图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: TLV2454IDR
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

TLV2454IDR产品简介:

ICGOO电子元器件商城为您提供TLV2454IDR由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TLV2454IDR价格参考¥9.05-¥18.46。Texas InstrumentsTLV2454IDR封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 4 电路 满摆幅 14-SOIC。您可以下载TLV2454IDR参考资料、Datasheet数据手册功能说明书,资料中有TLV2454IDR 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)

描述

IC OPAMP GP 220KHZ RRO 14SOIC

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps

品牌

Texas Instruments

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

TLV2454IDR

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

-

产品目录页面

点击此处下载产品Datasheet

供应商器件封装

14-SOIC

其它名称

296-10597-1

包装

剪切带 (CT)

压摆率

0.11 V/µs

增益带宽积

220kHz

安装类型

表面贴装

封装/外壳

14-SOIC(0.154",3.90mm 宽)

工作温度

-40°C ~ 125°C

放大器类型

通用

标准包装

1

电压-电源,单/双 (±)

2.7 V ~ 6 V, ±1.35 V ~ 3 V

电压-输入失调

300µV

电流-电源

23µA

电流-输入偏置

500pA

电流-输出/通道

10mA

电路数

4

输出类型

满摆幅

推荐商品

型号:MCP6H01T-E/SN

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:THS4221DGN

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT1462ACN8#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:OPA4364AQDRQ1

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TLV272IDGKR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TS9224IYPT

品牌:STMicroelectronics

产品名称:集成电路(IC)

获取报价

型号:TLC2652AIP

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:AD8205YRZ-R7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
TLV2454IDR 相关产品

MAX4416EUA+

品牌:Maxim Integrated

价格:

HCPL-7520-560E

品牌:Broadcom Limited

价格:

LM6171BIM/NOPB

品牌:Texas Instruments

价格:¥41.32-¥64.34

ADA4932-2YCPZ-R2

品牌:Analog Devices Inc.

价格:

OP495GSZ-REEL

品牌:Analog Devices Inc.

价格:¥72.56-¥97.89

LMP2022MAX/NOPB

品牌:Texas Instruments

价格:

ADA4899-1YCPZ-R7

品牌:Analog Devices Inc.

价格:¥25.52-¥25.52

TL051CP

品牌:Texas Instruments

价格:¥1.34-¥3.85

PDF Datasheet 数据手册内容提取

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 (cid:1) Supply Current...23 µA/Channel Operational Amplifier (cid:1) Gain-Bandwidth Product...220 kHz (cid:1) Output Drive Capability...±10 mA (cid:1) Input Offset Voltage...20 µV (typ) − (cid:1) VDD Range...2.7 V to 6 V + (cid:1) Power Supply Rejection Ratio...106 dB (cid:1) Ultralow-Power Shutdown Mode I ...16 nA/ch DD (cid:1) Rail-To-Rail Input/Output (RRIO) (cid:1) Ultrasmall Packaging − 5 or 6 Pin SOT-23 (TLV2450/1) − 8 or 10 Pin MSOP (TLV2452/3) description The TLV245x is a family of rail-to-rail input/output operational amplifiers that sets a new performance point for supply current and ac performance. These devices consume a mere 23 µA/channel while offering 220 kHz of gain-bandwidth product, much higher than competitive devices with similar supply current levels. Along with increased ac performance, the amplifier provides high output drive capability, solving a major shortcoming of older micropower rail-to-rail input/output operational amplifiers. The TLV245x can swing to within 250 mV of each supply rail while driving a 2.5-mA load. Both the inputs and outputs swing rail-to-rail for increased dynamic range in low-voltage applications. This performance makes the TLV245x family ideal for portable medical equipment, patient monitoring systems, and data acquisition circuits. FAMILY PACKAGE TABLE NNUUMMBBEERR OOFF PACKAGE TYPES UUNNIIVVEERRSSAALL DDEEVVIICCEE SSHHUUTTDDOOWWNN CHANNELS PDIP SOIC SOT-23 TSSOP MSOP EVM BOARD TLV2450 1 8 8 6 — — Yes TLV2451 1 8 8 5 — — — TLV2452 2 8 8 — — 8 — RReeffeerr ttoo tthhee EEVVMM SSeelleeccttiioonn GGuuiiddee TLV2453 2 14 14 — — 10 Yes ((LLiitt## SSLLOOUU006600)) TLV2454 4 14 14 — 14 — — TLV2455 4 16 16 — 16 — Yes A SELECTION OF SINGLE-SUPPLY OPERATIONAL AMPLIFIER PRODUCTS† DEVICE V(DVD) (MBHWz) SLE(VW/µ RsA)TE IDD (pe(µr Ach)annel) RAIL-TO-RAIL TLV245X 2.7 − 6.0 0.22 0.11 23 I/O TLV247X 2.7 − 6.0 2.8 1.5 600 I/O TLV246X 2.7 − 6.0 6.4 1.6 550 I/O TLV277X 2.5 − 6.0 5.1 10.5 1000 O †All specifications measured at 5 V. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. (cid:24)(cid:22)(cid:17)(cid:30)(cid:25)(cid:31)(cid:1)(cid:15)(cid:17)(cid:23) (cid:30)(cid:12)(cid:1)(cid:12) !"#$%&’(!$" !) *+%%,"( ’) $# -+./!*’(!$" 0’(,1 Copyright  1998−2005, Texas Instruments Incorporated (cid:24)%$0+*() *$"#$%& ($ )-,*!#!*’(!$") -,% (2, (,%&) $# (cid:1),(cid:11)’) (cid:15)")(%+&,"() )(’"0’%0 3’%%’"(41 (cid:24)%$0+*(!$" -%$*,))!"5 0$,) "$( ",*,))’%!/4 !"*/+0, (,)(!"5 $# ’// -’%’&,(,%)1 WW•W.TI.COM 1 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 description (continued) Three members of the family (TLV2450/3/5) offer a shutdown terminal for conserving battery life in portable applications. During shutdown, the outputs are placed in a high-impedance state and the amplifier consumes only 16 nA/channel. The family is fully specified at 3 V and 5 V across an expanded industrial temperature range (−40°C to 125°C). The singles and duals are available in the SOT23 and MSOP packages, while the quads are available in TSSOP. The TLV2450 offers an amplifier with shutdown functionality all in a 6-pin SOT23 package, making it perfect for high density circuits. TLV2450 and TLV2451 AVAILABLE OPTIONS PACKAGED DEVICES TTAA SSMMAALLLL OOUUTTLLIINNEE SOT-23 PPLLAASSTTIICC DDIIPP (D)†† (DBV) SYMBOL (P) TLV2450CD TLV2450CDBV VAQC TLV2450CP 0°C to 70°C TLV2451CD TLV2451CDBV VARC TLV2451CP TLV2450ID TLV2450IDBV VAQI TLV2450IP TLV2451ID TLV2451IDBV VARI TLV2451IP −−4400°°CC ttoo 112255°°CC TLV2450AID — — TLV2450AIP TLV2451AID — — TLV2451AIP †This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2450CDR). TLV2452 and TLV2453 AVAILABLE OPTIONS PACKAGED DEVICES TTAA SMALL MSOP PLASTIC PLASTIC OOUUTTLLIINNEE DDIIPP DDIIPP (D)† (DGK)† SYMBOL‡ (DGS)† SYMBOL‡ (N) (P) TLV2452CD TLV2452CDGK xxTIABI — — — TLV2452CP 0°C to 70°C TLV2453CD — — TLV2453CDGS xxTIABK TLV2453CN — TLV2452ID TLV2452IDGK xxTIABJ — — — TLV2452IP TLV2453ID — — TLV2453IDGS xxTIABL TLV2453IN — −−4400°°CC ttoo 112255°°CC TLV2452AID — — — — — TLV2452AIP TLV2453AID — — — — TLV2453AIN — †This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2452CDR). ‡xx represents the device date code. TLV2454 and TLV2455 AVAILABLE OPTIONS PACKAGED DEVICES TA SMALL OUTLINE PLASTIC DIP TSSOP (D)† (N) (PW)† TLV2454CD TLV2454CN TLV2454CPW 0°C to 70°C TLV2455CD TLV2455CN TLV2455CPW TLV2454ID TLV2454IN TLV2454IPW TLV2455ID TLV2455IN TLV2455IPW −−4400°°CC ttoo 112255°°CC TLV2454AID TLV2454AIN TLV2454AIPW TLV2455AID TLV2455AIN TLV2455AIPW †This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2454CDR). NOTE: For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet, or refer to our web site at www.ti.com. 2 WW•W.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TLV245x PACKAGE PINOUTS(1) TLV2450 TLV2450 TLV2451 DBV PACKAGE D OR P PACKAGE DBV PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) OUT 1 6 VDD+ NC 1 8 SHDN OUT 1 5 VDD+ IN− 2 7 VDD+ GND 2 5 SHDN IN+ 3 6 OUT GND 2 GND 4 5 NC IN+ 3 4 IN− IN+ 3 4 IN− TLV2451 TLV2452 TLV2453 D OR P PACKAGE D, DGK, OR P PACKAGE DGS PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) NC 1 8 NC 1OUT 1 8 VDD+ 1OUT 1 10 VDD+ IN− 2 7 VDD+ 1IN− 2 7 2OUT 1IN− 2 9 2OUT IN+ 3 6 OUT 1IN+ 3 6 2IN− 1IN+ 3 8 2IN− GND 4 5 NC GND 4 5 2IN+ GND 4 7 2IN+ 1SHDN 5 6 2SHDN TLV2453 TLV2454 TLV2455 D OR N PACKAGE D, N, OR PW PACKAGE D, N, OR PW PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) 1OUT 1 14 VDD+ 1OUT 1 14 4OUT 1OUT 1 16 4OUT 1IN− 2 13 2OUT 1IN− 2 13 4IN− 1IN− 2 15 4IN− 1IN+ 3 12 2IN− 1IN+ 3 12 4IN+ 1IN+ 3 14 4IN+ GND 4 11 2IN+ VDD+ 4 11 GND VDD+ 4 13 GND NC 5 10 NC 2IN+ 5 10 3IN+ 2IN+ 5 12 3IN+ 1SHDN 6 9 2SHDN 2IN− 6 9 3IN− 2IN− 6 11 3IN− NC 7 8 NC 2OUT 7 8 3OUT 2OUT 7 10 3OUT 1/2SHDN 8 9 3/4SHDN NC − No internal connection (1) SOT−23 may or may not be indicated TYPICAL PIN 1 INDICATORS Pin 1 Printed or Pin 1 Pin 1 Pin 1 Molded Dot Stripe Bevel Edges Molded ”U” Shape WW•W.TI.COM 3 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V DD Differential input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V ID DD Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C A I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C J Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C stg Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C †Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE: All voltage values, except differential voltages, are with respect to GND. DISSIPATION RATING TABLE θJC θJA TA ≤ 25°C PACKAGE (°C/W) (°C/W) POWER RATING D (8) 38.3 176 710 mW D (14) 26.9 122.3 1022 mW D (16) 25.7 114.7 1090 mW DBV (5) 55 324.1 385 mW DBV (6) 55 294.3 425 mW DGK (8) 54.2 259.9 481 mW DGS (10) 54.1 257.7 485 mW N (14, 16) 32 78 1600 mW P (8) 41 104 1200 mW PW (14) 29.3 173.6 720 mW PW (16) 28.7 161.4 774 mW recommended operating conditions MIN MAX UNIT Single supply 2.7 6 SSuuppppllyy vvoollttaaggee,, VVDDDD Split supply ±1.35 ±3 VV Common-mode input voltage range, VICR 0 VDD V C-suffix 0 70 OOppeerraattiinngg ffrreeee--aaiirr tteemmppeerraattuurree,, TTAA °°CC I-suffix −40 125 VIH 2 VV SShhuuttddoowwnn oonn//ooffff vvoollttaaggee lleevveell‡ VDD = 5V 0.8 VVIILL VDD = 3V 0.5 V ‡Relative to voltage on the GND terminal of the device. 4 WW•W.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 electrical characteristics at specified free-air temperature, V = 3 V (unless otherwise noted) DD PARAMETER TEST CONDITIONS TA† MIN TYP MAX UNIT 25°C 300 1500 TTLLVV224455xx Full range 2000 VVIIOO IInnppuutt ooffffsseett vvoollttaaggee 25°C 300 1000 µVV TTLLVV224455xxAA Full range 1300 αVVIIOO TToeeffmmseppt eevrroaaltttuuarrgeee ccooeeffffiicciieenntt ooff iinnppuutt VVVVDDIICCDD == == 00 ±±,,11..55 VV VVRROOSS ==== 550000,, Ω 00..33 µVV//°°CC 25°C 0.3 4.5 IIIIOO IInnppuutt ooffffsseett ccuurrrreenntt nnAA Full range 5.5 25°C 0.9 5 IIIIBB IInnppuutt bbiiaass ccuurrrreenntt nnAA Full range 7 25°C 2.85 2.95 VVOOHH HHiigghh--lleevveell oouuttppuutt vvoollttaaggee VVIICC == 11..55 VV,, IIOOHH == −−550000 µAA VV Full range 2.83 25°C 0.09 0.16 VVOOLL LLooww--lleevveell oouuttppuutt vvoollttaaggee VVIICC == 11..55 VV,, IIOOLL == 550000 µAA VV Full range 0.2 25°C 4 12 SSoouurrcciinngg Full range 3 IIOOSS SShhoorrtt--cciirrccuuiitt oouuttppuutt ccuurrrreenntt 25°C 2 7 mmAA SSiinnkkiinngg Full range 1 IO Output current VO = 0.5 V from rail 25°C ±4 mA LLaarrggee--ssiiggnnaall ddiiffffeerreennttiiaall vvoollttaaggee 25°C 96 110 AAVVDD amplification VVOO((PPPP)) == 11 VV,, RRLL == 1100 kkΩΩ Full range 91 ddBB ri(d) Differential input resistance 25°C 109 Ω Common-mode input CIC capacitance f = 10 kHz 25°C 4.5 pF zo Closed-loop output impedance f = 10 kHz, AV = 10 25°C 80 Ω VVIICC == 00 ttoo 33 VV,, 25°C 70 80 dB CCMMRRRR CCoommmmoonn--mmooddee rreejjeeccttiioonn rraattiioo RS = 50Ω TLV245xC Full range 66 dB VVDDDD == 22..77 VV ttoo 66 VV,, VVIICC == VVDDDD//22,, 25°C 76 89 SSuuppppllyy vvoollttaaggee rreejjeeccttiioonn rraattiioo No load Full range 74 kkSSVVRR ((∆VVDDDD //∆VVIIOO)) VVDDDD == 33 VV ttoo 55 VV,, VVIICC == VVDDDD//22,, 25°C 88 106 ddBB No load Full range 84 25°C 23 35 IIDDDD SSuuppppllyy ccuurrrreenntt ((ppeerr cchhaannnneell)) VVOO == 11..55 VV,, NNoo llooaadd TLV245xC Full range 40 µµAA TLV245xI Full range 45 25°C 12 65 SSuuppppllyy ccuurrrreenntt iinn sshhuuttddoowwnn IIDDDD((SSHHDDNN)) mmooddee ((TTLLVV22445500,, TTLLVV22445533,, SSHHDDNN == −−VVDDDD TLV245xC Full range 70 nnAA TTLLVV22445555)) ((ppeerr cchhaannnneell)) TLV245xI Full range 80 †Full range is 0°C to 70°C for C suffix and −40°C to 125°C for I suffix. WW•W.TI.COM 5 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 operating characteristics at specified free-air temperature, V = 3 V (unless otherwise noted) DD PARAMETER TEST CONDITIONS TA† MIN TYP MAX UNIT SSRR SSlleeww rraattee aatt uunniittyy ggaaiinn VVROOL ((=PP 1PP0)) ==kΩ 00..88 VV,, CCLL == 115500 ppFF,, Fu2ll 5r°aCnge 00..0052 0.11 VV//µss f = 100 Hz 25°C 49 VVnn EEqquuiivvaalleenntt iinnppuutt nnooiissee vvoollttaaggee f = 1 kHz 25°C 51 nnVV//√√HHzz In Equivalent input noise current f = 1 kHz 25°C 3.5 pA/√Hz VVOO((PPPP)) == 11..55 VV,, AV = 1 0.04% TTHHDD ++ NN TToottaall hhaarrmmoonniicc ddiissttoorrttiioonn pplluuss nnooiissee RRLL == 1100 kkΩΩ,, AV = 10 2255°CC 0.3% ff == 11 kkHHzz AV = 100 1.5% t(on) Amplifier turnon time AAVV == 55,, RRLL == OOPPEENN,, 25°C 59 µs t(off) Amplifier turnoff time Measured at 50% point 25°C 836 ns Gain-bandwidth product f = 10 kHz, RL = 10 kΩ 25°C 200 kHz V(STEP)PP = 2 V, 0.1% 26 AAVV == −−11,, CL = 10 pF, RL = 10 kΩ 0.01% 31 ttss SSeettttlliinngg ttiimmee 2255°°CC µss V(STEP)PP = 2 V, 0.1% 26 AAVV == −−11,, CL = 56 pF, RL = 10 kΩ 0.01% 31 φm Phase margin RL = 10 kΩ, CL = 1000 pF 25°C 56° Gain margin RL = 10 kΩ, CL = 1000 pF 25°C 7 dB †Full range is 0°C to 70°C for C suffix and −40°C to 125°C for I suffix. 6 WW•W.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 electrical characteristics at specified free-air temperature, V = 5 V (unless otherwise noted) DD PARAMETER TEST CONDITIONS TA† MIN TYP MAX UNIT 25°C 300 1500 TTLLVV224455xx Full range 2000 VVIIOO IInnppuutt ooffffsseett vvoollttaaggee 25°C 300 1000 µVV TTLLVV224455xxAA Full range 1300 αVVIIOO TToeeffmmseppt eevrroaaltttuuarrgeee ccooeeffffiicciieenntt ooff iinnppuutt VVVVDDIICCDD == == 00 ±±,,22..55 VV VVRROOSS ==== 550000,, Ω 00..33 µVV//°°CC 25°C 0.3 4.5 IIIIOO IInnppuutt ooffffsseett ccuurrrreenntt nnAA Full range 5.5 25°C 0.5 5 IIIIBB IInnppuutt bbiiaass ccuurrrreenntt nnAA Full range 7 25°C 4.87 4.97 VVOOHH HHiigghh--lleevveell oouuttppuutt vvoollttaaggee VVIICC == 22..55 VV,, IIOOHH == −−550000 µAA VV Full range 4.85 25°C 0.07 0.15 VVOOLL LLooww--lleevveell oouuttppuutt vvoollttaaggee VVIICC == 22..55 VV,, IIOOLL == 550000 µAA VV Full range 0.16 25°C 20 32 SSoouurrcciinngg Full range 18 IIOOSS SShhoorrtt--cciirrccuuiitt oouuttppuutt ccuurrrreenntt 25°C 12 18 mmAA SSiinnkkiinngg Full range 10 IO Output current VO = 0.5 V from rail 25°C ±10 mA LLaarrggee--ssiiggnnaall ddiiffffeerreennttiiaall vvoollttaaggee 25°C 96 103 AAVVDD amplification VVOO((PPPP)) == 33 VV,, RRLL == 1100 kkΩΩ Full range 91 ddBB ri(d) Differential input resistance 25°C 109 Ω CIC Common-mode input capacitance f = 10 kHz 25°C 4.5 pF zo Closed-loop output impedance f = 10 kHz, AV = 10 25°C 45 Ω VVIICC == 00 ttoo 55 VV,, 25°C 70 80 CCMMRRRR CCoommmmoonn--mmooddee rreejjeeccttiioonn rraattiioo RS = 50Ω TLV245xC Full range 68 ddBB VVDDDD == 22..77 VV ttoo 66 VV,, VVIICC == VVDDDD//22,, 25°C 76 89 SSuuppppllyy vvoollttaaggee rreejjeeccttiioonn rraattiioo No load Full range 74 kkSSVVRR ((∆VVDDDD //∆VVIIOO)) VVDDDD == 33 VV ttoo 55 VV,, VVIICC == VVDDDD//22,, 25°C 88 106 ddBB No load Full range 84 25°C 23 42 IIDDDD SSuuppppllyy ccuurrrreenntt ((ppeerr cchhaannnneell)) VVOO == 22..55 VV,, NNoo llooaadd TLV245xC Full range 44 µµAA TLV245xI Full range 46 25°C 16 70 SSuuppppllyy ccuurrrreenntt iinn sshhuuttddoowwnn mmooddee IIDDDD((SSHHDDNN)) ((TTLLVV22445500,, TTLLVV22445533,, TTLLVV22445555)) ((ppeerr SSHHDDNN == −−VVDDDD TLV245xC Full range 70 nnAA cchhaannnneell)) TLV245xI Full range 80 †Full range is 0°C to 70°C for C suffix and −40°C to 125°C for I suffix. WW•W.TI.COM 7 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 operating characteristics at specified free-air temperature, V = 5 V (unless otherwise noted) DD PARAMETER TEST CONDITIONS TA† MIN TYP MAX UNIT SSRR SSlleeww rraattee aatt uunniittyy ggaaiinn VVROOL ((=PP 1PP0)) ==kΩ 22 VV,, CCLL == 115500 ppFF,, Fu2ll 5r°aCnge 00..0052 0.11 VV//µss f = 100 Hz 25°C 49 VVnn EEqquuiivvaalleenntt iinnppuutt nnooiissee vvoollttaaggee f = 1 kHz 25°C 52 nnVV//√√HHzz In Equivalent input noise current f = 1 kHz 25°C 3.5 pA/√Hz VVOO((PPPP)) == 33 VV,, AV = 1 0.02% TTHHDD ++ NN TToottaall hhaarrmmoonniicc ddiissttoorrttiioonn pplluuss nnooiissee RRLL == 1100 kkΩΩ,, AV = 10 2255°CC 0.18% ff == 11 kkHHzz AV = 100 0.9% t(on) Amplifier turnon time AAVV == 55,, RRLL == OOPPEENN,, 25°C 59 µs t(off) Amplifier turnoff time Measured at 50% point 25°C 836 ns Gain-bandwidth product f = 10 kHz, RL = 10 kΩ 25°C 220 kHz V(STEP)PP = 2 V, 0.1% 24 AAVV == −−11,, CL = 10 pF, RL = 10 kΩ 0.01% 30 ttss SSeettttlliinngg ttiimmee 2255°°CC µss V(STEP)PP = 2 V, 0.1% 25 AAVV == −−11,, CL = 56 pF, RL = 10 kΩ 0.01% 30 φm Phase margin RL = 10 kΩ, CL = 1000 pF 25°C 56° Gain margin RL = 10 kΩ, CL = 1000 pF 25°C 7 dB †Full range is 0°C to 70°C for C suffix and −40°C to 125°C for I suffix. 8 WW•W.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage vs Common-mode input voltage 1, 2 vs Common-mode input voltage 3, 4 IIO Input offset current vs Free-air temperature 7, 8 vs Common-mode input voltage 5, 6 IIB Input bias current vs Free-air temperature 7, 8 AVD Differential voltage amplification vs Frequency 9, 10 Phase vs Frequency 9, 10 VOL Low-level output voltage vs Low-level output current 11, 13 VOH High-level output voltage vs High-level output current 12, 14 Zo Output impedance vs Frequency 15, 16 CMRR Common-mode rejection ratio vs Frequency 17 PSRR Power supply rejection ratio vs Frequency 18 IDD Supply current vs Supply voltage 19 IDD Supply current vs Free-air temperature 20 Vn Equivalent input noise voltage vs Frequency 21 THD + N Total harmonic distortion plus noise vs Frequency 22, 23 φm Phase margin vs Load capacitance 24 Gain-bandwidth product vs Supply voltage 25 vvss SSuuppppllyy vvoollttaaggee 2266 SSRR SSlleeww rraattee vs Free-air temperature 27 VO(PP) Maximum peak-to-peak output voltage vs Frequency 28 Crosstalk vs Frequency 29, 30 Small-signal follower pulse response vs Time 31, 33 Large-signal follower pulse response vs Time 32, 34 Shutdown on supply current vs Time 35 Shutdown off supply current vs Time 36 Shutdown supply current vs Free-air temperature 37 Shutdown supply current vs Time 38 − 41 Shutdown pulse vs Time 38 − 41 Shutdown off pulse response vs Time 42, 43 Shutdown on pulse response vs Time 44, 45 Shutdown reverse isolation vs Frequency 46 Shutdown forward isolation vs Frequency 47 WW•W.TI.COM 9 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS INPUT OFFSET VOLTAGE INPUT OFFSET VOLTAGE vs vs COMMON-MODE INPUT VOLTAGE COMMON-MODE INPUT VOLTAGE 200 100 VDD =3 V 80 VDD =5 V 150 TA = 25°C TA = 25°C V V 60 µ µ Voltage − 15000 Voltage − 4200 Offset 0 Offset 0 − Input O −−15000 − Input O −−4200 VI VI −60 −150 −80 −200 −100 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VIC − Common-Mode Input Voltage − V VIC − Common-Mode Input Voltage − V Figure 1 Figure 2 INPUT OFFSET CURRENT INPUT OFFSET CURRENT vs vs COMMON-MODE INPUT VOLTAGE COMMON-MODE INPUT VOLTAGE 60 20 VDD = 3 V 40 TA = 25°C 10 VTAD D= =25 5° CV A A p p − − 0 nt 20 nt e e urr urr −10 C C set 0 set −20 Off Off put put −30 n −20 n − I − I O O −40 II −40 II −50 −60 −60 0 0.5 1 0 0.5 1 1.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VIC − Common-Mode Input Voltage − V VIC − Common-Mode Input Voltage − V Figure 3 Figure 4 10 WW•W.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS INPUT BIAS CURRENT INPUT BIAS CURRENT vs vs COMMON-MODE INPUT VOLTAGE COMMON-MODE INPUT VOLTAGE 3 3 VDD =5 V VDD = 3 V TA = 25°C 2 TA = 25°C 2 A nA − n 1 nt − 1 rent re ur 0 Cur 0 s C − Input Bias B −−12 − Input BiaIIB −−12 II −3 −3 −4 −4 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 VIC − Common-Mode Input Voltage − V VIC − Common-Mode Input Voltage − V Figure 5 Figure 6 INPUT OFFSET CURRENT INPUT OFFSET CURRENT AND INPUT BIAS CURRENT AND INPUT BIAS CURRENT vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE A 1.5 A 0.9 n n − 1.4 VDD = 3 V − nts 1.3 nts 0.8 VDD = 5 V rre 1.2 rre 0.7 u u C 1.1 C et 1 IIB et 0.6 s s Off 0.9 Off 0.5 IIB ut 0.8 ut p p n 0.7 n 0.4 d I d I n 0.6 n s a 0.5 s a 0.3 a a Bi 0.4 Bi 0.2 ut 0.3 ut IIO p p − In 0.2 IIO − In 0.1 O 0.1 O 0 I I I 0 I / / B B II −0.−155 −35 −15 5 25 45 65 85 105 125 II −0.−155 −35 −15 5 25 45 65 85 105 125 TA − Free-Air Temperature − °C TA − Free-Air Temperature − °C Figure 7 Figure 8 WW•W.TI.COM 11 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE vs FREQUENCY 120 dB VDD = ±3 V n − TA = 25°C o 90 120 ati c mplifi 60 60 A ° e Gain g − a e olt 30 0 as V h al P nti e 0 −60 r e Diff − Phase D −30 −120 V A −60 −180 100 1k 10k 100k 1M f − Frequency − Hz Figure 9 DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE vs FREQUENCY 120 dB VDD = ±5 VDC n − TA = 25°C o 90 120 ati c mplifi 60 60 A ° e Gain g − a e olt 30 0 as V h al P nti e 0 −60 r e Diff − Phase D −30 −120 V A −60 −180 100 1k 10k 100k 1M f − Frequency − Hz Figure 10 12 WW•W.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS LOW-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE vs vs LOW-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT CURRENT 3 3 VDD = 3 V VDD = 3 V Output Voltage − V 12..552 TA = 25°C Output Voltage − V 12..552 TA = 25°C TA = −40°C w-Level 1 TTAA = = 1 8255°°CC gh-Level 1 TA = 85°C − Lo TA = −40°C − Hi TA = 125°C L H VO 0.5 VO 0.5 0 0 0 1 2 3 4 5 6 7 8 9 10 0 2.5 5 7.5 10 12.5 15 IOL − Low-Level Output Current − mA IOH − High-Level Output Current − mA Figure 11 Figure 12 LOW-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE vs vs LOW-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT CURRENT 5 5 VDD = 5 V VDD = 5 V 4.5 4.5 V V e − 4 TA = 25°C e − 4 TA = −40°C g g ut Volta 3.53 TA = 85°C ut Volta 3.53 p p Out 2.5 Out 2.5 TA = 125°C evel 2 TA = 125°C evel 2 TA = 85°C L L ow- 1.5 gh- 1.5 TA = 25°C − LOL 1 TA = −40°C − HiH 1 V O V 0.5 0.5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 30 35 40 IOL − Low-Level Output Current − mA IOH − High-Level Output Current − mA Figure 13 Figure 14 WW•W.TI.COM 13 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS OUTPUT IMPEDANCE OUTPUT IMPEDANCE vs vs FREQUENCY FREQUENCY 10k 10k VTAD D= =25 3° CV VTAD D= =25 5° CV 1k Ω 1k Ω − − nce AV = 100 nce AV = 100 a a 100 d d e e p p m 100 m ut I AV = 10 ut I p p 10 ut ut − O AV = 1 − O AV = 10 o o Z 10 Z 1 AV = 1 1 0.1 100 1k 10k 100k 1M 100 1k 10k 100k 1M f − Frequency − Hz f − Frequency − Hz Figure 15 Figure 16 COMMON-MODE REJECTION RATIO vs FREQUENCY 120 B d − VDD = 3 V or 5 V o 100 TA = 25°C ati R n ctio 80 e ej R e 60 d o M n- o m 40 m o C − R 20 R M C 0 10 100 1k 10k 100k 1M f − Frequency − Hz Figure 17 14 WW•W.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS POWER SUPPLY REJECTION RATIO SUPPLY CURRENT vs vs FREQUENCY SUPPLY VOLTAGE 100 40 B AV = 1 o − d 90 VTAD D= =25 3° CV or 5 V 35 SPeHrD CNh =a nVnDeDl TA = 125°C ati 80 TA = 85°C R n 70 A 30 o µ ecti 60 PSRR + nt − 25 TA = 25°C Rej rre TA = −40°C Supply 4500 pply Cu 20 er PSRR − Su 15 w 30 − o P D R − 20 ID 10 R PS 10 5 0 0 10 100 1k 10k 100k 1M 2.5 3 3.5 4 4.5 5 5.5 f − Frequency − Hz VDD − Supply Voltage − V Figure 18 Figure 19 SUPPLY CURRENT EQUIVALENT INPUT NOISE VOLTAGE vs vs FREE-AIR TEMPERATURE FREQUENCY 30 100 z H VDD = 5 V 25 V/ n A − µ e urrent − 20 VDD = 3 V e Voltag pply C 15 ut Nois 10 u p S n − 10 nt I D e D al I v 5 VSIH =D VND =D V /D2D − Equi VTAD D= =25 3° CV or 5 V per channel n V 0 1 −55 −35 −15 5 25 45 65 85 105 125 10 100 1k 10k 100k TA − Free-Air Temperature − °C f − Frequency − Hz Figure 20 Figure 21 WW•W.TI.COM 15 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs vs FREQUENCY FREQUENCY 100% 100% VDD = 3 V n + Noise 10% TVRAOL (==P 2P150) ° =kC Ω1.5 V AV = 10 on + Noise 10% TVVRADOL D(==P =2P15 0)5 ° = kCV Ω3 V rtio orti nic Disto 1% AV = 100 onic Dist 1% AV = 100 o m m r ar 0.1% ha 0.1% otal h AV = 1 Total AV = 10 N − T 0.01% +N − 0.010% AV = 1 + D D H H T T 0.001% 0.001% 10 100 1k 10k 100k 10 100 1k 10k 100k f − Frequency − MHz f − Frequency − Hz Figure 22 Figure 23 PHASE MARGIN GAIN-BANDWIDTH PRODUCT vs vs LOAD CAPACITANCE SUPPLY VOLTAGE 100° 280 90° RNULL = 500Ω 270 f = 1 kHz RL = 10 kΩ 80° Hz 260 TA = 25°C k gin 70° RNULL = 200Ω duct − 250 Mar 60° RNULL = 100Ω Pro 240 ase 50° dth 230 − Ph 40° RNULL = 50Ω ndwi 220 a m B φ 30° RNULL = 10Ω ain- 210 20° G 200 VDD = 5 V 10° RL = 10 kΩ RNULL = 0Ω 190 TA = 25°C 0° 180 100 1k 10k 100k 2.5 3 3.5 4 4.5 5 5.5 CL − Load Capacitance − pF VDD − Supply Voltage − V Figure 24 Figure 25 16 WW•W.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS SLEW RATE SLEW RATE vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 0.12 0.16 f = 10 kHz f = 10 kHz TA = 25°C RL = 10 kΩ RL = 10 kΩ CL = 160 pF s CL = 160 pF s 0.14 AV = 1 µV/ AV = 1 µV/ − 0.11 − e e at at 0.12 R R w w VDD = 5 V Sle Sle VDD = 3 V R − R − 0.1 S 0.1 S 0.08 0.09 0.06 2.5 3 3.5 4 4.5 5 −40 −20 0 20 40 60 80 100 120 140 VDD − Supply Voltage − V TA − Free-Air Temperature − °C Figure 26 Figure 27 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY V 5 − e VO(PP) = 5 V g 4.5 a olt V 4 ut p ut 3.5 O k a 3 e o-P 2.5 VO(PP) = 3 V k-t a e 2 P m u 1.5 THD + N < 5% m xi AV = 5 Ma 1 RL = 20 kΩ − TA = 25°C P) 0.5 P O( V 0 100 1k 10k 100k f − Frequency − Hz Figure 28 WW•W.TI.COM 17 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS CROSSTALK CROSSTALK vs vs FREQUENCY FREQUENCY −20 −20 VDD = 3 V VDD = 5 V −30 AV = 1 −30 AV = 1 RL = 10 kΩ RL = 10 kΩ All Channels All Channels −40 −40 −50 −50 B B d d k − −60 k − −60 al al sst −70 sst −70 o o r r C C −80 −80 −90 −90 −100 −100 −110 −110 10 100 1k 10k 100k 10 100 1k 10k 100k f − Frequency − Hz f − Frequency − Hz Figure 29 Figure 30 SMALL-SIGNAL FOLLOWER PULSE RESPONSE vs TIME 0.3 0.15 0.1 0.25 VI 0.05 0.2 V 0 − V e − g 0.15 −0.05 e a g Volt −0.1 olta put 0.1 −0.15 ut V − Out 0.05 VO −0.2 − Inp O VDD = 3 V VI V 0 RL = 10 kΩ −0.25 CL = 160 pF −0.3 AV = 1 −0.05 TA = 25°C −0.35 f = 45 kHz −0.1 −0.4 −2 0 2 4 6 8 10 12 14 16 t − Time − µs Figure 31 18 WW•W.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS LARGE-SIGNAL FOLLOWER PULSE RESPONSE vs TIME 5 2 VDD = 3 V 4 1 AV = 1 RL = 10 kΩ Voltage − V 32 VI CfT A=L 1==0 21 k56H°0C zpF 0−1 Voltage − V utput 1 −2 nput − O − I O 0 −3 VI V VO −1 −4 −2 −5 −20 0 20 40 60 80 100 t − Time − µs Figure 32 SMALL-SIGNAL FOLLOWER PULSE RESPONSE vs TIME 240 80 200 40 V 160 0 V m m Voltage − 18200 VI VDD = 5 V −−8400 Voltage − − Output O 40 CTARAVLL ==== 2111506° 0kC ΩpF −120 V− Input I V 0 −160 VO −40 −200 −80 −240 −5 0 5 10 15 20 t − Time − µs Figure 33 WW•W.TI.COM 19 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS LARGE-SIGNAL FOLLOWER PULSE RESPONSE vs TIME 10 2 VI VDD = 5 V RL = 10 kΩ 1 8 CL = 160 pF 0 AV = 1 TA = 25°C −1 V ge − 6 f = 10 kHz −2 e − V a g Volt 4 −3 olta put VO −4 ut V − Out 2 −−56 − Inp O 0 VI V −7 −8 −2 −9 −4 −10 −10 0 10 20 30 40 50 60 70 80 90 100 t − Time − µs Figure 34 SHUTDOWN ON SUPPLY CURRENT vs TIME 180 10 Shutdown Control Signal 5 160 140 0 A µ− 120 −5 urrent 100 −10 e − V upply C 6800 −−2105 wn Puls S o d − 40 −25 ut D h D Supply Current − IDD S I 20 −30 0 −35 −20 −40 −4 −2 0 2 4 6 8 10 t − Time − µS Figure 35 20 WW•W.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS SHUTDOWN OFF SUPPLY CURRENT vs TIME 50 10 Shutdown Control Signal 40 5 A µ − 30 0 nt V urre e − upply C 20 Supply Current − IDD −5 wn Puls S 10 −10 do − ut D h D S I 0 −15 −10 −20 −20 −10 0 10 20 30 40 50 60 70 80 t − Time − µS Figure 36 SHUTDOWN SUPPLY CURRENT vs FREE-AIR TEMPERATURE 1.6 Shutdown Mode 1.4 AV = 1 RL = Open VI = VDD/2 V A 1.2 µ − VDD = 5 V ent 1 r r u C y 0.8 pl p u S 0.6 − D D 0.4 I VDD = 3 V 0.2 0 −55 −35 −15 5 25 45 65 85 105 125 TA − Free-Air Temperature − °C Figure 37 WW•W.TI.COM 21 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE vs TIME 5 VDD = 3 V A SD Pulse AV = 1 4 µ − VI = 1.5 V 3 rent CRLL == 1106 0k ΩpF and 10 pF 2 r Cu TA = 25°C 1 V upply 0 ulse − n S 30 IDD(SD) n P w 25 w o o utd 20 utd h h S 15 S − D) 10 S D( 5 D I 0 −5 −3 −1 1 3 5 7 9 11 13 15 t − Time − µs Figure 38 SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE vs TIME 5 4 A µ − 3 ent VDD = 3 V 2 rr AV = 1 u upply C SD Pulse CVRILL = == 1 11.506 0Vk ΩpF and 10 pF 10 ulse − V n S 30 TA = 25°C n P w w do 25 do ut ut h 20 h S S − D) 15 S D( 10 D I 5 IDD(SD) 0 −100 −50 0 50 100 150 200 t − Time − µs Figure 39 22 WW•W.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE vs TIME 5 VDD = 5 V 4 A µ AV = 1 ent − VRIL = = 2 1.50 VkΩ 32 upply Curr SD Pulse CTAL == 2156°0C pF and 10 pF 10 ulse − V S P n n w 25 w o o d d ut 20 ut h h S 15 S − D) 10 S DD( 5 IDD(SD) I 0 −100 −50 0 50 100 150 200 t − Time − µs Figure 40 SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE vs TIME 5 SD Pulse VDD = 5 V 4 AV = 1 A µ VI = 2.5 V 3 nt − RL = 10 kΩ 2 e CL = 160 pF and 10 pF Curr TA = 25°C 1 V upply 0 ulse − S 30 P wn IDD(SD) wn o 25 o d d ut 20 ut h h S 15 S − D) 10 S D( 5 D I 0 −10 −5 0 5 10 15 t − Time − µs Figure 41 WW•W.TI.COM 23 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS SHUTDOWN OFF PULSE RESPONSE SHUTDOWN OFF PULSE RESPONSE vs vs TIME TIME 4 6 SD Pulse SD Pulse 5 3 ut Voltage − V 2 TCVAVRAVDILL = D==== 2 =2111.55 063 ° 0V kCV ΩpF and 8 pF put Voltage − V 34 VO Channel 1 utp 1 Out 2 − OVO − VO 1 VAVD D= =1 5 V 0 VI = 4 V VO Channel 1 0 RL = 10 kΩ CL = 160 pF and 8 pF TA = 25°C −1 −1 −10 10 30 50 70 90 110 130 150 −20 0 20 40 60 80 100 120 140 t − Time − µs t − Time − µs Figure 42 Figure 43 SHUTDOWN ON PULSE RESPONSE SHUTDOWN ON PULSE RESPONSE vs vs TIME TIME 4 6 VDD = 3 V SD Pulse VDD = 5 V SD Pulse AV = 1 5 AV = 1 3 VI = 2.5 V VI = 4 V RL = 10 kΩ RL = 10 kΩ − V TA = 25°C − V 4 TA = 25°C e e g g a 2 a olt olt 3 V V ut CL = 160 pF ut CL = 160 pF p p Out 1 CL = 8 pF Out 2 − − CL = 8 pF O O 1 V V 0 0 −1 −1 −2 −1 0 1 2 3 4 5 6 −2 0 2 4 6 8 10 12 t − Time − µs t − Time − µs Figure 44 Figure 45 24 WW•W.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS SHUTDOWN REVERSE ISOLATION SHUTDOWN FORWARD ISOLATION vs vs FREQUENCY FREQUENCY 140 140 VDD = 3 V and 5 V VDD = 3 V and 5 V VI(PP) = 0.1, 1.5, 2.5 V VI(PP) = 0.1, 1.5, 2.5 V B 120 RL = 10 kΩ B 120 RL = 10 kΩ d CL = 28 pF d CL = 28 pF on − 100 TA = 25°C on − 100 TA = 25°C ati ati ol ol e Is 80 d Is 80 s r r a e w Rev 60 For 60 n n w w do 40 do 40 ut ut h h S S 20 20 0 0 10 100 1 k 10k 100k 1M 10M 10 100 1k 10k 100k 1M f − Frequency − Hz f − Frequency − Hz Figure 46 Figure 47 PARAMETER MEASUREMENT INFORMATION _ Rnull + RL CL Figure 48 WW•W.TI.COM 25 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 APPLICATION INFORMATION shutdown function Three members of the TLV245x family (TLV2450/3/5) have a shutdown terminal for conserving battery life in portable applications. When the shutdown terminal is pulled to the voltage level on the GND terminal of the device, the supply current is reduced to 16 nA/channel, the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the shutdown terminal must be pulled high. The shutdown terminal should never be left floating. The shutdown terminal threshold is always referenced to the GND terminal of the device. Therefore, when operating the device with split supply voltages (e.g. ±2.5 V), the shutdown terminal needs to be pulled to V − (not system ground) to disable the operational amplifier. DD The amplifier’s output with a shutdown pulse is shown in Figures 42, 43, 44, and 45. The amplifier is powered with a single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The times for the single, dual, and quad are listed in the data tables. Figures 46 and 47 show the amplifier’s forward and reverse isolation in shutdown. The operational amplifier is powered by ±1.35-V supplies and configured as a voltage follower (AV = 1). The isolation performance is plotted across frequency using 0.1-V , 1.5-V , and 2.5-V input signals. During normal operation, the amplifier PP PP PP would not be able to handle a 2.5-V input signal with a supply voltage of ±1.35 V since it exceeds the PP common-mode input voltage range (V ). However, this curve illustrates that the amplifier remains in shutdown ICR even under a worst case scenario. driving a capacitive load When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (R ) with the output of the amplifier, as NULL shown in Figure 49. A minimum value of 20 Ω should work well for most applications. RF RG Input − RNULL Output + CLOAD Figure 49. Driving a Capacitive Load 26 WW•W.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 APPLICATION INFORMATION offset voltage The output offset voltage, (V ) is the sum of the input offset voltage (V ) and both input bias currents (I ) times OO IO IB the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage: RF (cid:2) (cid:4) (cid:2) (cid:4) (cid:2) (cid:4) (cid:2) (cid:4) RG IIB− VOO(cid:1)VIO 1(cid:3) RRF (cid:5)(cid:2)IIB(cid:3)(cid:4)(cid:6) RS 1(cid:3) RRF (cid:5)(cid:2)IIB(cid:7)(cid:4)(cid:6) RF G G + − VI VO + RS IIB+ Figure 50. Output Offset Voltage Model general configurations When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 51). RG RF (cid:2) (cid:4) V R (cid:2) (cid:4) O (cid:1) 1(cid:3) F 1 V R 1(cid:3)sR1C1 I G − VI + VO f (cid:1) 1 R1 –3dB 2(cid:1)R1C1 C1 Figure 51. Single-Pole Low-Pass Filter If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier. C1 R1 = R2 = R C1 = C2 = C Q = Peaking Factor (Butterworth Q = 0.707) VI + R1 R2 _ f (cid:1) 1 –3dB 2(cid:1)RC C2 RF RG = RF (2 − 1 ) RG Q Figure 52. 2-Pole Low-Pass Sallen-Key Filter WW•W.TI.COM 27 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 APPLICATION INFORMATION general power dissipation considerations For a given θ , the maximum power dissipation is shown in Figure 53 and is calculated by the following formula: JA (cid:2) (cid:4) T –T P (cid:1) MAX A D (cid:1) JA Where: P = Maximum power dissipation of TLV245x IC (watts) D T = Absolute maximum junction temperature (150°C) MAX T = Free-ambient air temperature (°C) A θJA = θJC + θCA θ = Thermal coefficient from junction to case JC θ = Thermal coefficient from case to ambient air (°C/W) CA MAXIMUM POWER DISSIPATION vs FREE-AIR TEMPERATURE 2 PDIP Package TJ = 150°C 1.75 Low-K Test PCB θJA = 104°C/W W n − 1.5 MSOP Package o pati 1.25 SOIC Package LθJoAw -=K 2 T6e0s°tC P/WCB si Low-K Test PCB Dis θJA = 176°C/W r 1 e w o m P 0.75 u m xi 0.5 a M 0.25 SOT-23 Package Low-K Test PCB 0 θJA = 324°C/W −55−40−25 −10 5 20 35 50 65 80 95 110 125 TA − Free-Air Temperature − °C NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB. Figure 53. Maximum Power Dissipation vs Free-Air Temperature 28 WW•W.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using MicrosimParts, the model generation software used with Microsim PSpice. The Boyle macromodel (see Note 1) and subcircuit in Figure 54 are generated using the TLV245x typical electrical and operating characteristics at T = 25°C. Using this information, output A simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): (cid:1) (cid:1) Maximum positive output voltage swing Unity-gain frequency (cid:1) (cid:1) Maximum negative output voltage swing Common-mode rejection ratio (cid:1) (cid:1) Slew rate Phase margin (cid:1) (cid:1) Quiescent power dissipation DC output resistance (cid:1) (cid:1) Input bias current AC output resistance (cid:1) (cid:1) Open-loop voltage amplification Short-circuit output current limit NOTE 1: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). PSpice and Parts are trademarks of MicroSim Corporation. WW•W.TI.COM 29 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:10)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:5)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:11)(cid:12) (cid:13)(cid:12)(cid:14)(cid:15)(cid:2)(cid:16) (cid:17)(cid:13) (cid:4)(cid:10)(cid:18)µ(cid:12) (cid:4)(cid:4)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21) (cid:22)(cid:12)(cid:15)(cid:2)(cid:18)(cid:1)(cid:17)(cid:18)(cid:22)(cid:12)(cid:15)(cid:2) (cid:15)(cid:23)(cid:24)(cid:25)(cid:1)(cid:26)(cid:17)(cid:25)(cid:1)(cid:24)(cid:25)(cid:1) (cid:17)(cid:24)(cid:27)(cid:22)(cid:12)(cid:1)(cid:15)(cid:17)(cid:23)(cid:12)(cid:2) (cid:12)(cid:14)(cid:24)(cid:2)(cid:15)(cid:13)(cid:15)(cid:27)(cid:22)(cid:28) (cid:29)(cid:15)(cid:1)(cid:20) (cid:28)(cid:20)(cid:25)(cid:1)(cid:30)(cid:17)(cid:29)(cid:23) SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005 APPLICATION INFORMATION 3 99 VDD+ + rp rc1 rc2 ree cee egnd fb ro2 − c1 7 11 12 + 1 c2 IN+ + 9 r2 6 vlim − vc 2 + 8 IN− q1 q2 − vb ga 53 − gcm ioff ro1 dp 13 14 OUT re1 re2 dlp dln 10 91 90 92 5 iee dc + + − vlp hlim vln GND − − + 4 − ve + 54 de * AMP_TLV2450−X operational amplifier ”macromodel” subcircuit IEE 10 4 dc 938.61E−9 * created using Parts release 8.0 on 10/12/98 at 11:06 HLIM 90 0 vlim 1K * Parts is a MicroSim product. Q1 11 2 13 qx1 * Q2 12 1 14 qx2 * connections: noninverting input R2 6 9 100.00E3 * | inverting input RC1 3 11 65.557E3 * | | positive power supply RC2 3 12 65.557E3 * | | | negative power supply RE1 13 10 10.367E3 * | | | | output RE2 14 10 10.367E3 * | | | | | REE 10 99 213.08E6 .subckt AMP_TLV2450−X 1 2 3 4 5 RO1 8 5 10 * RO2 7 99 10 C1 11 12 354.48E−15 RP 3 4 147.06 C2 6 7 7.5000E−12 VB 9 0 dc 0 CEE 10 99 42.237E−15 VC 3 53 dc .82 DC 5 53 dy VE 54 4 dc .82 DE 54 5 dy VLIM 7 8 dc 0 DLP 90 91 dx VLP 91 0 dc 38 DLN 92 90 dx VLN 0 92 dc 38 DP 4 3 dx .model dx D(Is=800.00E−18) EGND 99 0 poly(2) (3,0) (4,0) 0 .5 .5 .model dy D(Is=800.00E−18 Rs=1m Cjo=10p) FB 7 99 poly(5) vb vc ve vlp vln 0 .model qx1 NPN(Is=800.00E−18 Bf=843.08) + 207.31E6 −1E3 1E3 210E6 −210E6 .model qx2 NPN(Is=800.0000E−18 Bf=843.08) GA 6 0 11 12 15.254E−6 .ends GCM 0 6 10 99 48.237E−12 Figure 54. Boyle Macromodel and Subcircuit 30 WW•W.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

PACKAGE OPTION ADDENDUM www.ti.com 14-Sep-2018 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TLV2450AIDR ACTIVE SOIC D 8 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 2450AI & no Sb/Br) TLV2450AIP ACTIVE PDIP P 8 50 Green (RoHS CU NIPDAU N / A for Pkg Type -40 to 125 TLV2450AI & no Sb/Br) TLV2450CD ACTIVE SOIC D 8 75 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 2450C & no Sb/Br) TLV2450CDBVR ACTIVE SOT-23 DBV 6 3000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 VAQC & no Sb/Br) TLV2450CDBVRG4 ACTIVE SOT-23 DBV 6 3000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 VAQC & no Sb/Br) TLV2450CDBVT ACTIVE SOT-23 DBV 6 250 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 VAQC & no Sb/Br) TLV2450CP ACTIVE PDIP P 8 50 Green (RoHS CU NIPDAU N / A for Pkg Type 0 to 70 TLV2450C & no Sb/Br) TLV2450ID ACTIVE SOIC D 8 75 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 2450I & no Sb/Br) TLV2450IDBVR ACTIVE SOT-23 DBV 6 3000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 VAQI & no Sb/Br) TLV2450IDBVT ACTIVE SOT-23 DBV 6 250 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 VAQI & no Sb/Br) TLV2451AID ACTIVE SOIC D 8 75 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 2451AI & no Sb/Br) TLV2451AIDR ACTIVE SOIC D 8 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 2451AI & no Sb/Br) TLV2451AIP ACTIVE PDIP P 8 50 Green (RoHS CU NIPDAU N / A for Pkg Type -40 to 125 TLV2451AI & no Sb/Br) TLV2451CD ACTIVE SOIC D 8 75 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 2451C & no Sb/Br) TLV2451CDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 VARC & no Sb/Br) TLV2451CDBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 VARC & no Sb/Br) TLV2451CDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 VARC & no Sb/Br) Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 14-Sep-2018 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TLV2451CDG4 ACTIVE SOIC D 8 75 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 2451C & no Sb/Br) TLV2451CDR ACTIVE SOIC D 8 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 2451C & no Sb/Br) TLV2451CP ACTIVE PDIP P 8 50 Green (RoHS CU NIPDAU N / A for Pkg Type 0 to 70 TLV2451C & no Sb/Br) TLV2451ID ACTIVE SOIC D 8 75 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 2451I & no Sb/Br) TLV2451IDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 VARI & no Sb/Br) TLV2451IDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 VARI & no Sb/Br) TLV2451IDR ACTIVE SOIC D 8 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 2451I & no Sb/Br) TLV2451IP ACTIVE PDIP P 8 50 Green (RoHS CU NIPDAU N / A for Pkg Type -40 to 125 TLV2451I & no Sb/Br) TLV2452AID ACTIVE SOIC D 8 75 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 2452AI & no Sb/Br) TLV2452AIDR ACTIVE SOIC D 8 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 2452AI & no Sb/Br) TLV2452AIP ACTIVE PDIP P 8 50 Green (RoHS CU NIPDAU N / A for Pkg Type -40 to 125 TLV2452AI & no Sb/Br) TLV2452CD ACTIVE SOIC D 8 75 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 2452C & no Sb/Br) TLV2452CDGK ACTIVE VSSOP DGK 8 80 Green (RoHS CU NIPDAU | Level-1-260C-UNLIM 0 to 70 ABI & no Sb/Br) CU NIPDAUAG TLV2452CDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS CU NIPDAU | Level-1-260C-UNLIM 0 to 70 ABI & no Sb/Br) CU NIPDAUAG TLV2452CDR ACTIVE SOIC D 8 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 2452C & no Sb/Br) TLV2452ID ACTIVE SOIC D 8 75 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 2452I & no Sb/Br) TLV2452IDGK ACTIVE VSSOP DGK 8 80 Green (RoHS CU NIPDAU | Level-1-260C-UNLIM -40 to 125 ABJ & no Sb/Br) CU NIPDAUAG TLV2452IDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS CU NIPDAU | Level-1-260C-UNLIM -40 to 125 ABJ & no Sb/Br) CU NIPDAUAG Addendum-Page 2

PACKAGE OPTION ADDENDUM www.ti.com 14-Sep-2018 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TLV2452IDGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM -40 to 125 ABJ & no Sb/Br) TLV2452IDR ACTIVE SOIC D 8 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 2452I & no Sb/Br) TLV2452IP ACTIVE PDIP P 8 50 Green (RoHS CU NIPDAU N / A for Pkg Type -40 to 125 TLV2452IP & no Sb/Br) TLV2453CD ACTIVE SOIC D 14 50 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 TLV2453C & no Sb/Br) TLV2453CDGSR ACTIVE VSSOP DGS 10 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 ABK & no Sb/Br) TLV2453CDR ACTIVE SOIC D 14 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 TLV2453C & no Sb/Br) TLV2453IDGS ACTIVE VSSOP DGS 10 80 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 ABL & no Sb/Br) TLV2453IDGSG4 ACTIVE VSSOP DGS 10 80 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 ABL & no Sb/Br) TLV2453IDGSR ACTIVE VSSOP DGS 10 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 ABL & no Sb/Br) TLV2453IN ACTIVE PDIP N 14 25 Green (RoHS CU NIPDAU N / A for Pkg Type -40 to 125 TLV2453IN & no Sb/Br) TLV2454AID ACTIVE SOIC D 14 50 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 2454AI & no Sb/Br) TLV2454AIDR ACTIVE SOIC D 14 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 2454AI & no Sb/Br) TLV2454AIN ACTIVE PDIP N 14 25 Green (RoHS CU NIPDAU N / A for Pkg Type -40 to 125 TLV2454AI & no Sb/Br) TLV2454AIPW ACTIVE TSSOP PW 14 90 Green (RoHS CU NIPDAU Level-1-260C-UNLIM TY2454A & no Sb/Br) TLV2454AIPWR ACTIVE TSSOP PW 14 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 TY2454A & no Sb/Br) TLV2454CD ACTIVE SOIC D 14 50 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 2454C & no Sb/Br) TLV2454CN ACTIVE PDIP N 14 25 Green (RoHS CU NIPDAU N / A for Pkg Type 0 to 70 TLV2454C & no Sb/Br) TLV2454CPW ACTIVE TSSOP PW 14 90 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 TV2454 & no Sb/Br) Addendum-Page 3

PACKAGE OPTION ADDENDUM www.ti.com 14-Sep-2018 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TLV2454CPWR ACTIVE TSSOP PW 14 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 TV2454 & no Sb/Br) TLV2454CPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 TV2454 & no Sb/Br) TLV2454ID ACTIVE SOIC D 14 50 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 2454I & no Sb/Br) TLV2454IDR ACTIVE SOIC D 14 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 2454I & no Sb/Br) TLV2454IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 2454I & no Sb/Br) TLV2454IN ACTIVE PDIP N 14 25 Green (RoHS CU NIPDAU N / A for Pkg Type -40 to 125 TLV2454I & no Sb/Br) TLV2454IPW ACTIVE TSSOP PW 14 90 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 TY2454 & no Sb/Br) TLV2454IPWR ACTIVE TSSOP PW 14 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 TY2454 & no Sb/Br) TLV2455AID ACTIVE SOIC D 16 40 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLV2455AI & no Sb/Br) TLV2455AIDR ACTIVE SOIC D 16 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLV2455AI & no Sb/Br) TLV2455AIN ACTIVE PDIP N 16 25 Green (RoHS CU NIPDAU N / A for Pkg Type -40 to 125 TLV2455AI & no Sb/Br) TLV2455AIPW ACTIVE TSSOP PW 16 90 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 TY2455A & no Sb/Br) TLV2455AIPWR ACTIVE TSSOP PW 16 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 TY2455A & no Sb/Br) TLV2455CD ACTIVE SOIC D 16 40 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 TLV2455C & no Sb/Br) TLV2455ID ACTIVE SOIC D 16 40 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLV2455I & no Sb/Br) TLV2455IDR ACTIVE SOIC D 16 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLV2455I & no Sb/Br) TLV2455IPW ACTIVE TSSOP PW 16 90 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 TY2455 & no Sb/Br) (1) The marketing status values are defined as follows: Addendum-Page 4

PACKAGE OPTION ADDENDUM www.ti.com 14-Sep-2018 ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 5

PACKAGE MATERIALS INFORMATION www.ti.com 26-Feb-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TLV2450AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV2450CDBVR SOT-23 DBV 6 3000 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3 TLV2450CDBVT SOT-23 DBV 6 250 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3 TLV2450IDBVR SOT-23 DBV 6 3000 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3 TLV2450IDBVT SOT-23 DBV 6 250 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3 TLV2451AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV2451CDBVR SOT-23 DBV 5 3000 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3 TLV2451CDBVT SOT-23 DBV 5 250 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3 TLV2451CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV2451IDBVR SOT-23 DBV 5 3000 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3 TLV2451IDBVT SOT-23 DBV 5 250 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3 TLV2451IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV2452AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV2452CDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 TLV2452CDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 TLV2452CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV2452IDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 TLV2452IDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 26-Feb-2019 Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TLV2452IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV2453CDGSR VSSOP DGS 10 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 TLV2453CDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TLV2453IDGSR VSSOP DGS 10 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 TLV2454AIDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TLV2454AIPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 TLV2454CPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 TLV2454IDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TLV2454IPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 TLV2455AIDR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 TLV2455AIPWR TSSOP PW 16 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 TLV2455IDR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TLV2450AIDR SOIC D 8 2500 340.5 338.1 20.6 TLV2450CDBVR SOT-23 DBV 6 3000 182.0 182.0 20.0 TLV2450CDBVT SOT-23 DBV 6 250 182.0 182.0 20.0 TLV2450IDBVR SOT-23 DBV 6 3000 182.0 182.0 20.0 TLV2450IDBVT SOT-23 DBV 6 250 182.0 182.0 20.0 PackMaterials-Page2

PACKAGE MATERIALS INFORMATION www.ti.com 26-Feb-2019 Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TLV2451AIDR SOIC D 8 2500 340.5 338.1 20.6 TLV2451CDBVR SOT-23 DBV 5 3000 182.0 182.0 20.0 TLV2451CDBVT SOT-23 DBV 5 250 182.0 182.0 20.0 TLV2451CDR SOIC D 8 2500 340.5 338.1 20.6 TLV2451IDBVR SOT-23 DBV 5 3000 182.0 182.0 20.0 TLV2451IDBVT SOT-23 DBV 5 250 182.0 182.0 20.0 TLV2451IDR SOIC D 8 2500 340.5 338.1 20.6 TLV2452AIDR SOIC D 8 2500 340.5 338.1 20.6 TLV2452CDGKR VSSOP DGK 8 2500 364.0 364.0 27.0 TLV2452CDGKR VSSOP DGK 8 2500 358.0 335.0 35.0 TLV2452CDR SOIC D 8 2500 340.5 338.1 20.6 TLV2452IDGKR VSSOP DGK 8 2500 358.0 335.0 35.0 TLV2452IDGKR VSSOP DGK 8 2500 364.0 364.0 27.0 TLV2452IDR SOIC D 8 2500 340.5 338.1 20.6 TLV2453CDGSR VSSOP DGS 10 2500 358.0 335.0 35.0 TLV2453CDR SOIC D 14 2500 350.0 350.0 43.0 TLV2453IDGSR VSSOP DGS 10 2500 358.0 335.0 35.0 TLV2454AIDR SOIC D 14 2500 350.0 350.0 43.0 TLV2454AIPWR TSSOP PW 14 2000 367.0 367.0 35.0 TLV2454CPWR TSSOP PW 14 2000 367.0 367.0 35.0 TLV2454IDR SOIC D 14 2500 350.0 350.0 43.0 TLV2454IPWR TSSOP PW 14 2000 367.0 367.0 35.0 TLV2455AIDR SOIC D 16 2500 350.0 350.0 43.0 TLV2455AIPWR TSSOP PW 16 2000 367.0 367.0 35.0 TLV2455IDR SOIC D 16 2500 350.0 350.0 43.0 PackMaterials-Page3

PACKAGE OUTLINE DBV0006A SOT-23 - 1.45 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 3.0 2.6 0.1 C 1.75 1.45 B A 1.45 MAX PIN 1 INDEX AREA 1 6 2X 0.95 3.05 2.75 1.9 5 2 4 3 0.50 6X 0.25 0.15 0.2 C A B (1.1) TYP 0.00 0.25 GAGE PLANE 0.22 TYP 0.08 8 TYP 0.6 0 0.3 TYP SEATING PLANE 4214840/B 03/2018 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. 5. Refernce JEDEC MO-178. www.ti.com

EXAMPLE BOARD LAYOUT DBV0006A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 6X (1.1) 1 6X (0.6) 6 SYMM 2 5 2X (0.95) 3 4 (R0.05) TYP (2.6) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214840/B 03/2018 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN DBV0006A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 6X (1.1) 1 6X (0.6) 6 SYMM 2 5 2X(0.95) 3 4 (R0.05) TYP (2.6) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X 4214840/B 03/2018 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

None

None

PACKAGE OUTLINE PW0016A TSSOP - 1.2 mm max height SCALE 2.500 SMALL OUTLINE PACKAGE SEATING PLANE C 6.6 TYP 6.2 A 0.1 C PIN 1 INDEX AREA 14X 0.65 16 1 2X 5.1 4.55 4.9 NOTE 3 8 9 0.30 B 4.5 16X 0.19 1.2 MAX 4.3 0.1 C A B NOTE 4 (0.15) TYP SEE DETAIL A 0.25 GAGE PLANE 0.15 0.05 0.75 0.50 0 -8 DETA 20AIL A TYPICAL 4220204/A 02/2017 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. 5. Reference JEDEC registration MO-153. www.ti.com

EXAMPLE BOARD LAYOUT PW0016A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 16X (1.5) SYMM (R0.05) TYP 1 16X (0.45) 16 SYMM 14X (0.65) 8 9 (5.8) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE: 10X SOLDER MASK METAL UNDER SOLDER MASK OPENING METAL SOLDER MASK OPENING EXPOSED METAL EXPOSED METAL 0.05 MAX 0.05 MIN ALL AROUND ALL AROUND NON-SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDE15.000R MASK DETAILS 4220204/A 02/2017 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN PW0016A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 16X (1.5) SYMM (R0.05) TYP 1 16X (0.45) 16 SYMM 14X (0.65) 8 9 (5.8) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE: 10X 4220204/A 02/2017 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

PACKAGE OUTLINE DGS0010A VSSOP - 1.1 mm max height SCALE 3.200 SMALL OUTLINE PACKAGE C 5.05 4.75 TYP SEATING PLANE A PIN 1 ID 0.1 C AREA 8X 0.5 10 1 3.1 2X 2.9 NOTE 3 2 5 6 0.27 10X 0.17 B 3.1 0.1 C A B 1.1 MAX 2.9 NOTE 4 0.23 TYP SEE DETAIL A 0.13 0.25 GAGE PLANE 0.15 0.7 0 - 8 0.05 0.4 DETAIL A TYPICAL 4221984/A 05/2015 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. 5. Reference JEDEC registration MO-187, variation BA. www.ti.com

EXAMPLE BOARD LAYOUT DGS0010A VSSOP - 1.1 mm max height SMALL OUTLINE PACKAGE 10X (1.45) 10X (0.3) SYMM (R0.05) TYP 1 10 SYMM 8X (0.5) 5 6 (4.4) LAND PATTERN EXAMPLE SCALE:10X SOOPLEDNEINRG MASK METAL MSOELTDAEL RU NMDAESRK SOOPLEDNEINRG MASK 0.05 MAX 0.05 MIN ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS NOT TO SCALE 4221984/A 05/2015 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN DGS0010A VSSOP - 1.1 mm max height SMALL OUTLINE PACKAGE 10X (1.45) SYMM (R0.05) TYP 10X (0.3) 1 10 SYMM 8X (0.5) 5 6 (4.4) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:10X 4221984/A 05/2015 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

None

None

None

PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

None

None

PACKAGE OUTLINE DBV0005A SOT-23 - 1.45 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 3.0 2.6 0.1 C 1.75 1.45 B A 1.45 MAX PIN 1 INDEX AREA 1 5 2X 0.95 3.05 2.75 1.9 1.9 2 4 3 0.5 5X 0.3 0.15 0.2 C A B (1.1) TYP 0.00 0.25 GAGE PLANE 0.22 TYP 0.08 8 TYP 0.6 0 0.3 TYP SEATING PLANE 4214839/D 11/2018 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Refernce JEDEC MO-178. 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. www.ti.com

EXAMPLE BOARD LAYOUT DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM (1.9) 2 2X (0.95) 3 4 (R0.05) TYP (2.6) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214839/D 11/2018 NOTES: (continued) 5. Publication IPC-7351 may have alternate designs. 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM 2 (1.9) 2X(0.95) 3 4 (R0.05) TYP (2.6) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X 4214839/D 11/2018 NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design. www.ti.com

None

None

IMPORTANTNOTICEANDDISCLAIMER TIPROVIDESTECHNICALANDRELIABILITYDATA(INCLUDINGDATASHEETS),DESIGNRESOURCES(INCLUDINGREFERENCE DESIGNS),APPLICATIONOROTHERDESIGNADVICE,WEBTOOLS,SAFETYINFORMATION,ANDOTHERRESOURCES“ASIS” ANDWITHALLFAULTS,ANDDISCLAIMSALLWARRANTIES,EXPRESSANDIMPLIED,INCLUDINGWITHOUTLIMITATIONANY IMPLIEDWARRANTIESOFMERCHANTABILITY,FITNESSFORAPARTICULARPURPOSEORNON-INFRINGEMENTOFTHIRD PARTYINTELLECTUALPROPERTYRIGHTS. TheseresourcesareintendedforskilleddevelopersdesigningwithTIproducts.Youaresolelyresponsiblefor(1)selectingtheappropriate TIproductsforyourapplication,(2)designing,validatingandtestingyourapplication,and(3)ensuringyourapplicationmeetsapplicable standards,andanyothersafety,security,orotherrequirements.Theseresourcesaresubjecttochangewithoutnotice.TIgrantsyou permissiontousetheseresourcesonlyfordevelopmentofanapplicationthatusestheTIproductsdescribedintheresource.Other reproductionanddisplayoftheseresourcesisprohibited.NolicenseisgrantedtoanyotherTIintellectualpropertyrightortoanythird partyintellectualpropertyright.TIdisclaimsresponsibilityfor,andyouwillfullyindemnifyTIanditsrepresentativesagainst,anyclaims, damages,costs,losses,andliabilitiesarisingoutofyouruseoftheseresources. TI’sproductsareprovidedsubjecttoTI’sTermsofSale(www.ti.com/legal/termsofsale.html)orotherapplicabletermsavailableeitheron ti.comorprovidedinconjunctionwithsuchTIproducts.TI’sprovisionoftheseresourcesdoesnotexpandorotherwisealterTI’sapplicable warrantiesorwarrantydisclaimersforTIproducts. MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265 Copyright©2019,TexasInstrumentsIncorporated