图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: TPS54528DDAR
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

TPS54528DDAR产品简介:

ICGOO电子元器件商城为您提供TPS54528DDAR由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TPS54528DDAR价格参考。Texas InstrumentsTPS54528DDAR封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 可调式 降压 开关稳压器 IC 正 0.76V 1 输出 5A 8-PowerSOIC(0.154",3.90mm 宽)。您可以下载TPS54528DDAR参考资料、Datasheet数据手册功能说明书,资料中有TPS54528DDAR 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC REG BUCK SYNC ADJ 5A 8SOPWR稳压器—开关式稳压器 4.5-18VIN,5A SYNC STEP-DOWN CONVERTER

DevelopmentKit

TPS54528EVM-052

产品分类

PMIC - 稳压器 - DC DC 开关稳压器

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

电源管理 IC,稳压器—开关式稳压器,Texas Instruments TPS54528DDARD-CAP2™, Eco-Mode™

数据手册

点击此处下载产品Datasheet

产品型号

TPS54528DDAR

PCN组件/产地

点击此处下载产品Datasheet

PCN设计/规格

点击此处下载产品Datasheet

PWM类型

混合物

产品种类

稳压器—开关式稳压器

供应商器件封装

8-SO PowerPad

其它名称

296-29482-2

包装

带卷 (TR)

同步整流器

商标

Texas Instruments

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

8-SOIC(0.154",3.90mm 宽)裸焊盘

封装/箱体

HSOP-8

工作温度

-40°C ~ 85°C

工作温度范围

- 40 C to + 85 C

工厂包装数量

2500

开关频率

650 kHz

拓扑结构

Buck

最大工作温度

+ 85 C

最大输入电压

18 V

最小工作温度

- 40 C

最小输入电压

4.5 V

标准包装

2,500

电压-输入

4.5 V ~ 18 V

电压-输出

0.76 V ~ 6 V

电流-输出

5A

类型

降压(降压)

系列

TPS54528

输出数

1

输出电压

760 mV to 6 V

输出电流

5 A

输出端数量

1 Output

输出类型

可调式

配用

/product-detail/zh/TPS54528EVM-052/TPS54528EVM-052-ND/2751228

频率-开关

650kHz

推荐商品

型号:FAN2360MPX

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:LTC3419IMS#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LTC3539EDCB-2#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LTC3548AEMSE#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:TPS53355DQPT

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:CS51413EDR8

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:LT1424CS8-5#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LM2852XMXAX-3.0/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
TPS54528DDAR 相关产品

LT3508HUF#TRPBF

品牌:Linear Technology/Analog Devices

价格:

LTC3103EMSE#PBF

品牌:Linear Technology/Analog Devices

价格:

LM20343MHE/NOPB

品牌:Texas Instruments

价格:¥16.14-¥30.13

MAX5033DUSA+T

品牌:Maxim Integrated

价格:¥询价-¥询价

LTC3261HMSE#PBF

品牌:Linear Technology/Analog Devices

价格:

LMR10510XMFE/NOPB

品牌:Texas Instruments

价格:¥3.03-¥7.53

LM2575T-ADJG

品牌:ON Semiconductor

价格:¥7.90-¥19.25

AS1345C-BTDT-AD

品牌:ams

价格:

PDF Datasheet 数据手册内容提取

Product Sample & Technical Tools & Support & Folder Buy Documents Software Community TPS54528 SLVSAY4C–JULY2011–REVISEDMARCH2014 TPS54528 4.5-V To 18-V Input, 5-A Synchronous Step-Down Converter With Eco-Mode™ 1 Features 3 Description • D-CAP2™ModeEnablesFastTransient The TPS54528 is an adaptive on-time D-CAP2™ 1 mode synchronous buck converter. The TPS54528 Response enables system designers to complete the suite of • LowOutputRippleandAllowsCeramicOutput various end-equipment power bus regulators with a Capacitor cost effective, low component count, low standby • WideV InputVoltageRange:4.5Vto18V current solution. The main control loop for the IN TPS54528 uses the D-CAP2™ mode control that • OutputVoltageRange:0.76Vto6V provides a fast transient response with no external • HighlyEfficientIntegratedFETsOptimized compensation components. The adaptive on-time forLowerDutyCycleApplications control supports seamless transition between PWM –65mΩ(HighSide)and36mΩ (LowSide) mode at higher load conditions and Eco-mode™ • HighEfficiency,lessthan10μAatshutdown operation at light loads. Eco-mode™ allows the TPS54528 to maintain high efficiency during lighter • HighInitialBandgapReferenceAccuracy loadconditions.TheTPS54528alsohasaproprietary • AdjustableSoftStart circuit that enables the device to adopt to both low • Pre-BiasedSoftStart equivalent series resistance (ESR) output capacitors, • 650-kHzSwitchingFrequency(f ) such as POSCAP or SP-CAP, and ultra-low ESR SW ceramic capacitors. The device operates from 4.5-V • CycleByCycleOverCurrentLimit to 18-V VIN input. The output voltage can be • Auto-SkipEco-mode™forHighEfficiencyatLight programmed between 0.76 V and 6 V. The device Load also features an adjustable soft start time. The TPS54528 is available in the 8-terminal DDA 2 Applications package, and designed to operate from –40°C to 85°C. • WideRangeofApplicationsforLowVoltage System DeviceInformation – DigitalTVPowerSupply ORDERNUMBER PACKAGE BODYSIZE – HighDefinitionBlu-rayDisc™Players TPS54528DDA HSOP(8) 4,89mm×3,9mm – NetworkingHomeTerminal – DigitalSetTopBox(STB) 4 Simplified Schematic 1.05-V,LoadTransientResponse TPS54528 Vout (50 mV/div) Iout (2A/div) t - Time - 100ms/div 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

TPS54528 SLVSAY4C–JULY2011–REVISEDMARCH2014 www.ti.com Table of Contents 1 Features.................................................................. 1 8.3 FeatureDescription...................................................9 2 Applications........................................................... 1 8.4 DeviceFunctionalModes........................................10 3 Description............................................................. 1 9 ApplicationsandImplementation...................... 12 4 SimplifiedSchematic............................................. 1 9.1 ApplicationInformation............................................12 9.2 TypicalApplication .................................................12 5 RevisionHistory..................................................... 2 10 PowerSupplyRecommendations..................... 15 6 TerminalConfigurationandFunctions................ 3 11 Layout................................................................... 15 7 Specifications......................................................... 4 11.1 LayoutGuidelines.................................................15 7.1 AbsoluteMaximumRatings......................................4 11.2 LayoutExample....................................................16 7.2 HandlingRatings.......................................................4 11.3 ThermalInformation..............................................17 7.3 RecommendedOperatingConditions.......................4 12 DeviceandDocumentationSupport................. 18 7.4 ThermalInformation .................................................5 7.5 ElectricalCharacteristics...........................................5 12.1 DocumentationSupport........................................18 7.6 TimingRequirements-On-TimeTimerControl........6 12.2 Trademarks...........................................................18 7.7 TypicalCharacteristics..............................................6 12.3 ElectrostaticDischargeCaution............................18 12.4 Glossary................................................................18 8 DetailedDescription.............................................. 9 13 Mechanical,Packaging,andOrderable 8.1 Overview...................................................................9 Information........................................................... 18 8.2 FunctionalBlockDiagram.........................................9 5 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionB(May2012)toRevisionC Page • Formatteddatasheettomeetnewtemplaterequirements ................................................................................................... 1 • AddedTableofContents,andmovedRevisionHistorytopage2. ...................................................................................... 3 • MovedABSMax,HandlingRatings,ROC,ThermalInfo,andElectricalCharacteristicstablestothenew "Specifications"section.......................................................................................................................................................... 4 • AddedMaximumPowerDissipationgraph............................................................................................................................. 8 • Added"PowerSupplyRecommendations"section ............................................................................................................. 15 • Added"DeviceandDocumentationSupport"section ......................................................................................................... 18 ChangesfromRevisionA(January2012)toRevisionB Page • Changedt From:310nsTo:330ns............................................................................................................................ 6 OFF(MIN) ChangesfromOriginal(July2011)toRevisionA Page • AddedCONDITIONSstatementattheTypicalCharacteristicssectionheading................................................................... 6 • Changed2-µAto6µAinSoftStartandPre-BiasedSoftStartsubsectionanddenominatorinequation2....................... 9 2 Copyright©2011–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS54528

TPS54528 www.ti.com SLVSAY4C–JULY2011–REVISEDMARCH2014 6 Terminal Configuration and Functions DDA-8PACKAGE (TOPVIEW) 1 EN VIN 8 TPS54528 2 VFB VBST 7 Exposed 3 VREG5 Thermal Pad SW 6 4 SS GND 5 TerminalFunctions TERMINAL DESCRIPTION NAME NO. EN 1 Enableinputcontrol.ENisactivehighandmustbepulleduptoenablethedevice. VFB 2 Converterfeedbackinput.Connecttooutputvoltagewithfeedbackresistordivider. 5.5Vpowersupplyoutput.Acapacitor(typical1µF)shouldbeconnectedtoGND.VREG5isnotactive VREG5 3 whenENislow. SS 4 Soft-startcontrol.AnexternalcapacitorshouldbeconnectedtoGND. Groundterminal.Powergroundreturnforswitchingcircuit.ConnectsensitiveSSandVFBreturnsto GND 5 GNDatasinglepoint. SW 6 Switchnodeconnectionbetweenhigh-sideNFETandlow-sideNFET. Supplyinputforthehigh-sideFETgatedrivecircuit.Connect0.1µFcapacitorbetweenVBSTandSW VBST 7 terminals.AninternaldiodeisconnectedbetweenVREG5andVBST. VIN 8 Inputvoltagesupplyterminal. ExposedThermal Thermalpadofthepackage.Mustbesolderedtoachieveappropriatedissipation.Mustbeconnectedto Backside Pad GND. Copyright©2011–2014,TexasInstrumentsIncorporated 3 ProductFolderLinks:TPS54528

TPS54528 SLVSAY4C–JULY2011–REVISEDMARCH2014 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted) (1) VALUE UNIT MIN MAX VIN,EN –0.3 20 VBST –0.3 26 VBST(10nstransient) –0.3 28 Inputvoltagerange VBST(vsSW) –0.3 6.5 V VFB,SS –0.3 6.5 SW –2 20 SW(10nstransient) –3 22 VREG5 –0.3 6.5 Outputvoltagerange V GND –0.3 0.3 VoltagefromGNDtothermalpad,V –0.2 0.2 V diff Operatingjunctiontemperature,T –40 150 °C J (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. 7.2 Handling Ratings MIN MAX UNIT T Storagetemperaturerange –55 150 °C stg HumanBodyModel(HBM) 2 kV Electrostaticdischarge ChargedDeviceModel(CDM) 500 V 7.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN MAX UNIT V Supplyinputvoltage 4.5 18 V IN VBST –0.1 24 VBST(10nstransient) –0.1 27 VBST(vsSW) –0.1 5.7 SS –0.1 5.7 V Inputvoltage EN –0.1 18 V I VFB –0.1 5.5 SW –1.8 18 SW(10nstransient) –3 21 GND –0.1 0.1 V Outputvoltage VREG5 –0.1 5.7 V O I OutputCurrent I 0 5 mA O VREG5 T Operatingfree-airtemperature –40 85 °C A T Operatingjunctiontemperature –40 150 °C J 4 Copyright©2011–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS54528

TPS54528 www.ti.com SLVSAY4C–JULY2011–REVISEDMARCH2014 7.4 Thermal Information TPS54528 THERMALMETRIC(1) UNIT DDA(8) θ Junction-to-ambientthermalresistance 43.5 JA θ Junction-to-case(top)thermalresistance 49.4 JCtop θ Junction-to-boardthermalresistance 25.6 JB °C/W ψ Junction-to-topcharacterizationparameter 7.4 JT ψ Junction-to-boardcharacterizationparameter 25.5 JB θ Junction-to-case(bottom)thermalresistance 5.2 JCbot (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheICPackageThermalMetricsapplicationreport,SPRA953. 7.5 Electrical Characteristics overoperatingfree-airtemperaturerange,V =12V(unlessotherwisenoted) IN PARAMETER TESTCONDITIONS MIN TYP MAX UNIT SUPPLYCURRENT V current,T =25°C,EN=5V, I Operating-non-switchingsupplycurrent IN A 900 1200 μA VIN V =0.8V FB I Shutdownsupplycurrent V current,T =25°C,EN=0V 3.6 10 μA VINSDN IN A LOGICTHRESHOLD ENhigh-levelinputvoltage EN 1.6 V V EN ENlow-levelinputvoltage EN 0.6 V V VOLTAGEANDDISCHARGERESISTANCE FB T =25°C,V =1.05V,I =10mA,Eco- A O O 771 mV mode™operation T =25°C,V =1.05V,continuousmode V V thresholdvoltage A O 757 765 773 mV FBTH FB operation T =-40to85°C,V =1.05V,continuous mAodeoperation(1) O 751 765 779 mV I V inputcurrent V =0.8V,T =25°C 0 ±0.15 μA VFB FB FB A V OUTPUT REG5 T =25°C,6.0V<V <18V, V V outputvoltage A IN 5.2 5.5 5.7 V VREG5 REG5 0<I <5mA VREG5 V Lineregulation 6V<V <18V,I =5mA 25 mV LN5 IN VREG5 V Loadregulation 0mA<I <5mA 100 mV LD5 VREG5 I Outputcurrent V =6V,V =4.0V,T =25°C 60 mA VREG5 IN REG5 A MOSFET Highsideswitchresistance 25°C,V -SW=5.5V 65 mΩ BST R DS(on) Lowsideswitchresistance 25°C 36 mΩ CURRENTLIMIT I Currentlimit Lout=1.5μH(1) 5.6 6.4 7.9 A ocl THERMALSHUTDOWN Shutdowntemperature (1) 165 T Thermalshutdownthreshold °C SDN Hysteresis (1) 35 (1) Notproductiontested. Copyright©2011–2014,TexasInstrumentsIncorporated 5 ProductFolderLinks:TPS54528

TPS54528 SLVSAY4C–JULY2011–REVISEDMARCH2014 www.ti.com Electrical Characteristics (continued) overoperatingfree-airtemperaturerange,V =12V(unlessotherwisenoted) IN PARAMETER TESTCONDITIONS MIN TYP MAX UNIT SOFTSTART SSchargecurrent V =1V 4.2 6 7.8 μA SS I SS SSdischargecurrent V =0.5V 0.1 0.2 mA SS UVLO WakeupV voltage 3.45 3.75 4.05 REG5 UVLO UVLOthreshold V HysteresisV voltage 0.19 0.32 0.45 REG5 7.6 Timing Requirements - On-Time Timer Control MIN TYP MAX UNIT t Ontime V =12V,V =1.05V 150 ns ON IN O t Minimumofftime T =25°C,V =0.7V 260 330 ns OFF(MIN) A FB 7.7 Typical Characteristics VIN=12V,T =25°C(unlessotherwisenoted). A 1200 7 1000 6 A m pply Current -Am 680000 utdown Current - 345 u h S S - CC 400 dn - 2 I s c c 200 Iv 1 0 0 -50 0 50 100 150 -50 0 50 100 150 TJ- Junction Temperature- °C TJ- Junction Temperature- °C VI=12V VI=12V Figure1.VINCurrentvsJunctionTemperature Figure2.VINShutdownCurrentvs JunctionTemperature 50 1.1 45 40 1.075 VIN= 18 V N - Input Current -Am 1223350505 - Output Voltage - VO 1.05 VIN= 5 VVIN= 12 V E V 1.025 10 5 0 1 0 5 10 15 20 0 1 2 3 4 5 EN - Input Voltage - V IO- Output Current -A V=18V I Figure3.ENCurrentvsENVoltage Figure4.1.05-VOutputVoltagevsOutputCurrent 6 Copyright©2011–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS54528

TPS54528 www.ti.com SLVSAY4C–JULY2011–REVISEDMARCH2014 Typical Characteristics (continued) VIN=12V,T =25°C(unlessotherwisenoted). A 1.08 100 VO= 3.3 V VO= 2.5 V VO= 1.8 V 90 1.07 ge - V IO= 10 mA % 80 Output Volta 1.06 IO= 1A Efficiency - 70 - 60 O V 1.05 50 1.04 40 0 5 10 15 20 0 1 2 3 4 5 VI- Input Voltage - V IO- Output Current -A Figure5.1.05-VOutputVoltagevsInputVoltage Figure6.EfficiencyvsOutputCurrent 100 900 90 VO= 3.3 V 850 7800 VO= 1.8 V VO= 2.5 V y - kHz 785000 VO= 5 V VO= 2.5 V VO= 3.3 V c Efficiency - % 456000 ching Frequen 667050000 VO= 1.05 V VO= 1.2 V 30 Swit 550 VO= 1.5 V w - VO= 1.8 V 20 s 500 f 10 450 0 400 0.001 0.01 0.1 0 5 10 15 20 IO- Output Current -A VI- Input Voltage - V I =1A O Figure7.LIghtLoadEfficiencyvsOutputCurrent Figure8.SwitchingFrequencyvsInputVoltage 800 0.78 700 VO= 3.3 V 0.775 kHz600 witching Frequency - 345000000 VO= 1V.O05= V 1.8 V - Vfb Voltage - VBTH 0.007..677567 w - S200 VF s f 0.755 100 0 0.01 0.1 1 10 0.75-50 0 50 100 150 IO- Output Current -A TJ- Junction Temperature- °C V=12V I Figure9.SwitchingFrequencyvsOutputCurrent Figure10.VFBVoltagevsJunctionTemperature Copyright©2011–2014,TexasInstrumentsIncorporated 7 ProductFolderLinks:TPS54528

TPS54528 SLVSAY4C–JULY2011–REVISEDMARCH2014 www.ti.com Typical Characteristics (continued) VIN=12V,T =25°C(unlessotherwisenoted). A AmbientTemperature Figure11.MaximumPowerDissipation 8 Copyright©2011–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS54528

TPS54528 www.ti.com SLVSAY4C–JULY2011–REVISEDMARCH2014 8 Detailed Description 8.1 Overview The TPS54528 is a 5-A synchronous step-down (buck) converter with two integrated N-channel MOSFETs. It operates using D-CAP2™ mode control. The fast transient response of D-CAP2™ control reduces the output capacitance required to meet a specific level of performance. Proprietary internal circuitry allows the use of low ESRoutputcapacitorsincludingceramicandspecialpolymertypes. 8.2 Functional Block Diagram EN 1 EN VIN Logic VIN 8 VREG5 VBST Control Logic 7 Ref + SS +PWM VFB 1 shot SW VO 2 - 6 XCON ON VREG5 VREG5 Ceramic 3 Capacitor SGND SS SS 5 4 Softstart + SW GND PGND ZC - PGND SGND + SW OCP - PGND VIN VREG5 UVLO Protection TSD Logic UVLO REF Ref 8.3 Feature Description 8.3.1 SoftStartAndPre-BiasedSoftStart The soft start function is adjustable. When the EN terminal becomes high, 6μA current begins charging the capacitor which is connected from the SS terminal to GND. Smooth control of the output voltage is maintained during start up. The equation for the slow start time is shown in Equation 1. VFB voltage is 0.765 V and SS terminalsourcecurrentis6μA. C6(nF) ´ V ´ 1.1 C6(nF) ´ 0.765 ´ 1.1 t (ms)= FB = SS I (μA) 6 SS (1) Copyright©2011–2014,TexasInstrumentsIncorporated 9 ProductFolderLinks:TPS54528

TPS54528 SLVSAY4C–JULY2011–REVISEDMARCH2014 www.ti.com Feature Description (continued) The TPS54528 contains a unique circuit to prevent current from being pulled from the output during startup if the output is pre-biased. When the soft-start commands a voltage higher than the pre-bias level (internal soft start becomes greater than feedback voltage V ), the controller slowly activates synchronous rectification by starting FB the first low side FET gate driver pulses with a narrow on-time. It then increments that on-time on a cycle-by- cycle basis until it coincides with the time dictated by (1-D), where D is the duty cycle of the converter. This scheme prevents the initial sinking of the pre-bias output, and ensure that the out voltage (V ) starts and ramps O up smoothly into regulation and the control loop is given time to transition from pre-biased start-up to normal modeoperation. 8.3.2 CurrentProtection The output overcurrent protection (OCP) is implemented using a cycle-by-cycle valley detect control circuit. The switch current is monitored by measuring the low-side FET switch voltage between the SW terminal and GND. This voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated. During the on time of the high-side FET switch, the switch current increases at a linear rate determined by V , IN V , the on-time and the output inductor value. During the on time of the low-side FET switch, this current OUT decreases linearly. The average value of the switch current is the load current Iout. The TPS54528 constantly monitorsthelow-sideFETswitchvoltage,whichisproportionaltotheswitchcurrent,duringthelow-sideon-time. If the measured voltage is above the voltage proportional to the current limit, an internal counter is incremented per each SW cycle and the converter maintains the low-side switch on until the measured voltage is below the voltage corresponding to the current limit at which time the switching cycle is terminated and a new switching cycle begins. In subsequent switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner. If the over current condition exists for 7 consecutive switching cycles, the internal OCL threshold is set to a lower level, reducing the available output current. When a switching cycle occurs where the switch current is not above the lower OCL threshold, the counter is reset and the OCL limit is returned to the highervalue. There are some important considerations for this type of over-current protection. The peak current is the average load current plus one half of the peak-to-peak inductor current. The valley current is the average load current minus one half of the peak-to-peak inductor current. Since the valley current is used to detect the overcurrent threshold, the load current is higher than the over-current threshold. Also, when the current is being limited, the output voltage tends to fall as the demanded load current may be higher than the current available from the converter. When the over current condition is removed, the output voltage will return to the regulated value. This protectionisnon-latching. 8.3.3 UVLOProtection Undervoltage lock out protection (UVLO) monitors the voltage of the V terminal. When the V voltage is REG5 REG5 lowerthanUVLOthresholdvoltage,theTPS54528isshutoff.Thisprotectionisnon-latching. 8.3.4 ThermalShutdown TPS54528 monitors the temperature of itself. If the temperature exceeds the threshold value (typically 165°C), thedeviceisshutoff.Thisisnon-latchprotection. 8.4 Device Functional Modes 8.4.1 PWMOperation The main control loop of the TPS54528 is an adaptive on-time pulse width modulation (PWM) controller that supports a proprietary D-CAP2™ mode control. D-CAP2™ mode control combines constant on-time control with an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with bothlowESRandceramicoutputcapacitors.Itisstableevenwithvirtuallynorippleattheoutput. 10 Copyright©2011–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS54528

TPS54528 www.ti.com SLVSAY4C–JULY2011–REVISEDMARCH2014 Device Functional Modes (continued) At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one shot timer expires. This one shot is set by the converter input voltage, VIN, and the output voltage, VO, to maintain a pseudo-fixed frequency over the input voltage range, hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on again when the feedback voltage falls below the reference voltage. An internal ramp is added to reference voltage to simulate output ripple, eliminating the need forESRinducedoutputripplefromD-CAP2™modecontrol. 8.4.2 PWMFrequencyAndAdaptiveOn-TimeControl TPS54528 uses an adaptive on-time control scheme and does not have a dedicated on board oscillator. The TPS54528 runs with a pseudo-constant frequency of 700 kHz by using the input voltage and output voltage to set the on-time one-shot timer. The on-time is inversely proportional to the input voltage and proportional to the outputvoltage;therefore,whenthedutyratioisVOUT/VIN,thefrequencyisconstant. 8.4.3 Auto-SkipEco-Mode™Control The TPS54528 is designed with Auto-Skip Eco-mode™ to increase light load efficiency. As the output current decreases from heavy load condition, the inductor current is also reduced and eventually comes to point that its rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous conduction modes. The rectifying MOSFET is turned off when its zero inductor current is detected. As the load current further decreases the converter run into discontinuous conduction mode. The on-time is kept almost the same as is was in the continuous conduction mode so that it takes longer time to discharge the output capacitor with smaller load current to the level of the reference voltage. The transition point to the light load operation I currentcanbecalculatedinEquation2 OUT(LL) 1 (V -V )×V IN OUT OUT I = × OUT(LL) 2×L× fsw V IN (2) Copyright©2011–2014,TexasInstrumentsIncorporated 11 ProductFolderLinks:TPS54528

TPS54528 SLVSAY4C–JULY2011–REVISEDMARCH2014 www.ti.com 9 Applications and Implementation 9.1 Application Information The TPS54528 is designed to provide up to a 2-A output current from an input voltage source ranging from 4.5 V to 18 V. The output voltage is configurable from 0.76 V to 6 V. A simplified design procedure for a 1.05-V output isshownbelow. 9.2 Typical Application U1 TPS54528DDA Figure12. 5-ASynchronousStep-Down(Buck)Converter 9.2.1 DesignRequirements Figure12showstheschematicofthedesignexample. Tobeginthedesignprocess,theusermustknowafewapplicationparameters: • Inputvoltagerange • Outputvoltage • Outputcurrent • Outputvoltageripple • Inputvoltageripple 9.2.2 DetailedDesignProcedure 9.2.2.1 OutputVoltageResistorsSelection The output voltage is set with a resistor divider from the output node to the VFB terminal. It is recommended to use1%toleranceorbetterdividerresistors.StartbyusingEquation3 tocalculateV . OUT To improve efficiency at light loads consider using larger value resistors, high resistance is more susceptible to noise,andthevoltageerrorsfromtheVFBinputcurrentaremorenoticeable. æ R1ö VOUT =0.765x çççè1+ R2÷÷÷÷ø (3) 12 Copyright©2011–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS54528

TPS54528 www.ti.com SLVSAY4C–JULY2011–REVISEDMARCH2014 Typical Application (continued) 9.2.2.2 OutputFilterSelection TheoutputfilterusedwiththeTPS54528isanLCcircuit.ThisLCfilterhasdoublepoleat: 1 F = P 2p L xC OUT OUT (4) At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal gain of the TPS54528. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls off at a –40 dB per decade rate and the phase drops rapidly. D-CAP2™ introduces a high frequency zero that reduces the gain roll off to –20 dB per decade and increases the phase to 90 degrees one decade above the zero frequency. The inductor and capacitor selected for the output filter must be selected so that the double pole of Equation 4 is located below the high frequency zero but close enough that the phase boost provided be the high frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the valuesrecommendedinTable1. Table1.RecommendedComponentValues OutputVoltage(V) R1(kΩ) R2(kΩ) C4(pF)(1) L1(µH) C8+C9(µF) 1 6.81 22.1 1.0-1.5 22-68 1.05 8.25 22.1 1.0-1.5 22-68 1.2 12.7 22.1 1.0-1.5 22-68 1.5 21.5 22.1 1.5 22-68 1.8 30.1 22.1 5-22 1.5 22-68 2.5 49.9 22.1 5-22 2.2 22-68 3.3 73.2 22.1 5-22 2.2 22-68 5 124 22.1 5-22 3.3 22-68 (1) Optional Since the DC gain is dependent on the output voltage, the required inductor value increases as the output voltage increases. For higher output voltages at or above 1.8 V, additional phase boost can be achieved by addingafeedforwardcapacitor(C4)inparallelwithR1 The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 5, Equation 6 and Equation 7. The inductor saturation current rating must be greater than the calculated peak current and the RMS or heating current rating must be greater than the calculated RMS current. Use 700 kHz for f . SW Use 650 kHz for f . Make sure the chosen inductor is rated for the peak current of Equation 6 and the RMS SW currentofEquation7. I = VOUT x VIN(max) -VOUT IPP V L x f IN(max) O SW (5) I lpp I =I + Ipeak O 2 (6) 1 I = I 2 + I 2 Lo(RMS) O 12 IPP (7) For this design example, the calculated peak current is 5.51 A and the calculated RMS current is 5.01 A. The inductor used is a TDK SPM6530-1R5M100 with a peak current rating of 11.5 A and an RMS current rating of 11A. The capacitor value and ESR determines the amount of output voltage ripple. The TPS54528 is intended for use with ceramic or other low ESR capacitors. Recommended values range from 22µF to 68µF. Use Equation 8 to determinetherequiredRMScurrentratingfortheoutputcapacitor. V x(V -V ) I = OUT IN OUT Co(RMS) 12 xV xL x f IN O SW (8) Copyright©2011–2014,TexasInstrumentsIncorporated 13 ProductFolderLinks:TPS54528

TPS54528 SLVSAY4C–JULY2011–REVISEDMARCH2014 www.ti.com For this design two TDK C3216X5R0J226M 22µF output capacitors are used. The typical ESR is 2 mΩ each. ThecalculatedRMScurrentis0.29Aandeachoutputcapacitorisratedfor4A. 9.2.2.3 InputCapacitorSelection The TPS54528 requires an input decoupling capacitor and a bulk capacitor is needed depending on the application. A ceramic capacitor over 10 μF is recommended for the decoupling capacitor. An additional 0.1 µF capacitor (C3) from terminal 8 to ground is optional to provide additional high frequency filtering. The capacitor voltageratingneedstobegreaterthanthemaximuminputvoltage. 9.2.2.4 BootstrapCapacitorSelection A 0.1 µF. ceramic capacitor must be connected between the VBST to SW terminal for proper operation. It is recommendedtouseaceramiccapacitor. 9.2.2.5 Vreg5CapacitorSelection A 1-µF. ceramic capacitor must be connected between the VREG5 to GND terminal for proper operation. It is recommendedtouseaceramiccapacitor. 9.2.3 ApplicationPerformanceCurves Vout (50 mV/div) EN (10 V/div) VREG5 (5 V/div) Iout (2A/div) Vout (0.5 V/div) t - Time - 1 ms/div t - Time - 100ms/div V =1.05V I =5A O O Figure14.Start-UpWaveForm Figure13.LoadTransientResponse Vo (10 mV/div) V = 50 mV / div (-950 mV dc offset) O SW = 10 V / div SW (5 V/div) t - Time - 400 ns/div Time = 1 µsec / div VO=1.05V IO=2A IO=30mA Figure15.VoltageRippleAtOutput Figure16.DCMVoltageRippleAtOutput 14 Copyright©2011–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS54528

TPS54528 www.ti.com SLVSAY4C–JULY2011–REVISEDMARCH2014 VIN (50 mV/div) SW (5 V/div) t - Time - 400 ns/div V =1.05V I =2A O O Figure17.VoltageRippleAtInput 10 Power Supply Recommendations The input voltage range is from 4.5V to 18V. The input power supply and the input capacitors should be located asclosetothedeviceaspossibletominimizetheimpedanceofthepower-supplyline. 11 Layout 11.1 Layout Guidelines 1. The TPS54528 can supply large load currents up to 5 A, so heat dissipation may be a concern. The top side areaadjacenttotheTPS54528shouldbefilledwithgroundasmuchaspossibletodissipateheat. 2. The bottom side area directly below the IC should a dedicated ground area. It should be directly connected to the thermal pad of the device using vias as shown. The ground area should be as large as practical. Additionalinternallayerscanbededicatedasgroundplanesandconnectedtotheviasaswell. 3. Keeptheinputswitchingcurrentloopassmallaspossible. 4. Keep the SW node as physically small and short as possible to minimize parasitic capacitance and inductance and to minimize radiated emissions. Kelvin connections should be brought from the output to the feedbackterminalofthedevice. 5. Keepanalogandnon-switchingcomponentsawayfromswitchingcomponents. 6. Makeasinglepointconnectionfromthesignalgroundtopowerground. 7. Donotallowswitchingcurrenttoflowunderthedevice. 8. KeepthepatternlinesforVINandPGNDbroad. 9. ExposedpadofdevicemustbeconnectedtoPGNDwithsolder. 10. VREG5capacitorshouldbeplacednearthedevice,andconnectedPGND. 11. OutputcapacitorshouldbeconnectedtoabroadpatternofthePGND. 12. Voltagefeedbackloopshouldbeasshortaspossible,andpreferablywithgroundshield. 13. LowerresistorofthevoltagedividerwhichisconnectedtotheVFBterminalshouldbetiedtoSGND. 14. ProvidingsufficientviaispreferableforVIN,SWandPGNDconnection. 15. PCBpatternforVIN,SW,andPGNDshouldbeasbroadaspossible. 16. VINCapacitorshouldbeplacedasnearaspossibletothedevice. Copyright©2011–2014,TexasInstrumentsIncorporated 15 ProductFolderLinks:TPS54528

TPS54528 SLVSAY4C–JULY2011–REVISEDMARCH2014 www.ti.com 11.2 Layout Example VIN VIN INPUT BYPASS CAPACITOR VIN HIGH FREQENCY BYPASS CAPACITOR TO ENABLE EN VIN CONTROL BOOST FEEDBACK VFB VBST CAPACITOR RESISTORS VREG5 SW OUTPUT VOUT BIAS SS GND INDUCTOR CAP SLOW START CAP EXPOSED THERMALPAD AREA OUTPUT Connection to POWER GROUND FILTER on internal or CAPACITOR bottom layer ANALOG GROUND TRACE POWER GROUND VIA to Ground Plane 16 Copyright©2011–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS54528

TPS54528 www.ti.com SLVSAY4C–JULY2011–REVISEDMARCH2014 11.3 Thermal Information This 8-terminal DDA package incorporates an exposed thermal pad that is designed to be directly connected to an external heatsink. The thermal pad must be soldered directly to the printed board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integratedcircuit(IC). For additional information on the exposed thermal pad and how to use the advantage of its heat dissipating abilities, see the Technical Brief, PowerPAD™ Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 andApplicationBrief, PowerPAD™MadeEasy,TexasInstrumentsLiteratureNo.SLMA004. Theexposedthermalpaddimensionsforthispackageareshowninthefollowingillustration. Figure18. ThermalPadDimensions Copyright©2011–2014,TexasInstrumentsIncorporated 17 ProductFolderLinks:TPS54528

TPS54528 SLVSAY4C–JULY2011–REVISEDMARCH2014 www.ti.com 12 Device and Documentation Support 12.1 Documentation Support 12.1.1 RelatedDocumentation D-CAP2TMFrequencyResponseModel,SLVA546 TPS54528EVM-052,5-A,SWIFT™RegulatorEvaluationModule,SLVU480 12.2 Trademarks D-CAP2,Eco-modearetrademarksofTexasInstruments. Blu-rayDiscisatrademarkofBlu-rayDiscAssociation. 12.3 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 12.4 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronymsanddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 18 Copyright©2011–2014,TexasInstrumentsIncorporated ProductFolderLinks:TPS54528

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) HPA01123DDAR ACTIVE SO PowerPAD DDA 8 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 54528 & no Sb/Br) TPS54528DDA ACTIVE SO PowerPAD DDA 8 75 Green (RoHS NIPDAU | SN Level-2-260C-1 YEAR -40 to 85 54528 & no Sb/Br) TPS54528DDAR ACTIVE SO PowerPAD DDA 8 2500 Green (RoHS NIPDAU | SN Level-2-260C-1 YEAR -40 to 85 54528 & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 17-Apr-2020 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TPS54528DDAR SO DDA 8 2500 330.0 12.8 6.4 5.2 2.1 8.0 12.0 Q1 Power PAD PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 17-Apr-2020 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TPS54528DDAR SOPowerPAD DDA 8 2500 366.0 364.0 50.0 PackMaterials-Page2

GENERIC PACKAGE VIEW DDA 8 PowerPAD TM SOIC - 1.7 mm max height PLASTIC SMALL OUTLINE Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4202561/G

None

None

None

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated