图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: TLV2434ID
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

TLV2434ID产品简介:

ICGOO电子元器件商城为您提供TLV2434ID由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TLV2434ID价格参考¥10.14-¥20.68。Texas InstrumentsTLV2434ID封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 4 电路 满摆幅 14-SOIC。您可以下载TLV2434ID参考资料、Datasheet数据手册功能说明书,资料中有TLV2434ID 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP GP 550KHZ RRO 14SOIC运算放大器 - 运放 Wide-Input-Vltg Quad Op Amp R-To-R Output

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,运算放大器 - 运放,Texas Instruments TLV2434IDLinCMOS™

数据手册

点击此处下载产品Datasheet

产品型号

TLV2434ID

产品种类

运算放大器 - 运放

供应商器件封装

14-SOIC

共模抑制比—最小值

70 dB

关闭

No Shutdown

其它名称

296-34427-5
TLV2434ID-ND

包装

管件

单位重量

133.400 mg

压摆率

0.25 V/µs

双重电源电压

+/- 3 V

商标

Texas Instruments

增益带宽生成

0.55 MHz

增益带宽积

550kHz

安装类型

表面贴装

安装风格

SMD/SMT

封装

Tube

封装/外壳

14-SOIC(0.154",3.90mm 宽)

封装/箱体

SOIC-14

工作温度

-40°C ~ 85°C

工作电源电压

2.7 V to 10 V, +/- 1.35 V to +/- 5 V

工厂包装数量

50

技术

LinCMOS

放大器类型

通用

最大双重电源电压

+/- 5 V

最大工作温度

+ 85 C

最小双重电源电压

+/- 1.35 V

最小工作温度

- 40 C

标准包装

50

电压-电源,单/双 (±)

2.7 V ~ 10 V, ±1.35 V ~ 5 V

电压-输入失调

300µV

电流-电源

100µA

电流-输入偏置

1pA

电流-输出/通道

50mA

电源电流

0.5 mA

电路数

4

系列

TLV2434

转换速度

0.25 V/us

输入偏压电流—最大

300 pA

输入参考电压噪声

100 nV

输入补偿电压

2 mV

输出电流

50 mA

输出类型

满摆幅

通道数量

4 Channel

推荐商品

型号:LMP2232BMAE/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:OP179GRTZ-REEL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:OPA4348AIDRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TLC2262CP

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:AD8131ARZ-REEL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:OPA340MDBVTEP

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TLC084AIDR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:AD8552ARZ-REEL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
TLV2434ID 相关产品

MAX4372TEBT+T

品牌:Maxim Integrated

价格:¥10.70-¥20.29

LM358N/NOPB

品牌:Texas Instruments

价格:¥3.28-¥4.10

OPA847IDBVR

品牌:Texas Instruments

价格:¥17.26-¥32.07

TLE2142ACDR

品牌:Texas Instruments

价格:

AD8279ARZ-R7

品牌:Analog Devices Inc.

价格:

OPA704UA

品牌:Texas Instruments

价格:¥12.73-¥25.96

INA333AIDRGT

品牌:Texas Instruments

价格:

LMV772QMM/NOPB

品牌:Texas Instruments

价格:¥5.71-¥7.22

PDF Datasheet 数据手册内容提取

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 (cid:0) (cid:0) Output Swing Includes Both Supply Rails Very Low Supply Current...125 µA Per (cid:0) Extended Common-Mode Input Voltage Channel Max (cid:0) Range...0 V to 4.5 V (Min) with 5-V Single 600-Ω Output Drive Supply (cid:0) Macromodel Included (cid:0) No Phase Inversion (cid:0) Available in Q-Temp Automotive (cid:0) Low Noise...18 nV/√Hz Typ at f = 1 kHz HighRel Automotive Applications (cid:0) Low Input Offset Voltage Configuration Control / Print Support 950 µV Max at T = 25°C (TLV243xA) Qualification to Automotive Standards A (cid:0) Low Input Bias Current...1 pA Typ HIGH-LEVEL OUTPUT VOLTAGE description vs HIGH-LEVEL OUTPUT CURRENT The TLV243x and TLV243xA are low-voltage 5 operational amplifier from Texas Instruments. The common-mode input voltage range for each VDD = 5 V V device is extended over the typical CMOS – e 4 amplifiers making them suitable for a wide range g a of applications. In addition, these devices do not olt V phase invert when the common-mode input is ut 3 p driven to the supply rails. This satisfies most ut TA = 125°C O design requirements without paying a premium for rail-to-rail input performance. They also exhibit vel TA = 85°C Le 2 rdayinl-atom-riaci lr anoguetp uint sipnegrlfeo-r mora snpcleit -sfuopr plyin carpepalsicead- ÁHigh-Á TA = 25°C tions. This family is fully characterized at 3-V and – TA =–40°C 5-V supplies and is optimized for low-voltage ÁOH OHÁ 1 operation. The TLV243x only requires 100 µA ÁVVÁ (typ) of supply current per channel, making it ideal for battery-powered applications. The TLV243x 0 0 4 8 12 16 20 also has increased output drive over previous IOH – High-Level Output Current –(cid:0)A rail-to-rail operational amplifiers and can drive 600-Ω loads for telecom applications. Figure 1 The other members in the TLV243x family are the high-power, TLV244x, and micro-power, TLV2422, versions. The TLV243x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV243xA is available and has a maximum input offset voltage of 950 µV. If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Advanced LinCMOS is a trademark of Texas Instruments. PRODUCTION DATA information is current as of publication date. Copyright  2001, Texas Instruments Incorporated Products conform to specifications per the terms of Texas Instruments On products compliant to MIL-PRF-38535, all parameters are tested standard warranty. Production processing does not necessarily include unless otherwise noted. On all other products, production testing of all parameters. processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 TLV2432 and TLV2432A AVAILABLE OPTIONS PACKAGED DEVICES VIOmax SMALL CERAMIC FLAT TA AT 25°C OUTLINE CHIP CARRIER CERAMIC DIP TSSOP PACK (FK) (JG) (PW) (D) (U) 0°C to 70°C 2.5 mV TLV2432CD — — TLV2432CPW — 950 µµV TLV2432AID — — TLV2432AIPW — –4400°°CC ttoo 8855°°CC 2.5 mV TLV2432ID — — — — 950 µµV TLV2432AQD — — — — –4400°°CC ttoo 112255°°CC 2.5 mV TLV2432QD — — — — 950 µµV — TLV2432AMFK TLV2432AMJG — TLV2432AMU ––5555°°CC ttoo 112255°°CC 2.5 mV — TLV2432MFK TLV2432MJG — TLV2432MU The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2432CDR). The PW package is available only left-end taped and reeled. TLV2434 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C SMALL TSSOP OUTLINE (PW) (D) 0°C to 70°C 2.5 mV TLV2434CD TLV2434CPW 950 µµV TLV2434AID TLV2434AIPW ––4400°°CC ttoo 112255°°CC 2.5 mV TLV2434ID TLV2434IPW The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2434CDR). The PW package is available only left-end taped and reeled. TLV2432 TLV2432 D OR JG PACKAGE PW PACKAGE (TOP VIEW) (TOP VIEW) 1OUT 1 8 VDD+ 1OUT 1 8 VDD+ 1IN– 2 7 2OUT 1IN– 2 7 2OUT 1IN+ 3 6 2IN– 1IN+ 3 6 2IN– V /GND 4 5 2IN+ VDD–/GND 4 5 2IN+ DD– TLV2432 FK PACKAGE (TOP VIEW) T + TLV2434 U D TLV2432 C O C DC D OR PW PACKAGE N 1 N VN U PACKAGE (TOP VIEW) (TOP VIEW) 3 2 1 20 19 NC 4 18 NC 1IN– 5 17 2OUT NC 1 10 NC 1OUT 1 14 4OUT NC 6 16 NC 1OUT 2 9 VDD+ 1IN– 2 13 4IN– 1IN+ 7 15 2IN– 1IN– 3 8 2OUT 1IN+ 3 12 4IN+ NC 8 14 NC 1IN+ 4 7 2IN– VDD+ 4 11 VDD–/GND 9 10 11 12 13 VDD–/GND 5 6 2IN+ 2IN+ 5 10 3IN+ 2IN– 6 9 3IN– CD C+ C NN NN N 2OUT 7 8 3OUT G 2I / – D D V NC – No internal connection 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

equivalent schematic (each amplifier) Q22 Q29 Q31 Q34 Q36 VB3 Q26 Q24 Q32 VB2 VB1 VDD+ Q25 Q27 Q33 Q35 VB4 COMPONENT P COUNT O ST Q23 Q30 Transistors 69 OF Q37 Diodes 5 F IC R10 Resistors 26 E B R9 D1 Capacitors 6 W O X 6 ID 5 53 E 03 DA• Q3 R3 R4 R7 -INPAd LL Q13 Q15 Uv AS TaT , TEXAS 752 IN– Q1 Q4 Q6 Q8 Q10 Q18 Q20 -VOLTnced LLV243 65 IN+ Q7 Q9 R5 C2 VDD–/GND SLOS168FAGE OinCMO2, TLV C1 OUT – NOPES243 VB3 Q11 Q16 R6 C3 VEMRAR2A VB2 BER 19TIONAIL-, TLV Q2 Q5 Q12 Q14 Q17 Q19 Q21 96 – REVISEDAL AMPTO-RAIL2434, TL R1 R2 ML OV R8 ARIFU2 VB4 CHIET43 2RP4 00SUA 3 1 T

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 V DD Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V ID DD Input voltage, V (any input, see Note 1): C and I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V I DD Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA I Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA O Total current into V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA DD+ Total current out of V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA DD– Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C A I suffix (dual) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C I suffix (quad) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 125°C Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 125°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C stg Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C †Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD–. 2. Differential voltages are at IN+ with respect to IN–. Excessive current flows if input is brought below VDD– – 0.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PPAACCKKAAGGEE TAA ≤ 25°C DERATING FACTOR TAA = 70°C TAA = 85°C TAA = 125°C POWER RATING ABOVE TA = 25°C POWER RATING POWER RATING POWER RATING D (8) 725 mW 5.8 mW/°C 464 mW 377 mW 145 mW D (14) 1022 mW 7.6 mW/°C 900 mW 777 mW 450 mW FK 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW JG 1050 mW 8.4 mW/°C 672 mW 546 mW 210 mW PW (8) 525 mW 4.2 mW/°C 336 mW 273 mW 105 mW PW (14) 720 mW 5.6 mW/°C 634 mW 547 mW 317 mW U 675 mW 5.4 mW/°C 432 mW 350 mW 135 mW recommended operating conditions C SUFFIX I SUFFIX Q SUFFIX M SUFFIX UUNNIITT MIN MAX MIN MAX MIN MAX MIN MAX Supply voltage, VDD 2.7 10 2.7 10 2.7 10 2.7 10 V Input voltage range, VI VDD– VDD+ –0.8 VDD– VDD+ –0.8 VDD– VDD+ –0.8 VDD– VDD+ –0.8 V Common-mode input voltage, VIC VDD– VDD+ –1.3 VDD– VDD+ –1.3 VDD– VDD+ –1.3 VDD– VDD+ –1.3 V Operating free-air temperature, TA 0 70 –40 125 –40 125 –55 125 °C 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, V = 3 V (unless otherwise noted) DD TLV243x PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS TTA†† UUNNIITT MIN TYP MAX TLV243xC,, 25°C 300 2000 VVIICC == 00, VVIIOO IInnppuutt ooffffsseett vvoollttaaggee VVOODD =± 0 =,, ±1.5 V, TLV243xI Fu2ll 5ra°Cnge 300 2955000 µµVV RRS = 5500 ΩΩ TTLLVV224433xxAAII Full range 1500 25°C ααVVIIOO TTeemmppeerraattuurree ccooeeffffiicciieenntt ooff iinnppuutt ooffffsseett vvoollttaaggee to 70°C 22 µµVV//°°CC Input offset voltage long-term drift 25°C 0.003 µV/mo (see Note 4) VVIICC == 00,, VVDDDD±± == ±±11..55 VV,, VO = 0, RS = 50 Ω 25°C 0.5 60 IIIIOO IInnppuutt ooffffsseett ccuurrrreenntt ppAA Full range 150 25°C 1 60 IIIIBB IInnppuutt bbiiaass ccuurrrreenntt ppAA Full range 150 0 –0.25 25°C to to 2.5 2.75 VVIICCRR CCoommmmoonn-mmooddee iinnppuutt vvoollttaaggee rraannggee ||VVIIOO|| ≤≤ 55 mmVV, RRSS == 5500 ΩΩ VV 0 Full range to 2.2 IOH = –100 µA 25°C 2.98 VOH High-level output voltage 25°C 2.5 V IIOOHH == –33 mmAA Full range 2.25 VIC = 1.5 V, IOL = 100 µA 25°C 0.02 VOL Low-level output voltage 25°C 0.83 V VVIICC == 11.55 VV, IIOOLL == 33 (cid:0)(cid:0)AA Full range 1 25°C 1.5 2.5 AVVDD Largge-siggnal differential voltagge amplification VVVVIOOC === 1122 .VV55 ttVVoo, 22 VV RRL = 22 kkΩΩ‡‡ Full range 1 V/mV RL = 1 MΩ‡ 25°C 750 ri(d) Differential input resistance 25°C 1000 GΩ ri(c) Common-mode input resistance 25°C 1000 GΩ ci(c) Common-mode input capacitance f = 10 kHz 25°C 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 130 Ω CCMMRRRR CCoommmmoonn-mmooddee rreejjeeccttiioonn rraattiioo VIICC = 0 to 2.5 V,, VOO = 1.5 V,, 25°C 70 83 ddBB RS = 50Ω Full range 70 kkSSVVRR SSuuppppllyy-vvoollttaaggee rreejjeeccttiioonn rraattiioo ((∆∆VVDDDD//∆∆VVIIOO)) VDDDD = 2.7 V to 8 V,, 25°C 80 95 ddBB VIC = VDD/2, No load Full range 80 25°C 98 125 IIDDDD SSuuppppllyy ccuurrrreenntt ((ppeerr cchhaannnneell)) VVOO == 11.55 VV, NNoo llooaadd µµAA Full range 125 †Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. ‡Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, V = 3 V DD TLV243x PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS TTA†† UUNNIITT MIN TYP MAX 25°C 0.15 0.25 SR Slew rate at unity gain VVCOL == 1110 VV0 pttoF 22‡ VV, RRL = 22 kkΩΩ‡‡, Full 0.1 V/µs range f = 10 Hz 25°C 120 VVn EEqquuiivvaalleenntt iinnppuutt nnooiissee vvoollttaaggee nnVV//√√HHzz f = 1 kHz 25°C 22 f = 0.1 Hz to 1 Hz 25°C 2.7 VVNN((PPPP)) PPeeaakk-ttoo-ppeeaakk eeqquuiivvaalleenntt iinnppuutt nnooiissee vvoollttaaggee µµVV f = 0.1 Hz to 10 Hz 25°C 4 In Equivalent input noise current 25°C 0.6 fA√Hz VO = 0.5 V to 2.5 V, AV = 1 0.065% TTHHDD ++ NN TToottaall hhaarrmmoonniicc ddiissttoorrttiioonn pplluuss nnooiissee ff = 11 kkHHzz, 2255°°CC RL = 2 kΩ‡ AV = 10 0.5% Gain-bandwidth product fC =L 1=0 1 0k0H zp,F ‡ RL = 2 kΩ‡, 25°C 0.5 MHz BOM Maximum output-swing bandwidth RVOL (=P 2P )k =Ω ‡1, V, ACVL == 11,0 0 pF‡ 25°C 220 kHz AAVV == –11,, TToo 00.11%% 66.44 tts SSeettttlliinngg ttiimmee SRtLLe p= =2 0k.Ω5 ‡V, to 2.5 V,, 2255°°CC µµss CL = 100 pF‡‡ TToo 00.0011%% 1144.11 φm Phase margin at unity gain RRLL == 22 kkΩΩ‡‡, CCLL == 110000 ppFF‡‡ 25°C 62° Gain margin 25°C 11 dB †Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. ‡Referenced to 2.5 V 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, V = 3 V (unless otherwise noted) DD TLV243xQ, PARAMETER TEST CONDITIONS TAA† TLV243xM UNIT MIN TYP MAX TLV243xQ,, 25°C 300 2000 VVIICC == 00, VVIIOO IInnppuutt ooffffsseett vvoollttaaggee VVOODD =± 0 =,, ±1.5 V, TTLLVV224433xxMAQ,, Fu2ll 5ra°Cnge 300 2955000 µµVV RRS = 5500 ΩΩ TLV243xAM Full range 2000 25°C ααVVIIOO TTeemmppeerraattuurree ccooeeffffiicciieenntt ooff iinnppuutt ooffffsseett vvoollttaaggee to 70°C 22 µµVV//°°CC Input offset voltage long-term drift 25°C 0.003 µV/mo (see Note 4) VVIICC == 00,, VVDDDD±± == ±±11..55 VV,, VO = 0, RS = 50 Ω 25°C 0.5 60 IIIIOO IInnppuutt ooffffsseett ccuurrrreenntt ppAA Full range 150 25°C 1 60 IIIIBB IInnppuutt bbiiaass ccuurrrreenntt ppAA Full range 300 0 –0.25 25°C to to 2.5 2.75 VVIICCRR CCoommmmoonn-mmooddee iinnppuutt vvoollttaaggee rraannggee ||VVIIOO|| ≤≤ 55 mmVV, RRSS == 5500 ΩΩ VV 0 Full range to 2.2 IOH = –100 µA 25°C 2.98 VOH High-level output voltage 25°C 2.5 V IIOOHH == –33 mmAA Full range 2.25 VIC = 1.5 V, IOL = 100 µA 25°C 0.02 VOL Low-level output voltage 25°C 0.83 V VVIICC == 11.55 VV, IIOOLL == 33 (cid:0)(cid:0)AA Full range 1 25°C 1.5 2.5 AVVDD Largge-siggnal differential voltagge amplification VVVVIOOC === 1122 .VV55 ttVVoo, 22 VV RRL = 22 kkΩΩ‡‡ Full range 0.5 V/mV RL = 1 MΩ‡ 25°C 750 ri(d) Differential input resistance 25°C 1000 GΩ ri(c) Common-mode input resistance 25°C 1000 GΩ ci(c) Common-mode input capacitance f = 10 kHz 25°C 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 130 Ω CCMMRRRR CCoommmmoonn-mmooddee rreejjeeccttiioonn rraattiioo VIICC = 0 to 2.5 V,, VOO = 1.5 V,, 25°C 70 83 ddBB RS = 50Ω Full range 70 kkSSVVRR SSuuppppllyy-vvoollttaaggee rreejjeeccttiioonn rraattiioo ((∆∆VVDDDD//∆∆VVIIOO)) VDDDD = 2.7 V to 8 V,, 25°C 80 95 ddBB VIC = VDD/2, No load Full range 80 25°C 195 250 IIDDDD SSuuppppllyy ccuurrrreenntt VVOO == 11.55 VV, NNoo llooaadd µµAA Full range 260 †Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part. ‡Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, V = 3 V DD TLV243xQ, TLV243xM, PARAMETER TEST CONDITIONS TA† TLV243xAQ, UNIT TLV243xAM MIN TYP MAX 25°C 0.15 0.25 SR Slew rate at unity gain VVCOL == 1110 VV0 pttoF 22‡ VV, RRL = 22 kkΩΩ‡‡, Full 0.1 V/µs range f = 10 Hz 25°C 120 VVn EEqquuiivvaalleenntt iinnppuutt nnooiissee vvoollttaaggee nnVV//√√HHzz f = 1 kHz 25°C 22 f = 0.1 Hz to 1 Hz 25°C 2.7 VVNN((PPPP)) PPeeaakk-ttoo-ppeeaakk eeqquuiivvaalleenntt iinnppuutt nnooiissee vvoollttaaggee µµVV f = 0.1 Hz to 10 Hz 25°C 4 In Equivalent input noise current 25°C 0.6 fA√Hz VO = 0.5 V to 2.5 V, AV = 1 0.065% TTHHDD ++ NN TToottaall hhaarrmmoonniicc ddiissttoorrttiioonn pplluuss nnooiissee ff = 11 kkHHzz, 2255°°CC RL = 2 kΩ‡ AV = 10 0.5% Gain-bandwidth product fC =L 1=0 1 0k0H zp,F ‡ RL = 2 kΩ‡, 25°C 0.5 MHz BOM Maximum output-swing bandwidth RVOL (=P 2P )k =Ω ‡1, V, ACVL == 11,0 0 pF‡ 25°C 220 kHz AAVV == –11,, TToo 00.11%% 66.44 tts SSeettttlliinngg ttiimmee SRtLLe p= =2 0k.Ω5 ‡V, to 2.5 V,, 2255°°CC µµss CL = 100 pF‡‡ TToo 00.0011%% 1144.11 φm Phase margin at unity gain RRLL == 22 kkΩΩ‡‡, CCLL == 110000 ppFF‡‡ 25°C 62° Gain margin 25°C 11 dB †Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part. ‡Referenced to 2.5 V 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, V = 5 V (unless otherwise noted) DD TLV243x PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS TTA†† UUNNIITT MIN TYP MAX 25°C 300 2000 VVIICC == 00, TTLLVV224433xx VVIIOO IInnppuutt ooffffsseett vvoollttaaggee VVOODD =± 0 =,, ±2.5 V, Fu2ll 5ra°Cnge 300 2955000 µµVV RRS = 5500 ΩΩ TTLLVV224433xxAA Full range 1500 25°C ααVVIIOO TTeemmppeerraattuurree ccooeeffffiicciieenntt ooff iinnppuutt ooffffsseett vvoollttaaggee to 70°C 22 µµVV//°°CC Input offset voltage long-term drift 25°C 0.003 µV/mo (see Note 4) VVIICC == 00,, VVDDDD±± == ±±22..55 VV,, VO = 0, RS = 50 Ω 25°C 0.5 60 IIIIOO IInnppuutt ooffffsseett ccuurrrreenntt ppAA Full range 150 25°C 1 60 IIIIBB IInnppuutt bbiiaass ccuurrrreenntt ppAA Full range 150 0 –0.25 25°C to to 4.5 4.75 VVIICCRR CCoommmmoonn-mmooddee iinnppuutt vvoollttaaggee rraannggee ||VVIIOO|| ≤≤ 55 mmVV, RRSS == 5500 ΩΩ VV 0 Full range to 4.2 IOH = –100 µA 25°C 4.97 VOH High-level output voltage 25°C 4 4.35 V IIOOHH == –55 mmAA Full range 4 VIC = 2.5 V, IOL = 100 µA 25°C 0.01 VOL Low-level output voltage 25°C 0.8 V VVIICC == 22.55 VV, IIOOLL == 55 (cid:0)(cid:0)AA Full range 1.25 25°C 2.5 3.8 AVVDD Largge-siggnal differential voltagge amplification VVVVIOOC === 1122 .VV55 ttVVoo, 44 VV RRL = 22 kkΩΩ‡‡ Full range 1.5 V/mV RL = 1 MΩ‡ 25°C 950 ri(d) Differential input resistance 25°C 1000 GΩ ri(c) Common-mode input resistance 25°C 1000 GΩ ci(c) Common-mode input capacitance f = 10 kHz 25°C 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 130 Ω CCMMRRRR CCoommmmoonn-mmooddee rreejjeeccttiioonn rraattiioo VIICC = 0 to 4.5 V,, VOO = 2.5 V,, 25°C 70 90 ddBB RS = 50Ω Full range 70 kkSSVVRR SSuuppppllyy-vvoollttaaggee rreejjeeccttiioonn rraattiioo ((∆∆VVDDDD//∆∆VVIIOO)) VDDDD = 4.4 V to 8 V,, 25°C 80 95 ddBB VIC = VDD/2, No load Full range 80 25°C 100 125 IIDDDD SSuuppppllyy ccuurrrreenntt ((ppeerr cchhaannnneell)) VVOO == 22.55 VV, NNoo llooaadd µµAA Full range 125 †Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. ‡Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, V = 5 V DD TLV243x PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS TTA†† UUNNIITT MIN TYP MAX 25°C 0.15 0.25 SR Slew rate at unity gain VVCCOOLL === 111100.5500 VVpFF ttoo‡‡ 33.55 VV, RRLL = 22 kkΩΩ‡‡, Full 00.11 V/µs range f = 10 Hz 25°C 100 VVn EEqquuiivvaalleenntt iinnppuutt nnooiissee vvoollttaaggee nnVV//√√HHzz f = 1 kHz 25°C 18 f = 0.1 Hz to 1 Hz 25°C 1.9 VVNN((PPPP)) PPeeaakk-ttoo-ppeeaakk eeqquuiivvaalleenntt iinnppuutt nnooiissee vvoollttaaggee µµVV f = 0.1 Hz to 10 Hz 25°C 2.8 In Equivalent input noise current 25°C 0.6 fA√Hz VO = 1.5 V to 3.5 V, AV = 1 0.045% TTHHDD ++ NN TToottaall hhaarrmmoonniicc ddiissttoorrttiioonn pplluuss nnooiissee ff = 11 kkHHzz, 2255°°CC RL = 2 kΩ‡ AV = 10 0.4% Gain-bandwidth product fC =L 1=0 1 0k0H zp,F ‡ RL =2 kΩ‡, 25°C 0.55 MHz BOM Maximum output-swing bandwidth RVOL (=P 2P )k =Ω ‡2, V, ACVL == 11,0 0 pF‡ 25°C 100 kHz AAVV == –11,, TToo 00.11%% 66.44 tts SSeettttlliinngg ttiimmee SRtLLe p= =2 1k.Ω5 ‡V, to 3.5 V,, 2255°°CC µµss CL = 100 pF‡‡ TToo 00.0011%% 1133.11 φm Phase margin at unity gain RRLL == 22 kkΩΩ‡‡, CCLL == 110000 ppFF‡‡ 25°C 66° Gain margin 25°C 11 dB †Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. ‡Referenced to 2.5 V 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, V = 5 V (unless otherwise noted) DD TLV243xQ, PARAMETER TEST CONDITIONS TAA† TLV243xM UNIT MIN TYP MAX 25°C 300 2000 VVIICC == 00, TTLLVV22445533xx VVIIOO IInnppuutt ooffffsseett vvoollttaaggee VVOODD =± 0 =,, ±2.5 V, Fu2ll 5ra°Cnge 300 2955000 µµVV RRS = 5500 ΩΩ TTLLVV22445533xxAA Full range 2000 25°C ααVVIIOO TTeemmppeerraattuurree ccooeeffffiicciieenntt ooff iinnppuutt ooffffsseett vvoollttaaggee to 70°C 22 µµVV//°°CC Input offset voltage long-term drift 25°C 0.003 µV/mo (see Note 4) VVIICC == 00,, VVDDDD±± == ±±22..55 VV,, VO = 0, RS = 50 Ω 25°C 0.5 60 IIIIOO IInnppuutt ooffffsseett ccuurrrreenntt ppAA Full range 150 25°C 1 60 IIIIBB IInnppuutt bbiiaass ccuurrrreenntt ppAA Full range 300 0 –0.25 25°C to to 4.5 4.75 VVIICCRR CCoommmmoonn-mmooddee iinnppuutt vvoollttaaggee rraannggee ||VVIIOO|| ≤≤ 55 mmVV, RRSS == 5500 ΩΩ VV 0 Full range to 4.2 IOH = –100 µA 25°C 4.97 VOH High-level output voltage 25°C 4 4.35 V IIOOHH == –55 mmAA Full range 4 VIC = 2.5 V, IOL = 100 µA 25°C 0.01 VOL Low-level output voltage 25°C 0.8 V VVIICC == 22.55 VV, IIOOLL == 55 (cid:0)(cid:0)AA Full range 1.25 25°C 2.5 3.8 AVVDD Largge-siggnal differential voltagge amplification VVVVIOOC === 1122 .VV55 ttVVoo, 44 VV RRL = 22 kkΩΩ‡‡ Full range 0.5 V/mV RL = 1 MΩ‡ 25°C 950 ri(d) Differential input resistance 25°C 1000 GΩ ri(c) Common-mode input resistance 25°C 1000 GΩ ci(c) Common-mode input capacitance f = 10 kHz 25°C 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 130 Ω CCMMRRRR CCoommmmoonn-mmooddee rreejjeeccttiioonn rraattiioo VIICC = 0 to 4.5 V,, VOO = 2.5 V,, 25°C 70 90 ddBB RS = 50Ω Full range 70 kkSSVVRR SSuuppppllyy-vvoollttaaggee rreejjeeccttiioonn rraattiioo ((∆∆VVDDDD//∆∆VVIIOO)) VDDDD = 4.4 V to 8 V,, 25°C 80 95 ddBB VIC = VDD/2, No load Full range 80 25°C 200 250 IIDDDD SSuuppppllyy ccuurrrreenntt VVOO == 22.55 VV, NNoo llooaadd µµAA Full range 270 †Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part. ‡Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, V = 5 V DD TLV243xQ, TLV243xM, PARAMETER TEST CONDITIONS TA† TLV243xAQ, UNIT TLV243xAM MIN TYP MAX 25°C 0.15 0.25 SR Slew rate at unity gain VVCCOOLL === 111100.5500 VVpFF ttoo‡‡ 33.55 VV, RRLL = 22 kkΩΩ‡‡, Full 00.11 V/µs range f = 10 Hz 25°C 100 VVn EEqquuiivvaalleenntt iinnppuutt nnooiissee vvoollttaaggee nnVV//√√HHzz f = 1 kHz 25°C 18 f = 0.1 Hz to 1 Hz 25°C 1.9 VVNN((PPPP)) PPeeaakk-ttoo-ppeeaakk eeqquuiivvaalleenntt iinnppuutt nnooiissee vvoollttaaggee µµVV f = 0.1 Hz to 10 Hz 25°C 2.8 In Equivalent input noise current 25°C 0.6 fA√Hz VO = 1.5 V to 3.5 V, AV = 1 0.045% TTHHDD ++ NN TToottaall hhaarrmmoonniicc ddiissttoorrttiioonn pplluuss nnooiissee ff = 11 kkHHzz, 2255°°CC RL = 2 kΩ‡ AV = 10 0.4% Gain-bandwidth product fC =L 1=0 1 0k0H zp,F ‡ RL =2 kΩ‡, 25°C 0.55 MHz BOM Maximum output-swing bandwidth RVOL (=P 2P )k =Ω ‡2, V, ACVL == 11,0 0 pF‡ 25°C 100 kHz AAVV == –11,, TToo 00.11%% 66.44 tts SSeettttlliinngg ttiimmee SRtLLe p= =2 1k.Ω5 ‡V, to 3.5 V,, 2255°°CC µµss CL = 100 pF‡‡ TToo 00.0011%% 1133.11 φm Phase margin at unity gain RRLL == 22 kkΩΩ‡‡, CCLL == 110000 ppFF‡‡ 25°C 66° Gain margin 25°C 11 dB †Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part. ‡Referenced to 2.5 V 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS Table of Graphs FIGURE Distribution 2,,3 VVIIOO IInnppuutt ooffffsseett vvoollttaaggee vs Common-mode input voltage 4,5 αVIO Temperature coefficient Distribution 6,7 IIB/IIO Input bias and input offset currents vs Free-air temperature 8 VOH High-level output voltage vs High-level output current 9,11 VOL Low-level output voltage vs Low-level output current 10,12 VO(PP) Maximum peak-to-peak output voltage vs Frequency 13 vs Supplyy voltagge 14 IIOOSS SShhoorrtt-cciirrccuuiitt oouuttppuutt ccuurrrreenntt vs Free-air temperature 15 VID Differential input voltage vs Output voltage 16,17 Differential gain vs Load resistance 18 AVD Large-signal differential voltage amplification vs Frequency 19,20 AVD Differential voltage amplification vs Free-air temperature 21,22 zo Output impedance vs Frequency 23,24 vs Freqquencyy 25 CCMMRRRR CCoommmmoonn-mmooddee rreejjeeccttiioonn rraattiioo vs Free-air temperature 26 vs Freqquencyy 27,,28 kkSSVVRR SSuuppppllyy-vvoollttaaggee rreejjeeccttiioonn rraattiioo vs Free-air temperature 29 IDD Supply current vs Supply voltage 30 vs Load capacitance 31 SSRR SSlleeww rraattee vs Free-air temperature 32 VO Inverting large-signal pulse response 33,34 VO Voltage-follower large-signal pulse response 35,36 VO Inverting small-signal pulse response 37,38 VO Voltage-follower small-signal pulse response 39,40 Vn Equivalent input noise voltage vs Frequency 41, 42 Noise voltage (referred to input) Over a 10-second period 43 THD + N Total harmonic distortion plus noise vs Frequency 44,45 vs Free-air temperature 46 GGaaiinn-bbaannddwwiiddtthh pprroodduucctt vs Supply voltage 47 vs Freqquencyy 19,,20 φφm PPhhaassee mmaarrggiinn vs Load capacitance 48 Gain margin vs Load capacitance 49 B1 Unity-gain bandwidth vs Load capacitance 50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2432 DISTRIBUTION OF TLV2432 INPUT OFFSET VOLTAGE INPUT OFFSET VOLTAGE 35 35 408 Amplifiers From 1 Wafer Lot 408 Amplifiers From 1 Wafer Lot 30 VTAD D=± 2 =5° ±C1.5 V 30 VTAD D=± 2 =5° ±C2.5 V % % s – 25 s – 25 er er plifi 20 plifi 20 m m A A e of 15 e of 15 g g a a nt nt ce 10 ce 10 e r r e P P 5 5 0 0 –1600 –800 0 800 1600 –1600 –800 0 800 1600 VIO – Input Offset Voltage – µV VIO – Input Offset Voltage – µV Figure 2 Figure 3 INPUT OFFSET VOLTAGE INPUT OFFSET VOLTAGE vs vs COMMON-MODE INPUT VOLTAGE COMMON-MODE INPUT VOLTAGE 2 2 1.5 VTAD D= =253° VC 1.5 VTAD D= =25 5° CV V ge – m 1 e – mV 1 Volta 0.5 oltag 0.5 set 0 et V 0 put Off –0.5 ut Offs –0.5 n p ÁÁÁÁVIO – IVIO ÁÁ–1 ÁÁVVIO – InIOÁÁ–1 ÁÁÁ–1.5 ÁÁ–1.5 –2 –2 –0.5 0 0.5 1 1.5 2 2.5 3 –0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VIC – Common-Mode Input Voltage – V VIC – Common-Mode Input Voltage – V Figure 4 Figure 5 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2432 INPUT OFFSET DISTRIBUTION OF TLV2432 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT VOLTAGE TEMPERATURE COEFFICIENT 25 25 32 Amplifiers From 1 Wafer Lot 32 Amplifiers From 1 Wafer Lot VDD = ± 1.5 V VDD = ± 2.5 V TA = 25°C to 125°C TA = 25°C to 125°C 20 20 % % – – s s er er plifi 15 plifi 15 m m A A of of ge 10 ge 10 a a nt nt e e c c er er P 5 P 5 0 0 –4 –3 –2 –1 0 1 2 3 4 –4 –3 –2 –1 0 1 2 3 4 αVIO – Temperature Coefficient – µV/°C αVIO – Temperature Coefficient – µV/°C Figure 6 Figure 7 INPUT BIAS AND INPUT OFFSET CURRENTS HIGH-LEVEL OUTPUT VOLTAGE vs vs FREE-AIR TEMPERATURE HIGH-LEVEL OUTPUT CURRENT A p 35 3 Currents – 30 RVVVODISC D = ==± 5 0 0=0 V Ω±2.5 V e – V 2.5 VDD = 3 V Offset 25 IIB Voltag 2 TA = –40°C nput 20 utput TA = 125°C TA = 25°C s and I 15 evel O 1.5 a L nput Bi 10 IIO – High- 1 TA = 0°C d IIO – IIIO 5 ÁÁVVOH OHÁÁ 0.5 ÁanÁ B B 0 0 ÁIIIIÁ 25 45 65 85 105 125 0 3 6 9 12 15 TA – Free-Air Temperature – °C IOH – High-Level Output Current – mA Figure 8 Figure 9 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS LOW-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE vs vs LOW-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT CURRENT 1.4 5 VDD = 3 V – V 1.2 TA = 125°C – V VDD = 5 V e e 4 g g olta 1 TA = 85°C olta V V ut ut 3 p 0.8 p ut ut TA = 125°C O O Level 0.6 TA = 25°C Level 2 TA = 85°C ow- gh- TA = 25°C ÁÁL 0.4 Hi ÁÁÁÁVVOL – OL 0.2 TA = –40°C ÁÁVVOH – OHÁÁ1 TA =–40°C 0 0 0 1 2 3 4 5 0 4 8 12 16 20 IOL – Low-Level Output Current – mA IOH – High-Level Output Current –(cid:0)A Figure 10 Figure 11 LOW-LEVEL OUTPUT VOLTAGE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs vs LOW-LEVEL OUTPUT CURRENT FREQUENCY 1.2 – V 5 V 1 VDD = 5 V oltage VDD = 5 V RTAL == 225 k°ΩC oltage – 0.8 TA = 125°C Output V 4 Level Output V 0.6 TA = 85°C Peak-to-Peak 32 VDD = 3 V w- 0.4 m Lo TA = 25°C mu ÁÁÁÁVOL – VOLÁÁ0.2 TA = –40°C Á– MaxiÁ 1 ÁÁÁ ÁP) ÁP) PP 0 ÁVO(ÁVO( 0 0 1 2 3 4 5 102 103 104 105 106 IOL – Low-Level Output Current – mA f – Frequency – Hz Figure 12 Figure 13 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT SHORT-CIRCUIT OUTPUT CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 20 20 VO = VDD/2 ent – mA 1105 VTAIC = = 2 V5D°CD/2 nt – mA 1105 VID = –100 mV VVVODICD == = 22 .5.55 V VV r e ur rr put C 5 ut Cu 5 cuit Out 0 uit Outp 0 r –5 c Short-Ci –10 hort-Cir ––150 IIOS – OS –15 OS – SOS –15 VID = 100 mV II –20 –20 2 3 4 5 6 7 8 9 10 –75 –50 –25 0 25 50 75 100 125 VDD – Supply Voltage – V TA – Free-Air Temperature – °C Figure 14 Figure 15 DIFFERENTIAL INPUT VOLTAGE DIFFERENTIAL INPUT VOLTAGE vs vs OUTPUT VOLTAGE OUTPUT VOLTAGE 1000 1000 VDD = 3 V VDD = 5 V 750 RL = 2 kΩ 750 VIC = 2.5 V µVoltage – V 520500 TVAIC = = 2 15.°5C V µVoltage – V 520500 RTAL == 225 k°ΩC Differential Input ––2550000 Differential Input ––2550000 – – D D VI –750 VI –750 –1000 –1000 0 0.5 1 1.5 2 2.5 3 0 1 2 3 4 5 VO – Output Voltage – V VO – Output Voltage – V Figure 16 Figure 17 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS DIFFERENTIAL GAIN vs LOAD RESISTANCE 103 VO(PP) = 2 V TA = 25°C VDD = 5 V V VDD = 3 V m 102 V/ – n ai G al nti e er 101 Diff 1 1 101 102 103 RL – Load Resistance – kΩ Figure 18 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY 80 180° VDD = 5 V RL = 2 kΩ ntial dB 60 CTAL == 2150°0C pF 135° al Differe cation – 40 90° Margin e-Sign Amplifi 20 45° Phase rg e – ÁD – LaDÁVoltag 0 0° φom m VV ÁAAÁ –20 –45° –40 –90° 104 105 106 107 f – Frequency – Hz Figure 19 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY 80 180° VDD = 3 V RL = 2 kΩ 60 CL = 100 pF 135° ntial dB TA = 25°C al Differe cation – 40 90° Margin Sign mplifi 20 45° hase e- A P ÁD – LargÁDVoltage 0 0° φom – m ÁVÁV AA ÁÁ –20 –45° –40 –90° 104 105 106 107 f – Frequency – Hz Figure 20 DIFFERENTIAL VOLTAGE AMPLIFICATION DIFFERENTIAL VOLTAGE AMPLIFICATION vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 10000 1000 V V VDD = 3 V m m VIC = 2.5 V mplification – V/ 1100000 RL = 1 MΩ mplification – V/ 100 RL = 1 MΩ VO = 0.5 V to 2.5 V A A Voltage 10 RL = 2 kΩ Voltage 10 – Differential D 1 VVDICD = = 2 5.5 V V – Differential D 1 RL = 2 kΩ V VO = 1 V to 4 V V A 0.1 A 0.1 –75 –50 –25 0 25 50 75 100 125 –75 –50 –25 0 25 50 75 100 125 TA – Free-Air Temperature – °C TA – Free-Air Temperature – °C Figure 21 Figure 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS OUTPUT IMPEDANCE OUTPUT IMPEDANCE vs vs FREQUENCY FREQUENCY 1000 1000 VDD = 3 V TA = 25°C VTAD D= =25 5° CV Ωnce – 0 100 AV = 100 Ωnce – 0 100 AV = 100 da da pe pe m m ut I ut I Outp 10 AV = 10 Outp 10 AV = 10 zzo – o zzo – o AV = 1 AV = 1 1 1 102 103 104 105 102 103 104 105 f – Frequency – Hz f – Frequency – Hz Figure 23 Figure 24 COMMON-MODE REJECTION RATIO COMMON-MODE REJECTION RATIO vs vs FREQUENCY FREE-AIR TEMPERATURE 100 100 dB TA = 25°C B Ratio – 80 VVDICD = = 2 5.5 V V atio – d 98 VDD = 5 V Rejection 60 VVDICD = = 1 3.5 V V ejection R 96 de e R o d on-M 40 n-Mo 94 VDD = 3 V m o m m m o C o RR – 20 R – C 92 M R C M C 0 90 102 103 104 105 106 –75 –50 –25 0 25 50 75 100 125 f – Frequency – Hz TA – Free-Air Temperature – °C Figure 25 Figure 26 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS SUPPLY-VOLTAGE REJECTION RATIO SUPPLY-VOLTAGE REJECTION RATIO vs vs FREQUENCY FREQUENCY 120 120 – dB 100 VTAD D= =25 3° CV – dB VTAD D= =25 5° CV o o 100 ati ati R R n n ctio 80 ctio 80 e e ej ej R R e 60 e 60 g g a a olt olt V V ply- 40 ply- 40 p p u u S S Á– Á20 Á– Á R R R R 20 ÁVVÁ ÁVÁV SS SS Kk Kk ÁÁ ÁÁ 0 0 101 102 103 104 105 106 101 102 103 104 105 106 f – Frequency – Hz f – Frequency – Hz Figure 27 Figure 28 SUPPLY VOLTAGE REJECTION RATIO SUPPLY CURRENT vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 100 300 B VO = VDD/2 d – No Load atio 98 250 TA = 25°C R on µA TA = –40°C age Rejecti 96 y Current – 125000 TA = 85°C Volt 94 uppl ply- Á– SÁ100 – Sup 92 ÁIDD IDDÁ VR VR VDD = 2.7 V to 8 V ÁÁ 50 kSkS VO = VDD/2 90 0 –75 –50 –25 0 25 50 75 100 125 0 2 4 6 8 10 TA – Free-Air Temperature – °C VDD – Supply Voltage – V Figure 29 Figure 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS SLEW RATE SLEW RATE vs vs LOAD CAPACITANCE FREE-AIR TEMPERATURE 0.6 0.35 0.5 SR– VATAVD D== =2–5 13° CV CVRDLL D== =12 0 5k0 ΩV pF 0.3 AV = 1 ss SR+ µu 0.4 s e – v/V/ µ– V/ 0.25 at e w R 0.3 Rat – Sle Slew 0.2 R 0.2 – S R S 0.15 0.1 0 0.1 101 102 103 104 105 –75 –50 –25 0 25 50 75 100 125 CL – Load Capacitance – pF TA – Free-Air Temperature – °C Figure 31 Figure 32 INVERTING LARGE-SIGNAL PULSE INVERTING LARGE-SIGNAL PULSE RESPONSE RESPONSE 3 5 VDD = 3 V VDD = 5 V RL = 2 kΩ RL = 2 kΩ 2.5 CL = 100 pF CL = 100 pF AV = –1 4 AV = –1 Output Voltage – V 1.25 TA = 25°C Output Voltage – V 23 TA = 25°C VO – VO 1 VO – VO 0.5 1 0 0 0 10 20 30 40 50 0 10 20 30 40 50 t – Time – µs t – Time – µs Figure 33 Figure 34 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER LARGE-SIGNAL VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE PULSE RESPONSE 3 5 VRDL D= =2 3k ΩV VRDL D= =2 5k ΩV 2.5 CL = 100 pF CL = 100 pF V ATAV == 215°C V 4 ATAV == 215°C ge – 2 ge – Volta Volta 3 ut 1.5 ut p p Out Out 2 O – O 1 O – O VV VV 1 0.5 0 0 0 10 20 30 40 50 0 5 10 15 20 25 30 35 40 45 50 t – Time – µs t – Time – µs Figure 35 Figure 36 INVERTING SMALL-SIGNAL PULSE INVERTING SMALL-SIGNAL RESPONSE PULSE RESPONSE 1.58 2.58 1.56 CVRDLL D== =12 0 3k0 ΩV pF 2.56 CVRDLL D== =12 0 5k0 ΩV pF ge – V 1.54 ATAV == 2–51°C e – V 2.54 TAAV == 2–51°C a g Volt 1.52 olta 2.52 put ut V Out 1.5 utp 2.5 VVO – O 1.48 O – OO 2.48 VV 1.46 2.46 1.44 2.44 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 t – Time – µs t – Time – µs Figure 37 Figure 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE PULSE RESPONSE 1.58 2.58 VDD = 3 V VDD = 5 V RL = 2 kΩ RL = 2 kΩ 1.56 CL = 100 pF 2.56 CL = 100 pF AV = 1 AV = 1 Voltage – V 11..5542 TA = 25°C Voltage – V 22..5524 TA = 25°C Output 1.5 Output 2.5 VO – VO 1.48 VO – VO 2.48 1.46 2.46 1.44 2.44 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 t – Time – µs t – Time – µs Figure 39 Figure 40 EQUIVALENT INPUT NOISE VOLTAGE EQUIVALENT INPUT NOISE VOLTAGE vs vs FREQUENCY FREQUENCY 120 120 v//HzV/Hz 100 VRTADS D == =225 03° CΩV v//HzV/Hz 100 VRTADS D == =225 05° CΩV nn nn – – e e g g olta 80 olta 80 V V e e s s Noi 60 Noi 60 ut ut p p n n nt I 40 nt I 40 e e al al v v qui 20 qui 20 E E – – N n N n VV 0 VV 0 101 102 103 104 101 102 103 104 f – Frequency – Hz f – Frequency – Hz Figure 41 Figure 42 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS NOISE VOLTAGE OVER A 10-SECOND PERIOD 2000 1500 1000 V n 500 – e g a olt 0 V e ois –500 N –1000 VDD = 5 V –1500 f = 0.1 Hz to 10 Hz TA = 25°C –2000 0 1 2 3 4 5 6 7 8 9 10 t – Time – s Figure 43 TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs vs FREQUENCY FREQUENCY Noise – % 10 RRLL == 22 kkΩΩ TTiieedd ttoo 20. V5 V VTAD D= =25 5° CV Noise – % 10 RRLL == 22 kkΩΩ TTiieedd ttoo 10. V5 V VTAD D= =25 3° CV Plus AV = 10 Plus AV = 10 Distortion 1 AV = 1 Distortion 1 AV = 1 monic monic Har 0.1 Har 0.1 N – Total AV = 10 N – Total AV = 10 THD + 0.01 AV = 1 THD + 0.01 AV = 1 101 102 103 104 105 101 102 103 104 105 f – Frequency – Hz f – Frequency – Hz Figure 44 Figure 45 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS GAIN-BANDWIDTH PRODUCT GAIN-BANDWIDTH PRODUCT vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 800 750 RL = 2 kΩ f = 10 kHz 700 CL = 100 pF RL = 2 kΩ f = 10 kHz CL = 100 pF Product – kHz 650000 Product – kHz 675000 TA = 25°C Bandwidth 430000 Bandwidth 600 Gain- 200 Gain- 550 100 0 500 –50 –25 0 25 50 75 100 125 0 1 2 3 4 5 6 7 8 TA – Free-Air Temperature – °C VDD – Supply Voltage – V Figure 46 Figure 47 PHASE MARGIN GAIN MARGIN vs vs LOAD CAPACITANCE LOAD CAPACITANCE 75° TRAL == 225 k°ΩC 20 Rnull = 500 Ω 60° Rnull = 500 Ω Rnull = 1000 Ω Rnull = 1 kΩ Rnull = 200 Ω 15 n gi B se Mar 45° Rnull = 200 Ω gin – d Rnull = 100 Ω a r 10 h a P M – 30° n mm ai φo G 15° Rnull = 0 5 Rnull = 0 TA = 25°C Rnull = 100 Ω RL = 2 kΩ 0° 0 101 102 103 104 105 101 102 103 104 105 CL – Load Capacitance – pF CL – Load Capacitance – pF Figure 48 Figure 49 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS UNITY-GAIN BANDWIDTH vs LOAD CAPACITANCE 600 TA = 25°C RL = 2 kΩ z 500 H k – h dt 400 wi d n a B n 300 ai G y- nit 200 U Á– Á 1 ÁB Á100 0 101 102 103 104 105 CL – Load Capacitance – pF Figure 50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27

TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168F – NOVEMBER 1996 – REVISED MARCH 2001 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using MicrosimParts, the model generation software used with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 51 are generated using the TLV243x typical electrical and operating characteristics at T = 25°C. Using this information, output A simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): (cid:0) (cid:0) Maximum positive output voltage swing Unity-gain frequency (cid:0) (cid:0) Maximum negative output voltage swing Common-mode rejection ratio (cid:0) (cid:0) Slew rate Phase margin (cid:0) (cid:0) Quiescent power dissipation DC output resistance (cid:0) (cid:0) Input bias current AC output resistance (cid:0) (cid:0) Open-loop voltage amplification Short-circuit output current limit NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 DLN 3 EGND + VCC+ 92 9 FB RSS ISS + – 90 91 VB RO2 + DLP + – RP + – HLIM VLP VLN IN– 2 10 VC R2 – – + DP J1 J2 – 6 C2 7 IN+ 53 + 1 VLIM 11 12 DC GCM GA – 8 C1 RD1 RD2 60 RO1 VAD + DE – 54 5 VCC– 4 – + VE OUT .SUBCKT TLV2432 1 2 3 4 5 RD1 60 11 21.22E3 C1 11 12 3.560E–12 RD2 60 12 21.22E3 C2 6 7 15.00E–12 R01 8 5 120 DC 5 53 DX R02 7 99 120 DE 54 5 DX RP 3 4 26.04E3 DLP 90 91 DX RSS 10 99 24.24E6 DLN 92 90 DX VAD 60 4 –.6 DP 4 3 DX VB 9 0 DC 0 EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 VC 3 53 DC .65 FB 7 99 POLY (5) VB VC VE VLP VE 54 4 DC .65 + VLN 0 21.04E6 –30E6 30E6 30E6 –30E6 VLIM 7 8 DC 0 GA 6 0 11 12 47.12E–6 VLP 91 0 DC 1.4 GCM 0 6 10 99 4.9E–9 VLN 0 92 DC 9.4 ISS 3 10 DC 8.250E–6 .MODEL DX D (IS=800.0E–18) HLIM 90 0 VLIM 1K .MODEL JX PJF (IS=500.0E–15 BETA=281E–6 J1 11 2 10 JX + VTO=–.065) J2 12 1 10 JX .ENDS R2 6 9 100.0E3 Figure 51. Boyle Macromodel and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TLV2432AID ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 2432AI & no Sb/Br) TLV2432AIDG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 2432AI & no Sb/Br) TLV2432AIDR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 2432AI & no Sb/Br) TLV2432AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 2432AI & no Sb/Br) TLV2432AIPW ACTIVE TSSOP PW 8 150 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 TV2432 & no Sb/Br) TLV2432AIPWR ACTIVE TSSOP PW 8 2000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 2432AI & no Sb/Br) TLV2432AQD ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 125 V2432A & no Sb/Br) TLV2432AQDG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 125 V2432A & no Sb/Br) TLV2432AQDRG4 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 125 V2432A & no Sb/Br) TLV2432CD ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM 0 to 70 2432C & no Sb/Br) TLV2432CDR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM 0 to 70 2432C & no Sb/Br) TLV2432ID ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 2432I & no Sb/Br) TLV2432IDR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 2432I & no Sb/Br) TLV2432QD ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 125 V2432Q & no Sb/Br) TLV2432QDG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 125 V2432Q & no Sb/Br) TLV2434AID ACTIVE SOIC D 14 50 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 2434AI & no Sb/Br) TLV2434AIDR ACTIVE SOIC D 14 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 2434AI & no Sb/Br) Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TLV2434AIPWR ACTIVE TSSOP PW 14 2000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 2434AI & no Sb/Br) TLV2434CD ACTIVE SOIC D 14 50 Green (RoHS NIPDAU Level-1-260C-UNLIM 0 to 70 2434C & no Sb/Br) TLV2434CDR ACTIVE SOIC D 14 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM 0 to 70 2434C & no Sb/Br) TLV2434CPW ACTIVE TSSOP PW 14 90 Green (RoHS NIPDAU Level-1-260C-UNLIM 0 to 70 2434C & no Sb/Br) TLV2434CPWR ACTIVE TSSOP PW 14 2000 Green (RoHS NIPDAU Level-1-260C-UNLIM 0 to 70 2434C & no Sb/Br) TLV2434ID ACTIVE SOIC D 14 50 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 2434I & no Sb/Br) TLV2434IDR ACTIVE SOIC D 14 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 2434I & no Sb/Br) TLV2434IPW ACTIVE TSSOP PW 14 90 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 2434I & no Sb/Br) TLV2434IPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 2434I & no Sb/Br) TLV2434IPWR ACTIVE TSSOP PW 14 2000 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 2434I & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 2

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TLV2432, TLV2432A, TLV2434A : •Automotive: TLV2432-Q1, TLV2432A-Q1, TLV2434A-Q1 NOTE: Qualified Version Definitions: •Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 3

PACKAGE MATERIALS INFORMATION www.ti.com 26-Feb-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TLV2432AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV2432AIPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 TLV2432CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV2432IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV2434AIDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TLV2434AIPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 TLV2434CDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TLV2434CPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 TLV2434IDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TLV2434IPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 26-Feb-2019 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TLV2432AIDR SOIC D 8 2500 340.5 338.1 20.6 TLV2432AIPWR TSSOP PW 8 2000 367.0 367.0 35.0 TLV2432CDR SOIC D 8 2500 340.5 338.1 20.6 TLV2432IDR SOIC D 8 2500 340.5 338.1 20.6 TLV2434AIDR SOIC D 14 2500 350.0 350.0 43.0 TLV2434AIPWR TSSOP PW 14 2000 367.0 367.0 35.0 TLV2434CDR SOIC D 14 2500 350.0 350.0 43.0 TLV2434CPWR TSSOP PW 14 2000 367.0 367.0 35.0 TLV2434IDR SOIC D 14 2500 350.0 350.0 43.0 TLV2434IPWR TSSOP PW 14 2000 367.0 367.0 35.0 PackMaterials-Page2

None

None

None

PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

PACKAGE OUTLINE PW0008A TSSOP - 1.2 mm max height SCALE 2.800 SMALL OUTLINE PACKAGE C 6.6 TYP SEATING PLANE 6.2 PIN 1 ID A 0.1 C AREA 6X 0.65 8 1 3.1 2X 2.9 NOTE 3 1.95 4 5 0.30 8X 0.19 4.5 1.2 MAX B 0.1 C A B 4.3 NOTE 4 (0.15) TYP SEE DETAIL A 0.25 GAGE PLANE 0.15 0.75 0 - 8 0.05 0.50 DETAIL A TYPICAL 4221848/A 02/2015 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. 5. Reference JEDEC registration MO-153, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT PW0008A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 8X (1.5) 8X (0.45) SYMM (R0.05) 1 TYP 8 SYMM 6X (0.65) 5 4 (5.8) LAND PATTERN EXAMPLE SCALE:10X SOOPLEDNEINRG MASK METAL MSOELTDAEL RU NMDAESRK SOOPLEDNEINRG MASK 0.05 MAX 0.05 MIN ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS NOT TO SCALE 4221848/A 02/2015 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN PW0008A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 8X (1.5) SYMM (R0.05) TYP 8X (0.45) 1 8 SYMM 6X (0.65) 5 4 (5.8) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:10X 4221848/A 02/2015 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated