图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: TLV5625CD
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

TLV5625CD产品简介:

ICGOO电子元器件商城为您提供TLV5625CD由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TLV5625CD价格参考¥16.75-¥34.17。Texas InstrumentsTLV5625CD封装/规格:数据采集 - 数模转换器, 8 位 数模转换器 2 8-SOIC。您可以下载TLV5625CD参考资料、Datasheet数据手册功能说明书,资料中有TLV5625CD 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC DUAL 8-BIT SERIAL D/A 8-SOIC数模转换器- DAC Dual 8bit DAC

产品分类

数据采集 - 数模转换器

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

数据转换器IC,数模转换器- DAC,Texas Instruments TLV5625CD-

数据手册

点击此处下载产品Datasheet

产品型号

TLV5625CD

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=13240

产品目录页面

点击此处下载产品Datasheet

产品种类

数模转换器- DAC

位数

8

供应商器件封装

8-SOIC

其它名称

296-2310-5

分辨率

8 bit

制造商产品页

http://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&orderablePartNumber=TLV5625CD

包装

管件

单位重量

76 mg

商标

Texas Instruments

安装类型

表面贴装

安装风格

SMD/SMT

封装

Tube

封装/外壳

8-SOIC(0.154",3.90mm 宽)

封装/箱体

SOIC-8

工作温度

0°C ~ 70°C

工厂包装数量

75

建立时间

3µs

接口类型

QSPI, SPI, Serial (3-Wire, Microwire)

数据接口

串行

最大工作温度

+ 70 C

最小工作温度

0 C

标准包装

75

电压参考

Internal or External

电压源

单电源

电源电压-最大

5.5 V

电源电压-最小

2.7 V

积分非线性

+/- 0.5 LSB

稳定时间

10 us

系列

TLV5625

结构

Resistor-String

转换器数

2

转换器数量

1

输出数和类型

2 电压,单极

输出类型

Voltage

采样比

93 kSPs

采样率(每秒)

93k

推荐商品

型号:TLC5628CDWR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LTC2627CDE-1#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:MAX547AEMH+

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:AD7543JNZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:LTC2656BIFE-L16#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:AD7245AARZ-REEL

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:MAX5109EEE+

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:MX7537JEWG+

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
TLV5625CD 相关产品

MAX5154BCEE+

品牌:Maxim Integrated

价格:

LTC2656BCUFD-H16#PBF

品牌:Linear Technology/Analog Devices

价格:

TLV5618AQDRG4

品牌:Texas Instruments

价格:

MAX5250ACAP

品牌:Maxim Integrated

价格:

LTC2635HMSE-LZ10#PBF

品牌:Linear Technology/Analog Devices

价格:

AD5764CSUZ

品牌:Analog Devices Inc.

价格:¥438.21-¥438.21

DAC121S101CIMK/NOPB

品牌:Texas Instruments

价格:¥7.85-¥16.01

AD5321BRM

品牌:Analog Devices Inc.

价格:¥询价-¥询价

PDF Datasheet 数据手册内容提取

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4) (cid:6)(cid:7)(cid:8)(cid:9)(cid:3) (cid:1)(cid:10) (cid:4)(cid:7)(cid:4)(cid:9)(cid:3) (cid:2)(cid:10)(cid:11)(cid:9)(cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:16)(cid:17)(cid:2) (cid:18)(cid:9)(cid:19)(cid:20)(cid:1) (cid:15)(cid:20)(cid:21)(cid:20)(cid:1)(cid:17)(cid:2)(cid:9)(cid:1)(cid:10)(cid:9)(cid:17)(cid:22)(cid:17)(cid:2)(cid:10)(cid:21) (cid:23)(cid:10)(cid:22)(cid:3)(cid:13)(cid:14)(cid:1)(cid:13)(cid:14) (cid:11)(cid:20)(cid:1)(cid:24) (cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:10)(cid:11)(cid:22) SLAS233D − JULY 1999 − REVISED JULY 2002 features applications (cid:1) (cid:1) Dual 8-Bit Voltage Output DAC Digital Servo Control Loops (cid:1) (cid:1) Programmable Internal Reference Digital Offset and Gain Adjustment (cid:1) (cid:1) Programmable Settling Time Industrial Process Control − 3 µs in Fast Mode (cid:1) Machine and Motion Control Devices − 10 µs in Slow Mode (cid:1) Mass Storage Devices (cid:1) Compatible With TMS320 and SPI Serial Ports (cid:1) Differential Nonlinearity <0.2 LSB Max D PACKAGE (cid:1) Monotonic Over Temperature (TOP VIEW) description DIN 1 8 VDD SCLK 2 7 OUTB The TLV5625 is a dual 8-bit voltage output DAC CS 3 6 REF with a flexible 3-wire serial interface. The serial OUTA 4 5 AGND interface is compatible with TMS320, SPI, QSPI, and Microwire serial ports. It is pro- grammed with a 16-bit serial string containing 4 control and 8 data bits. The resistor string output voltage is buffered by an x2 gain rail-to-rail output buffer. The buffer features a Class-AB output stage to improve stability and reduce settling time. The programmable settling time of the DAC allows the designer to optimize speed versus power dissipation. Implemented with a CMOS process, the device is designed for single supply operation from 2.7 V to 5.5 V. It is available in an 8-pin SOIC package in standard commercial and industrial temperature ranges. AVAILABLE OPTIONS PACKAGE TA SOIC (D) 0°C to 70°C TLV5625CD −40°C to 85°C TLV5625ID Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corporation. (cid:12)(cid:14)(cid:10)(cid:15)(cid:16)(cid:23)(cid:1)(cid:20)(cid:10)(cid:22) (cid:15)(cid:17)(cid:1)(cid:17) (cid:25)(cid:26)(cid:27)(cid:28)(cid:29)(cid:30)(cid:31)!(cid:25)(cid:28)(cid:26) (cid:25)" #$(cid:29)(cid:29)%(cid:26)! (cid:31)" (cid:28)(cid:27) &$’((cid:25)#(cid:31)!(cid:25)(cid:28)(cid:26) )(cid:31)!%(cid:7) Copyright  2002, Texas Instruments Incorporated (cid:12)(cid:29)(cid:28))$#!" #(cid:28)(cid:26)(cid:27)(cid:28)(cid:29)(cid:30) !(cid:28) "&%#(cid:25)(cid:27)(cid:25)#(cid:31)!(cid:25)(cid:28)(cid:26)" &%(cid:29) !*% !%(cid:29)(cid:30)" (cid:28)(cid:27) (cid:1)%+(cid:31)" (cid:20)(cid:26)"!(cid:29)$(cid:30)%(cid:26)!" "!(cid:31)(cid:26))(cid:31)(cid:29)) ,(cid:31)(cid:29)(cid:29)(cid:31)(cid:26)!-(cid:7) (cid:12)(cid:29)(cid:28))$#!(cid:25)(cid:28)(cid:26) &(cid:29)(cid:28)#%""(cid:25)(cid:26). )(cid:28)%" (cid:26)(cid:28)! (cid:26)%#%""(cid:31)(cid:29)(cid:25)(- (cid:25)(cid:26)#($)% !%"!(cid:25)(cid:26). (cid:28)(cid:27) (cid:31)(( &(cid:31)(cid:29)(cid:31)(cid:30)%!%(cid:29)"(cid:7) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4) (cid:6)(cid:7)(cid:8)(cid:9)(cid:3) (cid:1)(cid:10) (cid:4)(cid:7)(cid:4)(cid:9)(cid:3) (cid:2)(cid:10)(cid:11)(cid:9)(cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:16)(cid:17)(cid:2) (cid:18)(cid:9)(cid:19)(cid:20)(cid:1) (cid:15)(cid:20)(cid:21)(cid:20)(cid:1)(cid:17)(cid:2)(cid:9)(cid:1)(cid:10)(cid:9)(cid:17)(cid:22)(cid:17)(cid:2)(cid:10)(cid:21) (cid:23)(cid:10)(cid:22)(cid:3)(cid:13)(cid:14)(cid:1)(cid:13)(cid:14) (cid:11)(cid:20)(cid:1)(cid:24) (cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:10)(cid:11)(cid:22) SLAS233D − JULY 1999 − REVISED JULY 2002 functional block diagram REF AGND VDD Power-On Power and Reset Speed Control 2 x2 OUTA DIN 8 8-Bit 8 DAC A Latch SCLK Serial Interface 8 and Buffer CS Control 8 8 8-Bit DAC B Latch x2 OUTB Terminal Functions TERMINAL II//OO//PP DDEESSCCRRIIPPTTIIOONN NAME NO. AGND 5 P Ground CS 3 I Chip select. Digital input active low, used to enable/disable inputs. DIN 1 I Digital serial data input OUTA 4 O DAC A analog voltage output OUTB 7 O DAC B analog voltage output REF 6 I Analog reference voltage input SCLK 2 I Digital serial clock input VDD 8 P Positive power supply 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4) (cid:6)(cid:7)(cid:8)(cid:9)(cid:3) (cid:1)(cid:10) (cid:4)(cid:7)(cid:4)(cid:9)(cid:3) (cid:2)(cid:10)(cid:11)(cid:9)(cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:16)(cid:17)(cid:2) (cid:18)(cid:9)(cid:19)(cid:20)(cid:1) (cid:15)(cid:20)(cid:21)(cid:20)(cid:1)(cid:17)(cid:2)(cid:9)(cid:1)(cid:10)(cid:9)(cid:17)(cid:22)(cid:17)(cid:2)(cid:10)(cid:21) (cid:23)(cid:10)(cid:22)(cid:3)(cid:13)(cid:14)(cid:1)(cid:13)(cid:14) (cid:11)(cid:20)(cid:1)(cid:24) (cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:10)(cid:11)(cid:22) SLAS233D − JULY 1999 − REVISED JULY 2002 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage (V to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V DD Reference input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to V + 0.3 V DD Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to V + 0.3 V DD Operating free-air temperature range, T :TLV5625C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C A TLV5625I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C stg Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C †Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. recommended operating conditions MIN NOM MAX UNIT VDD = 5 V 4.5 5 5.5 SSuuppppllyy vvoollttaaggee,, VVDDDD VV VDD = 3 V 2.7 3 3.3 Power on reset, POR 0.55 2 V VDD = 2.7 V 2 HHiigghh--lleevveell ddiiggiittaall iinnppuutt vvoollttaaggee,, VVIIHH VV VDD = 5.5 V 2.4 VDD = 2.7 V 0.6 LLooww--lleevveell ddiiggiittaall iinnppuutt vvoollttaaggee,, VVIILL VV VDD = 5.5 V 1 VDD = 5 V (see Note 1) AGND 2.048 VDD−1.5 V RReeffeerreennccee vvoollttaaggee,, VVrreeff ttoo RREEFF tteerrmmiinnaall VDD = 3 V (see Note 1) AGND 1.024 VDD−1.5 V Load resistance, RL 2 kΩ Load capacitance, CL 100 pF Clock frequency, fCLK 20 MHz TLV5625C 0 70 OOppeerraattiinngg ffrreeee--aaiirr tteemmppeerraattuurree,, TTAA °°CC TLV5625I −40 85 NOTE 1: Due to the x2 output buffer, a reference input voltage ≥ (VDD−0.4 V)/2 causes clipping of the transfer function. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4) (cid:6)(cid:7)(cid:8)(cid:9)(cid:3) (cid:1)(cid:10) (cid:4)(cid:7)(cid:4)(cid:9)(cid:3) (cid:2)(cid:10)(cid:11)(cid:9)(cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:16)(cid:17)(cid:2) (cid:18)(cid:9)(cid:19)(cid:20)(cid:1) (cid:15)(cid:20)(cid:21)(cid:20)(cid:1)(cid:17)(cid:2)(cid:9)(cid:1)(cid:10)(cid:9)(cid:17)(cid:22)(cid:17)(cid:2)(cid:10)(cid:21) (cid:23)(cid:10)(cid:22)(cid:3)(cid:13)(cid:14)(cid:1)(cid:13)(cid:14) (cid:11)(cid:20)(cid:1)(cid:24) (cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:10)(cid:11)(cid:22) SLAS233D − JULY 1999 − REVISED JULY 2002 electrical characteristics over recommended operating conditions (unless otherwise noted) power supply PARAMETER TEST CONDITIONS MIN TYP MAX UNIT NNoo llooaadd,, AAllll iinnppuuttss == AAGGNNDD oorr Fast 1.8 2.3 IIIDDDDDDDD PPPooowwweeerrr sssuuupppppplllyyy cccuuurrrrrreeennnttt VVVDDDDDD,,, DDDAAACCC lllaaatttccchhh === 000xxx888000000 SSSlllooowww 000...888 111 mmmAAA Power-down supply current 1 3 µA Zero scale, See Note 2 −65 PPSSRRRR PPoowweerr ssuuppppllyy rreejjeeccttiioonn rraattiioo ddBB Full scale, See Note 3 −65 NOTES: 2. Power supply rejection ratio at zero scale is measured by varying VDD and is given by: PSRR = 20 log [(EZS(VDDmax) − EZS(VDDmin)/VDDmax] 3. Power supply rejection ratio at full scale is measured by varying VDD and is given by: PSRR = 20 log [(EG(VDDmax) − EG(VDDmin)/VDDmax] static DAC specifications PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Resolution 8 bits INL Integral nonlinearity See Note 4 ±0.3 ±0.5 LSB DNL Differential nonlinearity See Note 5 ±0.07 ±0.2 LSB EZS Zero-scale error (offset error at zero scale) See Note 6 ±12 mV EZS TC Zero-scale-error temperature coefficient See Note 7 10 ppm/°C % full EG Gain error See Note 8 ±0.5 scale V EG TC Gain-error temperature coefficient See Note 9 10 ppm/°C NOTES: 4. The relative accuracy of integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum deviation of the output from the line between zero and full scale, excluding the effects of zero-code and full-scale errors. 5. The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the measured and ideal 1-LSB amplitude change of any two adjacent codes. 6. Zero-scale error is the deviation from zero voltage output when the digital input code is zero. 7. Zero-scale error temperature coefficient is given by: EZS TC = [EZS (Tmax) − EZS (Tmin)]/2Vref ×106/(Tmax − Tmin). 8. Gain error is the deviation from the ideal output (2Vref − 1 LSB) with an output load of 10 kΩ. 9. Gain temperature coefficient is given by: EG TC = [EG (Tmax) − Eg (Tmin)]/2Vref ×106/(Tmax − Tmin). output specifications PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VO Output voltage range RL = 10 kΩ 0 VDD−0.4 V Output load regulation accuracy VO = 4.096 V, 2.048 V RL = 2 kΩ ±0.29 % FS reference input PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VI Input voltage range 0 VDD−1.5 V RI Input resistance 10 MΩ CI Input capacitance 5 pF Fast 1.3 MHz RReeffeerreennccee iinnppuutt bbaannddwwiiddtthh RREEFF == 00..22 VVpppp ++ 11..002244 VV ddcc Slow 525 kHz Reference feedthrough REF = 1 Vpp at 1 kHz + 1.024 V dc (see Note 10) −80 dB NOTE 10:Reference feedthrough is measured at the DAC output with an input code = 0x000. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4) (cid:6)(cid:7)(cid:8)(cid:9)(cid:3) (cid:1)(cid:10) (cid:4)(cid:7)(cid:4)(cid:9)(cid:3) (cid:2)(cid:10)(cid:11)(cid:9)(cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:16)(cid:17)(cid:2) (cid:18)(cid:9)(cid:19)(cid:20)(cid:1) (cid:15)(cid:20)(cid:21)(cid:20)(cid:1)(cid:17)(cid:2)(cid:9)(cid:1)(cid:10)(cid:9)(cid:17)(cid:22)(cid:17)(cid:2)(cid:10)(cid:21) (cid:23)(cid:10)(cid:22)(cid:3)(cid:13)(cid:14)(cid:1)(cid:13)(cid:14) (cid:11)(cid:20)(cid:1)(cid:24) (cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:10)(cid:11)(cid:22) SLAS233D − JULY 1999 − REVISED JULY 2002 electrical characteristics over recommended operating conditions (unless otherwise noted) (Continued) digital inputs PARAMETER TEST CONDITIONS MIN TYP MAX UNIT IIH High-level digital input current VI = VDD 1 µA IIL Low-level digital input current VI = 0 V −1 µA Ci Input capacitance 8 pF analog output dynamic performance PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ttss((FFSS)) OOuuttppuutt sseettttlliinngg ttiimmee,, ffuullll ssccaallee RRSeLLe == N 11o00t ekk ΩΩ11,, CCLL == 110000 ppFF,, FSaloswt 13 130 µss ttss((CCCC)) OOuuttppuutt sseettttlliinngg ttiimmee,, ccooddee ttoo ccooddee RRSeLLe == N 11o00t ekk ΩΩ12,, CCLL == 110000 ppFF,, FSaloswt 12 µss SSRR SSlleeww rraattee RRLL == 1100 kkΩΩ,, CCLL == 110000 ppFF,, Fast 3 VV//µss See Note 13 Slow 0.5 DIN = 0 to 1, FCLK = 100 kHz, Glitch energy 5 nV−s CS = VDD SNR Signal-to-noise ratio 52 54 SINAD Signal-to-noise + distortion ffss == 110022 kkSSPPSS,, ffoouutt == 11 kkHHzz,, 48 49 THD Total harmonic distortion RRLL == 1100 kkΩ,, CCLL == 110000 ppFF −50 −48 ddBB SFDR Spurious free dynamic range 48 50 NOTES: 11. Settling time is the time for the output signal to remain within ±0.5 LSB of the final measured value for a digital input code change of 0x020 to 0xFDF and 0xFDF to 0x020 respectively. Not tested, assured by design. 12. Settling time is the time for the output signal to remain within ± 0.5 LSB of the final measured value for a digital input code change of one count. Not tested, assured by design. 13. Slew rate determines the time it takes for a change of the DAC output from 10% to 90% of full-scale voltage. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4) (cid:6)(cid:7)(cid:8)(cid:9)(cid:3) (cid:1)(cid:10) (cid:4)(cid:7)(cid:4)(cid:9)(cid:3) (cid:2)(cid:10)(cid:11)(cid:9)(cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:16)(cid:17)(cid:2) (cid:18)(cid:9)(cid:19)(cid:20)(cid:1) (cid:15)(cid:20)(cid:21)(cid:20)(cid:1)(cid:17)(cid:2)(cid:9)(cid:1)(cid:10)(cid:9)(cid:17)(cid:22)(cid:17)(cid:2)(cid:10)(cid:21) (cid:23)(cid:10)(cid:22)(cid:3)(cid:13)(cid:14)(cid:1)(cid:13)(cid:14) (cid:11)(cid:20)(cid:1)(cid:24) (cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:10)(cid:11)(cid:22) SLAS233D − JULY 1999 − REVISED JULY 2002 digital input timing requirements MIN NOM MAX UNIT tsu(CS−CK) Setup time, CS low before first negative SCLK edge 10 ns tsu(C16-CS) Setup time, 16th negative SCLK edge before CS rising edge 10 ns twH SCLK pulse width high 25 ns twL SCLK pulse width low 25 ns tsu(D) Setup time, data ready before SCLK falling edge 10 ns th(D) Hold time, data held valid after SCLK falling edge 10 ns timing requirements twL twH SCLK X 1 2 3 4 5 15 16 X tsu(D) th(D) DIN X D15 D14 D13 D12 D1 D0 X tsu(C16-CS) tsu(CS-CK) CS Figure 1. Timing Diagram 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4) (cid:6)(cid:7)(cid:8)(cid:9)(cid:3) (cid:1)(cid:10) (cid:4)(cid:7)(cid:4)(cid:9)(cid:3) (cid:2)(cid:10)(cid:11)(cid:9)(cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:16)(cid:17)(cid:2) (cid:18)(cid:9)(cid:19)(cid:20)(cid:1) (cid:15)(cid:20)(cid:21)(cid:20)(cid:1)(cid:17)(cid:2)(cid:9)(cid:1)(cid:10)(cid:9)(cid:17)(cid:22)(cid:17)(cid:2)(cid:10)(cid:21) (cid:23)(cid:10)(cid:22)(cid:3)(cid:13)(cid:14)(cid:1)(cid:13)(cid:14) (cid:11)(cid:20)(cid:1)(cid:24) (cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:10)(cid:11)(cid:22) SLAS233D − JULY 1999 − REVISED JULY 2002 TYPICAL CHARACTERISTICS OUTPUT VOLTAGE OUTPUT VOLTAGE vs vs LOAD CURRENT LOAD CURRENT 2.050 4.105 3 V Slow Mode, SOURCE VDD=3 V VDD=5 V VREF=1 V 5 V Slow Mode, SOURCE VREF=2 V 2.048 Full scale 4.100 Full scale V 2.046 3 V Fast Mode, SOURCE V 4.095 5 V Fast Mode, SOURCE − − e e g g a a olt 2.044 olt 4.090 V V ut ut p p ut 2.042 ut 4.085 O O − − O O V 2.040 V 4.080 2.038 4.075 2.036 4.070 0 −0.01−0.02 −0.5 −0.1 −0.2 −0.5 −0.8 −1 −2 0 −0.02−0.04 −0.1 −0.2 −0.4 −0.8 −1 −2 −4 Load Current - mA Load Current - mA Figure 2 Figure 3 OUTPUT VOLTAGE OUTPUT VOLTAGE vs vs LOAD CURRENT LOAD CURRENT 0.20 0.35 VDD=3 V VDD=5 V 0.18 VREF=1 V VREF=2 V Zero scale 0.30 Zero scale 0.16 3 V Slow Mode, SINK 5 V Slow Mode, SINK − V 0.14 − V 0.25 ut Voltage 00..1120 ut Voltage 0.20 p p ut 0.08 ut 0.15 O O − − 5 V Fast Mode, SINK O 0.06 O V 3 V Fast Mode, SINK V 0.10 0.04 0.05 0.02 0.00 0.00 0 0.01 0.02 0.05 0.1 0.2 0.5 0.8 1 2 0 0.02 0.04 0.1 0.2 0.4 0.8 1 2 4 Load Current - mA Load Current - mA Figure 4 Figure 5 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4) (cid:6)(cid:7)(cid:8)(cid:9)(cid:3) (cid:1)(cid:10) (cid:4)(cid:7)(cid:4)(cid:9)(cid:3) (cid:2)(cid:10)(cid:11)(cid:9)(cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:16)(cid:17)(cid:2) (cid:18)(cid:9)(cid:19)(cid:20)(cid:1) (cid:15)(cid:20)(cid:21)(cid:20)(cid:1)(cid:17)(cid:2)(cid:9)(cid:1)(cid:10)(cid:9)(cid:17)(cid:22)(cid:17)(cid:2)(cid:10)(cid:21) (cid:23)(cid:10)(cid:22)(cid:3)(cid:13)(cid:14)(cid:1)(cid:13)(cid:14) (cid:11)(cid:20)(cid:1)(cid:24) (cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:10)(cid:11)(cid:22) SLAS233D − JULY 1999 − REVISED JULY 2002 TYPICAL CHARACTERISTICS SUPPLY CURRENT SUPPLY CURRENT vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 1.8 1.8 VDD=3 V 1.6 VREF=1 V 1.6 Full scale Fast Mode Fast Mode VDD=5 V A 1.4 A 1.4 VREF=2 V m m Full scale nt − 1.2 nt − 1.2 e e r r ur 1.0 ur 1.0 C C y y pl 0.8 pl 0.8 p p u u S S − 0.6 Slow Mode − 0.6 Slow Mode D D D D I 0.4 I 0.4 0.2 0.2 0.0 0.0 −40 −20 0 20 40 60 80 100 120 −40 −20 0 20 40 60 80 100 120 TA - Free-Air Temperature - C TA - Free-Air Temperature - C Figure 6 Figure 7 TOTAL HARMONIC DISTORTION TOTAL HARMONIC DISTORTION vs vs FREQUENCY FREQUENCY 0 0 −10 VREF = 1 V + 1 VP/P Sinewave, −10 VREF = 1 V + 1 VP/P Sinewave, B Output Full Scale Output Full Scale d B on - −20 n - d −20 Distorti −30 stortio −30 onic −40 nic Di −40 3 V Slow Mode m o r −50 m −50 Ha 3 V Fast Mode ar Total −60 otal H −60 5 V Slow Mode HD - −70 5 V Fast Mode D - T −70 T H T −80 −80 −90 −90 1 10 100 1 10 100 f - Frequency - kHz f - Frequency - kHz Figure 8 Figure 9 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4) (cid:6)(cid:7)(cid:8)(cid:9)(cid:3) (cid:1)(cid:10) (cid:4)(cid:7)(cid:4)(cid:9)(cid:3) (cid:2)(cid:10)(cid:11)(cid:9)(cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:16)(cid:17)(cid:2) (cid:18)(cid:9)(cid:19)(cid:20)(cid:1) (cid:15)(cid:20)(cid:21)(cid:20)(cid:1)(cid:17)(cid:2)(cid:9)(cid:1)(cid:10)(cid:9)(cid:17)(cid:22)(cid:17)(cid:2)(cid:10)(cid:21) (cid:23)(cid:10)(cid:22)(cid:3)(cid:13)(cid:14)(cid:1)(cid:13)(cid:14) (cid:11)(cid:20)(cid:1)(cid:24) (cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:10)(cid:11)(cid:22) SLAS233D − JULY 1999 − REVISED JULY 2002 TYPICAL CHARACTERISTICS DIFFERENTIAL NONLINEARITY vs DIGITAL OUTPUT CODE B S 0.10 L − 0.08 y rit 0.06 a e 0.04 n nli 0.02 o N 0.00 ntial −0.02 e −0.04 r e Diff −0.06 − −0.08 NL −0.10 D 0 64 128 192 255 Digital Output Code Figure 10 INTEGRAL NONLINEARITY vs DIGITAL OUTPUT CODE 0.5 B LS 0.4 y − 0.3 rit 0.2 a e n 0.1 nli −0.0 o N al −0.1 gr −0.2 e nt −0.3 L − I −0.4 N −0.5 I 0 64 128 192 255 Digital Output Code Figure 11 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4) (cid:6)(cid:7)(cid:8)(cid:9)(cid:3) (cid:1)(cid:10) (cid:4)(cid:7)(cid:4)(cid:9)(cid:3) (cid:2)(cid:10)(cid:11)(cid:9)(cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:16)(cid:17)(cid:2) (cid:18)(cid:9)(cid:19)(cid:20)(cid:1) (cid:15)(cid:20)(cid:21)(cid:20)(cid:1)(cid:17)(cid:2)(cid:9)(cid:1)(cid:10)(cid:9)(cid:17)(cid:22)(cid:17)(cid:2)(cid:10)(cid:21) (cid:23)(cid:10)(cid:22)(cid:3)(cid:13)(cid:14)(cid:1)(cid:13)(cid:14) (cid:11)(cid:20)(cid:1)(cid:24) (cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:10)(cid:11)(cid:22) SLAS233D − JULY 1999 − REVISED JULY 2002 APPLICATION INFORMATION general function The TLV5625 is a dual 8-bit, single-supply DAC, based on a resistor-string architecture. It consists of a serial interface, a speed and power-down control logic, a resistor string, and a rail-to-rail output buffer. The output voltage (full scale determined by the reference) is given by: CODE 2REF [V] 2n Where REF is the reference voltage and CODE is the digital input value within the range of 0 to 2n−1, where 10 n=8 (bits). The 16-bit data word, consisting of control bits and the new DAC value, is illustrated in the data format section. A power-on reset initially resets the internal latches to a defined state (all bits zero). serial interface A falling edge of CS starts shifting the data bit-per-bit (starting with the MSB) to the internal register on the falling edges of SCLK. After 16 bits have been transferred or CS rises, the content of the shift register is moved to the target latches (DAC A, DAC B, BUFFER, CONTROL), depending on the control bits within the data word. Figure 2 shows examples of how to connect the TLV5625 to TMS320, SPI, and Microwire. TMS320 TLV5625 SPI TLV5625 Microwire TLV5625 DSP FSX CS I/O CS I/O CS DX DIN MOSI DIN SO DIN CLKX SCLK SCK SCLK SK SCLK Figure 12. Three-Wire Interface Notes on SPI and Microwire: Before the controller starts the data transfer, the software has to generate a falling edge on the pin connected to CS. If the word width is 8 bits (SPI and Microwire) two write operations must be performed to program the TLV5625. After the write operation(s), the holding registers or the control register are updated automatically on the 16th positive clock edge. serial clock frequency and update rate The maximum serial clock frequency is given by: f (cid:1) 1 (cid:1)20MHz sclkmax t (cid:2)t whmin wlmin The maximum update rate is: fupdatemax(cid:1)16(cid:3)t 1(cid:2)t (cid:4)(cid:1)1.25MHz whmin wlmin Note that the maximum update rate is just a theoretical value for the serial interface, as the settling time of the TLV5625 should also be considered. 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4) (cid:6)(cid:7)(cid:8)(cid:9)(cid:3) (cid:1)(cid:10) (cid:4)(cid:7)(cid:4)(cid:9)(cid:3) (cid:2)(cid:10)(cid:11)(cid:9)(cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:16)(cid:17)(cid:2) (cid:18)(cid:9)(cid:19)(cid:20)(cid:1) (cid:15)(cid:20)(cid:21)(cid:20)(cid:1)(cid:17)(cid:2)(cid:9)(cid:1)(cid:10)(cid:9)(cid:17)(cid:22)(cid:17)(cid:2)(cid:10)(cid:21) (cid:23)(cid:10)(cid:22)(cid:3)(cid:13)(cid:14)(cid:1)(cid:13)(cid:14) (cid:11)(cid:20)(cid:1)(cid:24) (cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:10)(cid:11)(cid:22) SLAS233D − JULY 1999 − REVISED JULY 2002 APPLICATION INFORMATION data format The 16-bit data word for the TLV5625 consists of two parts: (cid:1) Program bits (D15..D12) (cid:1) New data (D11..D4) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 R1 SPD PWR R0 MSB 8 Data bits LSB 0 0 0 0 SPD: Speed control bit 1 → fast mode 0 →slow mode PWR: Power control bit 1 → power down 0 → normal operation On power up, SPD and PWD are reset to 0 (slow mode and normal operation) The following table lists all possible combination of register-select bits: register-select bits R1 R0 REGISTER 0 0 Write data to DAC B and BUFFER 0 1 Write data to BUFFER 1 0 Write data to DAC A and update DAC B with BUFFER content 1 1 Reserved The meaning of the 12 data bits depends on the register. If one of the DAC registers or the BUFFER is selected, then the 12 data bits determine the new DAC value: examples of operation (cid:1) Set DAC A output, select fast mode: Write new DAC A value and update DAC A output: D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 1 0 0 New DAC A output value 0 0 0 0 The DAC A output is updated on the rising clock edge after D0 is sampled. (cid:1) Set DAC B output, select fast mode: Write new DAC B value to BUFFER and update DAC B output: D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 New BUFFER content and DAC B output value 0 0 0 0 The DAC A output is updated on the rising clock edge after D0 is sampled. (cid:1) Set DAC A value, set DAC B value, update both simultaneously, select slow mode: 1. Write data for DAC B to BUFFER: D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 New DAC B value 0 0 0 0 2. Write new DAC A value and update DAC A and B simultaneously: D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 New DAC A value 0 0 0 0 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4) (cid:6)(cid:7)(cid:8)(cid:9)(cid:3) (cid:1)(cid:10) (cid:4)(cid:7)(cid:4)(cid:9)(cid:3) (cid:2)(cid:10)(cid:11)(cid:9)(cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:16)(cid:17)(cid:2) (cid:18)(cid:9)(cid:19)(cid:20)(cid:1) (cid:15)(cid:20)(cid:21)(cid:20)(cid:1)(cid:17)(cid:2)(cid:9)(cid:1)(cid:10)(cid:9)(cid:17)(cid:22)(cid:17)(cid:2)(cid:10)(cid:21) (cid:23)(cid:10)(cid:22)(cid:3)(cid:13)(cid:14)(cid:1)(cid:13)(cid:14) (cid:11)(cid:20)(cid:1)(cid:24) (cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:10)(cid:11)(cid:22) SLAS233D − JULY 1999 − REVISED JULY 2002 APPLICATION INFORMATION examples of operation (continued) Both outputs are updated on the rising clock edge after D0 from the DAC A data word is sampled. (cid:1) Set power-down mode: D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X X 1 X X X X X X X X X X X X X X = Don’t care linearity, offset, and gain error using single ended supplies When an amplifier is operated from a single supply, the voltage offset can still be either positive or negative. With a positive offset, the output voltage changes on the first code change. With a negative offset, the output voltage may not change with the first code, depending on the magnitude of the offset voltage. The output amplifier attempts to drive the output to a negative voltage. However, because the most negative supply rail is ground, the output cannot drive below ground and clamps the output at 0 V. The output voltage then remains at zero until the input code value produces a sufficient positive output voltage to overcome the negative offset voltage, resulting in the transfer function shown in Figure 13. Output Voltage 0 V DAC Code Negative Offset Figure 13. Effect of Negative Offset (Single Supply) This offset error, not the linearity error, produces this breakpoint. The transfer function would have followed the dotted line if the output buffer could drive below the ground rail. For a DAC, linearity is measured between zero-input code (all inputs 0) and full-scale code (all inputs 1) after offset and full scale are adjusted out or accounted for in some way. However, single supply operation does not allow for adjustment when the offset is negative due to the breakpoint in the transfer function. So the linearity is measured between full-scale code and the lowest code that produces a positive output voltage. power-supply bypassing and ground management Printed-circuit boards that use separate analog and digital ground planes offer the best system performance. Wire-wrap boards do not perform well and should not be used. The two ground planes should be connected together at the low-impedance power-supply source. The best ground connection may be achieved by connecting the DAC AGND terminal to the system analog ground plane, making sure that analog ground currents are well managed and there are negligible voltage drops across the ground plane. A 0.1-µF ceramic-capacitor bypass should be connected between VDD and AGND and mounted with short leads as close as possible to the device. Use of ferrite beads may further isolate the system analog supply from the digital power supply. Figure 14 shows the ground plane layout and bypassing technique. 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4) (cid:6)(cid:7)(cid:8)(cid:9)(cid:3) (cid:1)(cid:10) (cid:4)(cid:7)(cid:4)(cid:9)(cid:3) (cid:2)(cid:10)(cid:11)(cid:9)(cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:16)(cid:17)(cid:2) (cid:18)(cid:9)(cid:19)(cid:20)(cid:1) (cid:15)(cid:20)(cid:21)(cid:20)(cid:1)(cid:17)(cid:2)(cid:9)(cid:1)(cid:10)(cid:9)(cid:17)(cid:22)(cid:17)(cid:2)(cid:10)(cid:21) (cid:23)(cid:10)(cid:22)(cid:3)(cid:13)(cid:14)(cid:1)(cid:13)(cid:14) (cid:11)(cid:20)(cid:1)(cid:24) (cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:10)(cid:11)(cid:22) SLAS233D − JULY 1999 − REVISED JULY 2002 APPLICATION INFORMATION Analog Ground Plane 1 8 2 7 0.1 µF 3 6 4 5 Figure 14. Power-Supply Bypassing definitions of specifications and terminology integral nonlinearity (INL) The relative accuracy or integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale errors. differential nonlinearity (DNL) The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code. zero-scale error (E ) ZS Zero-scale error is defined as the deviation of the output from 0 V at a digital input value of 0. gain error (E ) G Gain error is the error in slope of the DAC transfer function. signal-to-noise ratio + distortion (S/N+D) S/N+D is the ratio of the rms value of the output signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for S/N+D is expressed in decibels. spurious free dynamic range (SFDR) SFDR is the difference between the rms value of the output signal and the rms value of the largest spurious signal within a specified bandwidth. The value for SFDR is expressed in decibels. total harmonic distortion (THD) THD is the ratio of the rms sum of the first six harmonic components to the rms value of the fundamental signal and is expressed in decibels. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4) (cid:6)(cid:7)(cid:8)(cid:9)(cid:3) (cid:1)(cid:10) (cid:4)(cid:7)(cid:4)(cid:9)(cid:3) (cid:2)(cid:10)(cid:11)(cid:9)(cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:16)(cid:17)(cid:2) (cid:18)(cid:9)(cid:19)(cid:20)(cid:1) (cid:15)(cid:20)(cid:21)(cid:20)(cid:1)(cid:17)(cid:2)(cid:9)(cid:1)(cid:10)(cid:9)(cid:17)(cid:22)(cid:17)(cid:2)(cid:10)(cid:21) (cid:23)(cid:10)(cid:22)(cid:3)(cid:13)(cid:14)(cid:1)(cid:13)(cid:14) (cid:11)(cid:20)(cid:1)(cid:24) (cid:12)(cid:10)(cid:11)(cid:13)(cid:14) (cid:15)(cid:10)(cid:11)(cid:22) SLAS233D − JULY 1999 − REVISED JULY 2002 MECHANICAL DATA D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0.050 (1,27) 0.020 (0,51) 0.010 (0,25) M 0.014 (0,35) 14 8 0.008 (0,20) NOM 0.244 (6,20) 0.228 (5,80) 0.157 (4,00) 0.150 (3,81) Gage Plane 0.010 (0,25) 1 7 0°−(cid:1)8° 0.044 (1,12) A 0.016 (0,40) Seating Plane 0.010 (0,25) 0.004 (0,10) 0.069 (1,75) MAX 0.004 (0,10) PINS ** 8 14 16 DIM 0.197 0.344 0.394 A MAX (5,00) (8,75) (10,00) 0.189 0.337 0.386 A MIN (4,80) (8,55) (9,80) 4040047/D 10/96 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). D. Falls within JEDEC MS-012 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

IMPORTANTNOTICE TexasInstrumentsIncorporatedanditssubsidiaries(TI)reservetherighttomakecorrections,modifications,enhancements,improvements, andotherchangestoitsproductsandservicesatanytimeandtodiscontinueanyproductorservicewithoutnotice.Customersshould obtainthelatestrelevantinformationbeforeplacingordersandshouldverifythatsuchinformationiscurrentandcomplete.Allproductsare soldsubjecttoTI’stermsandconditionsofsalesuppliedatthetimeoforderacknowledgment. TIwarrantsperformanceofitshardwareproductstothespecificationsapplicableatthetimeofsaleinaccordancewithTI’sstandard warranty.TestingandotherqualitycontroltechniquesareusedtotheextentTIdeemsnecessarytosupportthiswarranty.Exceptwhere mandatedbygovernmentrequirements,testingofallparametersofeachproductisnotnecessarilyperformed. TIassumesnoliabilityforapplicationsassistanceorcustomerproductdesign.Customersareresponsiblefortheirproductsand applicationsusingTIcomponents.Tominimizetherisksassociatedwithcustomerproductsandapplications,customersshouldprovide adequatedesignandoperatingsafeguards. TIdoesnotwarrantorrepresentthatanylicense,eitherexpressorimplied,isgrantedunderanyTIpatentright,copyright,maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination,machine,orprocessinwhichTIproductsorservicesareused.Information publishedbyTIregardingthird-partyproductsorservicesdoesnotconstitutealicensefromTItousesuchproductsorservicesora warrantyorendorsementthereof.Useofsuchinformationmayrequirealicensefromathirdpartyunderthepatentsorotherintellectual propertyofthethirdparty,oralicensefromTIunderthepatentsorotherintellectualpropertyofTI. ReproductionofTIinformationinTIdatabooksordatasheetsispermissibleonlyifreproductioniswithoutalterationandisaccompanied byallassociatedwarranties,conditions,limitations,andnotices.Reproductionofthisinformationwithalterationisanunfairanddeceptive businesspractice.TIisnotresponsibleorliableforsuchaltereddocumentation.Informationofthirdpartiesmaybesubjecttoadditional restrictions. ResaleofTIproductsorserviceswithstatementsdifferentfromorbeyondtheparametersstatedbyTIforthatproductorservicevoidsall expressandanyimpliedwarrantiesfortheassociatedTIproductorserviceandisanunfairanddeceptivebusinesspractice.TIisnot responsibleorliableforanysuchstatements. TIproductsarenotauthorizedforuseinsafety-criticalapplications(suchaslifesupport)whereafailureoftheTIproductwouldreasonably beexpectedtocauseseverepersonalinjuryordeath,unlessofficersofthepartieshaveexecutedanagreementspecificallygoverning suchuse.Buyersrepresentthattheyhaveallnecessaryexpertiseinthesafetyandregulatoryramificationsoftheirapplications,and acknowledgeandagreethattheyaresolelyresponsibleforalllegal,regulatoryandsafety-relatedrequirementsconcerningtheirproducts andanyuseofTIproductsinsuchsafety-criticalapplications,notwithstandinganyapplications-relatedinformationorsupportthatmaybe providedbyTI.Further,BuyersmustfullyindemnifyTIanditsrepresentativesagainstanydamagesarisingoutoftheuseofTIproductsin suchsafety-criticalapplications. TIproductsareneitherdesignednorintendedforuseinmilitary/aerospaceapplicationsorenvironmentsunlesstheTIproductsare specificallydesignatedbyTIasmilitary-gradeor"enhancedplastic."OnlyproductsdesignatedbyTIasmilitary-grademeetmilitary specifications.BuyersacknowledgeandagreethatanysuchuseofTIproductswhichTIhasnotdesignatedasmilitary-gradeissolelyat theBuyer'srisk,andthattheyaresolelyresponsibleforcompliancewithalllegalandregulatoryrequirementsinconnectionwithsuchuse. TIproductsareneitherdesignednorintendedforuseinautomotiveapplicationsorenvironmentsunlessthespecificTIproductsare designatedbyTIascompliantwithISO/TS16949requirements.Buyersacknowledgeandagreethat,iftheyuseanynon-designated productsinautomotiveapplications,TIwillnotberesponsibleforanyfailuretomeetsuchrequirements. FollowingareURLswhereyoucanobtaininformationonotherTexasInstrumentsproductsandapplicationsolutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio DataConverters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband ClocksandTimers www.ti.com/clocks DigitalControl www.ti.com/digitalcontrol Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Military www.ti.com/military PowerMgmt power.ti.com OpticalNetworking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Telephony www.ti.com/telephony RF/IFandZigBee®Solutions www.ti.com/lprf Video&Imaging www.ti.com/video Wireless www.ti.com/wireless MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265 Copyright©2008,TexasInstrumentsIncorporated