ICGOO在线商城 > 集成电路(IC) > 数据采集 - 数模转换器 > TLV5628CDW
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
TLV5628CDW产品简介:
ICGOO电子元器件商城为您提供TLV5628CDW由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TLV5628CDW价格参考¥25.04-¥46.53。Texas InstrumentsTLV5628CDW封装/规格:数据采集 - 数模转换器, 8 位 数模转换器 8 16-SOIC。您可以下载TLV5628CDW参考资料、Datasheet数据手册功能说明书,资料中有TLV5628CDW 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC 8BIT 10US OCTAL DAC 16-SOIC数模转换器- DAC Octal 8bit D/A |
产品分类 | |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 数据转换器IC,数模转换器- DAC,Texas Instruments TLV5628CDW- |
数据手册 | |
产品型号 | TLV5628CDW |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=13240 |
产品目录页面 | |
产品种类 | 数模转换器- DAC |
位数 | 8 |
供应商器件封装 | 16-SOIC |
其它名称 | 296-3060-5 |
分辨率 | 8 bit |
制造商产品页 | http://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&orderablePartNumber=TLV5628CDW |
包装 | 管件 |
单位重量 | 420.400 mg |
商标 | Texas Instruments |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Tube |
封装/外壳 | 16-SOIC(0.295",7.50mm 宽) |
封装/箱体 | SOIC-16 |
工作温度 | 0°C ~ 70°C |
工厂包装数量 | 40 |
建立时间 | 10µs |
接口类型 | Serial (3-Wire) |
数据接口 | 串行 |
最大工作温度 | + 70 C |
最小工作温度 | 0 C |
标准包装 | 40 |
电压参考 | External |
电压源 | 单电源 |
电源电压-最大 | 5.25 V |
电源电压-最小 | 2.7 V |
积分非线性 | +/- 1 LSB |
稳定时间 | 10 us |
系列 | TLV5628 |
结构 | Resistor-String |
转换器数 | 8 |
转换器数量 | 1 |
输出数和类型 | 8 电压,单极 |
输出类型 | Voltage |
采样比 | 45 kSPs |
采样率(每秒) | 45k |
TLV5628C, TLV5628I OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995 (cid:1) Eight 8-Bit Voltage Output DACs DW OR N PACKAGE (cid:1) (TOP VIEW) 3-V Single Supply Operation (cid:1) Serial Interface DACB 1 16 DACC (cid:1) High-Impedance Reference Inputs DACA 2 15 DACD (cid:1) GND 3 14 REF1 Programmable for 1 or 2 Times Output DATA 4 13 LDAC Range (cid:1) CLK 5 12 LOAD Simultaneous Update Facility (cid:1) VDD 6 11 REF2 Internal Power-On Reset DACE 7 10 DACH (cid:1) Low Power Consumption DACF 8 9 DACG (cid:1) Half-Buffered Output applications (cid:1) Programmable Voltage Sources (cid:1) Digitally Controlled Amplifiers/Attenuators (cid:1) Mobile Communications (cid:1) Automatic Test Equipment (cid:1) Process Monitoring and Control (cid:1) Signal Synthesis description The TLV5628C and TLV5628I are octal 8-bit voltage output digital-to-analog converters (DACs) with buffered reference inputs (high impedance). The DACs produce an output voltage that varies between one or two times the reference voltages and GND, and the DACs are monotonic. The device is simple to use, running from a single supply of 3 to 3.6 V. A power-on reset function is incorporated to ensure repeatable start-up conditions. Digital control of the TLV5628C and TLV5628I is over a simple 3-wire serial bus that is CMOS compatible and easily interfaced to all popular microprocessor and microcontroller devices. The 12-bit command word comprises 8bits of data, 3 DAC select bits and a range bit, the latter allowing selection between the times 1 or times 2 output range. The DAC registers are double buffered, allowing a complete set of new values to be written to the device, then all DAC outputs are updated simultaneously through control of the LDAC terminal. The digital inputs feature Schmitt triggers for high noise immunity. The 16-terminal small-outline D package allows digital control of analog functions in space-critical applications. The TLV5628C is characterized for operation from 0°C to 70°C. The TLV5628I is characterized for operation from –40°C to 85°C. The TLV5628C and TLV5628I do not require external trimming. AVAILABLE OPTIONS PACKAGE SMALL OUTLINE PLASTIC DIP TA (DW) (N) 0°C to 70°C TLV5628CDW TLV5628CN –40°C to 85°C TLV5628IDW TLV5628IN Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Copyright 1995, Texas Instruments Incorporated Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1
TLV5628C, TLV5628I OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995 functional block diagram REF1 + – DAC + 9 Latch Latch 8 × 2 – DACA DAC + Latch Latch 8 × 2 – DACD REF2 + – DAC + Latch Latch 8 × 2 – DACE DAC + Latch Latch 8 × 2 – DACH CLK Serial LDAC Power-On DATA Interface Reset LOAD Terminal Functions TERMINAL II//OO DDEESSCCRRIIPPTTIIOONN NAME NO. CLK 5 I Serial-interface clock, data enters on the negative edge DACA 2 O DACA analog output DACB 1 O DACB analog output DACC 16 O DACC analog output DACD 15 O DACD analog output DACE 7 O DACE analog output DACF 8 O DACF analog output DACG 9 O DACG analog output DACH 10 O DACH analog output DATA 4 I Serial-interface digital data input GND 3 I Ground return and reference terminal LDAC 13 I DAC-update latch control LOAD 12 I Serial-interface load control REF1 14 I Reference voltage input to DACA REF2 11 I Reference voltage input to DACB VDD 6 I Positive supply voltage 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV5628C, TLV5628I OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995 detailed description The TLV5628 is implemented using eight resistor-string DACs. The core of each DAC is a single resistor with 256 taps, corresponding to the 256 possible codes listed in Table 1. One end of each resistor string is connected to the GND terminal and the other end is fed from the output of the reference input buffer. Monotonicity is maintained by use of the resistor strings. Linearity depends upon the matching of the resistor elements and upon the performance of the output buffer. Because the inputs are buffered, the DACs always present a high-impedance load to the reference sources. There are two input reference terminals; REF1 is used for DACA through DACD and REF2 is used by DACE through DACH. Each DAC output is buffered by a configurable-gain output amplifier, which can be programmed to times 1 or times 2 gain. On power-up, the DACs are reset to CODE 0. Each output voltage is given by: V (DACA|B|C|D|E|F|G|H)(cid:3)REF(cid:1)CODE(cid:1)(1(cid:2)RNG bit value) O 256 where CODE is in the range of 0 to 255 and the range (RNG) bit is a 0 or 1 within the serial-control word. data interface With LOAD high, data is clocked into the DATA terminal on each falling edge of CLK. Once all data bits have been clocked in, LOAD is pulsed low to transfer the data from the serial-input register to the selected DAC as shown in Figure 1. When LDAC is low, the selected DAC output voltage is updated and LOAD goes low. When LDAC is high during serial programming, the new value is stored within the device and can be transferred to the DAC output at a later time by pulsing LDAC low as shown in Figure 2. Data is entered MSB first. Data transfers using two 8 clock cycle periods are shown in Figures 3 and 4. CLK tsu(DATA-CLK) tsu(LOAD-CLK) tv(DATA-CLK) DATA A2 A1 A0 RNG D7 D6 D5 D4 D2 D1 D0 tsu(CLK-LOAD) tw(LOAD) LOAD DAC Update Figure 1. LOAD-Controlled Update (LDAC = Low) CLK tsu(DATA-CLK) tv(DATA-CLK) DATA A2 A1 A0 RNG D7 D6 D5 D4 D2 D1 D0 tsu(LOAD–LDAC) LOAD tw(LDAC) LDAC DAC Update Figure 2. LDAC-Controlled Update POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3
4 CLK Low S OT LA CL DCALTKAÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ A1 A0 RNGÎÎÎÎÎÎÎÎD7 D6 D5 D4 D3 D2 D1 D0ÎÎÎÎÎÎÎÎ S108A – JANUAR TAL 8-BITV5628C, T Template Y L R 1 DV e LLODAADC 995 – REV IGITA5628I lease IS L D Figure 3. Load Controlled Update Using 8-Bit Serial Word (LDAC = Low) ED -T a NOVE O-A te: 7 CLK Low MBE NA –1 R L 1 POS CLK 1995 OG –94 T OFFIC DATA ÎÎÎÎÎÎÎÎÎÎÎ A1 A0 RNGÎÎÎ D7 D6 D5 D4 D3 D2 D1 D0ÎÎÎÎÎ CON E ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎ B V OX E 6 R 5 53 LOAD T 03 E DAL• LDAC RS LA Figure 4. LDAC Controlled Update Using 8-Bit Serial Word S , T E X A S 7 5 2 6 5
TLV5628C, TLV5628I OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995 data interface (continued) Table 2 lists the A2, A1, and A0 bits and the selection of the updated DACs. The RNG bit controls the DAC output range. When RNG = low, the output range is between the applied reference voltage and GND, and when RNG = high, the range is between twice the applied reference voltage and GND. Table 1. Ideal Output Transfer D7 D6 D5 D4 D3 D2 D1 D0 OUTPUT VOLTAGE 0 0 0 0 0 0 0 0 GND 0 0 0 0 0 0 0 1 (1/256) × REF (1+RNG) • • • • • • • • • • • • • • • • • • 0 1 1 1 1 1 1 1 (127/256) × REF (1+RNG) 1 0 0 0 0 0 0 0 (128/256) × REF (1+RNG) • • • • • • • • • • • • • • • • • • 1 1 1 1 1 1 1 1 (255/256) × REF (1+RNG) Table 2. Serial Input Decode A2 A1 A0 DAC UPDATED 0 0 0 DACA 0 0 1 DACB 0 1 0 DACC 0 1 1 DACD 1 0 0 DACE 1 0 1 DACF 1 1 0 DACG 1 1 1 DACH POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5
TLV5628C, TLV5628I OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995 linearity, offset, and gain error When an amplifier is operated from a single supply, the voltage offset can still be either positive or negative. With a positive offset, the output voltage changes on the first code change. With a negative offset the output voltage may not change with the first code depending on the magnitude of the offset voltage. The output amplifier, with a negative voltage offset, attempts to drive the output to a negative voltage. However, since the most negative supply rail is ground, the output cannot drive to a negative voltage. So when the output offset voltage is negative, the output voltage remains at 0 volts until the input code value produces a sufficient output voltage to overcome the inherent negative offset voltage resulting in the transfer function shown in Figure 5. Output Voltage 0 V DAC Code Negative Offset Figure 5. Effect of Negative Offset (Single Supply) The negative offset error produces a breakpoint, not a linearity error. The transfer function would follow the dotted line if the output buffer could drive to a negative voltage. For a DAC, linearity is measured between zero input code (all inputs 0) and full scale code (all inputs 1) after offset and full scale is adjusted out or accounted for in some way. However, single supply operation does not allow for adjustment when the offset is negative due to the breakpoint in the transfer function. The linearity in the unipolar mode is measured between full scale code and the lowest code which produces a positive output voltage. The code is calculated from the maximum specification for the negative offset. equivalent inputs and outputs INPUT CIRCUIT OUTPUT CIRCUIT VDD VDD _ Input from Decoded DAC + DAC Register String Vref × 1 Voltage Output Input Output 84 kW To DAC Resistor Range × 2 ISINK String Select 60 m A 84 kW Typical GND GND 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV5628C, TLV5628I OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage (V – GND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V DD Digital input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND – 0.3 V to V + 0.3 V ID DD Reference input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND – 0.3 V to V + 0.3 V DD Operating free-air temperature range, T :TLV5628C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C A TLV5628I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50°C to 150°C stg Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230°C †Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. recommended operating conditions MIN NOM MAX UNIT Supply voltage, VDD 2.7 3.3 5.25 V High-level digital input voltage, VIH 0.8 VDD V Low-level digital input voltage, VIL 0.8 V Reference voltage, Vref [A|B|C|D|E|F|G|H], X1 gain VDD–1.5 V Load resistance, RL 10 kW Setup time, data input, tsu(DATA-CLK) (see Figures 1 and 2) 50 ns Valid time, data input valid after CLK↓, tv(DATA-CLK) (see Figures 1 and 2) 50 ns Setup time, CLK eleventh falling edge to LOAD, tsu(CLK-LOAD) (see Figure 1) 50 ns Setup time, LOAD↑ to CLK↓, tsu(LOAD-CLK) (see Figure 1) 50 ns Pulse duration, LOAD, tw(LOAD) (see Figure 1) 250 ns Pulse duration, LDAC, tw(LDAC) (see Figure 2) 250 ns Setup time, LOAD↑ to LDAC↓, tsu(LOAD-LDAC) (see Figure 2) 0 ns CLK frequency 1 MHz TLV5628C 0 70 °C OOppeerraattiinngg ffrreeee-aaiirr tteemmppeerraattuurree, TTAA TLV5628I –40 85 °C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7
TLV5628C, TLV5628I OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995 electrical characteristics over recommended operating free-air temperature range, V = 3 V to 3.6 V, V = 2 V, × 1 gain output range (unless otherwise noted) DD ref PARAMETER TEST CONDITIONS MIN TYP MAX UNIT IIH High-level digital input current VI = VDD ±10 m A IIL Low-level digital input current VI = 0 V ±10 m A IO(sink) Output sink current 20 m A EEaacchh DDAACC oouuttppuutt IO(source) Output source current 1 mA Input capacitance 15 CCii ppFF Reference input capacitance 15 IDD Supply current VDD = 3.3 V 4 mA Iref Reference input current VDD = 3.3 V, Vref = 1.5 V ±10 m A EL Linearity error (end point corrected) Vref = 1.25 V, ×2 gain (see Note 1) ±1 LSB ED Differential linearity error Vref = 1.25 V, ×2 gain (see Note 2) ±0.9 LSB EZS Zero-scale error Vref = 1.25 V, ×2 gain (see Note 3) 0 30 mV Zero-scale error temperature coefficient Vref = 1.25 V, ×2 gain (see Note 4) 10 m V/°C EFS Full-scale error Vref = 1.25 V, ×2 gain (see Note 5) ±60 mV Full-scale error temperature coefficient Vref = 1.25 V, ×2 gain (see Note 6) ±25 m V/°C PSRR Power supply sensitivity See Notes 7 and 8 0.5 mV/V NOTES: 1. Integral nonlinearity (INL) is the maximum deviation of the output from the line between zero-scale and full scale (excluding the effects of zero code and full-scale errors). 2. Differential nonlinearity (DNL) is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code. 3. Zero-scale error is the deviation from zero voltage output when the digital input code is zero. 4. Zero-scale error temperature coefficient is given by: ZSETC = [ZSE(Tmax) – ZSE(Tmin)]/Vref × 106/(Tmax – Tmin). 5. Full-scale error is the deviation from the ideal full-scale output (Vref – 1 LSB) with an output load of 10 kW. 6. Full-scale temperature coefficient is given by: FSETC = [FSE(Tmax) – FSE (Tmin)]/Vref × 106/(Tmax – Tmin). 7. Zero-scale error rejection ratio (ZSE-RR) is measured by varying the VDD voltage from 4.5 V to 5.5 V dc and measuring the effect of this signal on the zero-code output voltage. 8. Full-scale error rejection ratio (FSE-RR) is measured by varing the VDD voltage from 3 V to 3.6 V dc and measuring the effect of this signal on the full-scale output voltage. operating characteristics over recommended operating free-air temperature range, V = 3 V to 3.6 V, V = 2 V, × 1 gain output range (unless otherwise noted) DD ref TEST CONDITIONS MIN TYP MAX UNIT Output slew rate CL = 100 pF, RL = 10 kW 1 V/m s Output settling time To 0.5 LSB, CL = 100 pF, RL = 10 kW , See Note 9 10 m s Large-signal bandwidth Measured at –3 dB point 100 kHz Digital crosstalk CLK = 1-MHz square wave measured at DACA-DACH –50 dB Reference feedthrough See Note 10 –60 dB Channel-to-channel isolation See Note 11 –60 dB Reference input bandwidth See Note 12 100 kHz NOTES: 9. Settling time is the time for the output signal to remain within ±0.5 LSB of the final measured value for a digital input code change of 00 hex to FF hex or FF hex to 00 hex. For TLC5628C VDD = 5 V, Vref = 2 V and range = ×2. For TLC5628I VDD = 3 V, Vref = 1.25 V and range ×2. 10. Reference feedthrough is measured at any DAC output with an input code = 00 hex with a Vref input = 1 V dc + 1 VPP at 10 kHz. 11. Channel-to-channel isolation is measured by setting the input code of one DAC to FF hex and the code of all other DACs to 00 hex with Vref input = 1 V dc + 1 VPP at 10 kHz. 12. Reference bandwidth is a –3 dB bandwidth with an input at Vref = 1.25 V dc + 2 VPP and with a full-scale digital input code. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV5628C, TLV5628I OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995 PARAMETER MEASUREMENT INFORMATION TLV5628 DACA DACB • • 10 kW CL = 100 pF • DACH Figure 6. Slewing Settling Time and Linearity Measurements TYPICAL CHARACTERISTICS POSITIVE RISE TIME AND SETTLING TIME NEGATIVE FALL TIME AND SETTLING TIME 3 3 2.5 2.5 2 2 VDD = 3 V V V TA = 25°C – – Code FF to ge 1.5 ge 1.5 00 Hex olta olta Range = ×2 ut V 1 VDD = 3 V ut V 1 V(sreeef =N o1.t2e5 B V) utp TA = 25°C utp O 0.5 Code 00 to O 0.5 – FF Hex – O O V 0 Range = ×2 V 0 Vref = 1.25 V (see Note A) –0.5 –0.5 –1 –1 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 Time – m s Time – m s NOTE A: Rise time = 2.05 m s, positive slew rate = 0.96 V/m s, NOTE B: Fall time = 4.25 m s, negative slew rate = 0.46 (cid:2)(cid:1)m s, settling time = 4.5 m s. settling time = 8.5 m s. Figure 7 Figure 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9
TLV5628C, TLV5628I OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995 TYPICAL CHARACTERISTICS DAC OUTPUT VOLTAGE DAC OUTPUT VOLTAGE vs vs LOAD LOAD 3 1.6 2.8 1.4 V e – V 22..46 age – 1.2 ag olt Volt 2.2 ut V 1 Output 2 C Outp 0.8 DAC 1.8 – DA 0.6 – 1.6 O O VDD = 3 V, V 0.4 V 1.4 Vref = 1.5 V, VDD = 3 V, Range = 2x 0.2 Vref = 1.5 V, 1.2 Range = 1x 1 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Load – kW Load – kW Figure 9 Figure 10 SUPPLY CURRENT vs TEMPERATURE 1.2 Range = ×2 Input Code = 255 1.15 VDD = 3 V Vref 1.25 V A 1.1 m – nt 1.05 e r r u C 1 y pl p u 0.95 S – D D 0.9 I 0.85 0.8 –50 0 50 100 t – Temperature – °C Figure 11 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV5628C, TLV5628I OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995 APPLICATION INFORMATION TLV5628 _ VO DACA + DACB • R • • DACH NOTE A: Resistor R (cid:1) 10 kW Figure 12. Output Buffering Scheme POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11
TLV5628C, TLV5628I OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995 MECHANICAL DATA DW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 16 PIN SHOWN PINS ** 0.050 (1,27) 16 20 24 28 DIM 0.020 (0,51) 0.010 (0,25) M 0.410 0.510 0.610 0.710 0.014 (0,35) A MAX (10,41) (12,95) (15,49) (18,03) 16 9 0.400 0.500 0.600 0.700 A MIN (10,16) (12,70) (15,24) (17,78) 0.419 (10,65) 0.400 (10,15) 0.299 (7,59) 0.010 (0,25) NOM 0.293 (7,45) Gage Plane 0.010 (0,25) 1 8 0°–8° 0.050 (1,27) A 0.016 (0,40) Seating Plane 0.012 (0,30) 0.004 (0,10) 0.104 (2,65) MAX 0.004 (0,10) 4040000/B 10/94 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). D. Falls within JEDEC MS-013 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV5628C, TLV5628I OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995 MECHANICAL DATA N (R-PDIP-T**) PLASTIC DUAL-IN-LINE PACKAGE 16 PIN SHOWN A PINS ** 16 9 14 16 18 20 DIM 0.775 0.775 0.920 0.975 A MAX (19,69) (19,69) (23.37) (24,77) 0.260 (6,60) 0.240 (6,10) 0.745 0.745 0.850 0.940 A MIN (18,92) (18,92) (21.59) (23,88) 1 8 0.070 (1,78) MAX 0.310 (7,87) 0.035 (0,89) MAX 0.020 (0,51) MIN 0.290 (7,37) 0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN 0.100 (2,54) 0°–15° 0.021 (0,53) 0.010 (0,25) M 0.015 (0,38) 0.010 (0,25) NOM 14 Pin Only 4040049/C 7/95 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 (20-pin package is shorter than MS-001) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13
PACKAGE OPTION ADDENDUM www.ti.com 18-Jul-2006 PACKAGING INFORMATION OrderableDevice Status(1) Package Package Pins Package EcoPlan(2) Lead/BallFinish MSLPeakTemp(3) Type Drawing Qty TLV5628CDW ACTIVE SOIC DW 16 40 Green(RoHS& CUNIPDAU Level-1-260C-UNLIM noSb/Br) TLV5628CDWG4 ACTIVE SOIC DW 16 40 Green(RoHS& CUNIPDAU Level-1-260C-UNLIM noSb/Br) TLV5628CDWR ACTIVE SOIC DW 16 2000 Green(RoHS& CUNIPDAU Level-1-260C-UNLIM noSb/Br) TLV5628CDWRG4 ACTIVE SOIC DW 16 2000 Green(RoHS& CUNIPDAU Level-1-260C-UNLIM noSb/Br) TLV5628CN ACTIVE PDIP N 16 25 Pb-Free CUNIPD N/AforPkgType (RoHS) TLV5628CNE4 ACTIVE PDIP N 16 25 Pb-Free CUNIPD N/AforPkgType (RoHS) TLV5628IDW ACTIVE SOIC DW 16 40 Green(RoHS& CUNIPDAU Level-1-260C-UNLIM noSb/Br) TLV5628IDWG4 ACTIVE SOIC DW 16 40 Green(RoHS& CUNIPDAU Level-1-260C-UNLIM noSb/Br) TLV5628IDWR ACTIVE SOIC DW 16 2000 Green(RoHS& CUNIPDAU Level-1-260C-UNLIM noSb/Br) TLV5628IDWRG4 ACTIVE SOIC DW 16 2000 Green(RoHS& CUNIPDAU Level-1-260C-UNLIM noSb/Br) TLV5628IN ACTIVE PDIP N 16 25 Pb-Free CUNIPD N/AforPkgType (RoHS) TLV5628INE4 ACTIVE PDIP N 16 25 Pb-Free CUNIPD N/AforPkgType (RoHS) (1)Themarketingstatusvaluesaredefinedasfollows: ACTIVE:Productdevicerecommendedfornewdesigns. LIFEBUY:TIhasannouncedthatthedevicewillbediscontinued,andalifetime-buyperiodisineffect. NRND:Notrecommendedfornewdesigns.Deviceisinproductiontosupportexistingcustomers,butTIdoesnotrecommendusingthispartin anewdesign. PREVIEW:Devicehasbeenannouncedbutisnotinproduction.Samplesmayormaynotbeavailable. OBSOLETE:TIhasdiscontinuedtheproductionofthedevice. (2)EcoPlan-Theplannedeco-friendlyclassification:Pb-Free(RoHS),Pb-Free(RoHSExempt),orGreen(RoHS&noSb/Br)-pleasecheck http://www.ti.com/productcontentforthelatestavailabilityinformationandadditionalproductcontentdetails. TBD:ThePb-Free/Greenconversionplanhasnotbeendefined. Pb-Free(RoHS):TI'sterms"Lead-Free"or"Pb-Free"meansemiconductorproductsthatarecompatiblewiththecurrentRoHSrequirements forall6substances,includingtherequirementthatleadnotexceed0.1%byweightinhomogeneousmaterials.Wheredesignedtobesoldered athightemperatures,TIPb-Freeproductsaresuitableforuseinspecifiedlead-freeprocesses. Pb-Free(RoHSExempt):ThiscomponenthasaRoHSexemptionforeither1)lead-basedflip-chipsolderbumpsusedbetweenthedieand package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible)asdefinedabove. Green(RoHS&noSb/Br):TIdefines"Green"tomeanPb-Free(RoHScompatible),andfreeofBromine(Br)andAntimony(Sb)basedflame retardants(BrorSbdonotexceed0.1%byweightinhomogeneousmaterial) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incomingmaterialsandchemicals.TIandTIsuppliersconsidercertaininformationtobeproprietary,andthusCASnumbersandotherlimited informationmaynotbeavailableforrelease. Addendum-Page1
PACKAGE OPTION ADDENDUM www.ti.com 18-Jul-2006 InnoeventshallTI'sliabilityarisingoutofsuchinformationexceedthetotalpurchasepriceoftheTIpart(s)atissueinthisdocumentsoldbyTI toCustomeronanannualbasis. Addendum-Page2
PACKAGE MATERIALS INFORMATION www.ti.com 11-Mar-2008 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0(mm) B0(mm) K0(mm) P1 W Pin1 Type Drawing Diameter Width (mm) (mm) Quadrant (mm) W1(mm) TLV5628CDWR SOIC DW 16 2000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1 TLV5628IDWR SOIC DW 16 2000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 11-Mar-2008 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TLV5628CDWR SOIC DW 16 2000 346.0 346.0 33.0 TLV5628IDWR SOIC DW 16 2000 346.0 346.0 33.0 PackMaterials-Page2
IMPORTANTNOTICE TexasInstrumentsIncorporatedanditssubsidiaries(TI)reservetherighttomakecorrections,modifications,enhancements,improvements, andotherchangestoitsproductsandservicesatanytimeandtodiscontinueanyproductorservicewithoutnotice.Customersshould obtainthelatestrelevantinformationbeforeplacingordersandshouldverifythatsuchinformationiscurrentandcomplete.Allproductsare soldsubjecttoTI’stermsandconditionsofsalesuppliedatthetimeoforderacknowledgment. TIwarrantsperformanceofitshardwareproductstothespecificationsapplicableatthetimeofsaleinaccordancewithTI’sstandard warranty.TestingandotherqualitycontroltechniquesareusedtotheextentTIdeemsnecessarytosupportthiswarranty.Exceptwhere mandatedbygovernmentrequirements,testingofallparametersofeachproductisnotnecessarilyperformed. TIassumesnoliabilityforapplicationsassistanceorcustomerproductdesign.Customersareresponsiblefortheirproductsand applicationsusingTIcomponents.Tominimizetherisksassociatedwithcustomerproductsandapplications,customersshouldprovide adequatedesignandoperatingsafeguards. TIdoesnotwarrantorrepresentthatanylicense,eitherexpressorimplied,isgrantedunderanyTIpatentright,copyright,maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination,machine,orprocessinwhichTIproductsorservicesareused.Information publishedbyTIregardingthird-partyproductsorservicesdoesnotconstitutealicensefromTItousesuchproductsorservicesora warrantyorendorsementthereof.Useofsuchinformationmayrequirealicensefromathirdpartyunderthepatentsorotherintellectual propertyofthethirdparty,oralicensefromTIunderthepatentsorotherintellectualpropertyofTI. ReproductionofTIinformationinTIdatabooksordatasheetsispermissibleonlyifreproductioniswithoutalterationandisaccompanied byallassociatedwarranties,conditions,limitations,andnotices.Reproductionofthisinformationwithalterationisanunfairanddeceptive businesspractice.TIisnotresponsibleorliableforsuchaltereddocumentation.Informationofthirdpartiesmaybesubjecttoadditional restrictions. ResaleofTIproductsorserviceswithstatementsdifferentfromorbeyondtheparametersstatedbyTIforthatproductorservicevoidsall expressandanyimpliedwarrantiesfortheassociatedTIproductorserviceandisanunfairanddeceptivebusinesspractice.TIisnot responsibleorliableforanysuchstatements. TIproductsarenotauthorizedforuseinsafety-criticalapplications(suchaslifesupport)whereafailureoftheTIproductwouldreasonably beexpectedtocauseseverepersonalinjuryordeath,unlessofficersofthepartieshaveexecutedanagreementspecificallygoverning suchuse.Buyersrepresentthattheyhaveallnecessaryexpertiseinthesafetyandregulatoryramificationsoftheirapplications,and acknowledgeandagreethattheyaresolelyresponsibleforalllegal,regulatoryandsafety-relatedrequirementsconcerningtheirproducts andanyuseofTIproductsinsuchsafety-criticalapplications,notwithstandinganyapplications-relatedinformationorsupportthatmaybe providedbyTI.Further,BuyersmustfullyindemnifyTIanditsrepresentativesagainstanydamagesarisingoutoftheuseofTIproductsin suchsafety-criticalapplications. TIproductsareneitherdesignednorintendedforuseinmilitary/aerospaceapplicationsorenvironmentsunlesstheTIproductsare specificallydesignatedbyTIasmilitary-gradeor"enhancedplastic."OnlyproductsdesignatedbyTIasmilitary-grademeetmilitary specifications.BuyersacknowledgeandagreethatanysuchuseofTIproductswhichTIhasnotdesignatedasmilitary-gradeissolelyat theBuyer'srisk,andthattheyaresolelyresponsibleforcompliancewithalllegalandregulatoryrequirementsinconnectionwithsuchuse. TIproductsareneitherdesignednorintendedforuseinautomotiveapplicationsorenvironmentsunlessthespecificTIproductsare designatedbyTIascompliantwithISO/TS16949requirements.Buyersacknowledgeandagreethat,iftheyuseanynon-designated productsinautomotiveapplications,TIwillnotberesponsibleforanyfailuretomeetsuchrequirements. FollowingareURLswhereyoucanobtaininformationonotherTexasInstrumentsproductsandapplicationsolutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio DataConverters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband ClocksandTimers www.ti.com/clocks DigitalControl www.ti.com/digitalcontrol Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Military www.ti.com/military PowerMgmt power.ti.com OpticalNetworking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Telephony www.ti.com/telephony RF/IFandZigBee®Solutions www.ti.com/lprf Video&Imaging www.ti.com/video Wireless www.ti.com/wireless MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265 Copyright©2008,TexasInstrumentsIncorporated