ICGOO在线商城 > 集成电路(IC) > 数据采集 - 数模转换器 > TLV5616CD
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
TLV5616CD产品简介:
ICGOO电子元器件商城为您提供TLV5616CD由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TLV5616CD价格参考¥31.30-¥58.15。Texas InstrumentsTLV5616CD封装/规格:数据采集 - 数模转换器, 12 位 数模转换器 1 8-SOIC。您可以下载TLV5616CD参考资料、Datasheet数据手册功能说明书,资料中有TLV5616CD 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC 12-BIT SERIAL D/A 8-SOIC数模转换器- DAC 12bit DAC w/Pwr D |
产品分类 | |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 数据转换器IC,数模转换器- DAC,Texas Instruments TLV5616CD- |
数据手册 | |
产品型号 | TLV5616CD |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=13240 |
产品目录页面 | |
产品种类 | 数模转换器- DAC |
位数 | 12 |
供应商器件封装 | 8-SOIC |
其它名称 | 296-2301-5 |
分辨率 | 12 bit |
制造商产品页 | http://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&orderablePartNumber=TLV5616CD |
包装 | 管件 |
单位重量 | 76 mg |
商标 | Texas Instruments |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Tube |
封装/外壳 | 8-SOIC(0.154",3.90mm 宽) |
封装/箱体 | SOIC-8 |
工作温度 | 0°C ~ 70°C |
工厂包装数量 | 75 |
建立时间 | 9µs |
接口类型 | QSPI, SPI, Serial (3-Wire, 4-Wire, Microwire) |
数据接口 | 串行 |
最大工作温度 | + 70 C |
最小工作温度 | 0 C |
标准包装 | 75 |
电压参考 | External |
电压源 | 单电源 |
电源电压-最大 | 5.5 V |
电源电压-最小 | 2.7 V |
积分非线性 | +/- 4 LSB |
稳定时间 | 20 us |
系列 | TLV5616 |
结构 | Resistor-String |
转换器数 | 1 |
转换器数量 | 1 |
输出数和类型 | 1 电压,单极 |
输出类型 | Voltage |
采样比 | 102 kSPs |
采样率(每秒) | 102k |
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 (cid:1) (cid:1) 12-Bit Voltage Output DAC Voltage Output Range ... 2 Times the (cid:1) Programmable Settling Time vs Power Reference Input Voltage (cid:1) Consumption Monotonic Over Temperature 3 µs in Fast Mode (cid:1) Available in MSOP Package 9 µs in Slow Mode (cid:1) Ultra Low Power Consumption: applications 900 µW Typ in Slow Mode at 3 V (cid:1) Digital Servo Control Loops 2.1 mW Typ in Fast Mode at 3 V (cid:1) (cid:1) Digital Offset and Gain Adjustment Differential Nonlinearity...<0.5 LSB Typ (cid:1) (cid:1) Industrial Process Control Compatible With TMS320 and SPI Serial (cid:1) Machine and Motion Control Devices Ports (cid:1) (cid:1) Mass Storage Devices Power-Down Mode (10 nA) (cid:1) Buffered High-Impedance Reference Input description D, DGK, OR P PACKAGE (TOP VIEW) The TLV5616 is a 12-bit voltage output digital-to-analog converter (DAC) with a flexible DIN 1 8 VDD 4-wire serial interface. The 4-wire serial interface SCLK 2 7 OUT allows glueless interface to TMS320, SPI, QSPI, CS 3 6 REFIN and Microwire serial ports. The TLV5616 is FS 4 5 AGND programmed with a 16-bit serial string containing 4 control and 12 data bits. Developed for a wide range of supply voltages, the TLV5616 can operate from 2.7 V to 5.5 V. The resistor string output voltage is buffered by a x2 gain rail-to-rail output buffer. The buffer features a ClassAB output stage to improve stability and reduce settling time. The settling time of the DAC is programmable to allow the designer to optimize speed versus power dissipation. The settling time is chosen by the control bits within the 16-bit serial input string. A high-impedance buffer is integrated on the REFIN terminal to reduce the need for a low source impedance drive to the terminal. Implemented with a CMOS process, the TLV5616 is designed for single supply operation from 2.7 V to 5.5 V. The device is available in an 8-terminal SOIC package. The TLV5616C is characterized for operation from 0°C to 70°C. The TLV5616I is characterized for operation from −40°C to 85°C. AVAILABLE OPTIONS PACKAGE TA SMALL OUTLINE† MSOP PLASTIC DIP (D) (DGK) (P) 0°C to 70°C TLV5616CD TLV5616CDGK TLV5616CP −40°C to 85°C TLV5616ID TLV5616IDGK TLV5616IP †Available in tape and reel as the TLV5616CDR and the TLV5616IDR Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet. (cid:16)(cid:18)(cid:14)(cid:20)(cid:26)(cid:7)(cid:1)(cid:9)(cid:14)(cid:23) (cid:20)(cid:22)(cid:1)(cid:22) (cid:27)(cid:28)(cid:29)(cid:30)(cid:31)!"#(cid:27)(cid:30)(cid:28) (cid:27)$ %&(cid:31)(cid:31)’(cid:28)# "$ (cid:30)(cid:29) (&)*(cid:27)%"#(cid:27)(cid:30)(cid:28) +"#’(cid:11) Copyright 2002−2004, Texas Instruments Incorporated (cid:16)(cid:31)(cid:30)+&%#$ %(cid:30)(cid:28)(cid:29)(cid:30)(cid:31)! #(cid:30) $(’%(cid:27)(cid:29)(cid:27)%"#(cid:27)(cid:30)(cid:28)$ (’(cid:31) #,’ #’(cid:31)!$ (cid:30)(cid:29) (cid:1)’-"$ (cid:9)(cid:28)$#(cid:31)&!’(cid:28)#$ $#"(cid:28)+"(cid:31)+ ."(cid:31)(cid:31)"(cid:28)#/(cid:11) (cid:16)(cid:31)(cid:30)+&%#(cid:27)(cid:30)(cid:28) ((cid:31)(cid:30)%’$$(cid:27)(cid:28)0 +(cid:30)’$ (cid:28)(cid:30)# (cid:28)’%’$$"(cid:31)(cid:27)*/ (cid:27)(cid:28)%*&+’ #’$#(cid:27)(cid:28)0 (cid:30)(cid:29) "** ("(cid:31)"!’#’(cid:31)$(cid:11) WWW.TI.COM 1
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 functional block diagram _ 6 REFIN + 1 Serial Input 14 12 DIN Register 12-Bit Data 12 7 x2 OUT Latch 2 SCLK 3 16 Cycle Update CS Timer 4 FS Power-On 2 Reset Speed/Power-Down Logic Terminal Functions TERMINAL II//OO DDEESSCCRRIIPPTTIIOONN NAME NO. AGND 5 Analog ground CS 3 I Chip select. Digital input used to enable and disable inputs, active low. DIN 1 I Serial digital data input FS 4 I Frame sync. Digital input used for 4-wire serial interfaces such as the TMS320 DSP interface. OUT 7 O DAC analog output REFIN 6 I Reference analog input voltage SCLK 2 I Serial digital clock input VDD 8 Positive power supply 2 WWW.TI.COM
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage (V to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V DD Reference input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to V + 0.3 V DD Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to V + 0.3 V DD Operating free-air temperature range, T :TLV5616C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C A TLV5616I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C stg Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C †Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. recommended operating conditions MIN NOM MAX UNIT VDD = 5 V 4.5 5 5.5 V SSuuppppllyy vvoollttaaggee,, VVDDDD VDD = 3 V 2.7 3 3.3 V DVDD = 2.7 V 2 V HHiigghh--lleevveell ddiiggiittaall iinnppuutt vvoollttaaggee,, VVIIHH DVDD = 5.5 V 2.4 V DVDD = 2.7 V 0.6 V LLooww--lleevveell ddiiggiittaall iinnppuutt vvoollttaaggee,, VVIILL DVDD = 5.5 V 1 V Reference voltage, Vref to REFIN terminal VDD = 5 V (see Note 1) AGND 2.048 VDD−1.5 V Reference voltage, Vref to REFIN terminal VDD = 3 V (see Note 1) AGND 1.024 VDD−1.5 V Load resistance, RL 2 10 kΩ Load capacitance, CL 100 pF Clock frequency, fCLK 20 MHz TLV5616C 0 70 °C OOppeerraattiinngg ffrreeee--aaiirr tteemmppeerraattuurree,, TTAA TLV5616I −40 85 °C NOTE 1: Due to the x2 output buffer, a reference input voltage ≥ VDD/2 causes clipping of the transfer function. electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) power supply PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VDD = 5 V, VREF = 2.048 V, Fast 0.9 1.35 mA NNoo llooaadd,, All inputs = AGND or VDD, Slow 0.4 0.6 mA DAC latch = 0x800 IIDDDD PPoowweerr ssuuppppllyy ccuurrrreenntt VDD = 3 V, VREF = 1.024 V Fast 0.7 1.1 mA NNoo llooaadd,, All inputs = AGND or VDD, Slow 0.3 0.45 mA DAC latch = 0x800 Power down supply current (see Figure 12) 10 nA Zero scale See Note 2 −80 PPSSRRRR PPoowweerr ssuuppppllyy rreejjeeccttiioonn rraattiioo ddBB Full scale See Note 3 −80 Power on threshold voltage, POR 2 V NOTES: 2. Power supply rejection ratio at zero scale is measured by varying VDD and is given by: PSRR = 20 log [(EZS(VDDmax) − EZS(VDDmin))/VDDmax] 3. Power supply rejection ratio at full scale is measured by varying VDD and is given by: PSRR = 20 log [(EG(VDDmax) − EG(VDDmin))/VDDmax] WWW.TI.COM 3
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued) static DAC specifications R = 10 kΩ, C = 100 pF L L PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Resolution 12 12 bits INL Integral nonlinearity See Note 4 ±1.9 ±4 LSB DNL Differential nonlinearity See Note 5 ±0.5 ±1 LSB EZS Zero-scale error (offset error at zero scale) See Note 6 ±10 mV Zero-scale-error temperature coefficient See Note 7 10 ppm/°C % of EG Gain error See Note 8 ±0.6 FS voltage Gain-error temperature coefficient See Note 9 10 ppm/°C NOTES: 4. The relative accuracy or integral nonlinearity (INL) sometimes referred to as linearity error, is the maximum deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale errors. Tested from code 10 to code 4095. 5. The differential nonlinearity (DNL) sometimes referred to as differential error, is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code. Tested from code 10 to code 4095. 6. Zero-scale error is the deviation from zero voltage output when the digital input code is zero. 7. Zero-scale-error temperature coefficient is given by: EZSTC = [EZS(Tmax) − EZS(Tmin)]/Vref × 106/(Tmax − Tmin). 8. Gain error is the deviation from the ideal output (2Vref − 1 LSB) with an output load of 10 kΩ excluding the effects of the zero-error. 9. Gain temperature coefficient is given by: EGTC = [EG(Tmax) − EG (Tmin)]/Vref × 106/(Tmax − Tmin). output specifications PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VO Voltage output range RL = 10 kΩ 0 AVDD−0.1 V % of FS Output load regulation accuracy RL = 2 kΩ, vs 10 kΩ 0.1 ±0.25 voltage reference input (REF) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VI Input voltage range 0 VDD−1.5 V RI Input resistance 10 MΩ CI Input capacitance 5 pF Slow 525 kHz RReeffeerreennccee iinnppuutt bbaannddwwiiddtthh RREEFFIINN == 00..22 VVpppp ++ 11..002244 VV ddcc Fast 1.3 MHz REFIN = 1 Vpp at 1 kHz + 1.024 V dc Reference feed through −75 dB (see Note 10) NOTE 10:Reference feedthrough is measured at the DAC output with an input code = 0x000. digital inputs PARAMETER TEST CONDITIONS MIN TYP MAX UNIT IIH High-level digital input current VI = VDD ±1 µA IIL Low-level digital input current VI = 0 V ±1 µA CI Input capacitance 3 pF 4 WWW.TI.COM
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 operating characteristics over recommended operating free-air temperature range (unless otherwise noted) analog output dynamic performance PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ttss((FFSS)) OOuuttppuutt sseettttlliinngg ttiimmee,, ffuullll ssccaallee RRSeLLe == N 11o00t ekk ΩΩ11,, CCLL == 110000 ppFF,, FSaloswt 39 52.05 µss RRLL == 1100 kkΩΩ,, CCLL == 110000 ppFF,, Fast 1 µs ttss((CCCC)) OOuuttppuutt sseettttlliinngg ttiimmee,, ccooddee ttoo ccooddee See Note 12 Slow 2 µs SSRR SSlleeww rraattee RRLL == 1100 kkΩΩ,, CCLL == 110000 ppFF,, Fast 3.6 VV//µss See Note 13 Slow 0.9 Glitch energy Code transition from 0x7FF to 0x800 10 nV−s S/N Signal to noise 74 dB S/(N+D) Signal to noise + distortion ffss == 440000 KKSSPPSS ffoouutt == 11..11 kkHHzz,, 66 dB RRLL == 1100 kkΩΩ, CCLL == 110000 ppFF,, THD Total harmonic distortion −68 dB BBWW == 2200 kkHHzz Spurious free dynamic range 70 dB NOTES: 11. Settling time is the time for the output signal to remain within ±0.5 LSB of the final measured value for a digital input code change of 0x080 to 0x3FF or 0x3FF to 0x080. Not tested, ensured by design. 12. Settling time is the time for the output signal to remain within ± 0.5 LSB of the final measured value for a digital input code change of one count. Code change from 0x1FF to 0x200. Not tested, ensured by design. 13. Slew rate determines the time it takes for a change of the DAC output from 10% to 90% full-scale voltage. digital input timing requirements MIN NOM MAX UNIT tsu(CS−FS) Setup time, CS low before FS↓ 10 ns tsu(FS−CK) Setup time, FS low before first negative SCLK edge 8 ns Setup time, sixteenth negative edge after FS low on which bit D0 is sampled before rising tsu(C16−FS) edge of FS 10 ns Setup time, sixteenth positive SCLK edge (first positive after D0 is sampled) before CS rising tsu(C16−CS) edge. If FS is used instead of the sixteenth positive edge to update the DAC, then the setup 10 ns time is between the FS rising edge and CS rising edge. twH Pulse duration, SCLK high 25 ns twL Pulse duration, SCLK low 25 ns tsu(D) Setup time, data ready before SCLK falling edge 8 ns th(D) Hold time, data held valid after SCLK falling edge 5 ns twH(FS) Pulse duration, FS high 20 ns WWW.TI.COM 5
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 PARAMETER MEASUREMENT INFORMATION twL twH ÎÎÎÎÎ ÎÎÎ SCLK ÎÎÎÎÎ1 2 3 4 5 15 16 ÎÎÎ tsu(D) th(D) ÎÎÎÎ ÎÎÎÎ DIN D15 D14 D13 D12 D1 D0 ÎÎÎÎ ÎÎÎÎ tsu(FS-CK) tsu(C16-CS) tsu(CS-FS) CS twH(FS) tsu(C16-FS) FS Figure 1. Timing Diagram 6 WWW.TI.COM
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 TYPICAL CHARACTERISTICS OUTPUT VOLTAGE OUTPUT VOLTAGE vs vs LOAD CURRENT LOAD CURRENT 2.004 4.01 3 V Slow Mode, SOURCE VDD = 3 V, VDD = 5 V, Vref = 1 V, Vref = 2 V, 2.002 Full Scale 4.005 5 V Slow Mode, SOURCE Full Scale 2 3 V Fast Mode, SOURCE 4 V V − − 5 V Fast Mode, SOURCE e e ag 1.998 ag 3.995 olt olt V V ut 1.996 ut 3.99 p p ut ut O O − 1.994 − 3.985 O O V V 1.992 3.98 1.990 3.975 0 0.01 0.02 0.05 0.1 0.2 0.5 1 2 4 0 0.02 0.04 0.1 0.2 0.4 1 2 4 Load Current − mA Load Current − mA Figure 2 Figure 3 OUTPUT VOLTAGE OUTPUT VOLTAGE vs vs LOAD CURRENT LOAD CURRENT 0.2 0.35 VDD = 3 V, VDD = 5 V, 0.18 Vref = 1 V, Vref = 2 V, Zero Code 0.3 Zero Code 0.16 V 0.14 V 0.25 − 3 V Slow Mode, SINK − ge 0.12 ge 5 V Slow Mode, SINK a a 0.2 Volt 0.1 Volt utput 0.08 utput 0.15 O 3 V Fast Mode, SINK O 5 V Fast Mode, SINK − 0.06 − O O 0.1 V V 0.04 0.05 0.02 0 0 0 0.01 0.02 0.05 0.1 0.2 0.5 1 2 0 0.02 0.04 0.1 0.2 0.4 1 2 4 Load Current − mA Load Current − mA Figure 4 Figure 5 WWW.TI.COM 7
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 TYPICAL CHARACTERISTICS SUPPLY CURRENT SUPPLY CURRENT vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 1 1 VDD = 3 V, VDD = 5 V, Vref = 1 V, Vref = 2 V, Full Scale Full Scale Fast Mode A 0.8 A 0.8 m m − − nt Fast Mode nt e e urr urr y C 0.6 y C 0.6 pl pl p p u u S S − − D D D 0.4 D 0.4 I I Slow Mode Slow Mode 0.2 0.2 −55 −40 −25 0 25 40 70 85 125 −55 −40 −25 0 25 40 70 85 125 TA − Free-Air Temperature − C° TA − Free-Air Temperature − C° Figure 6 Figure 7 TOTAL HARMONIC DISTORTION TOTAL HARMONIC DISTORTION vs vs FREQUENCY FREQUENCY 0 0 Vref = 1 V dc + 1 V p/p Sinewave, Vref = 1 V dc + 1 V p/p Sinewave, dB −10 Output Full Scale B −10 Output Full Scale on − −20 n − d −20 orti rtio onic Dist −−−3400 nic Disto −−−3400 m o m r a r H −50 a Total otal H −50 HD − −60 Fast Mode D − T −60 Slow Mode T −70 TH −70 −80 −80 0 5 10 20 30 50 100 0 5 10 20 30 50 100 f − Frequency − kHz f − Frequency − kHz Figure 8 Figure 9 8 WWW.TI.COM
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 TYPICAL CHARACTERISTICS TOTAL HARMONIC DISTORTION AND NOISE TOTAL HARMONIC DISTORTION AND NOISE vs vs FREQUENCY FREQUENCY 0 0 B B − d Vref = 1 V dc + 1 V p/p Sinewave, − d Vref = 1 V dc + 1 V p/p Sinewave, e −10 Output Full Scale e −10 Output Full Scale s s oi oi N N d −20 d −20 n n A A n n o −30 o −30 orti orti Dist −−40 Dist −−40 c c ni ni o −50 o −50 m m ar Fast Mode ar Slow Mode H H al −60 al −60 ot ot T T − −70 − −70 D D H H T −80 T −80 0 5 10 20 30 50 100 0 5 10 20 30 50 100 f − Frequency − kHz f − Frequency − kHz Figure 10 Figure 11 SUPPLY CURRENT vs TIME (WHEN ENTERING POWER-DOWN MODE) 900 800 700 A µ nt − 600 e rr 500 u C y pl 400 p u S − 300 D D I 200 100 0 0 100 200 300 400 500 600 700 800 900 1000 T − Time − ns Figure 12 WWW.TI.COM 9
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 TYPICAL CHARACTERISTICS INTEGRAL NONLINEARITY ERROR B 2 S − L 1.5 r 1 o rr 0.5 E y 0 arit −0.5 e n −1 nli o −1.5 N al −2 gr −2.5 e nt −3 − I −3.5 L 0 256 515 768 1024 1280 15361792 2048 2304 25602816 3072 3328 3584 3840 N I Digital Code Figure 13 B DIFFERENTIAL NONLINEARITY ERROR S L − 0.3 r 0.25 o 0.2 r Er 0.15 y 0.1 rit 0.05 a 0 e n −0.05 nli −0.1 o −0.15 N al −−0.02.52 nti −0.3 re −0.35 Diffe −−0.04.54 − −0.5 L 0 256 512 768 1024 1280 1536 1792 20482304 2560 2816 3072 3328 3584 3840 N D Digital Code Figure 14 10 WWW.TI.COM
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 APPLICATION INFORMATION general function The TLV5616 is a 12-bit single supply DAC based on a resistor string architecture. The device consists of a serial interface, speed and power-down control logic, a reference input buffer, a resistor string, and a rail-to-rail output buffer. The output voltage (full scale determined by external reference) is given by: CODE 2REF [V] 2n where REF is the reference voltage and CODE is the digital input value within the range of 0 to 2n−1, where 10 n = 12 (bits). The 16-bit data word, consisting of control bits and the new DAC value, is illustrated in the data format section. A power-on reset initially resets the internal latches to a defined state (all bits zero). serial interface Explanation of data transfer: First, the device has to be enabled with CS set to low. Then, a falling edge of FS starts shifting the data bit-per-bit (starting with the MSB) to the internal register on the falling edges of SCLK. After 16 bits have been transferred or FS rises, the content of the shift register is moved to the DAC latch which updates the voltage output to the new level. The serial interface of the TLV5616 can be used in two basic modes: (cid:1) Four wire (with chip select) (cid:1) Three wire (without chip select) Using chip select (four wire mode), it is possible to have more than one device connected to the serial port of the data source (DSP or microcontroller). The interface is compatible with the TMS320 family. Figure 15 shows an example with two TLV5616s connected directly to a TMS320 DSP. TLV5616 TLV5616 CS FS DIN SCLK CS FS DIN SCLK TMS320 DSP XF0 XF1 FSX DX CLKX Figure 15. TMS320 Interface WWW.TI.COM 11
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 APPLICATION INFORMATION serial interface (continued) If there is no need to have more than one device on the serial bus, then CS can be tied low. Figure 16 shows an example of how to connect the TLV5616 to a TMS320, SPI, or Microwire port using only three pins. TMS320 TLV5616 SPI TLV5616 Microwire TLV5616 DSP FSX FS SS FS I/O FS DX DIN MOSI DIN SO DIN CLKX SCLK SCLK SCLK SK SCLK CS CS CS Figure 16. Three-Wire Interface Notes on SPI and Microwire: Before the controller starts the data transfer, the software has to generate a falling edge on the I/O pin connected to FS. If the word width is 8 bits (SPI and Microwire), two write operations must be performed to program the TLV5616. After the write operation(s), the DAC output is updated automatically on the next positive clock edge following the sixteenth falling clock edge. serial clock frequency and update rate The maximum serial clock frequency is given by: f (cid:1) 1 (cid:1)20MHz SCLKmax t (cid:2)t wH(min) wL(min) The maximum update rate is: f (cid:1) (cid:3) 1 (cid:4)(cid:1)1.25MHz UPDATEmax 16 t (cid:2)t wH(min) wL(min) The maximum update rate is a theoretical value for the serial interface, since the settling time of the TLV5616 has to be considered also. data format The 16-bit data word for the TLV5616 consists of two parts: (cid:1) Control bits (D15...D12) (cid:1) New DAC value (D11...D0) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X SPD PWR X New DAC value (12 bits) X: don’t care SPD: Speed control bit. 1 → fast mode 0 → slow mode PWR: Power control bit. 1 → power down 0 → normal operation In power-down mode, all amplifiers within the TLV5616 are disabled. 12 WWW.TI.COM
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 APPLICATION INFORMATION TLV5616 interfaced to TMS320C203 DSP hardware interfacing Figure 17 shows an example how to connect the TLV5616 to a TMS320C203 DSP. The serial interface of the TLV5616 is ideally suited to this configuration, using a maximum of four wires to make the necessary connections. In applications where only one synchronous serial peripheral is used, the interface can be simplified even further by pulling CS low all the time as shown in the figure. TMS320C203 TLV5616 VDD FS FS DX DIN CLKX SCLK OUT REF REFIN CS AGND RLOAD Figure 17. TLV5616 to DSP Interface software No setup procedure is needed to access the TLV5616. The output voltage can be set using just a single command. out data_addr, SDTR where data_addr points to an address location holding the control bits and the 12 data bits providing the output voltage data. SDTR is the address of the transmit FIFO of the synchronous serial port. The following code shows how to use the timer of the TMS320C203 as a time base to generate a voltage ramp with the TLV5616. A timer interrupt is generated every 205 µs. The corresponding interrupt service routine increments the output code (stored at 0x0064) for the DAC, adds the DAC control bits to the four most significant bits, and writes the new code to the TLV5616. The resulting period of the saw waveform is: π = 4096 × 205 E-6 s = 0.84 s ;*************************************************************************************** ;* Title : Ramp generation with TLV5616 * ;* Version : 1.0 * ;* DSP : TI TMS320C203 * ;* (1998) Texas Instruments Incorporated * ;*************************************************************************************** ;−−−−−−−−−−− I/O and memory mapped regs −−−−−−−−−−−− .include ”regs.asm” ;−−−−−−−−−−− vectors −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− .ps 0h b start b INT1 b INT23 b TIM_ISR WWW.TI.COM 13
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 APPLICATION INFORMATION ;*************************************************************************************** ;* Main Program ;*************************************************************************************** .ps 1000h .entry start: ; disable interrupts setc INTM ; disable maskable interrupts splk #0ffffh, IFR splk #0004h, IMR ; set up the timer to interrupt ever 205uS splk #0000h, 60h splk #00FFh, 61h out 61h, PRD out 60h, TIM splk #0c2fh, 62h out 62h, TCR ; Configure SSP to use internal clock, internal frame sync and burst mode splk #0CC0Eh, 63h out 63h, SSPCR splk #0CC3Eh, 63h out 63h, SSPCR splk #0000h, 64h ; set initial DAC value ; enable interrupts clrc INTM ; enable maskable interrupts ; loop forever! next: idle ;wait for interrupt b next ; all else fails stop here done: b done ;hang there ;*************************************************************************************** ;* Interrupt Service Routines ;*************************************************************************************** INT1: ret ;do nothing and return INT23: ret ;do nothing and return TIM_ISR: lacl 64h ; restore counter value to ACC add #1h ; increment DAC value and #0FFFh ; mask 4 MSBs sacl 64h ; store 12 bit counter value or #4000h ; set DAC control bits sacl 65h ; store DAC value out 65h, SDTR ; send data clrc intm ; re-enable interrupts ret .END 14 WWW.TI.COM
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 APPLICATION INFORMATION TLV5616 interfaced to MCS51 microcontroller hardware interfacing Figure 18 shows an example of how to connect the TLV5616 to an MCS51 compatible microcontroller. The serial DAC input data and external control signals are sent via I/O port 3 of the controller. The serial data is sent on the RxD line, with the serial clock output on the TxD line. P3.4 and P3.5 are configured as outputs to provide the chip select and frame sync signals for the TLV5616. MCS51 Controller TLV5616 VDD RxD SDIN TxD SCLK P3.4 CS P3.5 FS OUT REF REFIN RLOAD AGND Figure 18. TLV5616 to MCS51 Controller Interface software The example program puts out a sine wave on the OUT pin. The on-chip timer is used to generate interrupts at a fixed frequency. The related interrupt service routine fetches and writes the next sample to the DAC. The samples are stored in a lookup table, which describes one full period of a sine wave. The serial port of the controller is used in mode 0, which transmits 8 bits of data on RxD, accompanied by a synchronous clock on TxD. Two writes concatenated together are required to write a complete word to the TLV5616. The CS and FS signals are provided in the required fashion through control of I/O port 3, which has bit addressable outputs. ;*************************************************************************************** ;* Title : Ramp generation with TLV5616 * ;* Version : 1.0 * ;* MCU : INTEL MCS51 * ;* (1998) Texas Instruments Incorporated * ;*************************************************************************************** ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ; Program function declaration ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− NAME GENSINE MAIN SEGMENT CODE ISR SEGMENT CODE SINTBL SEGMENT CODE VAR1 SEGMENT DATA STACK SEGMENT IDATA ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ; Code start at address 0, jump to start ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− CSEG AT 0 MCS is a registered trademark of Intel Corporation WWW.TI.COM 15
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 APPLICATION INFORMATION LJMP start ; Execution starts at address 0 on power−up. ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ; Code in the timer0 interrupt vector ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− CSEG AT 0BH LJMP timer0isr ; Jump vector for timer 0 interrupt is 000Bh ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ; Define program variables ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− RSEG VAR1 rolling_ptr: DS 1 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ; Interrupt service routine for timer 0 interrupts ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− RSEG ISR timer0isr: PUSH PSW PUSH ACC CLR T0 ; set CSB low CLR T1 ; set FS low ; The signal to be output on the dac is a sine function. One cycle of a sine wave is ; held in a table @ sinevals as 32 samples of msb, lsb pairs (64 bytes). The pointer, ; rolling_ptr, rolls round the table of samples incrementing by 2 bytes (1 sample) on ; each interrupt (at the end of this routine). MOV DPTR,#sinevals ; set DPTR to the start of the table of sine signal values MOV A,rolling_ptr ; ACC loaded with the pointer into the sine table MOVC A,@A+DPTR ; get msb from the table ORL A, #00H ; set control bits MOV SBUF,A ; send out msb of data word MOVA,rolling_ptr; move rolling pointer in to ACC INC A ; increment ACC holding the rolling pointer MOVC A,@A+DPTR ; which is the lsb of this sample, now in ACC MSB_TX: JNB TI, MSB_TX ; wait for transmit to complete CLR TI ; clear for new transmit MOV SBUF,A ; and send out the lsb LSB_TX: JNB TI, LSB_TX ; wait for lsb transmit to complete SETB T1 ; set FS = 1 CLR TI ; clear for new transmit MOV A,rolling_ptr ; load ACC with rolling pointer INC A ; increment the ACC twice, to get next sample INC A ANL A,#03FH ; wrap back round to 0 if >64 MOV rolling_ptr,A ; move value held in ACC back to the rolling pointer SETB T0 ; CSB high POP ACC POP PSW RETI ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ; Set up stack ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 16 WWW.TI.COM
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 APPLICATION INFORMATION RSEG STACK DS 10h ; 16 Byte Stack! ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ; Main Program ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− RSEG MAIN start: MOV SP,#STACK−1 ; first set Stack Pointer CLR A MOV SCON,A ; set serial port 0 to mode 0 MOV TMOD,#02H ; set timer 0 to mode 2 − auto−reload MOV TH0,#0C8H ; set TH0 for 16.67 kHs interrupts SETB T1 ; set FS = 1 SETB T0 ; set CSB = 1 SETB ET0 ; enable timer 0 interrupts SETB EA ; enable all interrupts MOV rolling_ptr,A ; set rolling pointer to 0 SETB TR0 ; start timer 0 always: SJMP always ; while(1) ! RET ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ; Table of 32 sine wave samples used as DAC data ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− RSEG SINTBL sinevals: DW 01000H DW 0903EH DW 05097H DW 0305CH DW 0B086H DW 070CAH DW 0F0E0H DW 0F06EH DW 0F039H DW 0F06EH DW 0F0E0H DW 070CAH DW 0B086H DW 0305CH DW 05097H DW 0903EH DW 01000H DW 06021H DW 0A0E8H DW 0C063H DW 040F9H DW 080B5H DW 0009FH DW 00051H DW 00026H DW 00051H DW 0009FH DW 080B5H DW 040F9H DW 0C063H DW 0A0E8H DW 06021H END WWW.TI.COM 17
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 APPLICATION INFORMATION linearity, offset, and gain error using single ended supplies When an amplifier is operated from a single supply, the voltage offset can still be either positive or negative. With a positive offset, the output voltage changes on the first code change. With a negative offset, the output voltage may not change with the first code, depending on the magnitude of the offset voltage. The output amplifier attempts to drive the output to a negative voltage. However, because the most negative supply rail is ground, the output cannot drive below ground and clamps the output at 0 V. The output voltage then remains at zero until the input code value produces a sufficient positive output voltage to overcome the negative offset voltage, resulting in the transfer function shown in Figure 19. Output Voltage 0 V DAC Code Negative Offset Figure 19. Effect of Negative Offset (Single Supply) This offset error, not the linearity error, produces this breakpoint. The transfer function would have followed the dotted line if the output buffer could drive below the ground rail. For a DAC, linearity is measured between zero-input code (all inputs 0) and full-scale code (all inputs 1) after offset and full scale are adjusted out or accounted for in some way. However, single supply operation does not allow for adjustment when the offset is negative due to the breakpoint in the transfer function. So the linearity is measured between full-scale code and the lowest code that produces a positive output voltage. power-supply bypassing and ground management Printed-circuit boards that use separate analog and digital ground planes offer the best system performance. Wire-wrap boards do not perform well and should not be used. The two ground planes should be connected together at the low-impedance power-supply source. The best ground connection may be achieved by connecting the DAC AGND terminal to the system analog ground plane, making sure that analog ground currents are well managed and there are negligible voltage drops across the ground plane. A 0.1-µF ceramic-capacitor bypass should be connected between VDD and AGND and mounted with short leads as close as possible to the device. Use of ferrite beads may further isolate the system analog supply from the digital power supply. Figure 20 shows the ground plane layout and bypassing technique. Analog Ground Plane 1 8 2 7 0.1 µF 3 6 4 5 Figure 20. Power-Supply Bypassing 18 WWW.TI.COM
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:9) (cid:10)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:14) (cid:4)(cid:11)(cid:4)(cid:13)(cid:3) (cid:2)(cid:14)(cid:15) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:6)(cid:10)(cid:13)(cid:19)(cid:9)(cid:1) (cid:20)(cid:9)(cid:21)(cid:9)(cid:1)(cid:22)(cid:2)(cid:13)(cid:1)(cid:14)(cid:13)(cid:22)(cid:23)(cid:22)(cid:2)(cid:14)(cid:21) (cid:7)(cid:14)(cid:23)(cid:3)(cid:17)(cid:18)(cid:1)(cid:17)(cid:18)(cid:24) (cid:15)(cid:9)(cid:1)(cid:25) (cid:16)(cid:14)(cid:15)(cid:17)(cid:18) (cid:20)(cid:14)(cid:15)(cid:23) SLAS152D − DECEMBER 1997 − REVISED APRIL 2004 APPLICATION INFORMATION definitions of specifications and terminology integral nonlinearity (INL) The relative accuracy or integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale errors. differential nonlinearity (DNL) The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code. zero-scale error (E ) ZS Zero-scale error is defined as the deviation of the output from 0 V at a digital input value of 0. gain error (E ) G Gain error is the error in slope of the DAC transfer function. signal-to-noise ratio + distortion (S/N+D) S/N+D is the ratio of the rms value of the output signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for S/N+D is expressed in decibels. spurious free dynamic range (SFDR) SFDR is the difference between the rms value of the output signal and the rms value of the largest spurious signal within a specified bandwidth. The value for SFDR is expressed in decibels. total harmonic distortion (THD) THD is the ratio of the rms sum of the first six harmonic components to the rms value of the fundamental signal and is expressed in decibels. WWW.TI.COM 19
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TLV5616CD ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM 0 to 70 5616C & no Sb/Br) TLV5616CDGK ACTIVE VSSOP DGK 8 80 Green (RoHS NIPDAUAG Level-1-260C-UNLIM 0 to 70 ABF & no Sb/Br) TLV5616CDR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM 0 to 70 5616C & no Sb/Br) TLV5616CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM 0 to 70 5616C & no Sb/Br) TLV5616CP ACTIVE PDIP P 8 50 Pb-Free NIPDAU N / A for Pkg Type 0 to 70 TLV5616CP (RoHS) TLV5616ID ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 5616I & no Sb/Br) TLV5616IDGK ACTIVE VSSOP DGK 8 80 Green (RoHS NIPDAUAG Level-1-260C-UNLIM -40 to 85 AJE & no Sb/Br) TLV5616IDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS NIPDAUAG Level-1-260C-UNLIM -40 to 85 AJE & no Sb/Br) TLV5616IDR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 5616I & no Sb/Br) TLV5616IP ACTIVE PDIP P 8 50 Pb-Free NIPDAU N / A for Pkg Type -40 to 85 TLV5616IP (RoHS) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 26-Feb-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TLV5616CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV5616IDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 TLV5616IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 26-Feb-2019 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TLV5616CDR SOIC D 8 2500 350.0 350.0 43.0 TLV5616IDGKR VSSOP DGK 8 2500 350.0 350.0 43.0 TLV5616IDR SOIC D 8 2500 350.0 350.0 43.0 PackMaterials-Page2
PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com
EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com
None
None
None
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated