图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: TPS2561DRCT
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

TPS2561DRCT产品简介:

ICGOO电子元器件商城为您提供TPS2561DRCT由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TPS2561DRCT价格参考。Texas InstrumentsTPS2561DRCT封装/规格:PMIC - 配电开关,负载驱动器, Power Switch/Driver 1:2 N-Channel 2.5A 10-VSON (3x3)。您可以下载TPS2561DRCT参考资料、Datasheet数据手册功能说明书,资料中有TPS2561DRCT 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC POWER DIST SWITCH ADJ 10SON电源开关 IC - 配电 Dual Ch Prec Adj Current-Ltd Pwr Sw

DevelopmentKit

TPS2561DRCEVM-424

产品分类

PMIC - 电源分配开关集成电路 - IC

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

开关 IC,电源开关 IC - 配电,Texas Instruments TPS2561DRCT-

数据手册

点击此处下载产品Datasheet

产品型号

TPS2561DRCT

Rds(On)

44 毫欧

产品目录页面

点击此处下载产品Datasheet

产品种类

电源开关 IC - 配电

供应商器件封装

10-SON(3x3)

其它名称

296-25548-2

内部开关

包装

带卷 (TR)

商标

Texas Instruments

安装类型

表面贴装

安装风格

SMD/SMT

导通电阻—最大值

50 mOhms

封装

Reel

封装/外壳

10-VFDFN 裸露焊盘

封装/箱体

VSON-10

工作温度

-40°C ~ 85°C

工作电源电压

2.5 V to 6.5 V

工厂包装数量

250

开关数量

2 Switch

开关电流—最大值

2.5 A

开关类型

通用

最大功率耗散

2403 mW

最大工作温度

+ 85 C

最大输入电压

6.5 V

最小工作温度

- 40 C

标准包装

250

比率-输入:输出

1:2

特性

压摆率受控型

电压-负载

2.5 V ~ 6.5 V

电压-输入

2.5 V ~ 6.5 V

电流-输出(最大值)

250mA

电流限制

250 mA to 2.5 A

电源电压-最大

+ 7 V

电源电压-最小

- 0.3 V

电源电流

2.5 A

电源电流—最大值

125 uA

空闲时间—最大值

6 ms

类型

通用

系列

TPS2561

输入类型

非反相

输出数

2

输出电流

2.5 A

输出端数量

2 Output

输出类型

N 通道

运行时间—最大值

9 ms

推荐商品

型号:ISP742RIFUMA1

品牌:Infineon Technologies

产品名称:集成电路(IC)

获取报价

型号:VND5012AKTR-E

品牌:STMicroelectronics

产品名称:集成电路(IC)

获取报价

型号:MIC5842BWMTR

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:MIC2027-1YM

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:LTC1472CS#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:MC15XS3400DPNA

品牌:NXP USA Inc.

产品名称:集成电路(IC)

获取报价

型号:TPS2049D

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TPS2046BD

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
TPS2561DRCT 相关产品

BTS5231GS

品牌:Infineon Technologies

价格:

NCP382LD10AAR2G

品牌:ON Semiconductor

价格:

BTS500501EGAAUMA1

品牌:Infineon Technologies

价格:

BSP76 E6327

品牌:Infineon Technologies

价格:

MIC2562A-0BTS

品牌:Microchip Technology

价格:

MIC2007YM6TX

品牌:Microchip Technology

价格:

UDN2981A

品牌:None

价格:¥询价-¥询价

MC50XSD200BEKR2

品牌:NXP USA Inc.

价格:

PDF Datasheet 数据手册内容提取

Product Sample & Technical Tools & Support & Folder Buy Documents Software Community TPS2560,TPS2561 SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 TPS256x Dual Channel Precision Adjustable Current-limited Power Switches 1 Features 3 Description • TwoSeparateCurrentLimitingChannels The TPS2560 and TPS2561 are dual-channel power- 1 distribution switches intended for applications where • MeetsUSBCurrent-LimitingRequirements precision current limiting is required or heavy • AdjustableCurrentLimit,250mAto2.8A(typ) capacitive loads and short circuits are encountered. • ±7.5%Current-LimitAccuracyat2.8A These devices offer a programmable current-limit threshold between 250 mA and 2.8 A (typ) per • FastOvercurrentResponse-3.5-μs(typ) channel through an external resistor. The power- • Two44-mΩ High-SideMOSFETs switch rise and fall times are controlled to minimize • OperatingRange:2.5Vto6.5V currentsurgesduringturnonandoff. • 2-μAMaximumStandbySupplyCurrent Each channel of the TPS256x devices limit the output • Built-inSoft-Start current to a safe level by switching into a constant- current mode when the output load exceeds the • 15-kV/8-kVSystem-LevelESDCapable current-limit threshold. The FAULTx logic output for • ULListed– FileNo.E169910 each channel independently asserts low during • CBandNemkoCertified overcurrentandovertemperatureconditions. 2 Applications DeviceInformation(1) • USBPorts/Hubs PARTNUMBER PACKAGE BODYSIZE(NOM) TPS2560 • DigitalTV VSON(10) 3.00mm×3.00mm TPS2561 • Set-TopBoxes (1) For all available packages, see the orderable addendum at • VOIPPhones theendofthedatasheet. TypicalApplicationDiagram TPS2560/61 VIN=5V 0.1uF IN OUT1 VOUT1 2x R IN OUT2 FAULT VOUT2 100kΩ 24.9kΩ 2x150µF ILIM FAULT1 Faultx Signals FAULT2 GND EN1 Control Signals EN2 Thermal Pad 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

TPS2560,TPS2561 SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 www.ti.com Table of Contents 1 Features.................................................................. 1 9.4 DeviceFunctionalModes........................................11 2 Applications........................................................... 1 10 ApplicationandImplementation........................ 12 3 Description............................................................. 1 10.1 ApplicationInformation..........................................12 4 RevisionHistory..................................................... 2 10.2 TypicalApplication ...............................................13 5 DeviceComparisonTable..................................... 3 11 PowerSupplyRecommendations..................... 18 11.1 Self-PoweredandBus-PoweredHubs.................18 6 PinConfigurationandFunctions......................... 3 11.2 Low-PowerBus-PoweredandHigh-PowerBus- 7 Specifications......................................................... 4 PoweredFunctions..................................................18 7.1 AbsoluteMaximumRatings......................................4 12 Layout................................................................... 19 7.2 ESDRatings..............................................................4 12.1 LayoutGuidelines.................................................19 7.3 ESDRatings:Surge..................................................4 12.2 LayoutExample....................................................19 7.4 RecommendedOperatingConditions.......................4 12.3 PowerDissipation.................................................19 7.5 ThermalInformation..................................................5 13 DeviceandDocumentationSupport................. 21 7.6 ElectricalCharacteristics...........................................5 13.1 DocumentationSupport........................................21 7.7 DissipationRatings...................................................6 13.2 CommunityResources..........................................21 7.8 TypicalCharacteristics..............................................6 13.3 Trademarks...........................................................21 8 ParameterMeasurementInformation..................9 13.4 ElectrostaticDischargeCaution............................21 9 DetailedDescription............................................ 10 13.5 Glossary................................................................21 9.1 Overview.................................................................10 14 Mechanical,Packaging,andOrderable 9.2 FunctionalBlockDiagram.......................................10 Information........................................................... 21 9.3 FeatureDescription.................................................10 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionA(February2012)toRevisionB Page • AddedESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,ApplicationandImplementation section,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentationSupportsection,and Mechanical,Packaging,andOrderableInformationsection.................................................................................................. 1 ChangesfromOriginal(December2009)toRevisionA Page • ChangedV toV inRecommendedOperatingConditions............................................................................................. 4 ENx ENx • ChangedV toV inRecommendedOperatingConditions............................................................................................. 4 ENx ENx 2 SubmitDocumentationFeedback Copyright©2009–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 www.ti.com SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 5 Device Comparison Table 6 Pin Configuration and Functions DRCPackage 10-PinVSON TopView GND 1 10 FAULT1 IN 2 9 OUT1 IN 3 PAD 8 OUT2 EN1 4 7 ILIM EN2 5 6 FAULT2 PinFunctions PIN I/O DESCRIPTION NAME TPS2560 TPS2561 EN1 4 — I Enableinput,logiclowturnsonchannelonepowerswitch EN1 — 4 I Enableinput,logichighturnsonchannelonepowerswitch EN2 5 — I Enableinput,logiclowturnsonchanneltwopowerswitch EN2 — 5 I Enableinput,logichighturnsonchanneltwopowerswitch GND 1 1 — Groundconnection;connectexternallytothethermalpad Inputvoltage;connecta0.1μForgreaterceramiccapacitorfromINtoGNDas IN 2,3 2,3 I closetotheICaspossible. Active-lowopen-drainoutput,assertedduringovercurrentorovertemperature FAULT1 10 10 O conditiononchannelone. Active-lowopen-drainoutput,assertedduringovercurrentorovertemperature FAULT2 6 6 O conditiononchanneltwo OUT1 9 9 O Power-switchoutputforchannelone OUT2 8 8 O Power-switchoutputforchanneltwo Externalresistorusedtosetcurrent-limitthreshold; ILIM 7 7 O recommended20kΩ≤R ≤187kΩ. ILIM InternallyconnectedtoGND;usedtoheat-sinktheparttothecircuitboard Thermalpad PAD PAD — traces.ConnectthethermalpadtoGNDpinexternally. Copyright©2009–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1)(2) MIN MAX UNIT VoltageonIN,OUTx,ENxorENx,ILIM,FAULTx –0.3 7 V VoltagefromINtoOUTx –7 7 V Continuousoutputcurrent Internallylimited – Continuoustotalpowerdissipation SeeDissipationRatings – ContinuousFAULTxsinkcurrent 25 mA ILIMsourcecurrent Internallylimited – T Maximumjunctiontemperature –40 OTSD2(3) °C J (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) VoltagesarereferencedtoGNDunlessotherwisenoted. (3) Ambientovertemperatureshutdownthreshold 7.2 ESD Ratings VALUE UNIT Electrostatic Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±2000 V V (ESD) discharge Charged-devicemodel(CDM),perJEDECspecificationJESD22-C101(2) ±500 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 7.3 ESD Ratings: Surge VALUE UNIT Electrostatic IEC61000-4-2contactdischarge(1) ±8000 V V (ESD) discharge IEC61000-4-2air-gapdischarge(1) ±15000 (1) SurgesperEN61000-4-2.1999appliedtooutputterminalsofEVM.Thesearepassingtestlevels,notfailurethreshold. 7.4 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT V Inputvoltage 2.5 6.5 V IN V TPS2560enablevoltage 0 6.5 V ENx V TPS2561enablevoltage 0 6.5 V ENx V High-levelinputvoltageonENxorENx 1.1 V IH V Low-levelinputvoltageonENxorENx 0.66 V IL I Continuousoutputcurrentperchannel 0 2.5 A OUTx ContinuousFAULTxsinkcurrent 0 10 mA R Recommendedresistorlimit 20 187 kΩ ILIM T Operatingjunctiontemperature –40 125 °C J 4 SubmitDocumentationFeedback Copyright©2009–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 www.ti.com SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 7.5 Thermal Information TPS256x THERMALMETRIC(1) DRC(VSON) UNIT 10PINS R Junction-to-ambientthermalresistance 47.8 °C/W θJA R Junction-to-case(top)thermalresistance 66.2 °C/W θJC(top) R Junction-to-boardthermalresistance 22.4 °C/W θJB ψ Junction-to-topcharacterizationparameter 1.6 °C/W JT ψ Junction-to-boardcharacterizationparameter 22.6 °C/W JB R Junction-to-case(bottom)thermalresistance 4.9 °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report,SPRA953. 7.6 Electrical Characteristics overrecommendedoperatingconditions,V =0V,orV =V (unlessotherwisenoted) /ENx ENx IN PARAMETER TESTCONDITIONS(1) MIN TYP MAX UNIT POWERSWITCH Staticdrain-sourceon-stateresistanceper TJ=25°C 44 50 rDS(on) channel,INtoOUTx –40°C≤TJ≤125°C 70 mΩ tr Risetime,output C(sLexe=F1igμuFre,R1L2x)=100Ω VVIINN==62..55VV 21 32 43 ms tf Falltime,output C(sLexe=F1igμuFre,R1L2x)=100Ω VVIINN==62..55VV 00..64 00..86 10..08 ms ENABLEINPUT,ENOREN Enablepinturnon/offthreshold 0.66 1.1 V Hysteresis 55(2) mV IEN Inputcurrent VENx=0Vor6.5V,V/ENx=0Vor6.5V –0.5 0.5 μA ton Turnontime 9 ms CLx=1μF,RLx=100Ω,(seeFigure12) toff Turnofftime 6 ms CURRENTLIMIT Current-limitthresholdperchannel(Maximum RILIM=20kΩ 2590 2800 3005 IOS DCoutputcurrentIOUTxdeliveredtoload)and RILIM=61.9kΩ 800 900 1005 mA Short-circuitcurrent,OUTxconnectedtoGND RILIM=100kΩ 470 560 645 tIOS Responsetimetoshortcircuit VIN=5.0V,(seeFigure13) 3.5(2) μs (1) Pulse-testingtechniquesmaintainjunctiontemperatureclosetoambienttemperature;thermaleffectsmustbetakenintoaccount separately. (2) Theseparametersareprovidedforreferenceonly,anddonotconstitutepartofTI'spublishedspecificationsforpurposesofTI'sproduct warranty. Copyright©2009–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 www.ti.com Electrical Characteristics (continued) overrecommendedoperatingconditions,V =0V,orV =V (unlessotherwisenoted) /ENx ENx IN PARAMETER TESTCONDITIONS(1) MIN TYP MAX UNIT SUPPLYCURRENT IIN_off Supplycurrent,low-leveloutput VIN=6.5V,noloadonOUTx,VENx=6.5VorVENx=0V 0.1 2.0 μA RILIM=20kΩ 100 125 μA IIN_on Supplycurrent,high-leveloutput VIN=6.5V,noloadonOUT RILIM=100kΩ 85 110 μA IREV Reverseleakagecurrent VOUTx=6.5V,VIN=0V TJ=25°C 0.01 1.0 μA UNDERVOLTAGELOCKOUT UVLO Low-levelinputvoltage,IN VINrising 2.35 2.45 V Hysteresis,IN TJ=25°C 35 mV FAULTxFLAG VOL Outputlowvoltage,FAULTx IFAULTx=1mA 180 mV Off-stateleakage VFAULTx=6.5V 1 μA FAULTxdeglitch FAULTxassertionorde-assertionduetoovercurrentcondition 6 9 13 ms THERMALSHUTDOWN OTSD2 Thermalshutdownthreshold 155 °C OTSD Thermalshutdownthresholdincurrent-limit 135 °C Hysteresis 20(2) °C 7.7 Dissipation Ratings THERMAL THERMAL BOARD PACKAGE RESISTANCE(1) RESISTANCE TA≤25°C POWERRATING R R θJA θJC High-K(2) DRC 41.6°C/W 10.7°C/W 2403mW (1) MountingperthePowerPADTMThermallyEnhancedPackageapplicationreport(SLMA002) (2) TheJEDEChigh-K(2s2p)boardusedtoderivethisdatawasa3in×3in,multilayerboardwith1-ounceinternalpowerandground planesand2-ouncecoppertracesontopandbottomoftheboard. 7.8 Typical Characteristics VOUT1 5 V/div VOUT1 5 V/div VOUT2 5 V/div VOUT2 5 V/div VEN1_bar VEN1_bar 5 V/div VEN1_bar= VEN2_bar 5 V/div VEN1_bar= VEN2_bar IIN IIN 2A/div 2A/div t - Time - 2 ms/div t - Time - 2 ms/div Figure1.Turn-onDelayandRiseTime Figure2.Turn-offDelayandFallTime 6 SubmitDocumentationFeedback Copyright©2009–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 www.ti.com SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 Typical Characteristics (continued) VOUT1 VOUT1 5 V/div 5 V/div VOUT2 5 V/div VOUT2 5 V/div FAULT2_bar 5 V/div FAULT2_bar 5 V/div IIN IIN 2A/div 2A/div t - Time - 20 ms/div t - Time - 20 ms/div Figure3.Full-LoadtoShort-CircuitTransientResponse Figure4.Short-CircuittoFull-LoadRecoveryResponse 2.335 700 2.33 600 A UVLO - Undervoltage Lockout - V222...22333..201233.555123 UUVVLLOO RFaislliinngg Supply Current, Output Disabled - n 123450000000000 VIN= 6.5 V VIN= 2.5 V - N 2.295 II 0 2.29 -100 -50 0 50 100 150 -50 0 50 100 150 TJ- Junction Temperature - °C TJ- Junction Temperature - °C Figure5.UVLO–UndervoltageLockout–V Figure6.IIN–SupplyCurrent,OutputDisabled–nA 120 120 VIN= 5 V VIN= 6.5 V TJ= 125°C RILIM= 20kΩ Am 100 A110 I- Supply Current, Output Enabled -IN 24680000 VIN= 2.5 V VIN= 3.3 V RILIM= 20 kΩ ISupply Current vs. VIN Enabled -μIN107890000 TJ= 25°C TJ= -40°C 0 60 -50 0 50 100 150 2 3 4 5 6 7 TJ- Junction Temperature - °C Input Voltage - V Figure7.I –SupplyCurrent,OutputEnabled–µA Figure8.I –SupplyCurrent,OutputEnabled–µA IN IN Copyright©2009–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 www.ti.com Typical Characteristics (continued) 70 0.6 W m r- Static Drain-Source On-State Resistance - DS(on) 1234560000000-50 0 50 100 150 IDS - Static Drain-Source Current -A 00000.....0123540 5T0TATAA== 1= -2 42505°°°CCC 100 RILIM1=5 0100 kW 200 TJ- Junction Temperature - °C VIN- VOUT- mV/div Figure9.MOSFETr vsJunctionTemperature Figure10.SwitchCurrent DS(on) vsDrain-SourceVoltageAcrossSwitch 3.0 2.5 Source Current -A 12..50 TTJJ== 2-450°C°C Static Drain- 1.0 TJ= 125°C RILIM= 20kΩ DS - 0.5 I 0 0 50 100 150 200 VIN-VOUT- mV Figure11.SwitchCurrentvsDrain-SourceVoltageAcrossSwitch 8 SubmitDocumentationFeedback Copyright©2009–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 www.ti.com SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 8 Parameter Measurement Information OUTx RLx CLx V tr 90% 90% tf OUTx 10% 10% TESTCIRCUIT V ENx 50% 50% 50% 50% VENx toff t t t on off on 90% 90% VOUTx 10% VOUTx 10% VOLTAGEWAVEFORMS Figure12. TestCircuitandVoltageWaveforms I OS I OUTx t IOS Figure13. ResponseTimetoShortCircuitWaveform Decreasing Load Resistance V OUTx Decreasing Load Resistance I OUTx I OS Figure14. OutputVoltagevsCurrent-LimitThreshold Copyright©2009–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 www.ti.com 9 Detailed Description 9.1 Overview The TPS256x is a dual-channel, current-limited power-distribution switch using N-channel MOSFETs for applications where short circuits or heavy capacitive loads will be encountered. This device allows the user to program the current-limit threshold between 250 mA and 2.8 A (typ) per channel via an external resistor. This device incorporates an internal charge pump and gate drive circuitry necessary to drive the N-channel MOSFETs. The charge pump supplies power to the driver circuit for each channel and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.5 V and requires little supply current. The driver controls the gate voltage of the power switch. The driver incorporates circuitry that controls the rise and fall times of the output voltage to limit large current and voltage surges and provides built-in soft-start functionality. Each channel of the TPS256x limits the output current to the programmed current-limit threshold I during an overcurrent or short-circuit event by reducing the charge pump OS voltage driving the N-channel MOSFET and operating it in the linear range of operation. The result of limiting the output current to I reduces the output voltage at OUTx because the N-channel MOSFET is no longer fully OS enhanced. 9.2 Functional Block Diagram Current Sense IN CS OUT1 FAULT1 9-msDeglitch Thermal Charge Sense Pump EN1 Current Driver ILIM EN2 Limit UVLO Thermal FAULT2 Sense 9-msDeglitch GND CS OUT2 Current Sense 9.3 Feature Description 9.3.1 OvercurrentConditions The TPS256x responds to overcurrent conditions by limiting the output current per channel to I . When an OS overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly.Twopossibleoverloadconditionscanoccur. The first condition is when a short circuit or partial short circuit is present when the device is powered-up or enabled. The output voltage is held near zero potential with respect to ground and the TPS256x ramps the output current to I . The TPS256x devices will limit the current to I until the overload condition is removed or OS OS thedevicebeginstothermalcycle. 10 SubmitDocumentationFeedback Copyright©2009–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 www.ti.com SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 Feature Description (continued) The second condition is when a short circuit, partial short circuit, or transient overload occurs while the device is enabled and powered on. The device responds to the overcurrent condition within time t (see Figure 13). The IOS current-sense amplifier is overdriven during this time and momentarily disables the internal current-limit MOSFET.Thecurrent-senseamplifierrecoversandrampstheoutputcurrenttoI .Similartothepreviouscase, OS the TPS256x will limit the current to I until the overload condition is removed or the device begins to thermal OS cycle. The TPS256x thermal cycles if an overload condition is present long enough to activate thermal limiting in any of the above cases. The device turns off when the junction temperature exceeds 135°C (min) while in current limit. The device remains off until the junction temperature cools 20°C (typ) and then restarts. The TPS256x cycles on/offuntiltheoverloadisremoved(seeFigure4). 9.3.2 FAULTxResponse The FAULTx open-drain outputs are asserted (active low) on an individual channel during an overcurrent or overtemperature condition. The TPS256x asserts the FAULTx signal until the fault condition is removed and the device resumes normal operation on that channel. The TPS256x is designed to eliminate false FAULTx reporting by using an internal delay "deglitch" circuit (9-ms typ) for overcurrent conditions without the need for external circuitry. This ensures that FAULTx is not accidentally asserted due to normal operation such as starting into a heavy capacitive load. The deglitch circuitry delays entering and leaving current-limited induced fault conditions. The FAULTx signal is not deglitched when the MOSFET is disabled due to an overtemperature condition but is deglitched after the device has cooled and begins to turn on. This unidrectional deglitch prevents FAULTx oscillationduringanovertemperatureevent. 9.3.3 UndervoltageLockout(UVLO) Theundervoltagelockout(UVLO)circuitdisablesthepowerswitchuntiltheinputvoltagereachestheUVLOturn- onthreshold.Built-inhysteresispreventsunwantedon/offcyclingduetoinputvoltagedroopduringturnon. 9.3.4 Enable(ENxorENx) The logic enables control the power switches and device supply current. The supply current is reduced to less than 2-μA when a logic high is present on ENx or when a logic low is present on ENx. A logic low input on ENx or a logic high input on ENx enables the driver, control circuits, and power switches. The enable inputs are compatiblewithbothTTLandCMOSlogiclevels. 9.3.5 ThermalSense The TPS256x self protects by using two independent thermal sensing circuits that monitor the operating temperature of the power switch and disable operation if the temperature exceeds recommended operating conditions. Each channel of the TPS256x operates in constant-current mode during an overcurrent conditions, which increases the voltage drop across the power switch. The power dissipation in the package is proportional to the voltage drop across the power switch, which increases the junction temperature during an overcurrent condition. The first thermal sensor (OTSD) turns off the individual power switch channel when the die temperature exceeds 135°C (min) and the channel is in current limit. Hysteresis is built into the thermal sensor, andtheswitchturnsonafterthedevicehascooledapproximately20°C. The TPS256x also has a second ambient thermal sensor (OTSD2). The ambient thermal sensor turns off both power switch channels when the die temperature exceeds 155°C (min) regardless of whether the power switch channels are in current limit and will turn on the power switches after the device has cooled approximately 20°C. TheTPS256xcontinuestocycleoffandonuntilthefaultisremoved. 9.4 Device Functional Modes Therearenootherfunctionalmodes. Copyright©2009–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 www.ti.com 10 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 10.1 Application Information 10.1.1 Auto-RetryFunctionality Some applications require that an overcurrent condition disables the part momentarily during a fault condition andre-enablesafterapre-settime.Thisauto-retryfunctionalitycanbeimplementedwithanexternalresistorand capacitor. During a fault condition, FAULTx pulls ENx low disabling the part. The part is disabled when ENx is pulled below the turn-off threshold, and FAULTx goes high impedance allowing C to begin charging. The RETRY part re-enables when the voltage on ENx reaches the turn-on threshold, and the auto-retry time is determined by the resistor/capacitor time constant. The part will continue to cycle in this manner until the fault condition is removed. TPS2561 Input 0.1μF IN OUT1 VOUT1 R OUT2 VOUT2 FAULT 2x100kΩ 2xC LOAD ILIM FAULT1 RILIM 20kΩ EN1 GND FAULT2 C RETRY 2x0.22µF EN2 ThermalPad Figure15. Auto-RetryFunctionality Some applications require auto-retry functionality and the ability to enable/disable with an external logic signal. The figure below shows how an external logic signal can drive EN through R and maintain auto-retry FAULT functionality.Theresistor/capacitortimeconstantdeterminestheauto-retrytime-outperiod. TPS2561 Input 0.1μF IN OUT1 VOUT1 OUT2 VOUT2 ExternalLogic 2xC Signal&Drivers R LOAD FAULT 2x100kΩ ILIM FAULT1 RILIM 20kΩ EN1 GND FAULT2 C EN2 RETRY 2x0.22µF ThermalPad Figure16. Auto-RetryFunctionalityWithExternalENSignal 12 SubmitDocumentationFeedback Copyright©2009–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 www.ti.com SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 Application Information (continued) 10.1.2 Two-LevelCurrent-LimitCircuit Some applications require different current-limit thresholds depending on external system conditions. Figure 17 shows an implementation for an externally controlled, two-level current-limit circuit. The current-limit threshold is set by the total resistance from ILIM to GND (see previously discussed Programming the Current-Limit Threshold section). A logic-level input enables/disables MOSFET Q1 and changes the current-limit threshold by modifying the total resistance from ILIM to GND. Additional MOSFET/resistor combinations can be used in parallel to Q1/R2toincreasethenumberofadditionalcurrent-limitlevels. NOTE ILIMshouldneverbedrivendirectlywithanexternalsignal. TPS2560/61 2.5V–6.5V 0.1μF IN OUT1 VOUT1 2xR IN OUT2 FAULT VOUT2 100kΩ 2xC R1 LOAD Fault Signal FAULT1 187kΩ FaultSignal FAULT2 ILIM R2 Control Signal EN1 22.1kΩ Control Signal EN2 GND ThermalPad Q1 CurrentLimit Control Signal Figure17. Two-LevelCurrent-LimitCircuit 10.2 Typical Application TPS2560/61 VIN=5V 0.1uF IN OUT1 VOUT1 2x R IN OUT2 FAULT VOUT2 100kΩ 24.9kΩ 2x150µF ILIM FAULT1 Faultx Signals FAULT2 GND EN1 Control Signals EN2 Thermal Pad Figure18. TypicalApplicationCircuit 10.2.1 DesignRequirements SeethedesignparametersinTable1. Table1.DesignParameters PARAMETER VALUE Inputvoltage 5V Outputvoltage 5V Aboveaminimumcurrentlimit 2000mA Belowaminimumcurrentlimit 1000mA Copyright©2009–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 www.ti.com 10.2.2 DetailedDesignProcedure 10.2.2.1 InputandOutputCapacitance Input and output capacitance improves the performance of the device; the actual capacitance should be optimizedfortheparticularapplication.Forallapplications,a0.1μForgreaterceramicbypasscapacitorbetween IN and GND is recommended as close to the device as possible for local noise decoupling. This precaution reduces ringing on the input due to power-supply transients. Additional input capacitance may be needed on the input to reduce voltage overshoot from exceeding the absolute maximum voltage of the device during heavy transient conditions. This is especially important during bench testing when long, inductive cables are used to connecttheevaluationboardtothebenchpowersupply. Output capacitance is not required, but placing a high-value electrolytic capacitor on the output pin is recommendedwhenlargetransientcurrentsareexpectedontheoutput. 10.2.2.2 ProgrammingtheCurrent-LimitThreshold The overcurrent threshold is user programmable via an external resistor, R . R sets the current-limit ILIM ILIM threshold for both channels. The TPS256x use an internal regulation loop to provide a regulated voltage on the ILIM pin. The current-limit threshold is proportional to the current sourced out of ILIM. The recommended 1% resistor range for R is 20 kΩ ≤ R ≤ 187 kΩ to ensure stability of the internal regulation loop. Many ILIM ILIM applications require that the minimum current limit is above a certain current level or that the maximum current limit is below a certain current level, so it is important to consider the tolerance of the overcurrent threshold when selecting a value for R . The following equations calculates the resulting overcurrent threshold for a given ILIM externalresistorvalue(R ).ThetracesroutingtheR resistortotheTPS256xshouldbeasshortaspossible ILIM ILIM toreduceparasiticeffectsonthecurrent-limitaccuracy. I (mA)= 52850V OSmax R 0.957kW ILIM I (mA)= 56000V OSnom R kW ILIM I (mA)= 61200V OSmin RILIM1.056kW (1) 3000 2750 2500 A)2250 m ( d2000 ol h s1750 e r h T1500 mit 1250 Li nt-1000 e urr 750 I IOS(max) C OS(typ) 500 I OS(min) 250 0 20 30 40 50 60 70 80 90 100 110 120 130 140 150 R –Current Limit Resistor–kΩ ILIM Figure19. Current-LimitThresholdvsR ILIM 14 SubmitDocumentationFeedback Copyright©2009–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 www.ti.com SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 10.2.2.3 Application1:DesigningAboveaMinimumCurrentLimit Some applications require that current limiting cannot occur below a certain threshold. For this example, assume that 2 A must be delivered to the load so that the minimum desired current-limit threshold is 2000 mA. Use the I equationsandFigure19toselectR . OS ILIM I (mA)=2000mA OSmin I (mA)= 61200V OSmin R 1.056kW ILIM 1 RILIM(kW)= æççççèI6120m0VAö÷÷÷÷ø1.056 OSmin R (kW)=25.52kW ILIM (2) Selecttheclosest1%resistorlessthanthecalculatedvalue:R =25.5kΩ.Thissetstheminimumcurrent-limit ILIM threshold at 2 A . Use the I equations, Figure 19, and the previously calculated value for R to calculate the OS ILIM maximumresultingcurrent-limitthreshold. R (kW)=25.5kW ILIM 52850V I (mA)= OSmax R 0.957kW ILIM 52850V I (mA)= OSmax 25.50.957kW I (mA)=2382mA OSmax (3) Theresultingmaximumcurrent-limitthresholdis2382mAwitha25.5kΩ resistor. 10.2.2.4 Application2:DesigningBelowaMaximumCurrentLimit Some applications require that current limiting must occur below a certain threshold. For this example, assume that the desired upper current-limit threshold must be below 1000 mA to protect an up-stream power supply. Use theI equationsandFigure19toselectR . OS ILIM I (mA)=1000mA OSmax I (mA)= 52850V OSmax R 0.957kW ILIM 1 RILIM(kW)= æççççèI52850mVAö÷÷÷÷ø0.957 OSmax R (kW)=63.16kW ILIM (4) Select the closest 1% resistor greater than the calculated value: R = 63.4 kΩ. This sets the maximum current- ILIM limit threshold at 1000 mA . Use the I equations, Figure 19, and the previously calculated value for R to OS ILIM calculatetheminimumresultingcurrent-limitthreshold. R (kW)=63.4kW ILIM 61200V I (mA)= OSmin R 1.056kW ILIM 61200V I (mA)= OSmin 63.41.056kW I (mA)=765mA OSmin (5) Theresultingminimumcurrent-limitthresholdis765mAwitha63.4kΩ resistor. Copyright©2009–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 www.ti.com 10.2.2.5 AccountingforResistorTolerance The previous sections described the selection of R given certain application requirements and the importance ILIM of understanding the current-limit threshold tolerance. The analysis focused only on the TPS256x performance and assumed an exact resistor value. However, resistors sold in quantity are not exact and are bounded by an upper and lower tolerance centered around a nominal resistance. The additional R resistance tolerance ILIM directly affects the current-limit threshold accuracy at a system level. The following table shows a process that accounts for worst-case resistor tolerance assuming 1% resistor values. Step one follows the selection process outlined in the application examples above. Step two determines the upper and lower resistance bounds of the selected resistor. Step three uses the upper and lower resistor bounds in the I equations to calculate the OS threshold limits. It is important to use tighter tolerance resistors, e.g. 0.5% or 0.1%, when precision current limitingisdesired. Table2.CommonR ResistorSelections ILIM DESIRED 1%LOW 1%HIGH IOSACTUALLIMITS IDEAL CLOSEST1% NOMINAL RESISTOR RESISTOR CURRENTLIMIT RESISTOR RESISTOR TOLERANCE TOLERANCE MIN NOM MAX UNIT 300mA 186.7kΩ 187kΩ 185.1kΩ 188.9kΩ 241.6 299.5 357.3 mA 400mA 140.0kΩ 140kΩ 138.6kΩ 141.4kΩ 328.0 400.0 471.4 mA 600mA 93.3kΩ 93.1kΩ 92.2kΩ 94.0kΩ 504.6 601.5 696.5 mA 800mA 70.0kΩ 69.8kΩ 69.1kΩ 70.5kΩ 684.0 802.3 917.6 mA 1000mA 56.0kΩ 56.2kΩ 55.6kΩ 56.8kΩ 859.9 996.4 1129.1 mA 1200mA 46.7kΩ 46.4kΩ 45.9kΩ 46.9kΩ 1052.8 1206.9 1356.3 mA 1400mA 40.0kΩ 40.2kΩ 39.8kΩ 40.6kΩ 1225.0 1393.0 1555.9 mA 1600mA 35.0kΩ 34.8kΩ 34.5kΩ 35.1kΩ 1426.5 1609.2 1786.2 mA 1800mA 31.1kΩ 30.9kΩ 30.6kΩ 31.2kΩ 1617.3 1812.3 2001.4 mA 2000mA 28.0kΩ 28kΩ 27.7kΩ 28.3kΩ 1794.7 2000.0 2199.3 mA 2200mA 25.5kΩ 25.5kΩ 25.2kΩ 25.8kΩ 1981.0 2196.1 2405.3 mA 2400mA 23.3kΩ 23.2kΩ 23.0kΩ 23.4kΩ 2188.9 2413.8 2633.0 mA 2600mA 21.5kΩ 21.5kΩ 21.3kΩ 21.7kΩ 2372.1 2604.7 2831.9 mA 2800mA 20.0kΩ 20kΩ 19.8kΩ 20.2kΩ 2560.4 2800.0 3034.8 mA 16 SubmitDocumentationFeedback Copyright©2009–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 www.ti.com SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 10.2.3 ApplicationCurves VOUT1 5 V/div VOUT1 5 V/div VOUT2 5 V/div VOUT2 5 V/div VEN1_bar VEN1_bar 5 V/div VEN1_bar= VEN2_bar 5 V/div VEN1_bar= VEN2_bar IIN IIN 2A/div 2A/div t - Time - 2 ms/div t - Time - 2 ms/div Figure20.Turn-onDelayandRiseTime Figure21.Turn-offDelayandFallTime VOUT1 VOUT1 5 V/div 5 V/div VOUT2 5 V/div VOUT2 5 V/div FAULT2_bar 5 V/div FAULT2_bar 5 V/div IIN IIN 2A/div 2A/div t - Time - 20 ms/div t - Time - 20 ms/div Figure22.Full-LoadtoShort-CircuitTransientResponse Figure23.Short-CircuittoFull-LoadRecoveryResponse Copyright©2009–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 www.ti.com 11 Power Supply Recommendations 11.1 Self-Powered and Bus-Powered Hubs A SPH has a local power supply that powers embedded functions and downstream ports. This power supply must provide between 4.75 V to 5.25 V to downstream facing devices under full-load and no-load conditions. SPHs are required to have current-limit protection and must report overcurrent conditions to the USB controller. Typical SPHs are desktop PCs, monitors, printers, and stand-alone hubs. A BPH obtains all power from an upstream port and often contains an embedded function. It must power up with less than 100 mA. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This is accomplished by removing power or by shutting off the clock to theembeddedfunction.Powerswitchingtheembeddedfunctionisnotnecessaryiftheaggregatepowerdrawfor the function and controller is less than 100 mA. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from anupstreamport. 11.2 Low-Power Bus-Powered and High-Power Bus-Powered Functions Both low-power and high-power bus-powered functions obtain all power from upstream ports. Low-power functionsalwaysdrawlessthan100mA;high-powerfunctionsmustdrawlessthan100mAatpowerupandcan draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44 Ω and10μFatpowerup,thedevicemustimplementinrushcurrentlimiting. 18 SubmitDocumentationFeedback Copyright©2009–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 www.ti.com SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 12 Layout 12.1 Layout Guidelines • Place the 100-nF bypass capacitor near the IN and GND pins, and make the connections using a low- inductancetrace • Place a high-value electrolytic capacitor and a 100-nF bypass capacitor on the output pin is recommended whenlargetransientcurrentsareexpectedontheoutput • The traces routing the RILIM resistor to the device should be as short as possible to reduce parasitic effects onthecurrentlimitaccuracy • ThethermalpadshouldbedirectlyconnectedtoPCBgroundplaneusingwideandshortcoppertrace 12.2 Layout Example Figure24. LayoutRecommendation 12.3 Power Dissipation The low on-resistance of the N-channel MOSFET allows small surface-mount packages to pass large currents. It is good design practice to estimate power dissipation and junction temperature. The below analysis gives an approximation for calculating junction temperature based on the power dissipation in the package. However, it is important to note that thermal analysis is strongly dependent on additional system level factors. Such factors include air flow, board layout, copper thickness and surface area, and proximity to other devices dissipating power. Good thermal design practice must include all system level factors in addition to individual component analysis. Begin by determining the r of the N-channel MOSFET relative to the input voltage and operating DS(on) temperature. As an initial estimate, use the highest operating ambient temperature of interest and read r DS(on) from the typical characteristics graph. Using this value, the power dissipation can be calculated with Equation 6. ThisstepcalculatesthetotalpowerdissipationoftheN-channelMOSFET. P =(R ×I 2)+(R ×I 2) D DS(on) OUT1 DS(on) OUT2 where • P =Totalpowerdissipation(W) D • r =Powerswitchon-resistanceofonechannel(Ω) DS(on) • I =Maximumcurrent-limitthresholdsetbyR (A) (6) OUTx ILIM Copyright©2009–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 www.ti.com Power Dissipation (continued) Finally,calculatethejunctiontemperaturewithEquation7. T =P ×R +T J D θJA A where • T =Ambienttemperature(°C) A • R =Thermalresistance(°C/W) θJA • P =Totalpowerdissipation(W) (7) D Compare the calculated junction temperature with the initial estimate. If they are not within a few degrees, repeat the calculation using the "refined" r from the previous calculation as the new estimate. Two or three DS(on) iterations are generally sufficient to achieve the desired result. The final junction temperature is highly dependent on thermal resistance R , and thermal resistance is highly dependent on the individual package and board θJA layout. The Dissipation Ratings table provides example thermal resistances for specific packages and board layouts. 20 SubmitDocumentationFeedback Copyright©2009–2015,TexasInstrumentsIncorporated ProductFolderLinks:TPS2560 TPS2561

TPS2560,TPS2561 www.ti.com SLVS930B–DECEMBER2009–REVISEDDECEMBER2015 13 Device and Documentation Support 13.1 Documentation Support 13.1.1 RelatedLinks The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table3.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY TPS2560 Clickhere Clickhere Clickhere Clickhere Clickhere TPS2561 Clickhere Clickhere Clickhere Clickhere Clickhere 13.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 13.3 Trademarks E2EisatrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 13.4 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 13.5 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2009–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:TPS2560 TPS2561

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TPS2560DRCR ACTIVE VSON DRC 10 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 2560 & no Sb/Br) TPS2560DRCT ACTIVE VSON DRC 10 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 2560 & no Sb/Br) TPS2561DRCR ACTIVE VSON DRC 10 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 2561 & no Sb/Br) TPS2561DRCT ACTIVE VSON DRC 10 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 2561 & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TPS2561 : •Automotive: TPS2561-Q1 NOTE: Qualified Version Definitions: •Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 23-Mar-2020 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TPS2560DRCR VSON DRC 10 3000 330.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 TPS2560DRCR VSON DRC 10 3000 330.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 TPS2560DRCT VSON DRC 10 250 180.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 TPS2561DRCR VSON DRC 10 3000 330.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 TPS2561DRCT VSON DRC 10 250 180.0 12.4 3.3 3.3 1.1 8.0 12.0 Q2 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 23-Mar-2020 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TPS2560DRCR VSON DRC 10 3000 338.0 355.0 50.0 TPS2560DRCR VSON DRC 10 3000 367.0 367.0 35.0 TPS2560DRCT VSON DRC 10 250 210.0 185.0 35.0 TPS2561DRCR VSON DRC 10 3000 367.0 367.0 35.0 TPS2561DRCT VSON DRC 10 250 210.0 185.0 35.0 PackMaterials-Page2

GENERIC PACKAGE VIEW DRC 10 VSON - 1 mm max height PLASTIC SMALL OUTLINE - NO LEAD Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4204102-3/M

PACKAGE OUTLINE DRC0010J VSON - 1 mm max height SCALE 4.000 PLASTIC SMALL OUTLINE - NO LEAD 3.1 B A 2.9 PIN 1 INDEX AREA 3.1 2.9 1.0 C 0.8 SEATING PLANE 0.05 0.00 0.08 C 1.65 0.1 2X (0.5) (0.2) TYP EXPOSED 4X (0.25) THERMAL PAD 5 6 2X 11 SYMM 2 2.4 0.1 10 1 8X 0.5 0.30 10X 0.18 PIN 1 ID SYMM 0.1 C A B (OPTIONAL) 0.5 0.05 C 10X 0.3 4218878/B 07/2018 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance. www.ti.com

EXAMPLE BOARD LAYOUT DRC0010J VSON - 1 mm max height PLASTIC SMALL OUTLINE - NO LEAD (1.65) (0.5) 10X (0.6) 1 10 10X (0.24) 11 SYMM (2.4) (3.4) (0.95) 8X (0.5) 6 5 (R0.05) TYP ( 0.2) VIA TYP (0.25) (0.575) SYMM (2.8) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:20X 0.07 MIN 0.07 MAX EXPOSED METAL ALL AROUND ALL AROUND EXPOSED METAL SOLDER MASK METAL METAL UNDER SOLDER MASK OPENING SOLDER MASK OPENING NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4218878/B 07/2018 NOTES: (continued) 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. www.ti.com

EXAMPLE STENCIL DESIGN DRC0010J VSON - 1 mm max height PLASTIC SMALL OUTLINE - NO LEAD 2X (1.5) (0.5) SYMM EXPOSED METAL 11 TYP 10X (0.6) 1 10 (1.53) 10X (0.24) 2X (1.06) SYMM (0.63) 8X (0.5) 6 5 (R0.05) TYP 4X (0.34) 4X (0.25) (2.8) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL EXPOSED PAD 11: 80% PRINTED SOLDER COVERAGE BY AREA SCALE:25X 4218878/B 07/2018 NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated