) ±2000 V Electrostaticdischarge V (ESD) Charged-devicemodel(CDM),perAECQ100-011 ±1000 (1) AECQ100-002indicatesthatHBMstressingshallbeinaccordancewiththeANSI/ESDA/JEDECJS-001specification. 7.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT V Inputvoltage 1.8 5.25 V I I OutputcurrentatOUT 60 mA O C Inputcapacitor 0 C (1) µF I (fly) C Flyingcapacitor 1 µF (fly) C Outputcapacitor 1 100 µF O T Operatingjunctiontemperature –40 125 °C J (1) RefertoDeviceComparisonTableforC values fly 7.4 Thermal Information TPS6040x-Q1 THERMALMETRIC(1) DBV(SOT-25) UNIT 5PINS R Junction-to-ambientthermalresistance 221.2 °C/W θJA R Junction-to-case(top)thermalresistance 81.9 °C/W θJC(top) R Junction-to-boardthermalresistance 39.8 °C/W θJB ψ Junction-to-topcharacterizationparameter 3.3 °C/W JT ψ Junction-to-boardcharacterizationparameter 38.9 °C/W JB R Junction-to-case(bottom)thermalresistance N/A °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetrics. 7.5 Electrical Characteristics C =C =C (accordingtoTable2),T =–40°Cto125°C,andV =5Voverrecommendedoperatingfree-airtemperature I (fly) O J I range(unlessotherwisenoted) PARAMETER TESTCONDITIONS MIN TYP MAX UNIT AtT =–40°Cto125°C,R =5kΩ 1.8 5.25 J L V Supplyvoltagerange V I AtT ≥0°C,R =5kΩ 1.6 C L I MaximumoutputcurrentatV 60 mA O O V Outputvoltage –V V O I TPS60400-Q1, 35 C =1µF,C =2.2µF (fly) O TPS60401-Q1, 20 C =C =10µF (fly) O V Outputvoltageripple I =5mA mV P–P O P–P TPS60402-Q1, 20 C =C =3.3µF (fly) O TPS60403-Q1, 15 C =C =1µF (fly) O 4 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 www.ti.com SGLS246B–JUNE2004–REVISEDOCTOBER2016 Electrical Characteristics (continued) C =C =C (accordingtoTable2),T =–40°Cto125°C,andV =5Voverrecommendedoperatingfree-airtemperature I (fly) O J I range(unlessotherwisenoted) PARAMETER TESTCONDITIONS MIN TYP MAX UNIT TPS60400-Q1 125 270 TPS60401-Q1 65 190 V =5V I TPS60402-Q1 120 270 Quiescentcurrent TPS60403-Q1 425 700 I µA Q (no-loadinputcurrent) TPS60400-Q1 210 T =60°C, TPS60401-Q1 135 J VI=5V TPS60402-Q1 210 TPS60403-Q1 640 TPS60400-Q1,VCOversion 25 50to250 375 TPS60401-Q1 10 20 30 f Internalswitchingfrequency kHz OSC TPS60402-Q1 25 50 75 TPS60403-Q1 115 250 325 TPS60400-Q1,C =C =C =1µF 12 15 I (fly) O TPS60401-Q1,C =C =C =10µF 12 15 I (fly) O Impedanceat25°C,V =5V Ω I TPS60402-Q1,C =C =C =3.3µF 12 15 I (fly) O TPS60403-Q1,C =C =C =1µF 12 15 I (fly) O 7.6 Typical Characteristics Table1.TableofGraphs FIGURE η Efficiency vsOutputcurrentat3.3Vand5V(TPS6040x-Q1) Figure1,Figure2 I Inputcurrent vsOutputcurrent(TPS6040x-Q1) Figure3,Figure4 I I Supplycurrent vsInputvoltage(TPS6040x-Q1) Figure5,Figure6 S vsInputvoltageat–40°C,0°C,25°C,85°C C =C =C =1µF(TPS60400-Q1) I (fly) O Figure7,Figure8, Outputresistance C =C =C =10µF(TPS60401-Q1) I (fly) O Figure9,Figure10 C =C =C =3.3µF(TPS60402-Q1) I (fly) O C =C =C =1µF(TPS60403-Q1) I (fly) O vsOutputcurrentat25°C,V =1.8V,2.5V,3.3V,5V IN C =C =C =1µF(TPS60400-Q1) I (fly) O Figure11,Figure12, V Outputvoltage C =C =C =10µF(TPS60401-Q1) O I (fly) O Figure13,Figure14 C =C =C =3.3µF(TPS60402-Q1) I (fly) O C =C =C =1µF(TPS60403-Q1) I (fly) O Figure15,Figure16, vsTemperatureatV =1.8V,2.5V,3.3V,5V(TPS6040x-Q1) fOSC Oscillatorfrequency I Figure17,Figure18 vsOutputcurrentTPS60400at2V,3.3V,5V Figure19 V =5V,I =30mA,C =C =C =1µF(TPS60400-Q1) I O I (fly) O V =5V,I =30mA,C =C =C =10µF(TPS60401-Q1) Outputrippleandnoise I O I (fly) O Figure24,Figure25 V =5V,I =30mA,C =C =C =3.3µF(TPS60402-Q1) I O I (fly) O V =5V,I =30mA,C =C =C =1µF(TPS60403-Q1) I O I (fly) O Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 SGLS246B–JUNE2004–REVISEDOCTOBER2016 www.ti.com 100 100 TPS60401-Q1 TPS60402-Q1 95 VI= 5 V 95 VI= 5 V 90 TPS60401-Q1 90 VI= 3.3 V TPS60403-Q1 % 85 TVPIS= 650 V400-Q1 % 85 VI= 5 V TPS60403-Q1 Efficiency– 7850 TVPIS= 630.34 0V0-Q1 Efficiency– 7850 VI= 3.3 V TVPIS= 630.34 0V2-Q1 70 70 65 65 60 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 IO–Output Current–mA IO–Output Current–mA Figure1.TPS60400-Q1,TPS60401-Q1 Figure2.TPS60402-Q1,TPS60403-Q1 EfficiencyvsOutputCurrent EfficiencyvsOutputCurrent 100 100 TA= 25°C TA= 25°C TPS60400-Q1 VI= 5 V 10 10 TPS60403-Q1 mA mA VI= 5 V – – Current TPS60401-Q1 Current TPS60403-Q1 –InIput I 1 VI= 5 V TVPIS= 620 V401-Q1 –InIput I 1 VI= 2 V TPS60402-Q1 VI= 5 V TPS60400-Q1 TPS60402-Q1 VI= 2 V VI= 2 V 0.1 0.1 0.1 1 10 100 0.1 1 10 100 IO–Output Current–mA IO–Output Current–mA Figure3.TPS60400-Q1,TPS60401-Q1 Figure4.TPS60402-Q1,TPS60403-Q1 InputCurrentvsOutputCurrent InputCurrentvsOutputCurrent 0.6 0.6 IO= 0 mA IO= 0 mA TA= 25°C TA= 25°C mA 0.4 mA 0.4 – – TPS60403-Q1 Current Current Supply Supply – 0.2 – 0.2 D D D D I I TPS60400-Q1 TPS60402-Q1 0 TPS60401-Q1 0 0 1 2 3 4 5 0 1 2 3 4 5 VI–Input Voltage–V VI–Input Voltage–V Figure5.TPS60400-Q1,TPS60401-Q1 Figure6.TPS60402-Q1,TPS60403-Q1 SupplyCurrentvsInputVoltage SupplyCurrentvsInputVoltage 6 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 www.ti.com SGLS246B–JUNE2004–REVISEDOCTOBER2016 40 40 IO= 30 mA IO= 30 mA 35 CI= C(fly)= CO= 1µF 35 CI= C(fly)= CO= 10 µF 30 30 W – r–Output Resistanceo 11220505 TA= 85T°AC= 25°C –Output Resistance–W 11220505 TA= 25°C TA= 85°C ro 5 5 TA=–40°C TA=–40°C 0 0 1 2 3 4 5 6 1 2 3 4 5 6 VI–Input Voltage–V VI–Input Voltage–V Figure7.TPS60400-Q1OutputResistance Figure8.TPS60401-Q1OutputResistance vsInputVoltage vsInputVoltage 40 40 IO= 30 mA IO= 30 mA 35 CI= C(fly)= CO= 3.3 µF 35 CI= C(fly)= CO= 1µF 30 30 W – W –Output Resistance 122505 TA= 25°CTA= 85°C Output Resistance– 122505 TA= 25°CTA= 85°C ro 10 r–o 10 5 TA=–40°C 5 TA=–40°C 0 0 1 2 3 4 5 6 1 2 3 4 5 6 VI–Input Voltage–V VI–Input Voltage–V Figure9.TPS60402-Q1OutputResistance Figure10.TPS60403-Q1OutputResistance vsInputVoltage vsInputVoltage 0 0 TA= 25°C TA= 25°C –1 VI= 1.8 V –1 VI= 1.8 V V –2 VI= 2.5 V V –2 VI= 2.5 V – – oltage oltage VI= 3.3 V –3 –3 V V Output VI= 3.3 V Output – –4 – –4 VO VI= 5 V VO VI= 5 V –5 –5 –6 –6 0 10 20 30 40 50 60 0 10 20 30 40 50 60 IO–Output Current–mA IO–Output Current–mA Figure11.TPS60400-Q1OutputVoltage Figure12.TPS60401-Q1OutputVoltage vsOutputCurrent vsOutputCurrent Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 SGLS246B–JUNE2004–REVISEDOCTOBER2016 www.ti.com 0 0 TA= 25°C TA= 25°C –1 –1 VI= 1.8 V VI= 1.8 V V –2 VI= 2.5 V V –2 VI= 2.5 V – – oltage VI= 3.3 V oltage VI= 3.3 V –3 –3 V V Output Output – –4 – –4 VO VI= 5 V VO VI= 5 V –5 –5 –6 –6 0 10 20 30 40 50 60 0 10 20 30 40 50 60 IO–Output Current–mA IO–Output Current–mA Figure13.TPS60402-Q1OutputVoltage Figure14.TPS60403-Q1OutputVoltage vsOutputCurrent vsOutputCurrent 250 24 IO= 10 mA 23.8 IO= 10 mA 200 VI= 1.8 V 23.6 –kHz –kHz 23.4 VI= 5 VVI= 3.3 V –Oscillator Frequency 110500 VVIIV== I2 3=.5. 35 V VV –Oscillator Frequency 2222232...6823 VI= 1.8 VVI= 2.5 V fosc 50 fosc 22.4 22.2 0 22 –40–30–20–10 0 10 20 30 40 50 60 70 80 90 –40–30–20–10 0 10 20 30 40 50 60 70 80 90 TA–Free-AirTemperature–°C TA–Free-AirTemperature–°C Figure15.TPS60400-Q1OscillatorFrequency Figure16.TPS60401-Q1OscillatorFrequency vsFree-AirTemperature vsFree-AirTemperature 57 250 IO= 10 mA VI= 5 V 240 56 VI= 3.3 V VI= 5 V 230 kHz 55 VI= 3.3 V kHz 220 VI= 2.5 V Oscillator Frequency– 555234 VI= 1.8 V VI= 2.5 V Oscillator Frequency– 112289010000 VI= 1.8 V – – fosc 51 fosc 170 50 160 IO= 10 mA 49 150 –40–30–20–10 0 10 20 30 40 50 60 70 80 90 –40–30–20–10 0 10 20 30 40 50 60 70 80 90 TA–Free-AirTemperature–°C TA–Free-AirTemperature–°C Figure17.TPS60402-Q1OscillatorFrequency Figure18.TPS60403-Q1OscillatorFrequency vsFree-AirTemperature vsFree-AirTemperature 8 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 www.ti.com SGLS246B–JUNE2004–REVISEDOCTOBER2016 300 TA= 25°C 250 VI= 3.3 V VI= 1.8 V Hz –k 200 Frequency 150 VI= 5 V Oscillator 100 – osc f 50 0 0 10 20 30 40 50 60 70 80 90 100 IO–Output Current–mA Figure19.TPS60400-Q1OscillatorFrequency vsOutputCurrent Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 SGLS246B–JUNE2004–REVISEDOCTOBER2016 www.ti.com 8 Detailed Description 8.1 Overview The TPS6040x-Q1 charge pumps invert the voltage applied to their input. For the highest performance, use low equivalent series resistance (ESR) capacitors (for example, ceramic). During the first half-cycle, switches S2 and S4 open, switches S1 and S3 close, and capacitor (C ) charges to the voltage at V. During the second half- (fly) I cycle, S1 and S3 open, and S2 and S4 close. This connects the positive terminal of C to GND and the (fly) negative to V . By connecting C in parallel, C is charged negative. The actual voltage at the output is more O (fly) O positivethan−V,sinceswitchesS1–S4haveresistanceandtheloaddrainschargefromC . I O VI S1 C(fly) S4 + VO(-VI) 1µF CO S2 S3 1µF GND GND Figure20. OperatingPrinciple 8.2 Functional Block Diagram I VI–VCFLY+ < 0.5 V R VI MEAS Start Q DC_ Startup VI< 1 V FF VI VO> Vbe S VO Q1 OSC Q + VO CHG Phase C(fly) Q4 VO MEAS OSC Generator B Q 50 kHz Q2 Q3 Q5 VO>–1 V GND VI VO DC_ Startup VCO_CONT VI/ VO MEAS VO<–VI–Vbe Copyright © 2016,Texas Instruments Incorporated 10 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 www.ti.com SGLS246B–JUNE2004–REVISEDOCTOBER2016 8.3 Feature Description 8.3.1 Charge-PumpOutputResistance The TPS6040x-Q1 devices are not voltage regulators. The output source resistance of the charge pumps is approximately 15 Ω at room temperature (with V = 5 V), and V approaches –5 V when lightly loaded. V will I O O drooptowardGNDasloadcurrentincreasesasseeninEquation1. V =-(V -R ´I ) O I O O (1) 1 R » + 4(2 ´ R + ESR ) + ESR O ƒosc´C SWITCH CFLY CO (fly) where • R =outputresistanceoftheconverter O • R =resistanceofasingleMOSFET-switchinsidetheconverter SWITCH • f =oscillatorfrequency (2) OSC 8.3.2 EfficiencyConsiderations The power efficiency of a switched-capacitor voltage converter is affected by three factors: the internal losses in theconverterIC,theresistivelossesofthecapacitors,andtheconversionlossesduringchargetransferbetween the capacitors. The internal losses are associated with the internal functions of the ICs, such as driving the switches, oscillator, and so forth. These losses are affected by operating conditions such as input voltage, temperature, and frequency. The next two losses are associated with the voltage converter circuit’s output resistance. Switch losses occur because of the on-resistance of the MOSFET switches in the IC. Charge-pump capacitor losses occur because of their ESR. The relationship between these losses and the output resistance is Equation3. P + P =I 2´R CAPACITORLOSSES CONVERSIONLOSSES O O (3) The first term is the effective resistance from an ideal switched-capacitor circuit. Conversion losses occur during the charge transfer between C and C when there is a voltage difference between them. The power loss is (fly) O Equation4. é1 1 ù PCONV.LOSS = ê ´C(flY)(VI2 -VO2)+ CO(VRIPPLE2 -2VOVRIPPLE)ú´ƒosc ë2 2 û (4) The efficiency of the TPS6040x-Q1 devices is dominated by their quiescent supply current at low output current andbytheiroutputimpedanceathighercurrent(seeEquation5). I æ I ´R ö h= O ç1- O O ÷ IO +IQ è VI ø where • I =quiescentcurrent (5) Q 8.4 Device Functional Modes 8.4.1 Active-SchottkyDiode For a short period of time, when the input voltage is applied, but the inverter is not yet working, the output capacitor is charged positive by the load. To prevent the output being pulled above GND, a Schottky diode must be added in parallel to the output. The function of this diode is integrated into the TPS6040x-Q1 devices, which givesadefinedstartupperformanceandsavesboardspace. A current sink and a diode in series can approximate the behavior of a typical, modern operational amplifier. Figure 21 shows the current into this typical load at a given voltage. The TPS6040x-Q1 devices are optimized to startintotheseloads. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 SGLS246B–JUNE2004–REVISEDOCTOBER2016 www.ti.com Device Functional Modes (continued) V I C(fly) 1µF +V Typical 5 3 Load C1+ C1− −V TPS60400-Q1 V (−V ) 2 OUT O I IN 1 IO CI CO 1µF GND 1µF 4 GND Copyright © 2016,Texas Instruments Incorporated Figure21. TypicalLoad Load Current 60 mA 0.4 V 25 mA Voltage at the Load 0.4V 1.25V 5V Figure22. MaximumStart-UpCurrent 12 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 www.ti.com SGLS246B–JUNE2004–REVISEDOCTOBER2016 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 9.1 Application Information The TPS6040x-Q1 family of devices generate an unregulated negative output voltage from an input voltage rangingfrom1.8Vto5.25V. 9.2 Typical Applications The most common application for these devices is a charge-pump voltage inverter (see Figure 23). This application requires only two external components; capacitors C and C , plus a bypass capacitor, if (fly) O necessary.SeeCapacitorSelectionforsuggestedcapacitortypes. C(fly) 1µF 3 5 C1− C1+ TPS60400-Q1 2 1 −5 V, Input 5 V IN OUT Max 60 mA CI GND CO 1µF 1µF 4 Copyright © 2016,Texas Instruments Incorporated Figure23. TypicalOperatingCircuit 9.2.1 DesignRequirements The TPS6040x-Q1 is connected to generate a negative output voltage with 60-mA maximum load, from a positiveinputvoltagebetween1.8Vand5.25V. 9.2.2 DetailedDesignProcedure For the maximum output current and best performance, three ceramic capacitors of 1 μF (TPS60400-Q1, TPS60403-Q1) are recommended. For lower currents or higher allowed output voltage ripple, other capacitors can also be used. TI recommends the output capacitors has a minimum value of 1 μF. With flying capacitors lowerthan1μF,themaximumoutputpowerwilldecrease. 9.2.2.1 CapacitorSelection To maintain the lowest output resistance, use capacitors with low ESR (see Table 2). The charge-pump output resistance is a function of the ESR of C and C . Therefore, minimizing the ESR of the charge-pump capacitor (fly) O minimizes the total output resistance. The capacitor values are closely linked to the required output current and the output noise and ripple requirements. It is possible to only use 1-μF capacitors of the same type. Ceramic capacitorswillprovidethelowestoutputvoltageripplebecausetheytypicallyhavethelowestESR-rating. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 SGLS246B–JUNE2004–REVISEDOCTOBER2016 www.ti.com Table2.RecommendedCapacitorValues DEVICE V [V] I [mA] C [µF] C [µF] C [µF] I O I (fly) O TPS60400 1.8to5.25 60 1 1 1 TPS60401 1.8to5.25 60 10 10 10 TPS60402 1.8to5.25 60 3.3 3.3 3.3 TPS60403 1.8to5.25 60 1 1 1 9.2.2.2 InputCapacitor(C) I Bypass the incoming supply to reduce AC impedance and the impact of the TPS6040x-Q1 switching noise. The recommended bypassing depends on the circuit configuration and where the load is connected. When the inverter is loaded from OUT to GND, current from the supply switches between 2 × I and zero. Therefore, use a O large bypass capacitor (for example, equal to the value of C ) if the supply has high AC impedance. When the (fly) inverter is loaded from IN to OUT, the circuit draws 2 × I constantly, except for short switching spikes. A 0.1-μF O bypasscapacitorissufficient. 9.2.2.3 FlyingCapacitor(C ) (fly) Increasingtheflyingcapacitor’ssizereducestheoutputresistance.Smallvaluesincreasestheoutputresistance. Above a certain point, increasing the capacitance of C has a negligible effect, because the output resistance (fly) becomesdominatedbytheinternalswitchresistanceandcapacitorESR. 9.2.2.4 OutputCapacitor(C ) O Increasing the output capacitor’s size reduces the output ripple voltage. Decreasing its ESR reduces both output resistance and ripple. Smaller capacitance values can be used with light loads if higher output ripple can be tolerated.UseEquation6tocalculatethepeak-to-peakripple. I V = O +2´I ´ESR O(ripple) f ´C O CO osc O (6) 9.2.2.5 PowerDissipation As given in Thermal Information, the thermal resistance of the unsoldered package is R = 221.2°C/W. θJA Soldered on the EVM, a typical thermal resistance of R = 180°C/W was measured. The terminal θJA(EVM) resistancecanbecalculatedusingEquation7. T -T R = J A qJA P D where • T isthejunctiontemperature J • T istheambienttemperature A • P isthepowerthatneedstobedissipatedbythedevice (7) D ThemaximumpowerdissipationcanbecalculatedusingEquation8. P =V ×I –V ×I =V ×(I +I )–V ×I (8) D I I O O I(max) O (SUPPLY) O O Themaximumpowerdissipationhappenswithmaximuminputvoltageandmaximumoutputcurrent. Atmaximumloadthesupplycurrentis0.7mAmaximum(seeEquation9). P =5V×(60mA+0.7mA)–4.4V×60mA=40mW (9) D With this maximum rating and the thermal resistance of the device on the EVM, the maximum temperature rise aboveambienttemperaturecanbecalculatedusingEquation10. ΔT =R ×P =180°C/W×40mW=7.2°C (10) J θJA D ThismeansthattheinternaldissipationincreasesT by< 10°C. J Thejunctiontemperatureofthedeviceshallnotexceed125°C. ThismeansthedevicecaneasilybeusedatambienttemperaturesuptoEquation11. T -T –ΔT -125°C/W–10°C=115°C (11) A J(max) J 14 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 www.ti.com SGLS246B–JUNE2004–REVISEDOCTOBER2016 9.2.3 ApplicationCurves VI= 5 V VI= 5 V IO= 30 mA TPS60400-Q1 IO= 30 mA TPS60401-Q1 V V m m – 100 mV/DIV – 50 mV/DIV oltageV TPS60403-Q1 oltageV TPS60402-Q1 ut ut p p ut ut O O – – O O V V 50 mV/DIV 50 mV/DIV 4µs/DIV 20 µs/DIV t–Time–µs t–Time–µs Figure24.TPS60400-Q1,TPS60403-Q1 Figure25.TPS60401-Q1,TPS60402-Q1 OutputVoltagevsTime OutputVoltagevsTime 9.3 System Examples 9.3.1 RC-PostFilter ToreducetheoutputvoltagerippleaRC-postfiltercanbeused(Figure26). VI C(fly) 1µF 1 5 OUT C1+ TPS60400-Q1 2 IN 3 4 RP C1– GND VO(–VI) CI CO CP 1µF 1µF GND GND Copyright © 2016,Texas Instruments Incorporated Figure26. TPS60400andTPS60401WithRC-PostFilter An output filter can easily be formed with a resistor (R ) and a capacitor (C ). Cutoff frequency is given by P P Equation12. 1 ƒ = c 2pR C P P (12) TheratioV /V isdeterminedbyEquation13. O OUT Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 SGLS246B–JUNE2004–REVISEDOCTOBER2016 www.ti.com System Examples (continued) V 1 O = VOUT 1+(2pƒR C )2 P P V withR =50W,C =0.1mFandf =250kHz: O =0.125 P P V OUT (13) Theformularefersonlytotherelationbetweenoutputandinputoftheacripplevoltagesofthefilter. 9.3.2 LC-PostFilter Toreducetheoutputvoltageripple,anLC-postfiltercanbeused. Figure27showsaconfigurationwithaLC-postfiltertofurtherreduceoutputrippleandnoise. VI C(fly) 1µF 1 5 OUT C1+ VOUT TPS60400-Q1 2 IN LP 3 4 C1– GND VO(–VI) CI CO CP 1µF 1µF GND GND Copyright © 2016,Texas Instruments Incorporated Figure27. LC-PostFilter Table3containsthetypicalmeasurementresultsusingtheTPS60400-Q1device. Table3.MeasurementResultsontheTPS60400-Q1(Typical) C C C C BW=500MHz BW=20MHz V I I (fly) O L P V I O(2) [µF] [µF] [µF] P [µF] V V POUT [V] [mA] [µH] POUT POUT VACeff[mV] CERAMIC CERAMIC CERAMIC CERAMIC V [mV] V [mV] P–P P–P 5 60 1 1 1 320 240 65 5 60 1 1 2.2 120 240 32 5 60 1 1 1 0.1(X7R) 260 200 58 5 60 1 1 1 0.1 0.1(X7R) 220 200 60 5 60 1 1 2.2 0.1 0.1(X7R) 120 100 30 5 60 1 1 10 0.1 0.1(X7R) 50 28 8 9.3.3 RailSplitter A switched-capacitor voltage inverter can be configured as a high efficiency rail-splitter. This circuit provides a bipolar power supply that is useful in battery powered systems to supply dual-rail ICs, like operational amplifiers. Moreover,theSOT23-5packageandassociatedcomponentsrequireverylittleboardspace. The maximum input voltage between V and GND in Figure 28(or between IN and OUT at the device itself) must I notexceed6.5V. 16 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 www.ti.com SGLS246B–JUNE2004–REVISEDOCTOBER2016 VI C(fly) 1µF C3 1µF 1 5 OUT C1+ TPS60400-Q1 2 IN VO = VI/ 2 3 4 C1- GND 1µCFI CO 1µF GND GND Copyright © 2016,Texas Instruments Incorporated Figure28. TPS60400asaHigh-EfficiencyRailSplitter After power is applied, the flying capacitor (C ) connects alternately across the output capacitors C and C . (fly) 3 O This equalizes the voltage on those capacitors and draws current from V to V as required to maintain the I O outputat1/2V. I 9.3.4 CombinedDoubler/Inverter Theapplicationallowstogenerateavoltagerailatalevelof-Viaswellas2xVi(V(pos)). In the circuit of Figure 29, capacitors C, C , and C form the inverter, while C1 and C2 form the doubler. C1 I (fly) O and C are the flying capacitors; C and C2 are the output capacitors. Because both the inverter and doubler (fly) O usepartofthecharge-pumpcircuit,loadingeitheroutputcausesboth outputs to decline toward GND. Make sure the sum of the currents drawn from the two outputs does not exceed 60 mA. The maximum output current at V mustnotexceed30mA.Ifthenegativeoutputisloaded,thiscurrentmustbefurtherreduced. (pos) II ≈ –IO + 2 × IO(POS) VI C(fly) 1µF + C1 D2 1 5 OUT C1+ + V(pos) TPS60400-Q1 2 IN –VI 3 4 C1– GND + C1IµF + C1OµF + C2 GND GND Copyright © 2016,Texas Instruments Incorporated Figure29. TPS60400-Q1asDoubler/Inverter 9.3.5 CascadingDevices Two devices can be cascaded to produce an even larger negative voltage (see Figure 30). The unloaded output voltage is normally −2 × V, but this is reduced slightly by the output resistance of the first device multiplied by I the quiescent current of the second. When cascading more than two devices, the output resistance rises dramatically. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 SGLS246B–JUNE2004–REVISEDOCTOBER2016 www.ti.com VI VO(–2 VI) C(fly) 1µF C(fly) 1µF 1 5 1 5 OUT C1+ OUT C1+ TPS60400-Q1 TPS60400-Q1 2 2 IN IN 3 4 3 4 C1– GND C1– GND + CI CO CO 1µF + 1µF + 1µF GND GND GND Copyright © 2016,Texas Instruments Incorporated Figure30. DoublingInverter 9.3.6 ParallelingDevices Paralleling multiple TPS6040x-Q1s reduces the output resistance. Each device requires its own flying capacitor (C ), but the output capacitor (C ) serves all devices (see Figure 31). Increase C ’s value by a factor of n, (fly) O O wherenisthenumberofparalleldevices.Equation2showstheequationforcalculatingoutputresistance. VI C(fly) 1µF C(fly) 1µF 1 5 1 5 OUT C1+ OUT C1+ 2 TPS60400-Q1 2 TPS60400-Q1 VO(–VI) IN IN 3 4 3 4 C1– GND C1– GND CI CO 1µF + 2.2 µF GND GND Copyright © 2016,Texas Instruments Incorporated Figure31. ParallelingDevices 9.3.7 ShuttingDowntheTPS6040x-Q1 If shutdown is necessary, use the circuit in Figure 32. The output resistance of the TPS6040x-Q1 will typically be 15Ω plustwotimestheoutputresistanceofthebuffer. ConnectingmultiplebuffersinparallelcanreducetheoutputresistanceofthebufferdrivingtheINpin. 18 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 www.ti.com SGLS246B–JUNE2004–REVISEDOCTOBER2016 VI VO(–VI) C(fly) 1µF 1 5 OUT C1+ TPS60400-Q1 2 CO SDN IN 1µF 3 4 C1– GND CI 1µF GND GND Copyright © 2016,Texas Instruments Incorporated Figure32. ShutdownControl 9.3.8 GaAsSupply A solution for a –2.7-V/3-mA GaAs bias supply is proposed in Figure 33. The input voltage of 3.3 V is first inverted with a TPS60403-Q1 and stabilized using a TLV431 low-voltage shunt regulator. Resistor R with P capacitorC isusedforfilteringtheoutputvoltage. P RP VI(3.3 V) VO (–2.7 V/3 mA) C(fly) 0.1 µF R2 1 5 OUT C1+ CO CP 2 TPS60400-Q1 1 µF IN TLV431 3 4 R1 C1– GND CI 0.1 µF GND GND Copyright © 2016,Texas Instruments Incorporated Figure33. GaAsSupply A0.1-μFcapacitorwasselectedforC .Bythis,theoutputresistanceoftheinverterisabout52 Ω. (fly) R canbecalculatedusingEquation14. PMAX æ R1ö VO =-ç1+ ÷´Vref -R1´II(ref) è R2ø (14) A100-Ω resistorwasselectedforR . P The reference voltage across R2 is 1.24 V typical. With 5-μA current for the voltage divider, R2 gets Equation 16 toEquation17. (15) æV -V ö RPMAX =ç COI O -RO÷ è O ø (16) With:V =−3.3V;V = −2.7V;I = −3mA CO O O R =200Ω −52Ω =148Ω PMAX WithC =1 μFtheratioV /V oftheRCpostfilterisEquation18. P O I Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 SGLS246B–JUNE2004–REVISEDOCTOBER2016 www.ti.com 1.24V R2= »250kW 5mA 2.7-1.24 V R1= »300kW 5mA (17) V 1 O = »0.01 VI 1+(2p125000Hz´100W´1mF)2 (18) 9.3.9 Step-DownChargePump Theapplicationgeneratesanoutputvoltageof1/2oftheinputvoltage. By exchanging GND with OUT (connecting the GND pin with OUT and the OUT pin with GND), a step-down charge pump can easily be formed. In the first cycle S1 and S3 are closed, and C with C in series are (fly) O charged. Assuming the same capacitance, the voltage across C and C is split equally between the (fly) O capacitors.Inthesecondcycle,S2andS4closeandbothcapacitorswithV/2acrossareconnectedinparallel. I VI C(fly) 1µF VI S1 C(fly) S4 1 5 + OUT C1+ VO(-VI) TPS60400-Q1 1µF 2 IN CO S2 S3 1µF 3 4 C1- GND VO (VI/2) GND GND 1µCFI CO 1µF GND GND Copyright © 2016,Texas Instruments Incorporated Figure34.Step-DownPrinciple Figure35.Step-DownChargePumpConnection The maximum input voltage between V and GND in the schematic (or between IN and OUT at the device itself) I must not exceed 5.5 V. For input voltages in the range of 5.5 V to 11 V, an additional Zener-diode is recommended(seeFigure36). 5V6 VI C(fly) 1µF 1 5 OUT C1+ TPS60400-Q1 2 IN 3 4 C1− GND VO −VI CI CO 1µF 1µF GND GND Copyright © 2016,Texas Instruments Incorporated Figure36. Step-DownChargePumpConnectionWithAdditionalZenerDiode 20 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 www.ti.com SGLS246B–JUNE2004–REVISEDOCTOBER2016 10 Power Supply Recommendations The TPS6040x-Q1 device family has no special requirements for its power supply. The power supply output needstoberatedaccordingtothesupplyvoltage,outputvoltageandoutputcurrentoftheTPS6040x-Q1. 11 Layout 11.1 Layout Guidelines Figure 37 shows a PCB layout proposal for a single-layer board. Take care to connect all capacitors as close as possibletothedevicetoachieveoptimizedoutputvoltagerippleperformance. 11.2 Layout Example CFLY IN OUT T N U CI O C GND U1 Figure37. RecommendedPCBLayoutforTPS6040x-Q1(TopLayer) Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

TPS60400-Q1,TPS60401-Q1,TPS60402-Q1,TPS60403-Q1 SGLS246B–JUNE2004–REVISEDOCTOBER2016 www.ti.com 12 Device and Documentation Support 12.1 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table4.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY TPS60400-Q1 Clickhere Clickhere Clickhere Clickhere Clickhere TPS60401-Q1 Clickhere Clickhere Clickhere Clickhere Clickhere TPS60402-Q1 Clickhere Clickhere Clickhere Clickhere Clickhere TPS60403-Q1 Clickhere Clickhere Clickhere Clickhere Clickhere 12.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed.Forchangedetails,reviewtherevisionhistoryincludedinanyreviseddocument. 12.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 12.4 Trademarks E2EisatrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 12.5 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 12.6 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 22 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400-Q1 TPS60401-Q1 TPS60402-Q1 TPS60403-Q1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TPS60400QDBVRQ1 ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 125 AWP & no Sb/Br) TPS60401QDBVRQ1 ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 125 AWQ & no Sb/Br) TPS60402QDBVRQ1 ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 125 AWR & no Sb/Br) TPS60403QDBVRQ1 ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 125 AWS & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TPS60400-Q1, TPS60401-Q1, TPS60402-Q1, TPS60403-Q1 : •Catalog: TPS60400, TPS60401, TPS60402, TPS60403 NOTE: Qualified Version Definitions: •Catalog - TI's standard catalog product Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 10-Mar-2016 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TPS60400QDBVRQ1 SOT-23 DBV 5 3000 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3 TPS60401QDBVRQ1 SOT-23 DBV 5 3000 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3 TPS60402QDBVRQ1 SOT-23 DBV 5 3000 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3 TPS60403QDBVRQ1 SOT-23 DBV 5 3000 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 10-Mar-2016 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TPS60400QDBVRQ1 SOT-23 DBV 5 3000 182.0 182.0 20.0 TPS60401QDBVRQ1 SOT-23 DBV 5 3000 182.0 182.0 20.0 TPS60402QDBVRQ1 SOT-23 DBV 5 3000 182.0 182.0 20.0 TPS60403QDBVRQ1 SOT-23 DBV 5 3000 182.0 182.0 20.0 PackMaterials-Page2

PACKAGE OUTLINE DBV0005A SOT-23 - 1.45 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 3.0 2.6 0.1 C 1.75 1.45 1.45 B A 0.90 PIN 1 INDEX AREA 1 5 2X 0.95 3.05 2.75 1.9 1.9 2 4 3 0.5 5X 0.3 0.15 0.2 C A B (1.1) TYP 0.00 0.25 GAGE PLANE 0.22 TYP 0.08 8 TYP 0.6 0 0.3 TYP SEATING PLANE 4214839/E 09/2019 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Refernce JEDEC MO-178. 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. www.ti.com

EXAMPLE BOARD LAYOUT DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM (1.9) 2 2X (0.95) 3 4 (R0.05) TYP (2.6) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214839/E 09/2019 NOTES: (continued) 5. Publication IPC-7351 may have alternate designs. 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM 2 (1.9) 2X(0.95) 3 4 (R0.05) TYP (2.6) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X 4214839/E 09/2019 NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design. www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated