图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: TLV3492AID
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

TLV3492AID产品简介:

ICGOO电子元器件商城为您提供TLV3492AID由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TLV3492AID价格参考¥4.82-¥10.89。Texas InstrumentsTLV3492AID封装/规格:线性 - 比较器, 通用 比较器 CMOS,推挽式,满摆幅 8-SOIC。您可以下载TLV3492AID参考资料、Datasheet数据手册功能说明书,资料中有TLV3492AID 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

CMRR,PSRR(典型值)

74dB CMRR,69.12dB PSRR

描述

IC COMPARATOR P-P NANOPWR 8-SOIC模拟比较器 Dual Nanopower Push -Pull Out Comparator

产品分类

线性 - 比较器

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

校验器 IC,Texas Instruments TLV3492AID-

数据手册

点击此处下载产品Datasheet

产品型号

TLV3492AID

产品

Analog Comparators

产品目录页面

点击此处下载产品Datasheet

产品种类

模拟比较器

传播延迟(最大值)

13.5µs

供应商器件封装

8-SOIC

偏转电压—最大值

15 mV

元件数

2

其它名称

296-14054-5
TLV3492AIDG4
TLV3492AIDG4-ND

包装

管件

单位重量

76 mg

响应时间

6 us

商标

Texas Instruments

安装类型

表面贴装

安装风格

SMD/SMT

封装

Tube

封装/外壳

8-SOIC(0.154",3.90mm 宽)

封装/箱体

SOIC-8

工作温度

-40°C ~ 125°C

工厂包装数量

75

最大工作温度

+ 125 C

最小工作温度

- 40 C

标准包装

75

滞后

-

电压-电源,单/双 (±)

1.8 V ~ 5.5 V

电压-输入失调(最大值)

15mV @ 5.5V

电流-输入偏置(最大值)

10pA @ 5.5V

电流-输出(典型值)

-

电流-静态(最大值)

1.2µA

电源电压-最大

5.5 V

电源电压-最小

1.8 V

电源电流

1.2 uA

电源电流—最大值

1.2 uA

类型

通用

系列

TLV3492

输入偏压电流—最大

10 pA

输出类型

Push-Pull

通道数量

2 Channel

推荐商品

型号:MAX923CUA+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:LM393DRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MAX9201EUE

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:MAX9144EUD+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:TLV1391IDBVR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LM2903DMR2G

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:MCP6569-E/ST

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:ADCMP563BCPZ-RL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
TLV3492AID 相关产品

MCP6541-I/MS

品牌:Microchip Technology

价格:

LM393MX

品牌:Rohm Semiconductor

价格:

TL331KDBVR

品牌:Texas Instruments

价格:

LM293DMR2G

品牌:ON Semiconductor

价格:

MXL1016CS8+

品牌:Maxim Integrated

价格:

LTC1540IDD#TRPBF

品牌:Linear Technology/Analog Devices

价格:

MAX913CPA

品牌:Maxim Integrated

价格:

MAX903CSA+

品牌:Maxim Integrated

价格:¥73.21-¥73.21

PDF Datasheet 数据手册内容提取

Product Order Technical Tools & Support & Folder Now Documents Software Community TLV3491,TLV3492,TLV3494 SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 TLV349x 1.8-V, Nanopower, Push-Pull Output Comparator 1 Features 3 Description • VeryLowSupplyCurrent:0.8µA(Typical) The TLV349x family of push-pull output comparators 1 features a fast 6-µs response time and < 1.2-µA • InputCommon-ModeRange:200-mVBeyond (maximum) nanopower capability, allowing operation SupplyRails from 1.8 V to 5.5 V. Input common-mode range • SupplyVoltage:1.8Vto5.5V beyond supply rails make the TLV349x an ideal • HighSpeed:6 µs choiceforlow-voltageapplications. • Push-PullCMOSOutputStage Micro-sized packages provide options for portable and space-restricted applications. The single • SmallPackages: (TLV3491) is available in 5-pin SOT-23 and 8-pin – 5-PinSOT-23(Single) SOIC packages. The dual (TLV3492) comes in 8-pin – 8-PinSOT-23(Dual) SOT-23 and SOIC packages. The quad (TLV3494) is availableinboth14-pinTSSOPandSOICpackages. 2 Applications The TLV349x is excellent for power-sensitive, low- • PortableMedicalEquipment voltage(two-cell)applications. • WirelessSecuritySystems DeviceInformation(1) • RemoteControlSystems PARTNUMBER PACKAGE BODYSIZE(NOM) • HandheldInstruments SOT-23(5) 2.90mm×1.60mm • Ultra-LowPowerSystems TLV3491 SOIC(8) 4.90mm×3.91mm SOT-23(8) 2.90mm×1.63mm TLV3492 SOIC(8) 4.90mm×3.91mm SOIC(14) 8.65mm×3.91mm TLV3494 TSSOP(14) 5.00mm×4.40mm (1) For all available packages, see the orderable addendum at theendofthedatasheet. TLV349xBasicConnections V+ 0.01mF 10mF V IN TLV349x VOUT V REF Copyright © 2016,Texas Instruments Incorporated 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

TLV3491,TLV3492,TLV3494 SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 www.ti.com Table of Contents 1 Features.................................................................. 1 8.2 FunctionalBlockDiagram.......................................10 2 Applications........................................................... 1 8.3 FeatureDescription.................................................10 3 Description............................................................. 1 8.4 DeviceFunctionalModes........................................11 4 RevisionHistory..................................................... 2 9 ApplicationandImplementation........................ 12 9.1 ApplicationInformation............................................12 5 DeviceComparisonTable..................................... 3 9.2 TypicalApplications................................................12 6 PinConfigurationandFunctions......................... 3 10 PowerSupplyRecommendations..................... 15 7 Specifications......................................................... 5 11 Layout................................................................... 15 7.1 AbsoluteMaximumRatings......................................5 11.1 LayoutGuidelines.................................................15 7.2 ESDRatings..............................................................5 11.2 LayoutExample....................................................15 7.3 RecommendedOperatingConditions.......................5 12 DeviceandDocumentationSupport................. 16 7.4 ThermalInformation:TLV3491.................................5 7.5 ThermalInformation:TLV3492.................................5 12.1 DeviceSupport......................................................16 7.6 ThermalInformation:TLV3494.................................6 12.2 RelatedLinks........................................................17 7.7 ElectricalCharacteristics:V =1.8Vto5.5V..........6 12.3 CommunityResources..........................................17 S 7.8 SwitchingCharacteristics..........................................6 12.4 Trademarks...........................................................17 7.9 TypicalCharacteristics..............................................7 12.5 ElectrostaticDischargeCaution............................17 12.6 Glossary................................................................17 8 DetailedDescription............................................ 10 13 Mechanical,Packaging,andOrderable 8.1 Overview.................................................................10 Information........................................................... 17 4 Revision History ChangesfromRevisionD(April2005)toRevisionE Page • AddedESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,ApplicationandImplementation section,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentationSupportsection,and Mechanical,Packaging,andOrderableInformationsection ................................................................................................. 1 • ChangedRelatedProductsTo:DeviceComparison.............................................................................................................. 3 • DeletedPackage/OrderingInformationtable;seePackageOptionAddendumattheendofthedatasheet.......................3 • DeletedLeadtemperaturefromAbsoluteMaximumRatings................................................................................................. 5 • ChangedThermalResistance,R ,inThermalInformation:TLV3491From:200°C/WTo:237.8°C/W(SOT-23)and θJA From:150°C/WTo:201.9°C/W(SOIC).................................................................................................................................. 5 • ChangedThermalResistance,R ,inThermalInformation:TLV3492From:200°C/WTo:135.4°C/W(SOT-23)and θJA From:150°C/WTo:201.9°C/W(SOIC).................................................................................................................................. 5 • ChangedThermalResistance,R ,inThermalInformation:TLV3494From:100°C/WTo:83.8°C/W(SOIC)and θJA From:100°C/WTo:120.8°C/W(TSSOP).............................................................................................................................. 6 2 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:TLV3491 TLV3492 TLV3494

TLV3491,TLV3492,TLV3494 www.ti.com SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 5 Device Comparison Table PRODUCT FEATURES TLV370x 560-nA,2.5-Vto16-V,push-pullCMOSoutputstagecomparators TLV340x 550-nA,2.5-Vto16-V,open-drainoutputstagecomparators 6 Pin Configuration and Functions TLV3491DBVPackage TLV3491DPackage 5-PinSOT-23 8-PinSOIC TopView TopView PinFunctions:TLV3491 PIN I/O DESCRIPTION NAME SOT-23 SOIC –IN 4 2 I Invertinginput +IN 3 3 I Noninvertinginput NC — 1,5,8 — Nointernalconnection(canbeleftfloating) OUT 1 6 O Output V+ 5 7 — Positive(highest)powersupply V– 2 4 — Negative(lowest)powersupply TLV3492DCNandDPackages 8-PinSOT-23andSOIC TopView Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:TLV3491 TLV3492 TLV3494

TLV3491,TLV3492,TLV3494 SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 www.ti.com PinFunctions:TLV3492 PIN I/O DESCRIPTION NAME NO. –INA 2 I Invertinginput,channelA –INB 6 I Invertinginput,channelB +INA 3 I Noninvertinginput,channelA +INB 5 I Noninvertinginput,channelB OUTA 1 O Output,channelA OUTB 7 O Output,channelB V– 4 — Negative(lowest)powersupply V+ 8 — Positive(highest)powersupply TLV3494DandPWPackages 14-PinSOICandTSSOP TopView PinFunctions:TLV3494 PIN I/O DESCRIPTION NAME NO. –InA 2 I Invertinginput,channelA –InB 6 I Invertinginput,channelB –InC 9 I Invertinginput,channelC –InD 13 I Invertinginput,channelD +InA 3 I Noninvertinginput,channelA +InB 5 I Noninvertinginput,channelB +InC 10 I Noninvertinginput,channelC +InD 12 I Noninvertinginput,channelD OutA 1 O Output,channelA OutB 7 O Output,channelB OutC 8 O Output,channelC OutD 14 O Output,channelD V– 11 — Negative(lowest)powersupply V+ 4 — Positive(highest)powersupply 4 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:TLV3491 TLV3492 TLV3494

TLV3491,TLV3492,TLV3494 www.ti.com SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 7 Specifications 7.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN MAX UNIT Supply 5.5 V Voltage Signalinputpin (V–)–0.5 (V+)+0.5 V Signalinputpin –10 10 mA Current Outputshortcircuit Continuous Operating,T –40 125 °C A Temperature Junction,T 150 °C J Storage,T –65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. 7.2 ESD Ratings VALUE UNIT V Electrostaticdischarge Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±3000 V (ESD) (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. 7.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN MAX UNIT Supplyvoltage 1.8 5.5 V T Specifiedtemperature –40 125 °C A 7.4 Thermal Information: TLV3491 TLV3491 THERMALMETRIC(1) DBV(SOT-23) D(SOIC) UNIT 5PINS 8PINS RθJA Junction-to-ambientthermalresistance 237.8 201.9 °C/W RθJC(top) Junction-to-case(top)thermalresistance 108.7 92.5 °C/W RθJB Junction-to-boardthermalresistance 64.1 123.3 °C/W ψJT Junction-to-topcharacterizationparameter 12.1 23 °C/W ψJB Junction-to-boardcharacterizationparameter 63.3 212.6 °C/W RθJC(bot) Junction-to-case(bottom)thermalresistance — — °C/W (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report. 7.5 Thermal Information: TLV3492 TLV3492 THERMALMETRIC(1) DCN(SOT-23) D(SOIC) UNIT 8PINS 8PINS RθJA Junction-to-ambientthermalresistance 135.4 201.9 °C/W RθJC(top) Junction-to-case(top)thermalresistance 68.1 92.5 °C/W RθJB Junction-to-boardthermalresistance 48.9 123.3 °C/W ψJT Junction-to-topcharacterizationparameter 9.9 23 °C/W ψJB Junction-to-boardcharacterizationparameter 48.4 212.6 °C/W RθJC(bot) Junction-to-case(bottom)thermalresistance — — °C/W (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report. Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:TLV3491 TLV3492 TLV3494

TLV3491,TLV3492,TLV3494 SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 www.ti.com 7.6 Thermal Information: TLV3494 TLV3494 THERMALMETRIC(1) D(SOIC) PW(TSSOP) UNIT 14PINS 14PINS RθJA Junction-to-ambientthermalresistance 83.8 120.8 °C/W RθJC(top) Junction-to-case(top)thermalresistance 70.7 34.3 °C/W RθJB Junction-to-boardthermalresistance 59.5 62.8 °C/W ψJT Junction-to-topcharacterizationparameter 11.6 1 °C/W ψJB Junction-to-boardcharacterizationparameter 37.7 56.5 °C/W RθJC(bot) Junction-to-case(bottom)thermalresistance — — °C/W (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report. 7.7 Electrical Characteristics: V = 1.8 V to 5.5 V S atT =25°CandV =1.8Vto5.5V(unlessotherwisenoted) A S PARAMETER TESTCONDITIONS MIN TYP MAX UNIT OFFSETVOLTAGE VOS Inputoffsetvoltage TA=25°C,VCM=0V,IO=0V ±3 ±15 mV dVOS/dT Inputoffsetvoltageversustemperature TA=–40°Cto125°C ±12 µV/°C PSRR Inputoffsetvoltageversuspowersupply VS=1.8Vto5.5V 350 1000 µV/V INPUTBIASCURRENT IB Inputbiascurrent VCM=VCC/2 ±1 ±10 pA IOS Inputoffsetcurrent VCM=VCC/2 ±1 ±10 pA INPUTVOLTAGE VCM Common-modevoltage (V–)–0.2V (V+)+0.2V V VCM=–0.2Vto(V+)–1.5V 60 74 CMRR Common-moderejectionratio dB VCM=–0.2Vto(V+)+0.2V 54 62 INPUTCAPACITANCE Common-mode 2 pF Differential 4 pF OUTPUT(VS=5V) VOH Voltageoutputhighfromrail IOUT=5mA 90 200 mV VOL Voltageoutputlowfromrail IOUT=5mA 160 200 mV ISC Short-circuitcurrent SeeTypicalCharacteristics POWERSUPPLY VS Specifiedvoltage 1.8 5.5 V Operatingvoltage 1.8 5.5 V IQ Quiescentcurrent(1) VO=5V,VO=high 0.85 1.2 µA (1) I perchannel Q 7.8 Switching Characteristics atf=10kHz,V =1V,T =25°C,andV =1.8Vto5.5V(unlessotherwisenoted) STEP A S PARAMETER TESTCONDITIONS MIN TYP MAX UNIT Inputoverdrive=10mV 12 t Propagationdelaytime,low-to-high µs (PLH) Inputoverdrive=100mV 6 Inputoverdrive=10mV 13.5 t Propagationdelaytime,high-to-low µs (PLH) Inputoverdrive=100mV 6.5 t Risetime C =10pF 100 ns R L t Falltime C =10pF 100 ns F L 6 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:TLV3491 TLV3492 TLV3494

TLV3491,TLV3492,TLV3494 www.ti.com SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 7.9 Typical Characteristics atT =25°C,V =1.8Vto5.5V,andinputoverdrive=100mV(unlessotherwisenoted) A S 1.00 12 0.95 VDD= 3V VS= 5V 10 A) 0.90 A) nt (m 0.85 VDD= 5V nt (m 8 urre VDD= 1.8V urre C 0.80 C 6 nt nt ce 0.75 ce s s 4 e e Qui 0.70 Qui V = 3V S 2 0.65 V = 1.8V 0.60 0 S -50 -25 0 25 50 75 100 125 1 10 100 1k 10k 100k Temperature (°C) OutputTransition Frequency (Hz) Figure1.QuiescentCurrentvsTemperature Figure2.QuiescentCurrentvsOutputSwitchingFrequency 140 45 40 120 Short-Circuit Current (mA) 108640000 Sink Source Input Bias Current (pA) 3213215555000 20 0 0 -5 1.5 2 2.5 3 3.5 4 4.5 5 5.5 -50 -25 0 25 50 75 100 125 Supply Voltage (V) Temperature (°C) Figure3.Short-CircuitCurrentvsSupplyVoltage Figure4.InputBiasCurrentvsTemperature 0.25 0.25 V = 3V DD 0.2 0.2 V = 1.8V V = 1.8V DD V = 3V DD DD V) 0.15 (V)H 0.15 ( O VOL 0.1 VDD= 5V -VS 0.1 V V = 5V DD 0.05 0.05 0 0 0 2 4 6 8 10 12 0 2 4 6 8 10 12 Output Current (mA) Output Current (mA) Figure5.OutputLowvsOutputCurrent Figure6.OutputHighvsOutputCurrent Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:TLV3491 TLV3492 TLV3494

TLV3491,TLV3492,TLV3494 SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 www.ti.com Typical Characteristics (continued) atT =25°C,V =1.8Vto5.5V,andinputoverdrive=100mV(unlessotherwisenoted) A S 80 80 70 70 60 60 50 50 s)m VDD= 5V s)m VDD= 3V V = 5V t(PLH 40 VDD= 3V t(PHL 40 DD 30 30 V = 1.8V DD 20 20 10 10 V = 1.8V DD 0 0 0.01 0.1 1 10 100 1k 0.01 0.1 1 10 100 1k Capacitive Load (nF) Capacitive Load (nF) Figure7.PropagationDelay(t )vsCapacitiveLoad Figure8.PropagationDelay(t )vsCapacitiveLoad PLH PHL 20 20 18 18 16 16 V = 5V DD 14 14 s) s) m m t(PLH 12 VDD= 3V t(PHL 12 VDD= 1.8V 10 10 V = 1.8V V = 3V DD DD 8 8 6 6 V = 5V DD 4 4 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Input Overdrive (mV) Input Overdrive (mV) Figure9.PropagationDelay(t )vsInputOverdrive Figure10.PropagationDelay(t )vsInputOverdrive PLH PHL 8.0 8.0 7.5 7.5 V = 1.8V DD 7.0 7.0 VDD= 1.8V VDD= 3V 6.5 6.5 s) V = 3V s) m DD m (PLH 6.0 (PHL 6.0 t t 5.5 5.5 V = 5V DD 5.0 5.0 V = 5V DD 4.5 4.5 4.0 4.0 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 Temperature (°C) Temperature (°C) Figure11.PropagationDelay(t )vsTemperature Figure12.PropagationDelay(t )vsTemperature PLH PHL 8 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:TLV3491 TLV3492 TLV3494

TLV3491,TLV3492,TLV3494 www.ti.com SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 Typical Characteristics (continued) atT =25°C,V =1.8Vto5.5V,andinputoverdrive=100mV(unlessotherwisenoted) A S VDD=±2.5V VIN+ VDD=±2.5V mV/div VIN- mV/div V 500 500 IN- V IN+ V OUT v 2V/di VOUT 2V/div 2ms/div 2ms/div Figure13.PropagationDelay(t ) Figure14.PropagationDelay(t ) PLH PHL VDD=±0.9V VIN+ VDD=±0.9V 500mV/div VVIN- 500mV/div VIN- IN+ V OUT v v di V di V/ OUT V/ 2 2 2ms/div 2ms/div Figure15.PropagationDelay(t ) Figure16.PropagationDelay(t ) PLH PHL Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:TLV3491 TLV3492 TLV3494

TLV3491,TLV3492,TLV3494 SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 www.ti.com 8 Detailed Description 8.1 Overview The TLV349x family of comparators features rail-to-rail input and output on supply voltages as low as 1.8 V. The push-pull output stage is optimal for reduced power budget applications and features no shoot-through current. Low supply voltages, common-mode input range beyond supply rails, and a typical supply current of 0.8 µA make the TLV349x family an excellent candidate for battery-powered applications with single-cell operation as well as a wide range of low-voltage applications. The devices are available in a selection of micro-sized packagesforspace-constrainedandportableapplications. 8.2 Functional Block Diagram V+ +IN OUT – IN V– Copyright © 2016, Texas Instruments Incorporated 8.3 Feature Description 8.3.1 OperatingVoltage The TLV349x comparators are specified for use on a single supply from 1.8 V to 5.5 V (or a dual supply from ±0.9Vto ±2.75V)overatemperaturerangeof −40°Cto125°C. 8.3.2 InputOvervoltageProtection Thedeviceinputsareprotectedbyelectrostaticdischarge(ESD)diodesthatconductiftheinputvoltagesexceed the power supplies by more than approximately 500 mV. Momentary voltages greater than 500 mV beyond the power supply can be tolerated if the input current is limited to 10 mA. This limiting is easily accomplished with a smallinputresistorinserieswiththeinputtothecomparator. 8.3.3 SettingReferenceVoltage ItisimportanttouseastablereferencewhensettingthetransitionpointfortheTLV349x.TheREF1004provides a1.25-Vreferencevoltagewithlowdriftandonly8 µAofquiescentcurrent. 8.3.4 ExternalHysteresis Comparator inputs have no noise immunity within the range of specified offset voltage (±15 mV). For noisy input signals, the comparator output typically displays multiple switching as input signals move through the switching threshold. The typical comparator threshold of the TLV349x is ±15 mV. To prevent multiple switching within the comparator threshold of the TLV349x, external hysteresis must be added by connecting a small amount of feedback to the positive input. Figure 17 shows a typical topology used to introduce hysteresis, described in Equation1. V+´R V = 1 HYST R + R 1 2 (1) V setsthevalueofthetransitionvoltagerequiredtoswitchthecomparatoroutputbyincreasingthethreshold HYST region,therebyreducingsensitivitytonoise. 10 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:TLV3491 TLV3492 TLV3494

TLV3491,TLV3492,TLV3494 www.ti.com SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 Feature Description (continued) V+ 5.0 V VHYST= 0.38 V V IN TLV349x VOUT R 2 560 kW R 1 39 kW V REF Copyright © 2016,Texas Instruments Incorporated Figure17. AddingHysteresistotheTLV349x 8.4 Device Functional Modes The TLV349x has a single functional mode and is operational when the power-supply voltage is between 1.8 V and5.5V. Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:TLV3491 TLV3492 TLV3494

TLV3491,TLV3492,TLV3494 SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 9.1 Application Information The TLV349x family of comparators features rail-to-rail input and output on supply voltages as low as 1.8 V. The push-pull output stage is optimal for reduced power budget applications and features no shoot-through current. Low supply voltages, common-mode input range beyond supply rails, and a typical supply current of 0.8 µA maketheTLV349xfamilyanexcellentcandidateforbattery-poweredapplicationswithsingle-celloperation. 9.2 Typical Applications 9.2.1 TLV3491ConfiguredasanAC-CoupledComparator One of the benefits of AC coupling a single-supply comparator circuit is that it can block dc offsets induced by ground-loop offsets that could potentially produce either a false trip or a common-mode input violation. Figure 18 showstheTLV3491configuredasanAC-coupledcomparator. R9 866W R3 Cable C1 1mF 1 kW V IN+ R1 R10 1 kW 50W VOUT VM1 3.3 V R2 VIN C2 1mF 1 kW 3.3 V + R4 1 kW V2 V 3.3 V IN- V 100 m CM + Ground mismatch in signal source vs conditioning circuit Copyright © 2016,Texas Instruments Incorporated Figure18. TLV3491ConfiguredasanAC-CoupledComparator(Schematic) 9.2.1.1 DesignRequirements Designrequirementsinclude: 1. Abilitytotolerateupto ±100mVofcommon-modesignal. 2. TriggeronlyonACsignals(suchaszero-crossdetection). 12 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:TLV3491 TLV3492 TLV3494

TLV3491,TLV3492,TLV3494 www.ti.com SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 Typical Applications (continued) 9.2.1.2 DetailedDesignProcedure Designanalysis: • AC-coupled,high-passfrequency • Largecapacitorsrequirelongerstart-uptimefromdevicepoweron • Use1-µFcapacitortoachievehigh-passfrequencyofapproximately159Hz • Forhigh-passequivalent,useC =0.5µF,R =2kΩ IN IN 1. Setupinputdividersinitiallyforone-halfsupply(tobeincenterofacceptablecommon-moderange). 2. Adjusteitherdividerslightlyupwardsordownwardsasdesiredtoestablishquiescentoutputcondition. 3. Selectcouplingcapacitorsbasedonlowestexpectedfrequency. 9.2.1.3 ApplicationCurve 4 VIN VCM 3 VOUT V) 2 e ( g a Volt 1 0 -1 0 100m 200m Time (s) Figure19. AC-CoupledComparatorResults 9.2.2 RelaxationOscillator The TLV349x can be configured as a relaxation oscillator to provide a simple and inexpensive clock output, as Figure 20 shows. The capacitor is charged at a rate of 0.69 RC. It also discharges at a rate of 0.69RC. Therefore,theperiodis1.38RC.R maybeadifferentvaluethanR . 1 2 V C 2/3 (V+) 1/3 (V+) t V+ T T 1 2 C V+ R 1000pF 1M1W V OUT R R t 2 2 1MW 1MW f = 724 Hz V+ R 2 1MW Figure20. TLV349xConfiguredasaRelaxationOscillator Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:TLV3491 TLV3492 TLV3494

TLV3491,TLV3492,TLV3494 SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 www.ti.com Typical Applications (continued) 9.2.3 Power-OnReset The reset circuit shown in Figure 21 provides a time-delayed release of reset to the MSP430 microcontroller. Operation of the circuit is based on a stabilization time constant of the supply voltage, rather than on a predeterminedvoltagevalue.Thenegativeinputisareferencevoltagecreatedbyasimpleresistordivider. These resistor values must be relatively high to reduce the current consumption of the circuit. The positive input is an RC circuit that provides a power-up delay. When power is applied, the output of the comparator is low, holding the processor in the reset condition. Only after allowing time for the supply voltage to stabilize does the positive input of the comparator become higher than the negative input, resulting in a high output state and releasing the processor for operation. The stabilization time required for the supply voltage is adjustable by the selectionoftheRCcomponentvalues. Use of a lower-valued resistor in this portion of the circuit does not increase current consumption because no current flows through the RC circuit after the supply has stabilized. The required reset delay time depends on the power-up characteristics of the system power supply. R and C are selected to allow enough time for the power 1 1 supplytostabilize.D providesrapidresetifpowerislost.Inthisexample,theR ×C timeconstantis10ms. 1 1 1 V+ R 1 1 MW MSP430 C 1 TLV349x RESET 10 nF R 2 2 MW R 3 2 MW Copyright © 2016,Texas Instruments Incorporated Figure21. TheTLV349xConfiguredasaResetCircuitfortheMSP430 14 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:TLV3491 TLV3492 TLV3494

TLV3491,TLV3492,TLV3494 www.ti.com SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 10 Power Supply Recommendations TheTLV349xfamilyofdevicesisspecifiedforoperationfrom1.8Vto5.5V(±0.9Vto ±2.75V).Parametersthat canexhibitsignificantvariancewithregardtooperatingvoltagearepresentedinTypicalCharacteristics. 11 Layout 11.1 Layout Guidelines Figure 22 shows the typical connections for the TLV349x. To minimize supply noise, power supplies must be capacitively decoupled by a 0.01-µF ceramic capacitor in parallel with a 10-µF electrolytic capacitor. Comparators are very sensitive to input noise. Proper grounding (the use of a ground plane) helps to maintain thespecifiedperformanceoftheTLV349xfamily. Forbestresults,maintainthefollowinglayoutguidelines: 1. Useaprinted-circuitboard(PCB)withagood,unbrokenlow-inductancegroundplane. 2. Placeadecouplingcapacitor(0.1-µFceramic,surface-mountcapacitor)ascloseaspossibletoV . CC 3. On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback aroundthecomparator.Keepinputsawayfromtheoutput. 4. SolderthedevicedirectlytothePCBratherthanusingasocket. 5. For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000 pF or less) placedbetweentheinputscanhelpeliminateoscillationsinthetransitionregion.Thiscapacitorcausessome degradation to propagation delay when the impedance is low. The topside ground plane runs between the outputandinputs. 6. The ground pin ground trace runs under the device up to the bypass capacitor, shielding the inputs from the outputs. 11.2 Layout Example Power supply (1.8 V to 5.5 V) 0.01 µF 10 (cid:29)F V+ +IN OUT – IN V– OUT V+ 1 5 V– 0.01 µF 10 (cid:29)F 2 + – 3 4 Not to scale +IN –IN Copyright © 2016, Texas Instruments Incorporated Figure22. BasicConnectionsoftheTLV349x Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:TLV3491 TLV3492 TLV3494

TLV3491,TLV3492,TLV3494 SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 www.ti.com 12 Device and Documentation Support 12.1 Device Support 12.1.1 DevelopmentSupport 12.1.1.1 TINA-TI™(FreeSoftwareDownload) TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI™ is a free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency domainanalysisofSPICE,aswellasadditionaldesigncapabilities. Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select inputwaveformsandprobecircuitnodes,voltages,andwaveforms,creatingadynamicquick-starttool. NOTE These files require that either the TINA software (from DesignSoft™) or TINA-TI software beinstalled.DownloadthefreeTINA-TIsoftwarefromtheTINA-TIfolder. 12.1.1.2 DIPAdapterEVM The DIP Adapter EVM tool provides an easy, low-cost way to prototype small surface mount ICs. The evaluation tool these TI packages: D or U (SOIC-8), PW (TSSOP-8), DGK (MSOP-8), DBV (SOT23-6, SOT23-5 and SOT23-3), DCK (SC70-6 and SC70-5), and DRL (SOT563-6). The DIP Adapter EVM may also be used with terminalstripsormaybewireddirectlytoexistingcircuits. 12.1.1.3 UniversalOpAmpEVM The Universal Op Amp EVM is a series of general-purpose, blank circuit boards that simplify prototyping circuits for a variety of IC package types. The evaluation module board design allows many different circuits to be constructed easily and quickly. Five models are offered, with each model intended for a specific package type. PDIP,SOIC,MSOP,TSSOPandSOT23packagesareallsupported. NOTE These boards are unpopulated, so users must provide their own ICs. TI recommends requestingseveralopampdevicesampleswhenorderingtheUniversalOpAmpEVM. 12.1.1.4 TIPrecisionDesigns TI Precision Designs are analog solutions created by TI’s precision analog applications experts and offer the theory of operation, component selection, simulation, complete PCB schematic and layout, bill of materials, and measured performance of many useful circuits. TI Precision Designs are available online at http://www.ti.com/ww/en/analog/precision-designs/. 12.1.1.5 WEBENCH®FilterDesigner WEBENCH® Filter Designer is a simple, powerful, and easy-to-use active filter design program. The WEBENCH Filter Designer lets you create optimized filter designs using a selection of TI operational amplifiers and passive componentsfromTI'svendorpartners. Available as a web-based tool from the WEBENCH® Design Center, WEBENCH® Filter Designer allows you to design,optimize,andsimulatecompletemultistageactivefiltersolutionswithinminutes. 16 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:TLV3491 TLV3492 TLV3494

TLV3491,TLV3492,TLV3494 www.ti.com SBOS262E–DECEMBER2002–REVISEDDECEMBER2016 12.2 Related Links Table 1 lists quick access links. Categories include technical documents, support and community resources, toolsandsoftware,andquickaccesstosampleorbuy. Table1.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY TLV3491 Clickhere Clickhere Clickhere Clickhere Clickhere TLV3492 Clickhere Clickhere Clickhere Clickhere Clickhere TLV3494 Clickhere Clickhere Clickhere Clickhere Clickhere 12.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 12.4 Trademarks TINA-TI,E2EaretrademarksofTexasInstruments. WEBENCHisaregisteredtrademarkofTexasInstruments. TINA,DesignSoftaretrademarksofDesignSoft,Inc. Allothertrademarksarethepropertyoftheirrespectiveowners. 12.5 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 12.6 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:TLV3491 TLV3492 TLV3494

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TLV3491AID ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 TLV & no Sb/Br) 3491 TLV3491AIDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 VBNI & no Sb/Br) TLV3491AIDBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 VBNI & no Sb/Br) TLV3491AIDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 VBNI & no Sb/Br) TLV3491AIDBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 VBNI & no Sb/Br) TLV3491AIDG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 TLV & no Sb/Br) 3491 TLV3491AIDR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 TLV & no Sb/Br) 3491 TLV3492AID ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 TLV & no Sb/Br) 3492 TLV3492AIDCNR ACTIVE SOT-23 DCN 8 3000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 125 VBO1 & no Sb/Br) TLV3492AIDCNT ACTIVE SOT-23 DCN 8 250 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 125 VBO1 & no Sb/Br) TLV3492AIDR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 TLV & no Sb/Br) 3492 TLV3494AID ACTIVE SOIC D 14 50 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 TLV3494 & no Sb/Br) TLV3494AIPWR ACTIVE TSSOP PW 14 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 TLV & no Sb/Br) 3494 TLV3494AIPWT ACTIVE TSSOP PW 14 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 TLV & no Sb/Br) 3494 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 24-Apr-2020 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TLV3491AIDBVR SOT-23 DBV 5 3000 178.0 9.0 3.3 3.2 1.4 4.0 8.0 Q3 TLV3491AIDBVT SOT-23 DBV 5 250 178.0 9.0 3.3 3.2 1.4 4.0 8.0 Q3 TLV3491AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV3492AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV3494AIPWR TSSOP PW 14 2500 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 TLV3494AIPWT TSSOP PW 14 250 180.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 24-Apr-2020 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TLV3491AIDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TLV3491AIDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TLV3491AIDR SOIC D 8 2500 367.0 367.0 35.0 TLV3492AIDR SOIC D 8 2500 367.0 367.0 35.0 TLV3494AIPWR TSSOP PW 14 2500 367.0 367.0 35.0 TLV3494AIPWT TSSOP PW 14 250 210.0 185.0 35.0 PackMaterials-Page2

PACKAGE OUTLINE DBV0005A SOT-23 - 1.45 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 3.0 2.6 0.1 C 1.75 1.45 1.45 B A 0.90 PIN 1 INDEX AREA 1 5 2X 0.95 3.05 2.75 1.9 1.9 2 4 3 0.5 5X 0.3 0.15 0.2 C A B (1.1) TYP 0.00 0.25 GAGE PLANE 0.22 TYP 0.08 8 TYP 0.6 0 0.3 TYP SEATING PLANE 4214839/E 09/2019 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Refernce JEDEC MO-178. 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. www.ti.com

EXAMPLE BOARD LAYOUT DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM (1.9) 2 2X (0.95) 3 4 (R0.05) TYP (2.6) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214839/E 09/2019 NOTES: (continued) 5. Publication IPC-7351 may have alternate designs. 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM 2 (1.9) 2X(0.95) 3 4 (R0.05) TYP (2.6) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X 4214839/E 09/2019 NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design. www.ti.com

None

None

None

None

PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

None

None

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated