ICGOO在线商城 > 集成电路(IC) > PMIC - 稳压器 - DC DC 开关稳压器 > TPS60202DGSR
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
TPS60202DGSR产品简介:
ICGOO电子元器件商城为您提供TPS60202DGSR由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TPS60202DGSR价格参考¥8.08-¥14.47。Texas InstrumentsTPS60202DGSR封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 固定 充电泵 开关稳压器 IC 正 3.3V 1 输出 50mA 10-TFSOP,10-MSOP(0.118",3.00mm 宽)。您可以下载TPS60202DGSR参考资料、Datasheet数据手册功能说明书,资料中有TPS60202DGSR 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC REG BOOST SWITCHED CAP 10MSOP稳压器—开关式稳压器 Regulated 3.3-V Charge Pump |
产品分类 | |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 电源管理 IC,稳压器—开关式稳压器,Texas Instruments TPS60202DGSR- |
数据手册 | |
产品型号 | TPS60202DGSR |
PWM类型 | - |
产品种类 | 稳压器—开关式稳压器 |
供应商器件封装 | 10-VSSOP |
其它名称 | 296-31987-1 |
包装 | 剪切带 (CT) |
单位重量 | 18.800 mg |
同步整流器 | 无 |
商标 | Texas Instruments |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | 10-TFSOP,10-MSOP(0.118",3.00mm 宽) |
封装/箱体 | VSSOP-10 |
工作温度 | -40°C ~ 85°C |
工作温度范围 | - 40 C to + 85 C |
工厂包装数量 | 2500 |
开关频率 | 300 kHz |
拓扑结构 | Boost |
最大工作温度 | + 85 C |
最大输入电压 | 3.6 V |
最小工作温度 | - 40 C |
最小输入电压 | 1.8 V |
标准包装 | 1 |
电压-输入 | 1.6 V ~ 3.6 V |
电压-输出 | 3.3V |
电流-输出 | 50mA |
类型 | 升压(升压),切换电容(充电泵) |
系列 | TPS60202 |
输入电压 | 1.8 V to 3.6 V |
输出数 | 1 |
输出电压 | 3.3 V |
输出电流 | 50 mA |
输出端数量 | 1 Output |
输出类型 | 固定 |
频率-开关 | 300kHz |
Product Sample & Technical Tools & Support & Folder Buy Documents Software Community TPS60200,TPS60201,TPS60202,TPS60203 SLVS274A–MARCH2000–REVISEDAPRIL2016 TPS6020x Regulated 3.3 V, 100-mA Low-Ripple Charge Pump Low Power DC/DC Converters 1 Features 2 Applications • Regulated3.3-VOutputVoltageWithupto • TwoBatteryCellsto3.3-VConversion 1 100-mAOutputCurrentFroma1.8-Vto3.6-V • MP3PortableAudioPlayers InputVoltage • Battery-PoweredMicroprocessorSystems • LessThan5-mV(PP)OutputVoltageRipple • Backup-BatteryBoostConverters AchievedWithPush-PullTopology • PDAs,Organizers,andCordlessPhones • IntegratedLow-BatteryandPower-GoodDetector • HandheldInstrumentation • SwitchingFrequencyCanBeSynchronizedto • GlucoseMetersandOtherMedicalInstruments ExternalClockSignal • ExtendsBatteryUsageWithupto90%Efficiency 3 Description and35-μAQuiescentSupplyCurrent The TPS6020x step-up, regulated charge pumps • ReliableSystemShutdownBecauseOutput generate a 3.3-V ±4% output voltage from a 1.8-V to CapacitorIsDischargedWhenDeviceIsDisabled 3.6-V input voltage. The devices are typically • Easy-to-Design,Low-Cost,Low-EMIPower powered by two Alkaline, NiCd or NiMH battery cells SupplySinceNoInductorsAreUsed and operate down to a minimum supply voltage of 1.6 V. Continuous output current is a minimum of 100 • 0.05-μAShutdownCurrent,BatteryIsIsolated mA for the TPS60200 and TPS60201 and 50 mA for FromLoadinShutdownMode the TPS60202 and TPS60203, all from a 2-V input. • CompactConverterSolutioninUltraSmall10-pin Only four external capacitors are needed to build a MSOPWithOnlyFourExternalCapacitors complete low-ripple DC/DC converter. The push-pull Required operating mode of two single-ended charge pumps assures the low output voltage ripple as current is • EvaluationModuleAvailable(TPS60200EVM-145) continuouslytransferredtotheoutput. DeviceInformation(1) PARTNUMBER PACKAGE BODYSIZE(NOM) TPS6020x MSOP(10) 3.00mm×3.00mm (1) For all available packages, see the orderable addendum at theendofthedatasheet. spacer TypicalApplicationwithLow-BatteryWarning TPS60200PeakOutputCurrent INPUT OUTPUT 350 TPS60200 1.6Vto3.6V 7 5 3.3V,100mA IN OUT A 300 m 2.2CimF R1 1 LBI 10 R3 2C.2omF urrent– 250 LBO C 200 R2 LowBattery ut p 4 6 Warning Out 150 C1+ C2+ k a C1 Pe 100 1mF 3 C1– C2– 8 C2 – O 9 1mF I 50 EN OFF/ON GND 0 2 1.6 2.0 2.4 2.8 3.2 3.6 VI–InputVoltage–V 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
TPS60200,TPS60201,TPS60202,TPS60203 SLVS274A–MARCH2000–REVISEDAPRIL2016 www.ti.com Table of Contents 1 Features.................................................................. 1 8.2 FunctionalBlockDiagrams.......................................8 2 Applications........................................................... 1 8.3 FeatureDescription...................................................9 3 Description............................................................. 1 8.4 DeviceFunctionalModes........................................10 4 RevisionHistory..................................................... 2 9 ApplicationandImplementation........................ 11 9.1 ApplicationInformation............................................11 5 DeviceComparisonTables................................... 3 9.2 TypicalApplications................................................12 6 PinConfigurationandFunctions......................... 4 10 PowerSupplyRecommendations..................... 17 7 Specifications......................................................... 5 11 Layout................................................................... 17 7.1 AbsoluteMaximumRatings......................................5 11.1 LayoutGuidelines.................................................17 7.2 ESDRatings ............................................................5 11.2 LayoutExample....................................................17 7.3 RecommendedOperatingConditions.......................5 11.3 PowerDissipation.................................................18 7.4 ThermalInformation .................................................5 12 DeviceandDocumentationSupport................. 19 7.5 ElectricalCharacteristics...........................................6 7.6 ElectricalCharacteristics–Low-Battery 12.1 CommunityResources..........................................19 Comparator................................................................6 12.2 Trademarks...........................................................19 7.7 ElectricalCharacteristics–Power-Good 12.3 ElectrostaticDischargeCaution............................19 Comparator................................................................6 12.4 Glossary................................................................19 7.8 TypicalCharacteristic................................................7 13 Mechanical,Packaging,andOrderable 8 DetailedDescription.............................................. 8 Information........................................................... 19 8.1 Overview...................................................................8 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromOriginal(March2000)toRevisionA Page • AddedESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,ApplicationandImplementation section,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentationSupportsection,and Mechanical,Packaging,andOrderableInformationsection.................................................................................................. 1 2 SubmitDocumentationFeedback Copyright©2000–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 www.ti.com SLVS274A–MARCH2000–REVISEDAPRIL2016 5 Device Comparison Tables Table1.AvailableOptions PARTNUMBER DEVICEFEATURES OUTPUTCURRENT(mA) OUTPUTVOLTAGE(V) T A TPS60200 Low-batterydetector 100 3.3 –40°Cto85°C TPS60201 Power-gooddetector 100 3.3 –40°Cto85°C TPS60202 Low-batterydetector 50 3.3 –40°Cto85°C TPS60203 Power-gooddetector 50 3.3 –40°Cto85°C Table2.OtherChargePumpDC/DCConverters PARTNUMBER DESCRIPTION TPS60100 2-celltoregulated3.3V,200-mAlow-noisechargepump TPS60101 2-celltoregulated3.3V,100-mAlow-noisechargepump TPS60110 3-celltoregulated5V,300-mAlow-noisechargepump TPS60111 3-celltoregulated5V,150-mAlow-noisechargepump TPS60120 2-celltoregulated3.3V,200-mAhigh-efficiencychargepumpwithlowbatterycomparator TPS60121 2-celltoregulated3.3V,200-mAhigh-efficiencychargepumpwithpower-goodcomparator TPS60122 2-celltoregulated3.3V,100-mAhigh-efficiencychargepumpwithlowbatterycomparator TPS60123 2-celltoregulated3.3V,100-mAhigh-efficiencychargepumpwithpower-goodcomparator TPS60130 3-celltoregulated5V,300-mAhigh-efficiencychargepumpwithlowbatterycomparator TPS60131 3-celltoregulated5V,300-mAhigh-efficiencychargepumpwithpower-goodcomparator TPS60132 3-celltoregulated5V,150-mAhigh-efficiencychargepumpwithlowbatterycomparator TPS60133 3-celltoregulated5V,150-mAhigh-efficiencychargepumpwithpower-goodcomparator TPS60140 2-celltoregulated5V,100-mAchargepumpvoltagetriplerwithlowbatterycomparator TPS60141 2-celltoregulated5V,100-mAchargepumpvoltagetriplerwithpower-goodcomparator Copyright©2000–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 SLVS274A–MARCH2000–REVISEDAPRIL2016 www.ti.com 6 Pin Configuration and Functions TPS60200andTPS60202DGSPackage 10-PinMSOP TPS60201andTPS60203DGSPackage TopView 10-PinMSOP TopView LBI 1 10 LBO GND 1 10 PG GND 2 9 EN GND 2 9 EN C1– 3 8 C2– C1– 3 8 C2– C1+ 4 7 IN C1+ 4 7 IN OUT 5 6 C2+ OUT 5 6 C2+ PinFunctions PIN TPS60200, TPS60201, I/O DESCRIPTION NAME TPS60202 TPS60203 C1+ 4 4 — PositiveterminaloftheflyingcapacitorC1 C1– 3 3 — NegativeterminaloftheflyingcapacitorC1 C2+ 6 6 — PositiveterminaloftheflyingcapacitorC2 C2– 8 8 — NegativeterminaloftheflyingcapacitorC2 Device-enableinput.ThreeoperatingmodescanbeprogrammedwiththeENpin. EN=Lowdisablesthedevice.Outputandinputareisolatedintheshutdownmode andtheoutputcapacitorisautomaticallydischarged.EN=Highletsthedevicerun EN 9 9 I fromtheinternaloscillator.IfanexternalclocksignalisappliedtotheENpin,the deviceisinSync–Modeandrunssynchronizedatthefrequencyoftheexternal clocksignal. GND 2 1,2 Ground IN 7 7 I Supplyinput.BypassINtoGNDwithacapacitorofthesamesizeasC . O Low-batterydetectorinputforTPS60200andTPS60202.Alow-batterywarningis generatedattheLBOpinwhenthevoltageonLBIdropsbelowthethresholdof LBI 1 — I 1.18V.ConnectLBItoGNDifthelow-batterydetectorfunctionisnotused.Forthe devicesTPS60201andTPS60203,thispinhastobeconnectedtoground(GND pin). Open-drainlow-batterydetectoroutputforTPS60200andTPS60202.Thispinis pulledlowifthevoltageonLBIdropsbelowthethresholdof1.18V.Apullup LBO 10 — O resistorshouldbeconnectedbetweenLBOandOUToranyotherlogicsupplyrail thatislowerthan3.6V. Regulated3.3-Vpoweroutput.BypassOUTtoGNDwiththeoutputfiltercapacitor OUT 5 5 O C . O Open-drainpower-gooddetectoroutputforTPS60201andTPS60203.Assoonas thevoltageonOUTreachesabout90%ofitisnominalvaluethispingoesactive PG — 10 O high.ApullupresistorshouldbeconnectedbetweenPGandOUToranyother logicsupplyrailthatislowerthan3.6V. 4 SubmitDocumentationFeedback Copyright©2000–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 www.ti.com SLVS274A–MARCH2000–REVISEDAPRIL2016 7 Specifications 7.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN MAX UNIT IN,OUT,EN,LBI,LBO,PGtoGND –0.3 3.6 Voltage C1+,C2+toGND –0.3 V +0.3 V O C1–,C2–toGND –0.3 V +0.3 I T ≤25°Cpowerrating 424 A Continuoustotalpower T =70°Cpowerrating 187 mW dissipation A T =85°Cpowerrating 136 A TPS60200,TPS60201 150 Continuousoutputcurrent mA TPS60202,TPS60203 75 Junctiontemperature,T 150 °C J Storagetemperature,T –55 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. 7.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±2000 V Electrostaticdischarge V (ESD) Charged-devicemodel(CDM),perJEDECspecificationJESD22-C101(2) ±1000 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 7.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT V Inputvoltage 1.6 3.6 V I C Inputcapacitor 2.2 µF i C1,C2 Flyingcapacitors 1 µF C Outputcapacitor 2.2 µF O T Operatingjunctiontemperature –40 125 °C J 7.4 Thermal Information TPS6020x THERMALMETRIC(1) DGS(MSOP) UNIT 10PINS R Junction-to-ambientthermalresistance 158.1 °C/W θJA R Junction-to-case(top)thermalresistance 49.3 °C/W θJC(top) R Junction-to-boardthermalresistance 78.1 °C/W θJB ψ Junction-to-topcharacterizationparameter 4.7 °C/W JT ψ Junction-to-boardcharacterizationparameter 76.8 °C/W JB R Junction-to-case(bottom)thermalresistance n/a °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report,SPRA953. Copyright©2000–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 SLVS274A–MARCH2000–REVISEDAPRIL2016 www.ti.com 7.5 Electrical Characteristics C =2.2µF,C1=C2=1µF,C =2.2µF,T =–40°Cto85°C,V =2.4V,andEN=V (unlessotherwisenoted) i O A I I PARAMETER TESTCONDITIONS MIN TYP MAX UNIT TPS60200andTPS60201,V =2V 100 I I Maximumcontinuousoutputcurrent mA O(MAX) TPS60202andTPS60203,V =2V 50 I 1.6V<V <1.8V, I 3 0<I <0.25×I O O(MAX) 1.8V<V <2V, VO Outputvoltage 0<IO<0I.5×IO(MAX) 3.17 3.43 V 2V<V <3.3V,0<I <I 3.17 3.43 I O O(MAX) 3.3V<V <3.6V,0<I <I 3.17 3.47 I O O(MAX) V Outputvoltageripple I =I 5 mV PP O O(MAX) PP Quiescentcurrent(no-loadinput I I =0mA,V =1.8Vto3.6V 35 70 µA (Q) current) O I I Shutdownsupplycurrent EN=0V 0.05 1 µA (SD) f Internalswitchingfrequency 200 300 400 kHz (OSC) f Externalclocksignalfrequency 400 600 800 kHz (SYNC) Externalclocksignaldutycycle 30% 70% V ENinputlowvoltage V =1.6Vto3.6V 0.3×V V IL I I V ENinputleakagecurrent V =1.6Vto3.6V 0.7×V V IH I I I ENinputleakagecurrent EN=0VorV 0.01 0.1 µA lkg(EN) I ENissetfromV toGND, Outputcapacitorautodischargetime I 0.6 ms timeuntilV <0.5V O Outputresistanceinshutdown EN=0V 70 Ω LinSkipthreshold V =2.2V 7 mA I Outputloadregulation 10mA<I <I ,T =25°C 0.01% mA O O(MAX) A 2V<V <3.3V, Outputlineregulation I 0.6% V I =0.5×I ,T =25°C O O(MAX) A I Short-circuitcurrent V =2.4V,V =0V 60 mA (SC) I O 7.6 Electrical Characteristics – Low-Battery Comparator TPS60200andTPS60202devicesonlyatT =–40°Cto85°C,V =2.4V,andEN=V (unlessotherwisenoted)(1) A I I PARAMETER TESTCONDITIONS MIN TYP MAX UNIT V =1.6Vto2.2V, V LBItripvoltage I 1.13 1.18 1.23 V (LBI) T =0°Cto70°C C LBItripvoltagehysteresis ForrisingvoltageatLBI 10 mV I LBIinputcurrent V =1.3V 2 50 nA I(LBI) (LBI) V LBOoutputvoltagelow V =0V,I =1mA 0.4 V O(LBO) (LBI) (LBO) I LBOleakagecurrent V =1.3V,V =3.3V 0.01 0.1 µA lkg(LBO) (LBI) (LBO) (1) Duringstart-upoftheconverter,theLBOoutputsignalisinvalidforthefirst500µs. 7.7 Electrical Characteristics – Power-Good Comparator TPS60201andTPS60203devicesonlyatT =–40°Cto85°C,V =2.4V,andEN=V (unlessotherwisenoted)(1) A I I PARAMETER TESTCONDITIONS MIN TYP MAX UNIT V Power-goodtripvoltage T =0°Cto70°C 0.87×V 0.91×V 0.95×V V (PG) C O O O V Power-goodtripvoltagehysteresis V decreasing,T =0°Cto70°C 1% hys(PG) O C V Power-goodoutputvoltagelow V =0V,I =1mA 0.4 V O(PG) O (PG) I Power-goodleakagecurrent V =3.3V,V =3.3V 0.01 0.1 µA lkg(PG) O (PG) (1) Duringstart-upoftheconverter,thePGoutputsignalisinvalidforthefirst500µs. 6 SubmitDocumentationFeedback Copyright©2000–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 www.ti.com SLVS274A–MARCH2000–REVISEDAPRIL2016 7.8 Typical Characteristic 40 38 IO=0mA 36 A m – 34 nt urre 32 C nt 30 e c es 28 ui Q 26 – Q I 24 22 20 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 V –InputVoltage–V I Figure1.QuiescentSupplyCurrentvsInputVoltage Copyright©2000–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 SLVS274A–MARCH2000–REVISEDAPRIL2016 www.ti.com 8 Detailed Description 8.1 Overview The TPS6020x charge pumps provide a regulated 3.3-V output from a 1.8-V to 3.6-V input. They deliver up to 100-mA load current while maintaining the output at 3.3 V ± 4%. Designed specifically for space-critical, battery- powered applications, the complete converter requires only four external capacitors. The device is using the push-pull topology to achieve lowest output voltage ripple. The converter is also optimized for smallest board space. It makes use of small-sized capacitors, with the highest output current rating per output capacitance and packagesize. The TPS6020x circuits consist of an oscillator, a 1.18-V voltage reference, an internal resistive feedback circuit, an error amplifier, two charge pump power stages with high current MOSFET switches, a shutdown and start-up circuit,acontrolcircuit,andanauto-dischargetransistor(seeFunctionalBlockDiagrams). 8.2 Functional Block Diagrams ChargePump1 0° IN Oscillator 180° C1+ C1 C1– EN Charge Pump 2 Control Circuit C2+ _ C2 C2– + + OUT VREF – Shutdown/ _ Start-Up Autodischarge _ LBI Control + + + – 0.8xVIN + VREF – GND LBO Copyright © 2016,Texas Instruments Incorporated Figure2. TPS60200andTPS60202WithLow-BatteryDetector 8 SubmitDocumentationFeedback Copyright©2000–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 www.ti.com SLVS274A–MARCH2000–REVISEDAPRIL2016 Functional Block Diagrams (continued) ChargePump1 0° IN Oscillator 180° C1+ C1 C1– EN Charge Pump 2 Control Circuit C2+ _ C2– C2 + + OUT VREF – Shutdown/ _ Start-Up _ Autodischarge Control + + + – 0.8xVIN + VREF – GND PG Copyright © 2016,Texas Instruments Incorporated Figure3. TPS60201andTPS60203WithPower-GoodDetector 8.3 Feature Description 8.3.1 Start-Up,Shutdown,andAuto-Discharge Duringstart-up,thatiswhenENissetfromlogiclowtologichigh,theoutputcapacitorisdirectlyconnectedtoIN and charged up with a limited current until the output voltage V reaches 0.8 × V. When the start-up comparator O I detects this limit, the converter begins switching. This precharging of the output capacitor guarantees a short start-up time. In addition, the inrush current into an empty output capacitor is limited. The converter can start into afullload,whichisdefinedbya33-Ω or66-Ω resistor,respectively. Driving EN low disables the converter. This disables all internal circuits and reduces the supply current to only 0.05 μA. The device exits shutdown once EN is set high. When the device is disabled, the load is isolated from theinput.Thisisanimportantfeatureinbattery-operatedproductsbecauseitextendstheproductsshelflife. Additionally, the output capacitor will automatically be discharged after EN is taken low. This ensures that the system, when switched off, is in a stable and reliable condition because the supply voltage is removed from the supplypins. 8.3.2 SynchronizationtoanExternalClockSignal The operating frequency of the charge pump is limited to 400 kHz to avoid interference in the sensitive 455-kHz IF band. The device can either run from the integrated oscillator, or an external clock signal can be used to drive the charge pump. The maximum frequency of the external clock signal is 800 kHz. The switching frequency used internallytodrivethechargepumppowerstagesishalfoftheexternalclockfrequency.Theexternalclocksignal isappliedtotheENpin.ThedevicewillswitchoffifthesignalonENisholdlowformorethan10 μs. When the load current drops below the LinSkip current threshold, the devices will enter the pulse-skip mode but staysynchronizedtotheexternalclocksignal. Copyright©2000–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 SLVS274A–MARCH2000–REVISEDAPRIL2016 www.ti.com Feature Description (continued) 8.3.3 Power-GoodDetector The power-good output is an open-drain output that pulls low when the output is out of regulation. When the output rises to within 90% of its nominal voltage, the power-good output is released. Power-good is high impedance in shutdown. In normal operation, an external pullup resistor must be connected between PG and OUT, or any other voltage rail in the appropriate range. The resistor should be in the 100-kΩ to 1-MΩ range. If thePGoutputisnotused,itshouldremainunconnected. 8.4 Device Functional Modes 8.4.1 Push-PullOperatingMode The two single-ended charge pump power stages operate in the so-called push-pull operating mode, that is they operatewitha180°Cphaseshift.Eachsingle-endedchargepumptransferschargeintoitstransfercapacitor(C1 or C2) in one half of the period. During the other half of the period (transfer phase), the transfer capacitor is placed in series with the input to transfer its charge to C . While one single-ended charge pump is in the charge O phase, the other one is in the transfer phase. This operation assures an almost constant output current which ensuresalowoutputripple. Iftheclockweretoruncontinuously,thisprocesswouldeventuallygenerateanoutputvoltageequaltotwotimes the input voltage (hence the name voltage doubler). To provide a regulated fixed output voltage of 3.3 V, the TPS6020x devices use either pulse-skip or constant-frequency linear-regulation control mode. The mode is automatically selected based on the output current. If the load current is below the LinSkip current threshold, it switchesintothepower-savingpulse-skipmodetoboostefficiencyatlowoutputpower. 8.4.2 Constant-FrequencyMode When the output current is higher then the LinSkip current threshold, the charge pump runs continuously at the switching frequency f . The control circuit, fed from the error amplifier, controls the charge on C1 and C2 by (OSC) controlling the gates and hence the r of the integrated MOSFETs. When the output voltage decreases, the DS(ON) gate drive increases, resulting in a larger voltage across C1 and C2. This regulation scheme minimizes output ripple. Since the device switches continuously, the output signal contains well-defined frequency components, and the circuit requires smaller external capacitors for a given output ripple. However, constant-frequency mode, due to higher operating current, is less efficient at light loads. For this reason, the device switches seamlessly intothepulse-skipmodewhentheoutputcurrentdropsbelowtheLinSkipcurrentthreshold. 8.4.3 Pulse-SkipMode The regulator enters the pulse-skip mode when the output current is lower than the LinSkip current threshold of 7 mA. In the pulse-skip mode, the error amplifier disables switching of the power stages when it detects an output voltage higher than 3.3 V. The controller skips switching cycles until the output voltage drops below 3.3 V. Then the error amplifier reactivates the oscillator and switching of the power stages starts again. A 30-mV output voltageoffsetisintroducedinthismode. The pulse-skip regulation mode minimizes operating current because it does not switch continuously and deactivates all functions except the voltage reference and error amplifier when the output is higher than 3.3 V. Even in pulse-skip mode the r of the MOSFETs is controlled. This way the energy per switching cycle that DS(ON) is transferred by the charge pump from the input to the output is limited to the minimum that is necessary to sustain a regulated output voltage, with the benefit that the output ripple is kept to a minimum. When switching is disabledfromtheerroramplifier,theloadisalsoisolatedfromtheinput. 10 SubmitDocumentationFeedback Copyright©2000–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 www.ti.com SLVS274A–MARCH2000–REVISEDAPRIL2016 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 9.1 Application Information The power-good output is an open-drain output that pulls low when the output is out of regulation. When the output rises to within 90% of its nominal voltage, the power-good output is released. Power-good is high impedance in shutdown. In normal operation, an external pullup resistor must be connected between PG and OUT, or any other voltage rail in the appropriate range. The resistor should be in the 100-k Ω to 1-M Ω range. If thePGoutputisnotused,itshouldremainunconnected) 9.1.1 CapacitorSelection The TPS6020x devices require only four external capacitors to achieve a very low output voltage ripple. The capacitor values are closely linked to the required output current. Low ESR (<0.1 Ω) capacitors should be used at input and output. In general, the transfer capacitors (C1 and C2) will be the smallest, a 1-µF value is recommended for maximum load operation. With smaller capacitor values, the maximum possible load current is reducedandtheLinSkipthresholdislowered. The input capacitor improves system efficiency by reducing the input impedance. It also stabilizes the input current of the power source. The input capacitor should be chosen according to the power supply used and the distancefromthepowersourcetotheconverterIC.TIrecommendsCibeabouttwotofourtimesaslargeasthe flyingcapacitorsC1andC2. The output capacitor (Co) should be at minimum the size of the input capacitor. The minimum required capacitance is 2.2 μF. Larger values will improve the load transient performance and will reduce the maximum outputripplevoltage. Only ceramic capacitors are recommended for input, output, and flying capacitors. Depending on the material used to manufacture them, ceramic capacitors might lose their capacitance over temperature and voltage. Ceramic capacitors of type X7R or X5R material will keep their capacitance over temperature and voltage, whereas Z5U- or Y5V-type capacitors will decrease in capacitance. Table 3 lists the recommended capacitor values. Table3.RecommendedCapacitorsValues(CeramicX5RandX7R) LOAD OUTPUT OUTPUTVOLTAGE OUTPUTVOLTAGE FLYINGCAPACITORS, INPUCAPACITOR, CURRENT, CAPACITOR, RIPPLEINLINEAR RIPPLEINSKIPMODE, C1/C2(µF) C (µF) I (mA) i C (µF) MODE,V (mV) V (mV) L o (P-P) (P-P) 0to100 1 2.2 2.2 3 20 0to100 1 4.7 4.7 3 10 0to100 1 2.2 10 3 7 0to100 2.2 4.7 4.7 3 10 0to50 0.47 2.2 2.2 3 20 0to25 0.22 2.2 2.2 5 15 0to10 0.1 2.2 2.2 5 15 Copyright©2000–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 SLVS274A–MARCH2000–REVISEDAPRIL2016 www.ti.com 9.2 Typical Applications INPUT OUTPUT TPS60200 1.6Vto3.6V 7 5 3.3V,100mA IN OUT Ci R1 1 R3 C2.o2mF 2.2mF LBI 10 LBO R2 4 6 LowBattery C1+ C2+ Warning C1 1mF 3 C1– C2– 8 C2 9 1mF EN OFF/ON GND 2 INPUT OUTPUT 1.6Vto3.6V 7 TPS60202 5 3.3V,50mA IN OUT Ci R1 1 R3 C2.o2mF 2.2mF LBI 10 LBO R2 4 6 LowBattery C1+ C2+ Warning C1 0.47mF 3 C1– C2– 8 C2 9 0.47mF EN OFF/ON GND 2 Copyright © 2016,Texas Instruments Incorporated Figure4. TypicalOperatingCircuitTPS60200andTPS60202WithLow-Battery-Detector INPUT OUTPUT 1.6Vto3.6V 7 TPS60201 5 3.3V,100mA IN OUT Co Ci R1 2.2mF 2.2mF 10 PG 4 6 Power-Good C1+ C2+ Signal C1 1mF 3 C1– C2– 8 C2 9 1mF EN OFF/ON GND 1,2 INPUT OUTPUT TPS60203 1.6Vto3.6V 7 5 3.3V,50mA IN OUT Co Ci R1 2.2mF 2.2mF 10 PG 4 6 Power-Good C1+ C2+ Signal C1 0.47mF 3 C1– C2– 8 C2 9 0.47mF EN OFF/ON GND 1,2 Copyright © 2016,Texas Instruments Incorporated Figure5. TypicalOperatingCircuitTPS60201andTPS60203WithPower-Good-Detector 12 SubmitDocumentationFeedback Copyright©2000–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 www.ti.com SLVS274A–MARCH2000–REVISEDAPRIL2016 Typical Applications (continued) 9.2.1 DesignRequirements Table4liststhecapacitorselectionstooperatethedeviceintherecommendedoperatingconditions. Table4.RecommendedCapacitorTypes MANUFACTURER PARTNUMBER SIZE CAPACITANCE TYPE TaiyoYuden UMK212BJ104MG 0805 0.1µF Ceramic TaiyoYuden EMK212BJ224MG 0805 0.22µF Ceramic TaiyoYuden EMK212BJ474MG 0805 0.47µF Ceramic TaiyoYuden LMK212BJ105KG 0805 1µF Ceramic TaiyoYuden LMK212BJ225MG 0805 2.2µF Ceramic TaiyoYuden EMK316BJ225KL 1206 2.2µF Ceramic TaiyoYuden LMK316BJ475KL 1206 4.7µF Ceramic TaiyoYuden JMK316BJ106ML 1206 10µF Ceramic AVX 0805ZC105KAT2A 0805 1µF Ceramic AVX 1206ZC225KAT2A 1206 2.2µF Ceramic 9.2.2 DetailedDesignProcedure 9.2.2.1 Low-BatteryDetector(TPS60200andTPS60202) The low-battery comparator trips at 1.18 V ±4% when the voltage on pin LBI ramps down. The voltage V (TRIP) atwhichthelow-batterywarningisissuedcanbeadjustedwitharesistivedividerasshowninFigure4.Thesum of resistors R1 and R2 is recommended to be in the 100-kΩ to 1-MΩ range. When choosing R1 and R2, be awareoftheinputleakagecurrentintotheLBIpin. LBO is an open-drain output. TI recommends an external pullup resistor to OUT, or any other voltage rail in the appropriate range, in the 100-kΩ to 1-MΩ range. During start-up, the LBO output signal is invalid for the first 500 μs. LBO is high impedance when the device is disabled. If the low-battery comparator function is not used, connect LBI to ground and leave LBO unconnected. The low-battery detector is disabled when the device is switchedoff. space VO IN VBAT R3 R1 LBO _ LBI V(TRIP) =1.18Væç1+ R1ö÷ è R2ø + R2 + VREF – Figure6. ProgrammingoftheLow-BatteryComparatorTripVoltage space A 100-nF ceramic capacitor should be connected in parallel to R2 if large line transients are expected. These voltage drops can inadvertently trigger the low-battery comparator and produce a wrong low-battery warning signalattheLBOpin. Formulas to calculate the resistive divider for low-battery detection, with V LBI = 1.13 V to 1.23 V and the sum of resistorsR1andR2equal1MΩ. space Copyright©2000–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 SLVS274A–MARCH2000–REVISEDAPRIL2016 www.ti.com V R2=1MW´ LBI V Bat (1) R1=1MW-R2 (2) space Formulastocalculatetheminimumandmaximumbatteryvoltage. space R1 +R2 V = V ´ (min) (max) Bat(min) LBI(min) R2 (max) (3) R1 +R2 V = V ´ (max) (min) Bat(max) LBI(max) R2 (min) (4) space Table5.RecommendedValuesfortheResistiveDividerFromtheE96Series(±1%) V /V R1/kΩ R2/kΩ V /V V /V (IN) TRIP(MIN) TRIP(MAX) 1.6 267 750 1.524 1.677 1.7 301 681 1.62 1.785 1.8 340 649 1.71 1.887 1.9 374 619 1.799 1.988 2 402 576 1.903 2.106 9.2.3 ApplicationCurves 100 100 90 90 80 80 70 70 % % – 60 – 60 Efficiency 5400 VI=2.4VVI=1.8V Efficiency 5400 VI=1.8V 30 VI=2.7V 30 VI=2.4V 20 20 VI=2.7V 10 10 0 0 0.1 1 10 100 1000 0.1 1 10 100 IO–OutputCurrent–mA IO–OutputCurrent–mA Figure7.TPS60200EfficiencyvsOutputCurrent Figure8.TPS60202EfficiencyvsOutputCurrent 14 SubmitDocumentationFeedback Copyright©2000–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 www.ti.com SLVS274A–MARCH2000–REVISEDAPRIL2016 100 40 90 38 IO=0mA 80 36 A m 70 – 34 nt –% 60 urre 32 y C Efficienc 4500 IO=50mA uiescent 3208 30 –Q 26 Q I 20 24 10 22 0 20 1.6 2.0 2.4 2.8 3.2 3.6 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 VI–InputVoltage–V VI–InputVoltage–V Figure9.TPS60200EfficiencyvsInputVoltage Figure10.QuiescentSupplyCurrentvsInputVoltage 3.5 3.35 VI=2.7V VI=3.6V 3.30 3.4 VI=3.6V V 3.3 V 3.25 – – VI=1.8V VI=2.4V Voltage 3.2 VI=1.8V Voltage 3.20 Output 3.1 VI=2.7V Output 3.15 –O – 3.10 V VI=2.4V VO 3.0 3.05 2.9 3 1 10 100 1000 1 10 100 IO–OutputCurrent–mA IO–OutputCurrent–mA Figure11.TPS60200OutputVoltagevsOutputCurrent Figure12.TPS60202OutputVoltagevsOutputCurrent 3.4 3.35 3.3 3.30 –V 3.2 1mA V 3.25 1mA e – g e a g Volt 3.1 100mA 50mA olta 3.20 25mA put utV 50 mA Out 3.0 utp 3.15 – O O – V 2.9 VO 3.10 2.8 3.05 2.7 3.00 1.6 2.0 2.4 2.8 3.2 3.6 1.6 2.0 2.4 2.8 3.2 3.6 VI–InputVoltage–V VI–InputVoltage–V Figure13.TPS60200OutputVoltagevsInputVoltage Figure14.TPS60202OutputVoltagevsInputVoltage Copyright©2000–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 SLVS274A–MARCH2000–REVISEDAPRIL2016 www.ti.com 3.38 3.38 3.36 VIOI==21.4mVA 3.36 VIOI==21.04mVA 3.34 3.34 V V – – e 3.32 e 3.32 g g a a Volt 3.30 Volt 3.30 ut ut p p ut 3.28 ut 3.28 O O – – O O V 3.26 V 3.26 3.24 3.24 3.22 3.22 0 5 10 15 20 25 30 35 40 45 50 0 1 2 3 4 5 6 7 8 9 10 t–Time–ms t–Time–ms Figure15.TPS60200OutputVoltageRipple Figure16.TPS60200OutputVoltageRipple 3.38 3.5 1400 3.36 VIOI== 21.040 VmA 3 VO VI= 2.4 V 1200 3.34 2.5 1000 V V – A –Output Voltage–VO 3333....32322608 –Output VoltageVO10..2155 EN II 846200000000 –Input Current–mII 3.24 0 0 3.22 0 1 2 3 4 5 6 7 8 9 10 0 50 100 150 200 250 300 350 400 450 500 t–Time–ms t–Time–μs Figure17.TPS60200OutputVoltageRipple Figure18.Start-UpTiming V V ge– VI= 2.4 V ge– IO= 50 mA Volta 3.30 Volta ut 3.28 ut 3.32 p p ut ut –O 3.26 –O 3.30 O O V V 3.24 3.28 A m V – – 3.26 Current100 mA Voltage2.8 V ut ut p p Out –In –O10 mA VI2.2 V I 0 50 100 150 200 250 300 350 400 450 500 0 1 2 3 4 5 6 7 8 9 10 t–Time–ms t–Time–ms Figure20.TPS60200LineTransientResponse Figure19.TPS60200LoadTransientResponse 16 SubmitDocumentationFeedback Copyright©2000–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 www.ti.com SLVS274A–MARCH2000–REVISEDAPRIL2016 10 Power Supply Recommendations The TPS6020x are designed to operate from a 1.6-V to 3.6-V input voltage supply. The input power supply's output current needs to be rated according to the output voltage and the output current of the power rail application. 11 Layout 11.1 Layout Guidelines Careful board layout is necessary due to the high transient currents and switching frequency of the converter. All capacitors should be placed in close proximity to the device. A PCB layout proposal for a one-layer board is giveninFigure21. An evaluation module for the TPS60200 is available and can be ordered under product code TPS60200EVM–145. The EVM uses the layout shown in Figure 21. All components including the pins are shown. The EVM is built so that it can be connected to a 14-pin dual inline socket; therefore, the space needed fortheIC,theexternalparts,and8pinsis17.9mm ×10.2mm=182.6mm2. 11.2 Layout Example space Figure21. TPS6020xEVMBoardLayout space Table6.ComponentIdentification IC1 TPS60200 C1,C2 Flyingcapacitors C3 Inputcapacitors C4 Outputcapacitors C5(1) StabilizationcapacitorforLBI R1,R2 ResistivedividerforLBI R3 PullupresistorforLBO R4 PullupresistorforEN (1) CapacitorC5shouldbeincludediflargelinetransientsareexpected. ThiscapacitorsuppressestogglingoftheLBOduetotheseline changes. Copyright©2000–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 SLVS274A–MARCH2000–REVISEDAPRIL2016 www.ti.com 11.3 Power Dissipation The power dissipated in the TPS6020x devices depends mainly on input voltage and output current and is approximatedwithEquation5. spacer P =I ´(2´V -V ) forI <<I (DISS) O I O (Q) O (5) By observing Equation 5, it can be seen that the power dissipation is worst for highest input voltage V and I highest output current I . For an input voltage of 3.6 V and an output current of 100 mA the calculated power O dissipationP is390mW.Thisisalsothepointwherethechargepumpoperateswithitslowestefficiency. (DISS) With the recommended maximum junction temperature of 125°C and an assumed maximum ambient operating temperature of 85°C, the maximum allowed thermal resistance junction to ambient of the system is calculated withEquation6. spacer R = TJ(MAX) -TA =125°C-85°C =102°C/W qJA(max) P 390mW DISS(max) (6) spacer P must be less than that allowed by the package rating. The thermal resistance junction to ambient of the DISS used 10-pin MSOP is 294°C/W for an unsoldered package. The thermal resistance junction to ambient with the IC soldered to a printed circuit using a board layout as described in Application Information, the R is typically θJA 200°C/W, which is higher than the maximum value calculated above. However in a battery-powered application, both V and T will typically be lower than the worst-case ratings used in Equation 6, and power dissipation I A shouldnotbeaprobleminmostapplications. 18 SubmitDocumentationFeedback Copyright©2000–2016,TexasInstrumentsIncorporated ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
TPS60200,TPS60201,TPS60202,TPS60203 www.ti.com SLVS274A–MARCH2000–REVISEDAPRIL2016 12 Device and Documentation Support 12.1 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 12.2 Trademarks E2EisatrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 12.3 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 12.4 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2000–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:TPS60200 TPS60201 TPS60202 TPS60203
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TPS60200DGS ACTIVE VSSOP DGS 10 80 Green (RoHS NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 85 AEX & no Sb/Br) TPS60200DGSG4 ACTIVE VSSOP DGS 10 80 Green (RoHS NIPDAUAG Level-1-260C-UNLIM -40 to 85 AEX & no Sb/Br) TPS60200DGSR ACTIVE VSSOP DGS 10 2500 Green (RoHS NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 85 AEX & no Sb/Br) TPS60201DGS ACTIVE VSSOP DGS 10 80 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 AEY & no Sb/Br) TPS60202DGS ACTIVE VSSOP DGS 10 80 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 AEZ & no Sb/Br) TPS60202DGSR ACTIVE VSSOP DGS 10 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 AEZ & no Sb/Br) TPS60203DGS ACTIVE VSSOP DGS 10 80 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 AFA & no Sb/Br) TPS60203DGSR ACTIVE VSSOP DGS 10 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 AFA & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 16-Feb-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TPS60200DGSR VSSOP DGS 10 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 TPS60202DGSR VSSOP DGS 10 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 TPS60203DGSR VSSOP DGS 10 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 16-Feb-2019 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TPS60200DGSR VSSOP DGS 10 2500 350.0 350.0 43.0 TPS60202DGSR VSSOP DGS 10 2500 350.0 350.0 43.0 TPS60203DGSR VSSOP DGS 10 2500 350.0 350.0 43.0 PackMaterials-Page2
PACKAGE OUTLINE DGS0010A VSSOP - 1.1 mm max height SCALE 3.200 SMALL OUTLINE PACKAGE C 5.05 4.75 TYP SEATING PLANE A PIN 1 ID 0.1 C AREA 8X 0.5 10 1 3.1 2X 2.9 NOTE 3 2 5 6 0.27 10X 0.17 B 3.1 0.1 C A B 1.1 MAX 2.9 NOTE 4 0.23 TYP SEE DETAIL A 0.13 0.25 GAGE PLANE 0.15 0.7 0 - 8 0.05 0.4 DETAIL A TYPICAL 4221984/A 05/2015 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. 5. Reference JEDEC registration MO-187, variation BA. www.ti.com
EXAMPLE BOARD LAYOUT DGS0010A VSSOP - 1.1 mm max height SMALL OUTLINE PACKAGE 10X (1.45) 10X (0.3) SYMM (R0.05) TYP 1 10 SYMM 8X (0.5) 5 6 (4.4) LAND PATTERN EXAMPLE SCALE:10X SOOPLEDNEINRG MASK METAL MSOELTDAEL RU NMDAESRK SOOPLEDNEINRG MASK 0.05 MAX 0.05 MIN ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS NOT TO SCALE 4221984/A 05/2015 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN DGS0010A VSSOP - 1.1 mm max height SMALL OUTLINE PACKAGE 10X (1.45) SYMM (R0.05) TYP 10X (0.3) 1 10 SYMM 8X (0.5) 5 6 (4.4) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:10X 4221984/A 05/2015 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated