ICGOO在线商城 > 集成电路(IC) > PMIC - 稳压器 - DC DC 开关稳压器 > TPS60402DBVR
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
TPS60402DBVR产品简介:
ICGOO电子元器件商城为您提供TPS60402DBVR由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TPS60402DBVR价格参考。Texas InstrumentsTPS60402DBVR封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 固定 充电泵 开关稳压器 IC 正或负 -Vin,2Vin,Vin/2 1 输出 60mA SC-74A,SOT-753。您可以下载TPS60402DBVR参考资料、Datasheet数据手册功能说明书,资料中有TPS60402DBVR 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC REG SWITCHED CAP INV SOT23-5稳压器—开关式稳压器 60mA Charge Pump Voltage Inverter |
产品分类 | |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 电源管理 IC,稳压器—开关式稳压器,Texas Instruments TPS60402DBVR- |
数据手册 | |
产品型号 | TPS60402DBVR |
PWM类型 | - |
产品种类 | 稳压器—开关式稳压器 |
供应商器件封装 | SOT-23-5 |
其它名称 | 296-31988-6 |
包装 | Digi-Reel® |
单位重量 | 13 mg |
同步整流器 | 无 |
商标 | Texas Instruments |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
宽度 | 1.6 mm |
封装 | Reel |
封装/外壳 | SC-74A,SOT-753 |
封装/箱体 | SOT-23-5 |
工作温度 | -40°C ~ 125°C |
工作温度范围 | - 40 C to + 85 C |
工厂包装数量 | 3000 |
开关频率 | 50 kHz |
拓扑结构 | Inverting Buck-Boost |
最大工作温度 | + 85 C |
最大输入电压 | 5.5 V |
最小工作温度 | - 40 C |
最小输入电压 | 1.6 V |
标准包装 | 1 |
电压-输入 | 1.8 V ~ 5.25 V |
电压-输出 | -1.6 V ~ -5.25 V |
电流-输出 | 60mA |
电源电流 | 275 uA |
类型 | 切换式电容器(充电泵),反相 |
系列 | TPS60402 |
输入电压 | 1.6 V to 5.5 V |
输出数 | 1 |
输出电压 | - 1.6 V to - 5.25 V |
输出电流 | 60 mA |
输出端数量 | 1 Output |
输出类型 | 可调式 |
配用 | /product-detail/zh/TPS60400EVM-178/296-13580-ND/486538 |
频率-开关 | 50kHz |
Product Sample & Technical Tools & Support & Folder Buy Documents Software Community TPS60400,TPS60401 TPS60402,TPS60403 SLVS324B–JULY2001–REVISEDAPRIL2015 TPS6040x Unregulated 60-mA Charge Pump Voltage Inverter 1 Features 3 Description • InvertsInputSupplyVoltage The TPS6040x family of devices generates an 1 unregulated negative output voltage from an input • Upto60-mAOutputCurrent voltage ranging from 1.6 V to 5.5 V. The devices are • OnlyThreeSmall1-µFCeramicCapacitors typically supplied by a preregulated supply rail of 5 V Needed or 3.3 V. Due to its wide input voltage range, two or • InputVoltageRangeFrom1.6Vto5.5V three NiCd, NiMH, or alkaline battery cells, as well as oneLi-Ioncellcanalsopowerthem. • PowerSave-ModeforImprovedEfficiencyatLow- OutputCurrents(TPS60400) Only three external 1-µF capacitors are required to build a complete DC-DC charge pump inverter. • DeviceQuiescentCurrentTypical65 µA Assembled in a 5-pin SOT-23 package, the complete • IntegratedActiveSchottky-DiodeforStart-upInto converter can be built on a 50-mm2 board area. Load Additional board area and component count reduction • Small5-PinSOT-23Package is achieved by replacing the Schottky diode that is typically needed for start-up into load by integrated • EvaluationModuleAvailableTPS60400EVM-178 circuitry. 2 Applications The TPS6040x can deliver a maximum output current of 60 mA with a typical conversion efficiency of • LCDBias greater than 90% over a wide output current range. • GaAsBiasforRFPowerAmps Three device options with 20-kHz, 50-kHz, and 250- • SensorSupplyinPortableInstruments kHz fixed-frequency operation are available. TPS60400 comes with a variable switching frequency • BipolarAmplifierSupply to reduce operating current in applications with a • MedicalInstruments wide load range and enables the design with low- • Battery-OperatedEquipment valuecapacitors. DeviceInformation(1) PARTNUMBER PACKAGE BODYSIZE(NOM) TPS6040x SOT-23(5) 2.90mmx1.60mm (1) For all available packages, see the orderable addendum at theendofthedatasheet. TypicalApplication OutputVoltagevsInputVoltage C(fly) 1 m F 0 IO=60mA 3 5 -1 IO=30mA Input 2 INCFTLYP-S604C0F0LOY+UT 1 O-1u.6t pVu tto -5.5 V, age-V -2 IO=1mA 1.6 V to 5.5 V 1 mCFI G4ND C1 Om F Max 60 mA putolt V -3 ut O - O V -4 TA=25°C -5 0 1 2 3 4 5 VI- Input Voltage-V 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
TPS60400,TPS60401 TPS60402,TPS60403 SLVS324B–JULY2001–REVISEDAPRIL2015 www.ti.com Table of Contents 1 Features.................................................................. 1 8.4 DeviceFunctionalModes........................................12 2 Applications........................................................... 1 9 ApplicationandImplementation........................ 13 3 Description............................................................. 1 9.1 ApplicationInformation............................................13 4 RevisionHistory..................................................... 2 9.2 TypicalApplication .................................................13 9.3 SystemExamples...................................................16 5 DeviceComparisonTable..................................... 3 10 PowerSupplyRecommendations..................... 21 6 PinConfigurationandFunctions......................... 3 11 Layout................................................................... 21 7 Specifications......................................................... 3 11.1 LayoutGuidelines.................................................21 7.1 AbsoluteMaximumRatings......................................3 11.2 LayoutExample....................................................21 7.2 HandlingRatings.......................................................4 12 DeviceandDocumentationSupport................. 22 7.3 RecommendedOperatingConditions.......................4 7.4 ThermalInformation..................................................4 12.1 DeviceSupport......................................................22 7.5 ElectricalCharacteristics...........................................4 12.2 RelatedLinks........................................................22 7.6 TypicalCharacteristics..............................................5 12.3 Trademarks...........................................................22 12.4 ElectrostaticDischargeCaution............................22 8 DetailedDescription............................................ 10 12.5 Glossary................................................................22 8.1 Overview.................................................................10 13 Mechanical,Packaging,andOrderable 8.2 FunctionalBlockDiagram.......................................10 Information........................................................... 22 8.3 FeatureDescription.................................................11 4 Revision History ChangesfromRevisionA(November2004)toRevisionB Page • AddedHandlingRatingtable,FeatureDescriptionsection,DeviceFunctionalModes,Applicationand Implementationsection,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentation Supportsection,andMechanical,Packaging,andOrderableInformationsection................................................................ 1 2 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 www.ti.com SLVS324B–JULY2001–REVISEDAPRIL2015 5 Device Comparison Table PARTNUMBER(1) MARKINGDBV TYPICALFLYINGCAPACITOR FEATURE PACKAGE [µF] TPS60400DBV PFKI 1 Variableswitchingfrequency50kHz-250kHz TPS60401DBV PFLI 10 Fixedfrequency20kHz TPS60402DBV PFMI 3.3 Fixedfrequency50kHz TPS60403DBV PFNI 1 Fixedfrequency250kHz (1) TheDBVpackageisavailabletapedandreeled.AddRsuffixtodevicetype(forexample,TPS60400DBVR)toorderquantitiesof3000 devicesperreel.AddTsuffixtodevicetype(forexample,TPS60400DBVT)toorderquantitiesof250devicesperreel. 6 Pin Configuration and Functions DBVPackage 5Pins TopView OUT 1 5 CFLY+ IN 2 C 3 4 GND FLY– PinFunctions PIN I/O DESCRIPTION NAME NO. C 5 PositiveterminaloftheflyingcapacitorC FLY+ (fly) C 3 NegativeterminaloftheflyingcapacitorC FLY- (fly) GND 4 Ground IN 2 I Supplyinput.Connecttoaninputsupplyinthe1.6-Vto5.5-Vrange.BypassINtoGNDwithacapacitorthat hasthesamevalueastheflyingcapacitor. OUT 1 O PoweroutputwithV =-V BypassOUTtoGNDwiththeoutputfiltercapacitorC . O I O 7 Specifications 7.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN MAX UNIT Voltage INtoGND -0.3 5.5 V range OUTtoGND -5.5 0.3 V C toGND 0.3 V -0.3 V FLY- O C toGND -0.3V V +0.3 V FLY+ I Continuouspowerdissipation SeePowerDissipation Continuousoutputcurrent 80 mA Maximumjunctiontemperature,T 150 °C J (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,andfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommendedOperating Conditionsisnotimplied.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 SLVS324B–JULY2001–REVISEDAPRIL2015 www.ti.com 7.2 Handling Ratings MIN MAX UNIT T Storagetemperaturerange -55°C 150°C °C stg Humanbodymodel(HBM),perANSI/ESDA/JEDECJS-001,all -1000 1000 pins(1) V Electrostaticdischarge V (ESD) Chargeddevicemodel(CDM),perJEDECspecification -500 500 JESD22-C101,allpins(2) (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 7.3 Recommended Operating Conditions MIN NOM MAX UNIT Inputvoltagerange,V 1.8 5.25 V I OutputcurrentrangeatOUT,I 60 mA O Inputcapacitor,C 0 C µF I (fly) Flyingcapacitor,C 1 µF (fly) Outputcapacitor,C 1 100 µF O Operatingjunctiontemperature,T -40 125 °C J 7.4 Thermal Information TPS6040x THERMALMETRIC(1) DBV UNIT 5PINS R Junction-to-ambientthermalresistance 221.2 θJA R Junction-to-case(top)thermalresistance 81.9 θJC(top) R Junction-to-boardthermalresistance 39.8 θJB °C/W ψ Junction-to-topcharacterizationparameter 3.3 JT ψ Junction-to-boardcharacterizationparameter 38.9 JB R Junction-to-case(bottom)thermalresistance n/a θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheICPackageThermalMetricsapplicationreport,SPRA953. 7.5 Electrical Characteristics C =C =C (accordingtoTable1),T =-40°Cto85°C,V =5Voverrecommendedoperatingfree-airtemperaturerange I (fly) O C I (unlessotherwisenoted) PARAMETER TESTCONDITIONS MIN TYP MAX UNIT AtT =-40°Cto85°C,R =5kΩ 1.8 5.25 C L V Supplyvoltagerange V I AtT ≥0°C,R =5kΩ 1.6 C L I MaximumoutputcurrentatV 60 mA O O V Outputvoltage -V V O I TPS60400 C =1µF,C =2.2µF 35 (fly) O TPS60401 C =C =10µF 20 (fly) O V Outputvoltageripple I =5mA mV P-P O P-P TPS60402 C =C =3.3µF 20 (fly) O TPS60403 C =C =1µF 15 (fly) O 4 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 www.ti.com SLVS324B–JULY2001–REVISEDAPRIL2015 Electrical Characteristics (continued) C =C =C (accordingtoTable1),T =-40°Cto85°C,V =5Voverrecommendedoperatingfree-airtemperaturerange I (fly) O C I (unlessotherwisenoted) PARAMETER TESTCONDITIONS MIN TYP MAX UNIT TPS60400 125 270 TPS60401 65 190 AtV =5V µA I TPS60402 120 270 Quiescentcurrent(no-loadinput TPS60403 425 700 I Q current) TPS60400 210 TPS60401 135 AtT≤60°C, V =5V µA I TPS60402 210 TPS60403 640 TPS60400 VCOversion 30 50-250 350 TPS60401 13 20 28 f Internalswitchingfrequency kHz OSC TPS60402 30 50 70 TPS60403 150 250 300 TPS60400 C =C =C =1µF 12 15 I (fly) O TPS60401 C =C =C =10µF 12 15 I (fly) O Impedanceat25°C,V =5V Ω I TPS60402 C =C =C =3.3µF 12 15 I (fly) O TPS60403 C =C =C =1µF 12 15 I (fly) O 7.6 Typical Characteristics Table1.TableofGraphs FIGURE η Efficiency vsOutputcurrentat3.3V,5V Figure1, TPS60400,TPS60401,TPS60402,TPS60403 Figure2 I Inputcurrent vsOutputcurrent Figure3, I TPS60400,TPS60401,TPS60402,TPS60403 Figure4 I Supplycurrent vsInputvoltage Figure5, S TPS60400,TPS60401,TPS60402,TPS60403 Figure6 Outputresistance vsInputvoltageat-40°C,0°C,25°C,85°C Figure7, TPS60400,C =C =C =1µF Figure8, I (fly) O TPS60401,C =C =C =10µF Figure9, I (fly) O TPS60402,C =C =C =3.3µF Figure10 I (fly) O TPS60403,C =C =C =1µF I (fly) O V Outputvoltage vsOutputcurrentat25°C,V =1.8V,2.5V,3.3V,5V Figure11, O IN TPS60400,C =C =C =1µF Figure12, I (fly) O TPS60401,C =C =C =10µF Figure13, I (fly) O TPS60402,C =C =C =3.3µF Figure14 I (fly) O TPS60403,C =C =C =1µF I (fly) O f Oscillatorfrequency vsTemperatureatV =1.8V,2.5V,3.3V,5V Figure15, OSC I TPS60400,TPS60401,TPS60402,TPS60403 Figure16, Figure17, Figure18 f Oscillatorfrequency vsOutputcurrent Figure19 OSC TPS60400at2V,3.3V,5.0V Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 SLVS324B–JULY2001–REVISEDAPRIL2015 www.ti.com 100 100 TPS60400 TPS60403 95 VI= 5 V TPS60401 95 VI= 5 V TPS60402 90 VI= 5 V 90 VI= 5 V % 85 % 85 – TPS60401 – ency 80 VI= 3.3 V ency 80 TPS60403 Effici 75 Effici 75 VI= 3.3 V TPS60400 TPS60402 70 VI= 3.3 V 70 VI= 3.3 V 65 65 TA= 25°C TA= 25°C 60 60 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 IO–Output Current–mA IO–Output Current–mA Figure1.EfficiencyvsOutputCurrent Figure2.EfficiencyvsOutputCurrent 100 100 TA= 25°C TA= 25°C TPS60400 VI= 5 V mA 10 mA 10 TPS60403 – – VI= 5 V nt nt e e Curr TPS60401 Curr TPS60403 –IInput I 1 VI= 5 V TVPI=S 620 V401 –IInput I 1 VI= 2 V TVPI=S 650 V402 TPS60400 TPS60402 VI= 2 V VI= 2 V 0.1 0.1 0.1 1 10 100 0.1 1 10 100 IO–Output Current–mA IO–Output Current–mA Figure3.InputCurrentvsOutputCurrent Figure4.InputCurrentvsOutputCurrent 0.6 0.6 IO= 0 mA IO= 0 mA TA= 25°C TA= 25°C A A m m urrent– 0.4 urrent– 0.4 TPS60403 C C ply ply p p u u S S – 0.2 – 0.2 D D D D I TPS60400 I TPS60402 0 TPS60401 0 0 1 2 3 4 5 0 1 2 3 4 5 VI–Input Voltage–V VI–Input Voltage–V Figure5.SupplyCurrentvsInputVoltage Figure6.SupplyCurrentvsInputVoltage 6 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 www.ti.com SLVS324B–JULY2001–REVISEDAPRIL2015 40 40 IO= 30 mA IO= 30 mA 35 CI= C(fly)= CO= 1µF 35 CI= C(fly)= CO= 10µF W – 30 30 ce W Output Resistan 122505 TA= 85T°AC= 25°C put Resistance– 122505 TA= 25°C TA= 85°C r–o 10 –Out 10 o r 5 5 TA=–40°C TA=–40°C 0 0 1 2 3 4 5 6 1 2 3 4 5 6 VI–Input Voltage–V VI–Input Voltage–V Figure7.OutputResistancevsInputVoltage Figure8.OutputResistancevsInputVoltage 40 40 IO= 30 mA IO= 30 mA 35 CI= C(fly)= CO= 3.3µF 35 CI= C(fly)= CO= 1µF W – 30 W 30 Output Resistance 122505 TA= 25°CTA= 85°C utput Resistance– 122505 TA= 25°CTA= 85°C – O ro 10 –o 10 r 5 TA=–40°C 5 TA=–40°C 0 0 1 2 3 4 5 6 1 2 3 4 5 6 VI–Input Voltage–V VI–Input Voltage–V Figure9.OutputResistancevsInputVoltage Figure10.OutputResistancevsInputVoltage 0 0 TA= 25°C TA= 25°C –1 VI= 1.8 V –1 VI= 1.8 V –V –2 VI= 2.5 V –V –2 VI= 2.5 V e e g g a a put Volt –3 VI= 3.3 V put Volt –3 VI= 3.3 V ut ut O O – –4 – –4 VO VI= 5 V VO VI= 5 V –5 –5 –6 –6 0 10 20 30 40 50 60 0 10 20 30 40 50 60 IO–Output Current–mA IO–Output Current–mA Figure11.OutputVoltagevsOutputCurrent Figure12.OutputVoltagevsOutputCurrent Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 SLVS324B–JULY2001–REVISEDAPRIL2015 www.ti.com 0 0 TA= 25°C TA= 25°C –1 –1 VI= 1.8 V VI= 1.8 V –V –2 VI= 2.5 V –V –2 VI= 2.5 V e e g g a a ut Volt –3 VI= 3.3 V ut Volt –3 VI= 3.3 V p p ut ut O O – –4 – –4 VO VI= 5 V VO VI= 5 V –5 –5 –6 –6 0 10 20 30 40 50 60 0 10 20 30 40 50 60 IO–Output Current–mA IO–Output Current–mA Figure13.OutputVoltagevsOutputCurrent Figure14.OutputVoltagevsOutputCurrent 250 24 IO= 10 mA 23.8 IO= 10 mA Hz 200 VI= 1.8 V Hz 23.6 –k –k VI= 3.3 V –Oscillator Frequencyosc 11505000 VVIIV== I2 =3.5 .53 V VV –Oscillator Frequencyosc 22222222332.....346824 VI= 5 V VI= 1.8V VI= 2.5 V f f 22.2 0 22 –40–30–20–10 0 10 20 30 40 50 60 70 80 90 –40–30–20–10 0 10 20 30 40 50 60 70 80 90 TA–Free-Air Temperature–°C TA–Free-Air Temperature–°C Figure15.OscillatorFrequencyvsFree-AirTemperature Figure16.OscillatorFrequencyvsFree-AirTemperature 57 250 IO= 10 mA VI= 5 V 240 56 VI= 3.3 V Hz VI= 5 V Hz 230 –k 55 VI= 3.3 V –k VI= 2.5 V Oscillator Frequency 555234 VI= 1.8 V VI= 2.5 V Oscillator Frequency 112228901200000 VI= 1.8 V –osc 51 –osc 170 f f 50 160 IO= 10 mA 49 150 –40–30–20–10 0 10 20 30 40 50 60 70 80 90 –40–30–20–10 0 10 20 30 40 50 60 70 80 90 TA–Free-Air Temperature–°C TA–Free-Air Temperature–°C Figure17.OscillatorFrequencyvsFree-AirTemperature Figure18.OscillatorFrequencyvsFree-AirTemperature 8 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 www.ti.com SLVS324B–JULY2001–REVISEDAPRIL2015 300 TA= 25°C kHz 250 VI= 1.8 V VI= 3.3 V – y nc 200 que VI= 5 V e or Fr 150 at cill Os 100 – c s o f 50 0 0 10 20 30 40 50 60 70 80 90 100 IO–Output Current–mA Figure19.OscillatorFrequencyvsOutputCurrent Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 SLVS324B–JULY2001–REVISEDAPRIL2015 www.ti.com 8 Detailed Description 8.1 Overview The TPS60400, TPS60401 charge pumps invert the voltage applied to their input. For the highest performance, uselowequivalentseriesresistance(ESR)capacitors(forexample,ceramic).Duringthefirsthalf-cycle,switches S2 and S4 open, switches S1 and S3 close, and capacitor (C ) charges to the voltage at V. During the second (fly) I half-cycle, S1 and S3 open, S2 and S4 close. This connects the positive terminal of C to GND and the (fly) negative to V By connecting C in parallel, C is charged negative. The actual voltage at the output is more O. (fly) O positivethan-V,sinceswitchesS1-S4haveresistanceandtheloaddrainschargefromC . I O VI S1 C(fly) S4 VO (–VI) 1 m F CO S2 S3 1 m F GND GND Figure20. OperatingPrinciple 8.2 Functional Block Diagram VI VI – VCFLY+ < 0.5 V R VI MEAS Start Q DC_ Startup VI < 1 V FF VI VO > Vbe S VO Q1 OSC Q + MVEOAS CHOGSC GePnhearsaetor C(fly) Q4B VO Q 50 kHz Q2 Q3 Q5 VO > –1 V GND VI VO DC_ Startup VCO_CONT VI / VO MEAS VO < –VI – Vbe 10 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 www.ti.com SLVS324B–JULY2001–REVISEDAPRIL2015 8.3 Feature Description 8.3.1 Charge-PumpOutputResistance The TPS6040x devices are not voltage regulators. The charge pump's output source resistance is approximately 15 Ω at room temperature (with V = 5 V), and V approaches -5 V when lightly loaded. V droops toward GND I O O asloadcurrentincreases. V = –(V – R × I ) O I O O (1) RO(cid:3)ƒosc(cid:1)1C(fly)(cid:2)4(cid:4)2RSWITCH(cid:2)ESRCFLY(cid:5)(cid:2)ESRCO R = output resistance of the converter O (2) 8.3.2 EfficiencyConsiderations The power efficiency of a switched-capacitor voltage converter is affected by three factors: the internal losses in theconverterIC,theresistivelossesofthecapacitors,andtheconversionlossesduringchargetransferbetween the capacitors. The internal losses are associated with the internal functions of the IC, such as driving the switches, oscillator, and so forth. These losses are affected by operating conditions such as input voltage, temperature, and frequency. The next two losses are associated with the output resistance of the voltage converter circuit. Switch losses occur because of the on-resistance of the MOSFET switches in the IC. Charge- pump capacitor losses occur because of their ESR. The relationship between these losses and the output resistanceisasfollows: PCAPACITOR LOSSES + PCONVERSION LOSSES = IO2 × RO R = resistance of a single MOSFET-switch inside the converter SWITCH f = oscillator frequency OSC (3) The first term is the effective resistance from an ideal switched-capacitor circuit. Conversion losses occur during thechargetransferbetweenC andC whenthereisavoltagedifferencebetweenthem.Thepowerlossis: (fly) O PCONV.LOSS(cid:4)(cid:5)12(cid:1)C(fly)(cid:7)VI2(cid:3)VO2(cid:8)(cid:2)12CO(cid:7)VRIPPLE2(cid:3)2VOVRIPPLE(cid:8)(cid:6)(cid:1)ƒosc (4) The efficiency of the TPS6040x devices is dominated by their quiescent supply current at low output current and bytheiroutputimpedanceathighercurrent. IO (cid:5) IO(cid:1)RO(cid:6) (cid:1)(cid:4) 1(cid:3) IO(cid:2)IQ VI (5) Where,I =quiescentcurrent. Q Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 SLVS324B–JULY2001–REVISEDAPRIL2015 www.ti.com 8.4 Device Functional Modes 8.4.1 Active-SchottkyDiode For a short period of time, when the input voltage is applied, but the inverter is not yet working, the output capacitor is charged positive by the load. To prevent the output being pulled above GND, a Schottky diode must beaddedinparalleltotheoutput.ThefunctionofthisdiodeisintegratedintotheTPS6040xdevices,whichgives adefinedstartupperformanceandsavesboardspace. A current sink and a diode in series can approximate the behavior of a typical, modern operational amplifier. Figure 21 shows the current into this typical load at a given voltage. The TPS6040x devices are optimized to startintotheseloads. VI C(fly) 1 m F +V Typical 5 3 Load C1+ C1- -V TPS60400 2 OUT VO (-VI) IN 1 IO CI CO 1 m F GND 1 m F 4 GND Figure21. TypicalLoad Load Current 60 mA 0.4 V 25 mA Voltage at the Load 0.4 V 1.25 V 5 V Figure22. MaximumStart-UpCurrent 12 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 www.ti.com SLVS324B–JULY2001–REVISEDAPRIL2015 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 9.1 Application Information The TPS6040x is a family of devices that generate an unregulated negative output voltage from an input voltage rangingfrom1.6Vto5.5V. 9.2 Typical Application 9.2.1 VoltageInverter The design guidelines provide a component selection to operate the device within the recommended operating conditions. C(fly) 1 m F 3 5 C1– C1+ TPS60400 2 1 –5 V, Input 5 V IN OUT Max 60 mA 1 mCFI GND C1 Om F 4 Figure23. TypicalOperatingCircuit 9.2.1.1 DesignRequirements TheTPS6040xisconnectedtogenerateanegativeoutputvoltagefromapositiveinput. 9.2.1.2 DetailedDesignProcedure The most common application for these devices is a charge-pump voltage inverter (see Figure 23). This application requires only two external components; capacitors C and C , plus a bypass capacitor, if (fly) O necessary.Refertothecapacitorselectionsectionforsuggestedcapacitortypes. Forthemaximumoutputcurrentandbestperformance,threeceramiccapacitorsof1 µF(TPS60400,TPS60403) are recommended. For lower currents or higher allowed output voltage ripple, other capacitors can also be used. It is recommended that the output capacitors has a minimum value of 1 µF. With flying capacitors lower than 1 µF,themaximumoutputpowerdecreases. 9.2.1.2.1 CapacitorSelection To maintain the lowest output resistance, use capacitors with low ESR (see Table 2). The charge-pump output resistance is a function of C 's and C 's ESR. Therefore, minimizing the charge-pump capacitor's ESR (fly) O minimizes the total output resistance. The capacitor values are closely linked to the required output current and theoutputnoiseandripplerequirements.Itispossibletoonlyuse1-µFcapacitorsofthesametype. 9.2.1.2.2 InputCapacitor(C) I Bypass the incoming supply to reduce its ac impedance and the impact of the TPS6040x switching noise. The recommended bypassing depends on the circuit configuration and where the load is connected. When the inverter is loaded from OUT to GND, current from the supply switches between 2 x I and zero. Therefore, use a O large bypass capacitor (for example, equal to the value of C ) if the supply has high ac impedance. When the (fly) inverter is loaded from IN to OUT, the circuit draws 2 × I constantly, except for short switching spikes. A 0.1-µF O bypasscapacitorissufficient. Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 SLVS324B–JULY2001–REVISEDAPRIL2015 www.ti.com Typical Application (continued) 9.2.1.2.3 FlyingCapacitor(C ) (fly) Increasingtheflyingcapacitor'ssizereducestheoutputresistance.Smallvaluesincreasestheoutputresistance. Above a certain point, increasing C 's capacitance has a negligible effect, because the output resistance (fly) becomesdominatedbytheinternalswitchresistanceandcapacitorESR. 9.2.1.2.4 OutputCapacitor(C ) O Increasing the output capacitor's size reduces the output ripple voltage. Decreasing its ESR reduces both output resistance and ripple. Smaller capacitance values can be used with light loads if higher output ripple can be tolerated.Usethefollowingequationtocalculatethepeak-to-peakripple. I V (cid:3) O (cid:2)2(cid:1)I (cid:1)ESR O(ripple) f (cid:1)C O CO osc o (6) Table2.RecommendedCapacitorValues V I C C C DEVICE I O I (fly) O [V] [mA] [µF] [µF] [µF] TPS60400 1.8…5.5 60 1 1 1 TPS60401 1.8…5.5 60 10 10 10 TPS60402 1.8…5.5 60 3.3 3.3 3.3 TPS60403 1.8…5.5 60 1 1 1 Table3.RecommendedCapacitors MANUFACTURER PARTNUMBER SIZE CAPACITANCE TYPE TaiyoYuden EMK212BJ474MG 0805 0.47µF Ceramic LMK212BJ105KG 0805 1µF Ceramic LMK212BJ225MG 0805 2.2µF Ceramic EMK316BJ225KL 1206 2.2µF Ceramic LMK316BJ475KL 1206 4.7µF Ceramic JMK316BJ106KL 1206 10µF Ceramic TDK C2012X5R1C105M 0805 1µF Ceramic C2012X5R1A225M 0805 2.2µF Ceramic C2012X5R1A335M 0805 3.3µF Ceramic Table 4 contains a list of manufacturers of the recommended capacitors. Ceramic capacitors will provide the lowestoutputvoltageripplebecausetheytypicallyhavethelowestESR-rating. Table4.RecommendedCapacitorManufacturers CAPACITORTYPE MANUFACTURER WEBADDRESS X5R/X7Rceramic TaiyoYuden www.t-yuden.com X5R/X7Rceramic TDK www.component.tdk.com X5R/X7Rceramic Vishay www.vishay.com X5R/X7Rceramic Kemet www.kemet.com 14 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 www.ti.com SLVS324B–JULY2001–REVISEDAPRIL2015 9.2.1.2.5 PowerDissipation AsgivenintheThermalInformation,thethermalresistanceofTPS6040xis:R =221°C/W. ΘJA Theterminalresistancecanbecalculatedusingthefollowingequation: T (cid:1)T R (cid:2) J A (cid:1)JA P D (7) where: T is the junction temperature. T is the ambient temperature. P is the power that is dissipated by the J A D device. T (cid:1)T R (cid:2) J A (cid:1)JA P D (8) Themaximumpowerdissipationcanbecalculatedusingthefollowingequation: P =V×I -V ×I =V ×(I +I )-V ×I (9) D I I O O I(max) O (SUPPLY) O O Themaximumpowerdissipationhappenswithmaximuminputvoltageandmaximumoutputcurrent. Atmaximumloadthesupplycurrentis0.7mAmaximum. P =5V×(60mA+0.7mA)-4.4V×60mA=40mW (10) D With this maximum rating and the thermal resistance of the device on the EVM, the maximum temperature rise aboveambienttemperaturecanbecalculatedusingthefollowingequation: ΔT =R ×P =221°C/W×40mW=8.8°C (11) J ΘJA D ThismeansthattheinternaldissipationincreasesT by<10°C. J Thejunctiontemperatureofthedeviceshallnotexceed125°C. ThismeanstheICcaneasilybeusedatambienttemperaturesupto: T =T -ΔT =125°C/W-10°C=115°C (12) A J(max) J 9.2.1.3 ApplicationCurves VI= 5 V VI= 5 V IO= 30 mA TPS60400 IO= 30 mA TPS60401 V V m m – – oltVage 100 mV/DIV oltageV 50 mV/DIV ut TPS60403 ut TPS60402 p p ut ut O O – – O O V V 50 mV/DIV 50 mV/DIV 4µs/DIV 20µs/DIV t–Time–µs t–Time–µs Figure24.OutputVoltagevsTimeforTPS60400and Figure25.OutputVoltagevsTimeforTPS60401and TPS60401 TPS60402 Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 SLVS324B–JULY2001–REVISEDAPRIL2015 www.ti.com 9.3 System Examples Toreducetheoutputvoltageripple,aRCpostfiltercanbeused. Anoutputfiltercaneasilybeformedwitharesistor(R )andacapacitor(C ).Cutofffrequencyisgivenby: P P VI C(fly) 1 m F 1 5 OUT C1+ TPS60400 2 IN 3 4 RP C1– GND VO (–VI) CI CO CP 1 m F 1 m F GND GND Figure26. TPS60400withRC-PostFilter Theequationrefersonlytotherelationbetweenoutputandinputoftheacripplevoltagesofthefilter. ƒc(cid:2)2(cid:1)R1C (1) P P and ratio V /V is: O OUT (cid:3) V (cid:3) O 1 (cid:2) (2) V OUT (cid:6) 2 1(cid:1)(cid:4)2(cid:1)ƒRPCP(cid:5) (cid:3) V (cid:3) with RP = 50 W , CP = 0.1 m F and f = 250 kHz: V O (cid:2)0.125 OUT (13) Toreducetheoutputvoltageripple,aLCpostfiltercanbeused. Figure27showsaconfigurationwithaLC-postfiltertofurtherreduceoutputrippleandnoise. VI C(fly) 1 m F 1 5 OUT C1+ VOUT TPS60400 2 IN 3 4 LP C1– GND VO (–VI) CI CO CP 1 m F 1 m F GND GND Figure27. LC-PostFilter Theapplicationallowstogenerateavoltagerailatalevelof1/2oftheinputvoltage. A switched-capacitor voltage inverter can be configured as a high efficiency rail-splitter. This circuit provides a bipolar power supply that is useful in battery powered systems to supply dual-rail ICs, like operational amplifiers. Moreover,theSOT23-5packageandassociatedcomponentsrequireverylittleboardspace. After power is applied, the flying capacitor (C ) connects alternately across the output capacitors C and C . (fly) 3 O This equalizes the voltage on those capacitors and draws current from V to V as required to maintain the I O outputat1/2V. I 16 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 www.ti.com SLVS324B–JULY2001–REVISEDAPRIL2015 System Examples (continued) The maximum input voltage between V and GND in the schematic (or between IN and OUT at the device itself) I mustnotexceed6.5V. VI C(fly) 1 m F C3 1 m F 1 5 OUT C1+ TPS60400 2 IN 3 4 VO = VI/2 C1- GND 1 mCFI CO 1 m F GND GND Figure28. TPS60400asaHigh-EfficiencyRailSplitter Theapplicationallowstogenerateavoltagerailatalevelof-Viaswellas2xVi(V(pos)). In the circuit of Figure 29, capacitors C, C , and C form the inverter, while C1 and C2 form the doubler. C1 I (fly) O and C are the flying capacitors; C and C2 are the output capacitors. Because both the inverter and doubler (fly) O usepartofthecharge-pumpcircuit,loadingeitheroutputcausesboth outputs to decline toward GND. Make sure the sum of the currents drawn from the two outputs does not exceed 60 mA. The maximum output current at V mustnotexceed30mA.Ifthenegativeoutputisloaded,thiscurrentmustbefurtherreduced. (pos) I ≈ –I + 2 × I I O O(POS) VI C(fly) 1 m F + C1 D2 1 5 OUT C1+ + V(pos) TPS60400 2 IN 3 4 –VI C1– GND + C1 Im F + C1 Om F + C2 GND GND Figure29. TPS60400asDoubler/Inverter Theapplicationgenerateavoltagerailatalevel-2xVi. Two devices can be cascaded to produce an even larger negative voltage (see Figure 30). The unloaded output voltage is normally -2 × V, but this is reduced slightly by the output resistance of the first device multiplied by the I quiescent current of the second. When cascading more than two devices, the output resistance rises dramatically. Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 SLVS324B–JULY2001–REVISEDAPRIL2015 www.ti.com System Examples (continued) VI VO (–2 VI) C(fly) 1 m F C(fly) 1 m F 1 5 1 5 OUT C1+ OUT C1+ TPS60400 TPS60400 2 2 IN IN 3 4 3 4 C1– GND C1– GND + C1 Im F + C1 Om F + C1 Om F GND GND GND Figure30. DoublingInverter Theapplicationallowstoincreasetheoutputcurrentbyusingtwoormoreinparallel. Paralleling multiple TPS6040xs reduces the output resistance. Each device requires its own flying capacitor (C ), but the output capacitor (C ) serves all devices (see Figure 31). Increase C 's value by a factor of n, (fly) O O wherenisthenumberofparalleldevices.Equation1showstheequationforcalculatingoutputresistance. VI C(fly) 1 m F C(fly) 1 m F 1 5 1 5 OUT C1+ OUT C1+ 2 TPS60400 2 TPS60400 VO (–VI) IN IN 3 4 3 4 C1– GND C1– GND C1 Im F + C2.O2 m F GND GND Figure31. ParallelingDevices Theapplicationaddsashutdownfunction. If shutdown is necessary, use the circuit in Figure 32. The output resistance of the TPS6040x typically is 15 Ω plustwotimestheoutputresistanceofthebuffer. ConnectingmultiplebuffersinparallelreducestheoutputresistanceofthebufferdrivingtheINpin. 18 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 www.ti.com SLVS324B–JULY2001–REVISEDAPRIL2015 System Examples (continued) VI VO (–VI) C(fly) 1 m F 1 5 OUT C1+ TPS60400 SDN 2 IN C1 Om F 3 4 C1– GND CI 1 m F GND GND Figure32. ShutdownControl TheapplicationgeneratesaregulatedoutputvoltageforaGaAsbiassupply. A solution for a -2.7-V/3-mA GaAs bias supply is proposed in Figure 33. The input voltage of 3.3 V is first inverted with a TPS60403 and stabilized using a TLV431 low-voltage shunt regulator. Resistor R with capacitor P C isusedforfilteringtheoutputvoltage. P RP VI (3.3 V) VO (–2.7 V/3 mA) C(fly) 0.1 m F R2 1 5 OUT C1+ CO CP 2 TPS60400 1 m F IN TLV431 3 4 R1 C1– GND CI 0.1 m F GND GND Figure33. GaAsSupply A0.1-µFcapacitorwasselectedforC .Bythis,theoutputresistanceoftheinverterisabout52 Ω. (fly) R canbecalculatedusingthefollowingequation: PMAX (cid:5) R1(cid:6) VO(cid:4)(cid:3) 1(cid:2)R2 (cid:1)Vref(cid:3)R1(cid:1)II(ref) (14) A100-Ω resistorwasselectedforR . P ThereferencevoltageacrossR2is1.24Vtypical.With5-µAcurrentforthevoltagedivider,R2gets: (cid:3)VCO(cid:1)VO (cid:4) RPMAX(cid:2) I (cid:1)RO O With: V = –3.3 V; V = –2.7 V; I = –3 mA CO O O R = 200 W – 52 W = 148 W PMAX (15) WithC =1 µFtheratioV /V oftheRCpostfilteris: P O I Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 SLVS324B–JULY2001–REVISEDAPRIL2015 www.ti.com System Examples (continued) R2(cid:2)1.24V(cid:3)250k(cid:1) 5(cid:2)A R1(cid:2)2.7(cid:1)1.24V(cid:3)300k(cid:1) 5(cid:2)A (16) (cid:5)V (cid:5) O 1 (cid:3) (cid:4)0.01 VI (cid:6)1(cid:2)(2(cid:3)125000Hz(cid:1)100(cid:1)(cid:1)1(cid:2)F)2 (17) Theapplicationgeneratesanoutputvoltageof1/2oftheinputvoltage. By exchanging GND with OUT (connecting the GND pin with OUT and the OUT pin with GND), a step-down charge pump can easily be formed. In the first cycle S1 and S3 are closed, and C with C in series are (fly) O charged. Assuming the same capacitance, the voltage across C and C is split equally between the (fly) O capacitors.Inthesecondcycle,S2andS4closeandbothcapacitorswithV/2acrossareconnectedinparallel. I The maximum input voltage between V and GND in the schematic (or between IN and OUT at the device itself) I must not exceed 6.5 V. For input voltages in the range of 6.5 V to 11 V, an additional Zener-diode is recommended(seeFigure36). VI S1 C(fly) S4 + GND 1 m F CO S2 S3 1 m F VO (VI/2) VO (VI/2) Figure34. Step-DownPrinciple C(fly) 1 m F VI 1 5 OUT C1+ TPS60400 2 IN 3 4 C1- GND VO (VI/2) 1 mCFI CO 1 m F GND GND Figure35. Step-DownChargePumpConnection 20 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 www.ti.com SLVS324B–JULY2001–REVISEDAPRIL2015 System Examples (continued) 5V6 VI C(fly) 1 m F 1 5 OUT C1+ TPS60400 2 IN 3 4 C1– GND VO – VI CI CO 1 m F 1 m F GND GND Figure36. Step-DownChargePumpConnectionforHigherInputVoltages 10 Power Supply Recommendations The TPS60400 device family has no special requirements for its power supply. The power supply output needs toberatedaccordingtothesupplyvoltage,outputvoltageandoutputcurrentoftheTPS6040x. 11 Layout 11.1 Layout Guidelines All capacitors should be soldered as close as possible to the IC. A PCB layout proposal for a single-layer board is shown in Figure 37. Care has been taken to connect all capacitors as close as possible to the circuit to achieveoptimizedoutputvoltagerippleperformance. 11.2 Layout Example CFLY IN OUT T N U CI O C GND U1 TPS60400 Figure37. RecommendedPCBLayoutforTPS6040x(TopLayer) Copyright©2001–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
TPS60400,TPS60401 TPS60402,TPS60403 SLVS324B–JULY2001–REVISEDAPRIL2015 www.ti.com 12 Device and Documentation Support 12.1 Device Support 12.1.1 Third-PartyProductsDisclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONEORINCOMBINATIONWITHANYTIPRODUCTORSERVICE. 12.1.2 DeviceFamilyProducts OtherinvertingDC-DCconvertersfromTexasInstrumentsarelistedinTable5. Table5.ProductIdentification PARTNUMBER DESCRIPTION TPS6735 Fixednegative5-V,200-mAinvertingdc-dcconverter TPS6755 Adjustable1-Winvertingdc-dcconverter 12.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table6.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY TPS60400 Clickhere Clickhere Clickhere Clickhere Clickhere TPS60401 Clickhere Clickhere Clickhere Clickhere Clickhere TPS60402 Clickhere Clickhere Clickhere Clickhere Clickhere TPS60403 Clickhere Clickhere Clickhere Clickhere Clickhere 12.3 Trademarks Alltrademarksarethepropertyoftheirrespectiveowners. 12.4 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 12.5 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 22 SubmitDocumentationFeedback Copyright©2001–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS60400 TPS60401TPS60402 TPS60403
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TPS60400DBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 PFKI & no Sb/Br) TPS60400DBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 PFKI & no Sb/Br) TPS60400DBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 PFKI & no Sb/Br) TPS60400DBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 PFKI & no Sb/Br) TPS60401DBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 PFLI & no Sb/Br) TPS60401DBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 PFLI & no Sb/Br) TPS60401DBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 PFLI & no Sb/Br) TPS60401DBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 PFLI & no Sb/Br) TPS60402DBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 PFMI & no Sb/Br) TPS60402DBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 PFMI & no Sb/Br) TPS60402DBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 PFMI & no Sb/Br) TPS60402DBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 PFMI & no Sb/Br) TPS60403DBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 PFNI & no Sb/Br) TPS60403DBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 PFNI & no Sb/Br) TPS60403DBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 PFNI & no Sb/Br) TPS60403DBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 PFNI & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TPS60400, TPS60401, TPS60402, TPS60403 : •Automotive: TPS60400-Q1, TPS60401-Q1, TPS60402-Q1, TPS60403-Q1 NOTE: Qualified Version Definitions: •Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 24-Apr-2020 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TPS60400DBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS60400DBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS60401DBVR SOT-23 DBV 5 3000 178.0 9.0 3.3 3.2 1.4 4.0 8.0 Q3 TPS60401DBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS60402DBVR SOT-23 DBV 5 3000 178.0 9.0 3.3 3.2 1.4 4.0 8.0 Q3 TPS60402DBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS60403DBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS60403DBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 24-Apr-2020 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TPS60400DBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TPS60400DBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TPS60401DBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TPS60401DBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TPS60402DBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TPS60402DBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TPS60403DBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TPS60403DBVT SOT-23 DBV 5 250 180.0 180.0 18.0 PackMaterials-Page2
PACKAGE OUTLINE DBV0005A SOT-23 - 1.45 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 3.0 2.6 0.1 C 1.75 1.45 1.45 B A 0.90 PIN 1 INDEX AREA 1 5 2X 0.95 3.05 2.75 1.9 1.9 2 4 3 0.5 5X 0.3 0.15 0.2 C A B (1.1) TYP 0.00 0.25 GAGE PLANE 0.22 TYP 0.08 8 TYP 0.6 0 0.3 TYP SEATING PLANE 4214839/E 09/2019 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Refernce JEDEC MO-178. 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. www.ti.com
EXAMPLE BOARD LAYOUT DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM (1.9) 2 2X (0.95) 3 4 (R0.05) TYP (2.6) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214839/E 09/2019 NOTES: (continued) 5. Publication IPC-7351 may have alternate designs. 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM 2 (1.9) 2X(0.95) 3 4 (R0.05) TYP (2.6) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X 4214839/E 09/2019 NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design. www.ti.com
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated