ICGOO在线商城 > 集成电路(IC) > 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 > TLE2037ID
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
TLE2037ID产品简介:
ICGOO电子元器件商城为您提供TLE2037ID由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TLE2037ID价格参考。Texas InstrumentsTLE2037ID封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 1 电路 8-SOIC。您可以下载TLE2037ID参考资料、Datasheet数据手册功能说明书,资料中有TLE2037ID 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
-3db带宽 | - |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC OPAMP GP 50MHZ 8SOIC精密放大器 Low Noise High Gain |
产品分类 | Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 放大器 IC,精密放大器,Texas Instruments TLE2037IDExcalibur™ |
数据手册 | |
产品型号 | TLE2037ID |
产品目录页面 | |
产品种类 | Amplifiers - Operational |
供应商器件封装 | 8-SOIC |
共模抑制比—最小值 | 100 dB |
其它名称 | 296-10388-5 |
包装 | 管件 |
单位重量 | 72.600 mg |
压摆率 | 7.5 V/µs |
商标 | Texas Instruments |
增益带宽生成 | 50 MHz |
增益带宽积 | 50MHz |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Tube |
封装/外壳 | 8-SOIC(0.154",3.90mm 宽) |
封装/箱体 | SOIC-8 |
工作温度 | 0°C ~ 70°C |
工作电源电压 | 38 V |
工厂包装数量 | 75 |
放大器类型 | 通用 |
最大功率耗散 | 725 mW |
最大工作温度 | + 105 C |
最小工作温度 | - 40 C |
标准包装 | 75 |
电压-电源,单/双 (±) | 8 V ~ 38 V, ±4 V ~ 19 V |
电压-输入失调 | 20µV |
电压增益dB | 153.06 dB |
电流-电源 | 3.8mA |
电流-输入偏置 | 15nA |
电流-输出/通道 | 50mA |
电源电压-最大 | +/- 19 V |
电源电压-最小 | +/- 4 V |
电源电流 | 5.3 mA |
电路数 | 1 |
系列 | TLE2037 |
转换速度 | 7.5 V/us |
输入偏压电流—最大 | 0.09 uA at +/- 15 V |
输入补偿电压 | 0.1 mV |
输出类型 | - |
通道数量 | 1 Channel |
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 (cid:2) Outstanding Combination of dc Precision D, JG, OR P PACKAGE and AC Performance: (TOP VIEW) Unity-Gain Bandwidth...15 MHz Typ Vn . . . . . 3.3 nV/√Hz at f = 10 Hz Typ, OFFSET N1 1 8 OFFSET N2 2.5 nV/√Hz at f = 1 kHz Typ IN− 2 7 VCC+ VIO . . . . 25 μV Max IN+ 3 6 OUT AVD. . . . 45 V/μV Typ With RL = 2 kΩ, VCC− 4 5 NC 19 V/μV Typ With R = 600 Ω L (cid:2) Available in Standard-Pinout Small-Outline FK PACKAGE Package (TOP VIEW) (cid:2) Output Features Saturation Recovery 1 2 N N Circuitry T T (cid:2) E E Macromodels and Statistical information S S F F C F CF C N O NO N description 3 2 1 20 19 The TLE20x7 and TLE20x7A contain innovative NC 4 18 NC circuit design expertise and high-quality process IN− 5 17 VCC+ control techniques to produce a level of ac NC 6 16 NC performance and dc precision previously unavail- IN+ 7 15 OUT able in single operational amplifiers. Manufac- NC 8 14 NC 9 10 11 12 13 tured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades C −CC C to systems that use lower-precision devices. N CNN N C V In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 μV and 25 μV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/μV (typ). AVAILABLE OPTIONS PACKAGED DEVICES CCHHIIPP TA VIO2m5a°Cx AT OSUMTLAILNLE† CACRHRIPIER CERDAIPMIC PLADSIPTIC FORM‡ (Y) (D) (FK) (JG) (P) μ TLE2027ACD — — TLE2027ACP TLE2027Y 25 V TLE2037ACD — — TLE2037ACP TLE2037Y °° °° 00 CC ttoo 7700 CC μ TLE2027CD — — TLE2027CP TLE2027Y 100 V TLE2037CD — — TLE2037CP TLE2037Y μ TLE2027AID — — TLE2027AIP 25 V — TLE2037AID — — TLE2037AIP °° °° −4400 CC ttoo 110055 CC μ TLE2027ID — — TLE2027IP 100 V — TLE2037ID — — TLE2037IP μ TLE2027AMD TLE2027AMFK TLE2027AMJG TLE2027AMP 25 V — TLE2037AMD TLE2037AMFK TLE2037AMJG TLE2037AMP °° °° −5555 CC ttoo 112255 CC μ TLE2027MD TLE2027MFK TLE2027MJG TLE2027MP 100 V — TLE2037MD TLE2037MFK TLE2037MJG TLE2037MP †The D packages are available taped and reeled. Add R suffix to device type (e.g., TLE2027ACDR). ‡Chip forms are tested at 25°C only. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Copyright © 2002−2006, Texas Instruments Incorporated Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. www.ti.com 1
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y (cid:2) EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 description (continued) The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/√Hz and 2.5 nV/√Hz at frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (−7.5 V/μs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from −40°C to 105°C. The M-suffix devices are characterized for operation over the full military temperature range of −55°C to 125°C. symbol OFFSET N1 IN + + OUT − IN − OFFSET N2 • 2 POST OFFICE BOX 65•5303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TLE202xY chip information This chip, when properly assembled, displays characteristics similar to the TLE202xC. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chip may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS (1) VCC+ (6) OFFSET N1 (4) (3) (7) IN+ + (8) (7) (6) (6) OUT (2) IN− − (4) (8) OFFSET N2 VCC− (5) 90 (3) (7) (4) CHIP THICKNESS: 15 MILS TYPICAL (2) BONDING PADS: 4 × 4 MILS MINIMUM TJmax = 150°C TOLERANCES ARE ±10%. (1) (2) (3) ALL DIMENSIONS ARE IN MILS. (8) PIN (4) IS INTERNALLY CONNECTED (1) TO BACKSIDE OF CHIP. 73 3
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:4)(cid:6)(cid:7)4(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:8)(cid:6)(cid:7)4(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:4)(cid:6)(cid:9)(cid:7)4(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:8)(cid:6)(cid:9)(cid:7)4(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:4)(cid:6)(cid:10)(cid:7)4(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:8)(cid:6)(cid:10) (cid:3)(cid:11)(cid:12)(cid:9)(cid:2)(cid:13)(cid:14)(cid:15)(cid:16)4(cid:2)(cid:17)(cid:18)(cid:19)(cid:20)(cid:17)(cid:13)(cid:21)(cid:3)4(cid:22)(cid:13)(cid:23)(cid:22)(cid:19)(cid:21)(cid:24)(cid:3)(cid:3)(cid:25) (cid:24)(cid:16)(cid:3)(cid:12)(cid:13)(cid:21)(cid:13)(cid:17)(cid:20)4(cid:17)(cid:24)(cid:3)(cid:16)(cid:9)(cid:1)(cid:13)(cid:17)(cid:20)(cid:9)(cid:2)4(cid:9)(cid:26)(cid:24)(cid:2)(cid:13)(cid:27)(cid:13)(cid:3)(cid:16)(cid:21) SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 T U 1 O 2 6 6 Q Q Q58 Q59 Q60 5 6 7 6 5 5 5 2 Q Q Q R 5 4 R2 52 R2 Q 3 4 50 Q5 Q5 Q 9 1 Q4 Q48 Q5 R23 2 Q46 R2 Q47 R21 Q44 Q45 2 3 4 4 Q Q 0 1 R2 39 Q4 40 Q Q 9 1 R + 8 − C 3 7 C VC 6 Q Q3 Q35 VC NT 2037 1 6 1 4 5 3 6 7 8 U E 6 2 R1 Q R1 R1 C4 R1 CO TL 3 34 3 T C Q 3 N Q E Q32 R13 Q31 R14 MPON 2027 1 6 1 4 Q30 1 8 Q29 R12 E CO TLE 6 2 1 2 C R9 Q27 R8RQ19 Q25Q C2 Q24Q23 Q21 Q26 Q22 R10R76 ACTUAL DEVI COMPONENT Transistors Resistors epiFET Capacitors R 1 0 C 2 Q R4 R5 Q13 Q17 Q18 5 6 Q14 Q12 Q1 Q1 R3 1 2 R R 0 1 1 1 Q Q c ati Q9 8 Q m e Q7 h c 5 6 s Q Q t 2 1 n N N 4 e T T Q al SE SE Q2 Q3 1 v F F Q i F F qu O O + − e N N I I 4 www.ti.com
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V CC+ Supply voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −19 V CC− Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1.2 V ID Input voltage range, VI (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC± Input current, I (each Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA I Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA O Total current into V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA CC+ Total current out of V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA CC− Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C A I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 105°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C stg Case temperature for 60 seconds, T : FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . 300°C †Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC−. 2. Differential voltages are at IN+ with respect to IN−. Excessive current flows if a differential input voltage in excess of approximately ± 1.2 V is applied between the inputs unless some limiting resistance is used. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE POWTAE ≤R 2R5A°TCING DAEBROATVIEN GTA F =A 2C5T°OCR POWTAE =R 7R0A°CTING POTWAE =R 1 R05A°TCING POTWAE =R 1 R25A°TCING ° D 725 mW 5.8 mW/ C 464 mW 261 mW 145 mW ° FK 1375 mW 11.0 mW/ C 880 mW 495 mW 275 mW ° JG 1050 mW 8.4 mW/ C 672 mW 378 mW 210 mW ° P 1000 mW 8.0 mW/ C 640 mW 360 mW 200 mW recommended operating conditions C SUFFIX I SUFFIX M SUFFIX UUNNIITT MIN MAX MIN MAX MIN MAX Supply voltage, VCC± ±4 ±19 ±4 ±19 ±4 ±19 V TA = 25°C −11 11 −11 11 −11 11 CCoommmmoonn-mmooddee iinnppuutt vvoollttaaggee, VVIC TA = Full range‡ −10.5 10.5 −10.4 10.4 −10.2 10.2 VV Operating free-air temperature, TA 0 70 −40 105 −55 125 °C ‡Full range is 0°C to 70°C for C-suffix devices, −40°C to 105°C for I-suffix devices, and −55°C to 125°C for M-suffix devices. www.ti.com 5
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y (cid:2) EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TLE20x7C electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless otherwise noted) TLE20x7C TLE20x7AC PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS TTA†† MIN TYP MAX MIN TYP MAX UUNNIITT 25°C 20 100 10 25 VVIO IInnppuutt ooffffsseett vvoollttaaggee Full range 145 70 μVV αVIO Tinepmupt oefrfasteutr ev oclotaegffeicient of Full range 0.4 1 0.2 1 μV/°C Input offset voltage long-term drift (see Note 4) VIC = 0, RS = 50 Ω 25°C 0.006 1 0.006 1 μV/mo 25°C 6 90 6 90 IIIO IInnppuutt ooffffsseett ccuurrrreenntt Full range 150 150 nnAA 25°C 15 90 15 90 IIIB IInnppuutt bbiiaass ccuurrrreenntt Full range 150 150 nnAA −11 −13 −11 −13 25°C to to to to CCoommmmoonn-mmooddee iinnppuutt 11 13 11 13 VVICR voltage range RRS = 5500 ΩΩ −10.5 −10.5 VV Full range to to 10.5 10.5 25°C 10.5 12.9 10.5 12.9 MMaaxxiimmuumm ppoossiittiivvee ppeeaakk RRL = 660000 ΩΩ Full range 10 10 VVOM+ outpput voltagge swingg 25°C 12 13.2 12 13.2 VV RRL = 22 kkΩΩ Full range 11 11 25°C −10.5 −13 −10.5 −13 MMaaxxiimmuumm nneeggaattiivvee ppeeaakk RRL = 660000 ΩΩ Full range −10 −10 VVOM− output voltage swing 25°C −12 −13.5 −12 −13.5 VV RRL = 22 kkΩΩ Full range −11 −11 VO = ±11 V, RL = 2 kΩ 25°C 5 45 10 45 VO = ±10 V, RL = 2 kΩ Full range 2 4 LLaarrggee-ssiiggnnaall ddiiffffeerreennttiiaall 25°C 3.5 38 8 38 AAVD voltage amplification VVO = ±±1100 VV, RRL = 11 kkΩΩ Full range 1 2.5 VV//μVV VVOO == ±±1100 VV,, 25°C 2 19 5 19 RL = 600 Ω Full range 0.5 2 Ci Input capacitance 25°C 8 8 pF Open-loop output zo impedance IO = 0 25°C 50 50 Ω CCMMRRRR rCCaootiommmmoonn-mmooddee rreejjeeccttiioonn RVVIISCC === 5VV0IICC ΩRRmmiinn,, Fu2ll 5r°aCnge 19080 131 111174 131 ddBB SSuuppppllyy-vvoollttaaggee rreejjeeccttiioonn VRCSC =± 5=0 ± Ω4 V to ±18 V, 25°C 94 144 110 144 kkSVR ratio (ΔVCC± /ΔVIO) RVCSC =± 5=0 ± Ω4 V to ±18 V, Full range 92 106 ddBB 25°C 3.8 5.3 3.8 5.3 IICC SSuuppppllyy ccuurrrreenntt VVO = 00, NNoo llooaadd Full range 5.6 5.6 mmAA †Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6 www.ti.com
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TLE20x7C operating characteristics at specified free-air temperature, VCC± = ±15 V, TA = 25°C (unless otherwise specified) TLE20x7C TLE20x7AC PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS UUNNIITT MIN TYP MAX MIN TYP MAX RL = 2 kΩ, TLE2027 1.7 2.8 1.7 2.8 CCL = 110000 ppFF, See Figure 1 TLE2037 6 7.5 6 7.5 SR Slew rate at unity gain RL = 2 kΩ, TLE2027 1.2 1.2 V/μs CCLL == 110000 ppFF,, TA = 0°C to 70°C, TLE2037 5 5 See Figure 1 VVn EEagqqeuu ii(vvsaaelleeenn Ftt iiignnuppruuett 2nn)ooiissee vvoolltt- RRSS == 2200 ΩΩ,, ff == 110 k HHzz 32..35 4.58 32..35 43..58 nnVV//√√HHzz Peak-to-peak equivalent in- VN(PP) put noise voltage f = 0.1 Hz to 10 Hz 50 250 50 130 nV EEqquuiivvaalleenntt iinnppuutt nnooiissee ccuurr- f = 10 Hz 10 25 10 25 IIn rent f = 1 kHz 0.8 1.8 0.8 1.8 ppAA//√√HHzz VO = +10 V, AVD = 1, TLE2027 <0.002% <0.002% See Note 5 TTHHDD TToottaall hhaarrmmoonniicc ddiissttoorrttiioonn VO = +10 V, AVD = 5, TLE2037 <0.002% <0.002% See Note 5 B1 U(sneiety F-gigauinr eb a3n)dwidth RCLL == 120 k0Ω p,F TLE2027 9(6) 13 9(6) 13 MMHHzz GBW Gain bandwidth product RL = 2 kΩ, TLE2037 35 50 35 50 CL = 100 pF MMaaxxiimmuumm oouuttppuutt-sswwiinngg TLE2027 30 30 BBOM bandwidth RRL = 22 kkΩΩ TLE2037 80 80 kkHHzz ° ° φφ PPhhaassee mmaarrggiinn aatt uunniittyy ggaaiinn RRLL = 22 kkΩΩ,, TLE2027 55 55 m (see Figure 3) CL = 100 pF TLE2037 50° 50° NOTE 5: Measured distortion of the source used in the analysis was 0.002%. NOTE 6: This parameter is not production tested www.ti.com 7
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y (cid:2) EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TLE20x7I electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless otherwise noted) TLE20x7I TLE20x7AI PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS TTA†† MIN TYP MAX MIN TYP MAX UUNNIITT 25°C 20 100 10 25 VVIO IInnppuutt ooffffsseett vvoollttaaggee Full range 180 105 μVV αVIO Tinepmupt oefrfasteutr ev oclotaegffeicient of Full range 0.4 1 0.2 1 μV/°C Input offset voltage long-term drift (see Note 4) VIC = 0, RS = 50 Ω 25°C 0.006 1 0.006 1 μV/mo 25°C 6 90 6 90 IIIO IInnppuutt ooffffsseett ccuurrrreenntt Full range 150 150 nnAA 25°C 15 90 15 90 IIIB IInnppuutt bbiiaass ccuurrrreenntt Full range 150 150 nnAA −11 −13 −11 −13 25°C to to to to CCoommmmoonn-mmooddee iinnppuutt 11 13 11 13 VVICR voltage range RRS = 5500 ΩΩ −10.4 −10.4 VV Full range to to 10.4 10.4 25°C 10.5 12.9 10.5 12.9 MMaaxxiimmuumm ppoossiittiivvee ppeeaakk RRL = 660000 ΩΩ Full range 10 10 VVOM+ outpput voltagge swingg 25°C 12 13.2 12 13.2 VV RRL = 22 kkΩΩ Full range 11 11 25°C −10.5 −13 −10.5 −13 MMaaxxiimmuumm nneeggaattiivvee ppeeaakk RRL = 660000 ΩΩ Full range −10 −10 VVOM− output voltage swing 25°C −12 −13.5 −12 −13.5 VV RRL = 22 kkΩΩ Full range −11 −11 VO = ±11 V, RL = 2 kΩ 25°C 5 45 10 45 VO = ±10 V, RL = 2 kΩ Full range 2 3.5 LLaarrggee-ssiiggnnaall ddiiffffeerreennttiiaall 25°C 3.5 38 8 38 AAVD voltage amplification VVO = ±±1100 VV, RRL = 11 kkΩΩ Full range 1 2.2 VV//μVV 25°C 2 19 5 19 VVO = ±±1100 VV, RRL = 660000 ΩΩ Full range 0.5 1.1 Ci Input capacitance 25°C 8 8 pF Open-loop output zo impedance IO = 0 25°C 50 50 Ω CCMMRRRR rCCaootiommmmoonn-mmooddee rreejjeeccttiioonn VVRIISCC === 5VV0IICC ΩRRmmiinn,, Fu2ll 5r°aCnge 19060 131 111173 131 ddBB SSuuppppllyy-vvoollttaaggee rreejjeeccttiioonn VRCSC =± 5=0 ± Ω4 V to ±18 V, 25°C 94 144 110 144 kkSVR ratio (ΔVCC± /ΔVIO) VRCSC =± 5=0 ± Ω4 V to ±18 V, Full range 90 105 ddBB 25°C 3.8 5.3 3.8 5.3 IICCCC SSuuppppllyy ccuurrrreenntt VVOO = 00, NNoo llooaadd mmAA Full range 5.6 5.6 †Full range is −40°C to 105°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 8 www.ti.com
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TLE20x7I operating characteristics at specified free-air temperature, VCC± = ±15 V, TA = 25°C (unless otherwise specified) TLE20x7I TLE20x7AI PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS UUNNIITT MIN TYP MAX MIN TYP MAX RL = 2 kΩ, TLE2027 1.7 2.8 1.7 2.8 CCL = 110000 ppFF, See Figure 1 TLE2037 6 7.5 6 7.5 SR Slew rate at unity gain RL = 2 kΩ, TLE2027 1.1 1.1 V/μs CCLL == 110000 ppFF,, TA = −40°C to 85°C, TLE2037 4.7 4.7 See Figure 1 VVn EEvoqqluutaiivvgaaell ee(nnsett eiinn ppFuuigtt unnrooeii ss2ee) RRSS == 2200 ΩΩ,, ff == 110 k HHzz 32..35 4.58 32..35 43..58 nnVV//√√HHzz Peak-to-peak equivalent VN(PP) input noise voltage f = 0.1 Hz to 10 Hz 50 250 50 130 nV EEqquuiivvaalleenntt iinnppuutt nnooiissee f = 10 Hz 10 25 10 25 IIn current f = 1 kHz 0.8 1,8 0.8 1.8 ppAA//√√HHzz VO = +10 V, AVD = 1, TLE2027 <0.002% <0.002% See Note 5 TTHHDD TToottaall hhaarrmmoonniicc ddiissttoorrttiioonn VO = +10 V, AVD = 5, TLE2037 <0.002% <0.002% See Note 5 B1 U(sneiety F-gigauinr eb a3n)dwidth RCLL == 120 k0Ω p,F TLE2027 9(6) 13 9(6) 13 MMHHzz GBW Gain bandwidth product RL = 2 kΩ, TLE2037 35 50 35 50 CL = 100 pF MMaaxxiimmuumm oouuttppuutt-sswwiinngg TLE2027 30 30 BBOM bandwidth RRL = 22 kkΩΩ TLE2037 80 80 kkHHzz φφ PPhhaassee mmaarrggiinn aatt uunniittyy RRLL == 22 kkΩΩ,, TLE2027 55° 55° m gain (see Figure 3) CL = 100 pF TLE2037 50° 50° NOTE 5: Measured distortion of the source used in the analysis was 0.002%. NOTE 6: This parameter is not production tested. www.ti.com 9
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y (cid:2) EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TLE20x7M electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless otherwise noted) TLE20x7M TLE20x7AM PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS TTA†† MIN TYP MAX MIN TYP MAX UUNNIITT 25°C 20 100 10 25 VVIO IInnppuutt ooffffsseett vvoollttaaggee Full range 200 105 μVV αVIO Tinepmupt oefrfasteutr ev oclotaegffeicient of Full range 0.4 1* 0.2 1* μV/°C Input offset voltage long-term drift (see Note 4) VIC = 0, RS = 50 Ω 25°C 0.006 1* 0.006 1* μV/mo 25°C 6 90 6 90 IIIO IInnppuutt ooffffsseett ccuurrrreenntt Full range 150 150 nnAA 25°C 15 90 15 90 IIIB IInnppuutt bbiiaass ccuurrrreenntt Full range 150 150 nnAA −11 −13 −11 −13 25°C to to to to CCoommmmoonn-mmooddee iinnppuutt 11 13 11 13 VVICR voltage range RRS = 5500 ΩΩ −10.3 −10.4 VV Full range to to 10.3 10.4 25°C 10.5 12.9 10.5 12.9 MMaaxxiimmuumm ppoossiittiivvee ppeeaakk RRL = 660000 ΩΩ Full range 10 10 VVOM+ outpput voltagge swingg 25°C 12 13.2 12 13.2 VV RRL = 22 kkΩΩ Full range 11 11 25°C −10.5 −13 −10.5 −13 MMaaxxiimmuumm nneeggaattiivvee ppeeaakk RRL = 660000 ΩΩ Full range −10 −10 VVOM− output voltage swing 25°C −12 −13.5 −12 −13.5 VV RRL = 22 kkΩΩ Full range −11 −11 VO = ±11 V, RL = 2 kΩ 25°C 5 45 10 45 VO = ±10 V, RL = 2 kΩ Full range 2.5 3.5 AAVVDD LLvvooallrttgaaegg-ees iiaagmmnappllll iiddffiiiiccffffaaettriiooennnttiiall VVO = ±±1100 VV, RRL = 11 kkΩΩ Fu2ll 5r°aCnge 31..58 38 2.82 38 VV//μμVV VVO = ±±1100 VV, RRL = 660000 ΩΩ 2255°°CC 22 1199 55 1199 Ci Input capacitance 25°C 8 8 pF Open-loop output zo impedance IO = 0 25°C 50 50 Ω CCMMRRRR rCCaootiommmmoonn-mmooddee rreejjeeccttiioonn VVRIISCC === 5VV0IICC ΩRRmmiinn,, Fu2ll 5r°aCnge 19060 131 111173 131 ddBB SSuuppppllyy-vvoollttaaggee rreejjeeccttiioonn VRCSC =± 5=0 ± Ω4 V to ±18 V, 25°C 94 144 110 144 kkSVR ratio (ΔVCC± /ΔVIO) RVCSC =± 5=0 ± Ω4 V to ±18 V, Full range 90 105 ddBB 25°C 3.8 5.3 3.8 5.3 IICC SSuuppppllyy ccuurrrreenntt VVO = 00, NNoo llooaadd mmAA Full range 5.6 5.6 *On products compliant to MIL-PRF-38535, this parameter is not production tested. †Full range is −55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 10 www.ti.com
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TLE20x7M operating characteristics at specified free-air temperature, VCC± = ±15 V, TA = 25°C (unless otherwise specified) TLE20x7M TLE20x7AM PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS UUNNIITT MIN TYP MAX MIN TYP MAX RL = 2 kΩ, TLE2027 1.7 2.8 1.7 2.8 CCL = 110000 ppFF, See Figure 1 TLE2037 6* 7.5 6* 7.5 SR Slew rate at unity gain RL = 2 kΩ, TLE2027 1 1 V/μs CCLL == 110000 ppFF,, TA = −55°C to 125°C, TLE2037 4.4* 4.4* See Figure 1 VVn EEvoqqluutaiivvgaaell ee(nnsett eiinn ppFuuigtt unnrooeii ss2ee) RRSS == 2200 ΩΩ,, ff == 110 k HHzz 32..35 48** 32..35 84** nnVV//√√HHzz Peak-to-peak equivalent VN(PP) input noise voltage f = 0.1 Hz to 10 Hz 225 375* 225 375* nV EEqquuiivvaalleenntt iinnppuutt nnooiissee f = 10 Hz 25 25 IIn current f = 1 kHz 2.5 2.5 ppAA//√√HHzz VO = +10 V, AVD = 1, TLE2027 <0.002% <0.002% See Note 5 TTHHDD TToottaall hhaarrmmoonniicc ddiissttoorrttiioonn VO = +10 V, AVD = 5, TLE2037 <0.002% <0.002% See Note 5 BB1 UU(snneiiettyy F-ggigaauiinnr ebb aa3nn)ddwwiiddtthh RRCLLL === 1220 kk0ΩΩ p,,F TTLLEE22002377 375* 1530 395* 1530 MMHHzz MMaaxxiimmuumm oouuttppuutt-sswwiinngg TLE2027 30 30 BBOM bandwidth RRL = 22 kkΩΩ TLE2037 80 80 kkHHzz ° ° φφ PPhhaassee mmaarrggiinn aatt uunniittyy RRLL = 22 kkΩΩ,, TLE2027 55 55 m gain (see Figure 3) CL = 100 pF TLE2037 50° 50° *On products compliant to MIL-PRF-38535, this parameter is not production tested. NOTE 5: Measured distortion of the source used in the analysis was 0.002%. www.ti.com 11
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y (cid:2) EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TLE20x7Y electrical characteristics, VCC± = ±15 V, TA = 25°C (unless otherwise noted) TLE20x7Y PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS UUNNIITT MIN TYP MAX VIO Input offset voltage 20 μV Input offset voltage 0.006 μV/mo long-term drift (see Note 4) VVIICC == 00,, RRSS == 5500 ΩΩ IIO Input offset current 6 nA IIB Input bias current 15 nA −13 VICR Common-mode input voltage range RS = 50 Ω to V 13 RL = 600 Ω 12.9 VVOM+ MMaaxxiimmuumm ppoossiittiivvee ppeeaakk oouuttppuutt vvoollttaaggee sswwiinngg RL = 2 kΩ 13.2 VV RL = 600 Ω −13 VVOM− MMaaxxiimmuumm nneeggaattiivvee ppeeaakk oouuttppuutt vvoollttaaggee sswwiinngg RL = 2 kΩ −13.5 VV VO = ±11 V, RL = 2 kΩ 45 AAVVDD LLaarrggee--ssiiggnnaall ddiiffffeerreennttiiaall vvoollttaaggee aammpplliiffiiccaattiioonn VVROOL === ±±6110000 VVΩ,, RL = 1 kΩ 3189 VV//μμVV Ci Input capacitance 8 pF zo Open-loop output impedance IO = 0 50 Ω CMRR Common-mode rejection ratio RVISC == 5V0IC ΩRmin, 131 dB kSVR Supply-voltage rejection ratio (ΔVCC± /ΔVIO) VRCSC =± 5=0 ± Ω4 V to ±18 V, 144 dB ICC Supply current VO = 0, No load 3.8 mA NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 12 www.ti.com
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TLE20x7Y operating characteristics at specified free-air temperature, VCC± = ±15 V TLE20x7Y PPAARRAAMMEETTEERR TTEESSTT CCOONNDDIITTIIOONNSS UUNNIITT MIN TYP MAX SSRR SSlleeww rraattee aatt uunniittyy ggaaiinn RRLL == 22 kkΩΩ,, CCLL == 110000 ppFF,, TLE2027 2.8 VV//μss See Figure 1 TLE2037 7.5 VVn EEqquuiivvaalleenntt iinnppuutt nnooiissee vvoollttaaggee ((sseeee FFiigguurree 22)) RRSS == 2200 ΩΩ,, ff == 110 k HHzz 32..35 nnVV//√√HHzz VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 10 Hz 50 nV f = 10 Hz 10 IIn EEqquuiivvaalleenntt iinnppuutt nnooiissee ccuurrrreenntt f = 1 kHz 0.8 ppAA//√√HHzz VO = +10 V, AVD = 1, TLE2027 <0.002% See Note 5 TTHHDD TToottaall hhaarrmmoonniicc ddiissttoorrttiioonn VO = +10 V, AVD = 5, TLE2037 <0.002% See Note 5 TLE2027 13 BB1 UUnniittyy-ggaaiinn bbaannddwwiiddtthh ((sseeee FFiigguurree 33)) RRL = 22 kkΩΩ, CCL = 110000 ppFF TLE2037 50 MMHHzz TLE2027 30 BBOM MMaaxxiimmuumm oouuttppuutt-sswwiinngg bbaannddwwiiddtthh RRL = 22 kkΩΩ TLE2037 80 kkHHzz ° TLE2027 55 φφm PPhhaassee mmaarrggiinn aatt uunniittyy ggaaiinn ((sseeee FFiigguurree 33)) RRL = 22 kkΩΩ, CCL = 110000 ppFF ° TLE2037 50 NOTE 5: Measured distortion of the source used in the analysis was 0.002%. www.ti.com 13
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y (cid:2) EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 PARAMETER MEASUREMENT INFORMATION Rf 2 kΩ 15 V 15 V − − RI VO VO VI + + −15 V CL = RL = 2 kΩ 20 Ω 20 Ω −15 V 100 pF (see Note A) NOTE A: CL includes fixture capacitance. Figure 1. Slew-Rate Test Circuit Figure 2. Noise-Voltage Test Circuit 10 kΩ Rf 15 V 100 Ω 15 V − VI − RI VO VO VI + + −15 V CL = 2 kΩ −15 V 10C0 Lp F= 2 kΩ 100 pF (see Note A) (see Note A) NOTE A: CL includes fixture capacitance. NOTES: A. CL includes fixture capacitance. B. For the TLE2037 and TLE2037A, AVD must be ≥ 5. Figure 3. Unity-Gain Bandwidth and Figure 4. Small-Signal Pulse- Phase-Margin Test Circuit (TLE2027 Only) Response Test Circuit 14 www.ti.com
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 typical values Typical values presented in this data sheet represent the median (50% point) of device parametric performance. initial estimates of parameter distributions In the ongoing program of improving data sheets and supplying more information to our customers, Texas Instruments has added an estimate of not only the typical values but also the spread around these values. These are in the form of distribution bars that show the 95% (upper) points and the 5% (lower) points from the characterization of the initial wafer lots of this new device type (see Figure 5). The distribution bars are shown at the points where data was actually collected. The 95% and 5% points are used instead of ±3 sigma since some of the distributions are not true Gaussian distributions. The number of units tested and the number of different wafer lots used are on all of the graphs where distribution bars are shown. As noted in Figure 5, there were a total of 835 units from two wafer lots. In this case, there is a good estimate for the within-lot variability and a possibly poor estimate of the lot-to-lot variability. This is always the case on newly released products since there can only be data available from a few wafer lots. The distribution bars are not intended to replace the minimum and maximum limits in the electrical tables. Each distribution bar represents 90% of the total units tested at a specific temperature. While 10% of the units tested fell outside any given distribution bar, this should not be interpreted to mean that the same individual devices fell outside every distribution bar. SUPPLY CURRENT vs FREE-AIR TEMPERATURE 5 ÎÎÎÎÎÎÎÎ ± 95% point on the distribution bar VCC± = 15 V ÎÎÎÎÎÎÎÎ (5% of the devices fell above this point.) VO = 0 4.5ÎÎNo LÎoadÎÎÎÎÎ A m Sample Size = 835 Units 90% of the devices were within the upper − ÎÎFromÎ 2 ÎWateÎr LoÎts ÎÎ and lower points on the distribution bar. nt re 4 5% point on the distribution bar r u (5% of the devices fell below this point.) C y pl p u 3.5 S − C C I 3 2.5 −75 −50 −25 0 25 50 75 100 125 150 ° TA − Free-Air Temperature − C Figure 5. Sample Graph With Distribution Bars www.ti.com 15
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y (cid:2) EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution 6, 7 Δ VIO Input offset voltage change vs Time after power on 8, 9 IIO Input offset current vs Free-air temperature 10 vvss FFrreeee-aaiirr tteemmppeerraattuurree 1111 IIIB IInnppuutt bbiiaass ccuurrrreenntt vs Common-mode input voltage 12 II Input current vs Differential input voltage 13 VO(PP) Maximum peak-to-peak output voltage vs Frequency 14, 15 MMaaxxiimmuumm ((ppoossiittiivvee//nneeggaattiivvee)) ppeeaakk oouuttppuutt vvss LLooaadd rreessiissttaannccee 1166,, 1177 VVOM voltage vs Free-air temperature 18, 19 vvss SSuuppppllyy vvoollttaaggee 2200 vvss LLooaadd rreessiissttaannccee 2211 AAVD LLaarrggee-ssiiggnnaall ddiiffffeerreennttiiaall vvoollttaaggee aammpplliiffiiccaattiioonn vvss FFrreeqquueennccyy 2222 − 2255 vs Free-air temperature 26 zo Output impedance vs Frequency 27 CMRR Common-mode rejection ratio vs Frequency 28 kSVR Supply-voltage rejection ratio vs Frequency 29 vvss SSuuppppllyy vvoollttaaggee 3300,, 3311 IIOOSS SShhoorrtt-cciirrccuutt oouuttppuutt ccuurrrreenntt vvss EEllaappsseedd ttiimmee 3322,, 3333 vs Free-air temperature 34, 35 vvss SSuuppppllyy vvoollttaaggee 3366 IICC SSuuppppllyy ccuurrrreenntt vs Free-air temperature 37 SSmmaallll ssiiggnnaall 3388,, 4400 VVoollttaaggee-ffoolllloowweerr ppuullssee rreessppoonnssee Large signal 39, 41 Vn Equivalent input noise voltage vs Frequency 42 Noise voltage (referred to input) Over 10-second interval 43 vvss SSuuppppllyy vvoollttaaggee 4444 BB1 UUnniittyy-ggaaiinn bbaannddwwiiddtthh vs Load capacitance 45 vvss SSuuppppllyy vvoollttaaggee 4466 GGaaiinn bbaannddwwiiddtthh pprroodduucctt vs Load capacitance 47 SR Slew rate vs Free-air temperature 48, 49 vvss SSuuppppllyy vvoollttaaggee 5500,, 5511 φφ PPhhaassee mmaarrggiinn vvss LLooaadd ccaappaacciittaannccee 5522,, 5533 mm vs Free-air temperature 54, 55 Phase shift vs Frequency 22 − 25 16 www.ti.com
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TYPICAL CHARACTERISTICS DISTRIBUTION INPUT OFFSET VOLTAGE INPUT OFFSET VOLTAGE CHANGE 16 vs Î156Î8 AmÎpliÎfiersÎ TesÎted ÎFromÎ 2 WÎafeÎr LoÎts Î TIME AFTER POWER ON 14 VCC± = °+15 V V 12 TA = 25 C μ % ÎD PÎackaÎgeÎ − s − 12 age 10 er olt mplifi 10 set V 8 ge of A 8 put Off 6 a 6 n nt n I ce e i Per 4 ang 4 ÎÎÎÎÎÎÁÎÁÎÁÎÁÎÁÎÁ h 2 ÁÁVIO − CVÁÁIO 2 ÎÎÎÎVT5A0C CA=±ÎÎ m2 =5p °±lCÎÎif1i5e rVsÎ TeÎÁÁstedÎÁÁ FroÎÁÁm 2 ÎÁÁWafÎÁÁer LoÎÁÁts 0 ΔA D Package −120 −90 −60 −30 0 30 60 90 120 ÁÁ 0 ÎÎÎÎ 0 10 20 30 40 50 60 VIO − Input Offset Voltage − μV t − Time After Power On − s Figure 6 Figure 7 INPUT OFFSET VOLTAGE CHANGE INPUT OFFSET CURRENT† vs vs TIME AFTER POWER ON FREE-AIR TEMPERATURE ÁÁÁÁÁÁÁ 6 30 V ± μ ÁÁVCC±Á = Á15 VÁÁÁ − VIC = 0 ge 5 A 25 ÁÁSamÁple ÁSizeÁ = 83Á3 UÁnits olta − n ÁÁFromÁ 2 WÁafeÁr LoÁts Á et V 4 ent 20 Offs Curr put 3 set 15 ge in In 2 ÎÎÎÎÎÎÎÎÎÎÎ nput Off 10 Chan Î50Î AmÎp±lifiÎers TÎesteÎd FÎromÎ 2 WÎaferÎ LotsÎ O − IO − 1 VCC± = 15 V IIII 5 ÁO OÁ ÎTAÎ = 2Î5°CÎ ÁΔAVIVIÁ ÎP ÎPackÎageÎ 0 0 0 20 40 60 80 100 120 140 160 180 −75 −50 −25 0 25 50 75 100 125 150 t − Time After Power On − s TA − Free-Air Temperature − °C Figure 8 Figure 9 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. www.ti.com 17
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y (cid:2) EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TYPICAL CHARACTERISTICS INPUT BIAS CURRENT† INPUT BIAS CURRENT vs vs FREE-AIR TEMPERATURE COMMON-MODE INPUT VOLTAGE 60 ÁÁÁÁÁÁÁÁ 40 ÁÁVCCÁ± = Á±15Á V ÁÁÁ VCC± = ±15 V 50 ÁÁVIC Á= 0 ÁÁÁÁÁ 35 TA = 25°C A Sample Size = 836 Units A − n 40 ÁÁFromÁ 2 ÁWafeÁr LoÁts ÁÁ − n 30 nt nt re 30 re 25 r r u u C C s 20 s 20 a a Bi Bi put 10 put 15 n n − I − I B B 0 B B 10 IIII IIII −10 5 −20 0 −75 −50 −25 0 25 50 75 100 125 150 −12 −8 −4 0 4 8 12 TA − Free-Air Temperature − °C VIC − Common-Mode Input Voltage − V Figure 10 Figure 11 TLE2027 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE† INPUT CURRENT vs vs FREQUENCY DIFFERENTIAL INPUT VOLTAGE V 30 ÎÎÎÎÎ 0.81 ÁÁVVÁÁCICC =±ÁÁ 0 = ±ÁÁ15 VÁÁ Voltage − 25 ÎÎVRÎÎCL C=± 2ÎÎ= k ±Ω1ÎÎ5 VÎÎ 0.6 ÁTÁA = 2Á5°CÁÁ ut p A ut m 0.4 O 20 − ak nt 0.2 Pe re o- nput Cur −0.02 m Peak-t 15 TA = 125°C II − III −0.4 ximu 10 a −0.6 M − 5 −0.8 PP) TA = −55°C O( −1 V 0 −1.8 −1.2 −0.6 0 0.6 1.2 1.8 10 k 100 k 1 M 10 M VID − Differential Input Voltage − V f − Frequency − Hz Figure 12 Figure 13 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 18 www.ti.com
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TYPICAL CHARACTERISTICS TLE2037 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE† MAXIMUM POSITIVE PEAK vs OUTPUT VOLTAGE FREQUENCY vs ge − V 30 ÁÁÎÎÎVCÁÁÎÎÎC± ÁÁÎÎÎ= ±ÁÁÎÎÎ15 VÁÁÎÎÎ e − V 14 LOAD RESISTANCE Volta 25 ÁÎRLÁÎ = 2ÁÎ kΩÁÎÁÎ oltag 12 put ut V Out 20 utp 10 ak k O e a P e 8 eak-to- 15 ÎÎTAÎÎ = 1ÎÎ25°CÎÎ sitive P 6 P o m 10 P u m m u 4 xi TA = −55°C m a xi ÁÁÁÁÁÁ M 5 a ± ÁÁÁÁO(PP) − O(PP)ÁÁ0 ÁÁOM+ − MM+ÁÁ20ÁÁTÁÁVAC C=ÁÁ ±2 5=° CÁÁ15ÁÁ V ÁÁ ÁÁVV Á10 k 100 k 1 M 10 M 100 M ÁVVOÁ100 1 k 10 k f − Frequency − Hz RL − Load Resistance − Ω Figure 14 Figure 15 MAXIMUM NEGATIVE PEAK MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE OUTPUT VOLTAGE† vs vs LOAD RESISTANCE FREE-AIR TEMPERATURE Output Voltage − V −−−111024 Output Voltage − V 111333...345 ÎÎÎÎÎÎÎÎVRFSraCLÎÎÎÎÎÎÎÎo mC=m± p2 =ÎÎÎÎÎÎÎÎl2 ek ± WΩS1iaÎÎÎÎÎÎÎÎz5fee Vr= ÎÎÎÎÎÎÎÎL 8o3t2sÎÎÎÎ UniÎÎts Peak −8 Peak gative −6 ositive 13.2 e P m N um 13.1 u −4 m xim ÁÁÁÁÁ axi ÁÁVVOM− − MaOM−ÁÁ−20100ÁÁTVAÁÁC C= ±2ÁÁ 5=° ±CÁÁ15 VÁÁ1 k 10 k ÁÁÁVVOM+ − MOM+ÁÁÁ121.39−75 −50 −25 0 25 50 75 100 125 150 ÁÁ RL − Load Resistance − Ω TA − Free-Air Temperature − °C Figure 16 Figure 17 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. www.ti.com 19
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y (cid:2) EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL MAXIMUM NEGATIVE PEAK VOLTAGE AMPLIFICATION OUTPUT VOLTAGE† vs vs SUPPLY VOLTAGE V FREE-AIR TEMPERATURE 50ÎÎÎÎ e − −13 ÎÎÎÎÎ TA = 25°C ut Voltag−13.2 ÎÎÎÎÎRVSaCLÎÎÎÎÎ mC=± p2 l= ÎÎÎÎÎek ±ΩSi1zÎÎÎÎÎ5e V= ÎÎÎÎÎ831 ÎÎÎUnitÎÎs ÎÎ ntialμVV/40 RL = 2 kΩ eak Outp−13.4 ÎFroÎm 2Î WaÎfer LÎotsÎ al differecation −30 RL = 1 kΩ mum Negative P−13.6 ÁÁVD − Large-SignÁÁVDVoltage Amplifi20 RL = 600 Ω axi−13.8 ÁAÁA 10 M ÁÁ− Á M− − ÁÁOMÁ−14 0 VVO −75 −50 −25 0 25 50 75 100 125 150 0 4 8 12 16 20 ÁÁÁ TA − Free-Air Temperature − °C ⎟VCC±⎟ − Supply Voltage − V Figure 18 Figure 19 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE 50 ÁÁÁÁ ± ÁVCÁC± =Á 15Á V ÁTA Á= 25Á°C Á alμV 40 ntiV/ al differecation − 30 Signmplifi rge-e A 20 ÁLaÁag ÁD − DÁVolt VV AA 10 ÁÁ 0 100 200 400 1 k 2 k 4 k 10 k RL − Load Resistance − Ω Figure 20 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 20 www.ti.com
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TYPICAL CHARACTERISTICS TLE2027 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 160 75° 140 Phase Shift 100° al nti dB120 125° al Differe cation − 100 AVD 150° hift e-Sign Amplifi 80 175° hase S arg ge 60 200° P L a ÁVD − VDÁVolt 40 225° ÁAAÁ VCC± = ± 15 V 20 RL = 2 kΩ 250° CL = 100 pF ° TA = 25 C 0 275° 0.1 100 100 k 100 M f − Frequency − Hz Figure 21 TLE2037 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 160 75° 140 ÎÎPhaÎse SÎhiftÎ 100° ÎÎÎÎÎ ntial dB120 ÎÎ 125° rge-Signal Differe e Amplification − 1068000 ÎAVÎD 112570050°°° Phase Shift a g ÁL a ÁÁÁÁÁ ÁVD − VDVolt 40 ÁVCÁC± =Á ±1Á5 VÁ 225° ÁAA 20 ÁCRLLÁ == 21Á 0k0Ω pÁF Á 250° ÁTAÁ = 25Á°CÁÁ 275° 0 0.1 100 100 k 100 M f − Frequency − MHz Figure 22 www.ti.com 21
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y (cid:2) EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TYPICAL CHARACTERISTICS TLE2027 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 6 100° 3 125° ntial dB 0 150° re − al Diffe cation −3 AVD 175° Shift rge-Sign e Amplifi −−69 Phase Shift 222050°° Phase a g L a ÁÁD − DVolt−12 250° ÁÁAVAV ÎVCÎC± =Î ± 1Î5 VÎ ÁÁ −15 ÎRLÎ = 2Î kΩÎÎ 275° CL = 100 pF ° ÎTAÎ = 2Î5 CÎÎ −18 300° 10 20 40 70 100 f − Frequency − MHz Figure 23 TLE2037 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 30 100° 25 125° ÎÎÎ ÎÎÎÎÎ AVD Phase Shift ntial dB 20 150° re − al Diffe cation 15 175° Shift rge-Sign e Amplifi 105 220205°° Phase a g L a ÁD − ÁDVolt 0ÁVÁCC± Á= ±Á15 VÁ 250° ÁAVAÁV ÁRÁL = 2Á kΩÁÁ − 5ÁCÁL = 1Á00 pÁF Á 275° TA = 25°C ÁÁÁÁÁ −10 300° 1 2 4 10 20 40 100 f − Frequency − MHz Figure 24 22 www.ti.com
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION† vs OUTPUT IMPEDANCE FREE-AIR TEMPERATURE vs FREQUENCY 60 100 VCC± = ±15 V ÁVCÁC± Á= ±1Á5 VÁ V ÁÁ ÁTAÁ = 2Á5°CÁÁ alμ e-Signal differentiAmplification −V/ 50 ÎÎÎÎÎÎRRLL =ÎÎÎ= 21 kkÎÎÎΩΩ ÎÎÎ ÁΩut Impedance − Á101 AVD = 100 See Note A ÁLargÁage 40 ÁOutpÁ AVD = 10 ÁAVD − AVDÁVolt Ázo − zoÁ−10 ÁÁ 30 −75 −50 −25 0 25 50 75 100 125 150 −100 10 100 1 k 10 k 100 k 1 M 10 M 100 M TA − Free-Air Temperature − °C f − Frequency − Hz NOTE A: For this curve, the TLE2027 is AVD = 1 and the TLE2037 is AVD = 5. Figure 25 Figure 26 COMMON-MODE REJECTION RATIO SUPPLY-VOLTAGE REJECTION RATIO vs vs FREQUENCY FREQUENCY 140 140 ÁÎÁÎÁÎÁÎÎ ÁÎÁÎÁÎÁÎÎÎ Ratio − dB120 ÁÁÎÎTVACÁÁÎÎ C= ±2ÁÁÎÎ=5 °±C1ÁÁÎÎ5 VÎ Ratio − dB 120 ÁÎÁÎTVAC C=ÁÎ ±2=5 °ÁαC15 V n 100 n 100 o o Rejecti 80 Rejecti 80 ÎkÎSVRÎ− Î de ge o a n-M 60 Volt 60 ÎÎÎ mmo ply- ÎkÎSVRÎ+ 40 p 40 o u C S − − RR 20 VR 20 M S C K 0 0 10 100 1 k 10 k 100 k 1 M 10 M 100 M 10 100 1 k 10 k 100 k 1 M 10 M 100 M f − Frequency − Hz f − Frequency − Hz Figure 27 Figure 28 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. www.ti.com 23
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y (cid:2) EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT SHORT-CIRCUIT OUTPUT CURRENT vs vs SUPPLY VOLTAGE SUPPLY VOLTAGE −42 ÁÁÁÁÁ 44ÁÁÁÁÁÁ A ÁVIÁD = 1Á00 mÁV Á A ÁÁVIDÁ = −Á100 ÁmVÁ nt − m −40 ÁÁÎTVPA OÁÁÎP ==a c20kÁÁÎ5a°CgeÁÁÎÁÁ nt − m 42ÁÁÁÁTPVA OP ÁÁ==a c20k5aÁÁ°CgeÁÁÁÁ e e urr urr 40 C −38 C ut ut p p 38 ut ut O −36 O uit uit 36 c c Cir Cir ort- −34 ort- 34 h h S S Á− Á Á− Á S S −32 S S 32 ÁIOIOÁ ÁIOIOÁ −30 30 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 ⎟VCC±⎟ − Supply Voltage − V ⎟VCC±⎟ − Supply Voltage − V Figure 29 Figure 30 SHORT-CIRCUIT OUTPUT CURRENT SHORT-CIRCUIT OUTPUT CURRENT vs vs ELAPSED TIME ELAPSED TIME −45 44 ÁVCÁC± =Á ±1Á5 VÁ ÁVÁCC±Á = ±Á15 VÁ mA ÁVIDÁ = 1Á00 mÁV Á mA ÁVÁID =Á 100Á mVÁ nt − −43 ÁVTAOÁ == 205Á°C ÁÁ nt − 42ÁVTÁAO == Á 205°CÁÁ urre ÁÎP PÁÎackÁÎageÁÎÁ urre ÁÎPÁÎ PaÁÎckagÁÎe ÁÎ C C ÁÁÁÁÁ ut −41 ut 40 p p ut ut O O uit uit Circ −39 Circ 38 ort- ort- ÁÁShÁ Sh − −37 − 36 ÁÁOS OSÁ ÁÁOS OS ÁÁIIÁ ÁÁII −35 34 0 30 60 90 120 150 180 0 30 60 90 120 150 180 t − Elasped Time − s t − Elasped Time − s Figure 31 Figure 32 24 www.ti.com
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT† SHORT-CIRCUIT OUTPUT CURRENT† vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE −48 46 ÁÁÁÁÁ ÁÁÁÁÁ A ÁVÁCCÁ± = ±Á15 ÁV A ÁVÁCC±Á = ±Á15 VÁ rent − m −44 ÁÁVPVÁÁ IODP =a=ÁÁ c 01k0a0gÁÁ emVÁÁ rent − m 42 ÁÁVPVÁÁ IODP =a= cÁÁ 0−ka1g0ÁÁ0e mVÁÁ r r u u C −40 C ut ut 38 p p ut ut O −36 O uit uit rc rc 34 Ci Ci rt- −32 rt- o o h h ÁSÁ ÁÁS − − 30 ÁS ÁS −28 ÁÁS S OO OO ÁIÁI ÁÁII −24 26 −75 −50 −25 0 25 50 75 100 125 150 −75 −50 −25 0 25 50 75 100 125 150 TA − Free-Air Temperature − °C TA − Free-Air Temperature − °C Figure 33 Figure 34 SUPPLY CURRENT† SUPPLY CURRENT† vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 6ÁÁÁÁ 5 ÁÁÁÁÁÁÁ ÁVÁO = 0ÁÁ ÁVCÁC± =Á ±1Á5 VÁÁÁ No Load VO = 0 5 ÎTAÎ = 12Î5°CÎ 4.5 ÁNoÁ LoaÁd ÁÁÁÁ Sample Size = 836 Units A A m m ÁFrÁom 2Á WaÁfer LÁotsÁÁ nt − 4 ÎÎÎÎ nt − rre ÎTAÎ = 25ΰC Î rre 4 u u C C y 3 ÎÎÎÎ y uppl ÎTA Î= −5Î5°CÎ uppl 3.5 S S Á− Á2 Á− Á C C C C ÁCCÁ ÁCCÁ II II 3 1 0 2.5 0 2 4 6 8 10 12 14 16 18 20 −75 −50 −25 0 25 50 75 100 125 150 ⎟VCC±⎟ − Supply Voltage − V TA − Free-Air Temperature − °C Figure 35 Figure 36 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. www.ti.com 25
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y (cid:2) EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TYPICAL CHARACTERISTICS TLE2027 TLE2027 VOLTAGE-FOLLOWER VOLTAGE-FOLLOWER SMALL-SIGNAL LARGE-SIGNAL PULSE RESPONSE PULSE RESPONSE 100 ÎÎÎÎÎ 15ÎÎÎÎÎ VCC± = ±15 V VCC± = ±15 V ÎRÎL = Î2 kΩÎÎ ÎÎRL =Î 2 kΩÎÎ ÎCÎL = Î10°0 ÎpF Î 10ÎÎCL =Î 10°0Î pFÎ TA = 25 C TA = 25 C V m 50 ÎSÎee FÎiguÎre 4Î V ÎÎSee ÎFiguÎre 1Î − − e e 5 g g a a olt olt V V ut 0 ut 0 p p ut ut O O − − − 5 O O V V −50 − 10 −100 − 15 0 200 400 600 800 1000 0 5 10 15 20 25 t − Time − ns t − Time − μs Figure 37 Figure 38 TLE2037 TLE2037 VOLTAGE-FOLLOWER VOLTAGE-FOLLOWER SMALL-SIGNAL LARGE-SIGNAL PULSE RESPONSE PULSE RESPONSE 100 15ÎÎÎÎÎÎ VCC± = ±15 V ÎÎÎÎÎÎ AVD = 5 10 RL = 2 kΩ CL = 100 pF mV 50 V ÎTÎA = 2Î5°CÎÎ e − e − 5ÎSÎee FÎigurÎe 1Î g g a a olt olt ut V 0 ut V 0 Outp ÁÁVCCÁ± = Á±15Á V Á Outp ÁÁVO − VOÁÁ−50 ÁÁÁÁARVLD =ÁÁ = 2 5kÁÁΩ ÁÁÁÁ ÁÁÁÁVO − VO −5 CL = 100 pF ÁÁTA =Á 25°ÁC ÁÁ −10 See Figure 4 −100 −15 0 100 200 300 400 0 2 4 6 8 10 t − Time − ns t − Time − μs Figure 39 Figure 40 26 www.ti.com
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE NOISE VOLTAGE vs (REFERRED TO INPUT) FREQUENCY OVER A 10-SECOND INTERVAL ÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁnVHznV/Hz10 ÁÁRVTACS C =ÁÁ= ± 22 =50ÁÁ° ±CΩ15ÁÁ V ÁÁÁÁÁÁ 5400ÁÁÁÁ Vf C=C 0ÁÁ±. 1= t±ÁÁo 1150 ÁÁ VHzÁÁ e − 8 ÁSeeÁ FigÁure Á2 ÁÁÁ 30ÁÁTA =Á 25°ÁC ÁÁ g Sample Size = 100 Units a olt ÁFroÁm 2 ÁWafÁer LÁots ÁÁ V 20 V n oise 6 ge − 10 N a ut olt 0 p V nt In 4 oise −10 ale N −20 v ui Eq 2 −30 − n n VV −40 0 −50 1 10 100 1 k 10 k 100 k 0 2 4 6 8 10 f − Frequency − Hz t − Time − s Figure 41 Figure 42 TLE2027 UNITY-GAIN BANDWIDTH TLE2037 vs GAIN-BANDWIDTH PRODUCT SUPPLY VOLTAGE vs SUPPLY VOLTAGE 20 ÁÁÁÁÁ RL = 2 kΩ 52 CTAL == 2150°0C pF ÁÁÁÁfR =L 1=ÁÁ0 20 kkΩÁÁHz ÁÁ 18 See Figure 3 CL = 100 pF MHz MHz 51ÁÁTA =Á 25°ÁC Á − − width 16 oduct d r n P a h 50 Gain B 14 dwidt n y- a − Unit 12 Gain-B 49 1 B 10 48 0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 | VCC± | − Supply Voltage − V ⎟VCC±⎟ − Supply Voltage − V Figure 43 Figure 44 www.ti.com 27
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y (cid:2) EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TYPICAL CHARACTERISTICS TLE2027 UNITY-GAIN BANDWIDTH TLE2037 vs GAIN-BANDWIDTH PRODUCT LOAD CAPACITANCE vs LOAD CAPACITANCE 16 VCC± = ±15 V 52 RL = 2 kΩ ÁÁVÁCC± Á= ±1Á5 VÁ TA = 25°C ÁÁRÁL = 2Á kΩÁÁ Hz 12 See Figure 3 Hz ÁÁTÁA = 2Á5°CÁÁ M M 51 − − dth uct wi d nd Pro Ba 8 h 50 n dt ai wi G d y- an − Unit 4 ain-B 49 G 1 B 0 48 100 1000 10000 100 1000 10000 CL − Load Capacitance − pF CL − Load Capacitance − pF Figure 45 Figure 46 TLE2027 SLEW RATE† TLE2037 vs SLEW RATE† vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 3 ÁÎÁÎÁÎÁÎÁÎÎ 10 ÁÎÁÎVCCÁα = ±ÁÎ15 ÁÎV Î ÁÁAVDÁ = 5ÁÁ 2.8 9 RL = 2 kΩ ÁÁCL =Á 100Á pFÁ s s μRate − V/ 2.6 μate − V/ 8ÁÁSeeÁ FiguÁre 1Á w w R e SR − Sl2.4ÎÎVÎÎCC±ÎÎ = ±1ÎÎ5 VÎÎ SR − Sle 7 2.2ÎRAÎVLD = = Î2 1kΩÎÎ 6 CL = 100 pF ÎÎÎÎÎ See Figure 1 2 5 −75 −50 −25 0 25 50 75 100 125 150 −75 −50 −25 0 25 50 75 100 125 150 TA − Free-Air Temperature − °C TA − Free-Air Temperature − °C Figure 47 Figure 48 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 28 www.ti.com
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TYPICAL CHARACTERISTICS TLE2027 TLE2037 PHASE MARGIN PHASE MARGIN vs vs SUPPLY VOLTAGE SUPPLY VOLTAGE 58°ÎÎÎÎÎ 52° ÁÁÁÁÁ 5564°°ÎÎÎCTRSÎÎÎAeLL e=== F 2ÎÎÎ21i5 0gk°0uΩC rÎÎÎpeF 3ÎÎÎ 50° ÁÁÁCATRAVLL D ÁÁÁ=== = 212 505 kÁÁÁ°0ΩC pFÁÁÁÁÁÁ 48° Margin 52° Margin 46° Á − Phase Á5408°° − Phase m 44° ÁφmÁ46° φ 42° 40° 44° 42° 38° 0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 | VCC± | − Supply Voltage − V ⎟VCC±⎟ − Supply Voltage − V Figure 49 Figure 50 TLE2027 PHASE MARGIN TLE2037 vs PHASE MARGIN LOAD CAPACITANCE vs LOAD CAPACITANCE 60° ÎÎÎÎÎ 60° ÁÁÁÁÁ 50° ÎÎÎÎTVSRAeCL eC==ÎÎ ± F 2 2=i5 g k°±ÎÎuΩC1r5e V3ÎÎ 50° ÁÁRTVACL CÁÁ== ± 22 =5 kÁÁ° ±ΩC15ÁÁ V ÁÁ ÎÎÎÎÎ gin 40° gin 40° Mar Mar hase 30° hase 30° ÁPÁ P Áφ − mÁ20° φ − m 20° 10° 10° 0° 0° 100 1000 10000 100 1000 CL − Load Capacitance − pF CL − Load Capacitance − pF Figure 51 Figure 52 www.ti.com 29
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y (cid:2) EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 TYPICAL CHARACTERISTICS TLE2027 PHASE MARGIN† TLE2037 vs PHASE MARGIN† FREE-AIR TEMPERATURE vs FREE-AIR TEMPERATURE 65° ÎÎÎÎÎ 55° ÁÁÁÁÁÁ VCC± = ±15 V VCC± = ±15 V 60° ÎÎTSRAÎÎeL e== F 22ÎÎi5 gk°uΩCrÎÎe 3 ÎÎ 53° ÁÁRACÁÁVLLD == = ÁÁ21 05k0Ω ÁÁpF ÁÁÁÁ ÁÁÁÁÁÁ gin 55° gin Mar Mar 51° hase 50° hase P P ÁÁ − m − m 49° ÁφÁ45° φ 47° 40° 35° 45° −75 −50 −25 0 25 50 75 100 125 150 −75 −50 −25 0 25 50 75 100 125 150 TA − Free-Air Temperature − °C TA − Free-Air Temperature − °C Figure 53 Figure 54 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 30 www.ti.com
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 APPLICATION INFORMATION input offset voltage nulling The TLE2027 and TLE2037 series offers external null pins that can be used to further reduce the input offset voltage. The circuits of Figure 55 can be connected as shown if the feature is desired. If external nulling is not needed, the null pins may be left disconnected. 1 kΩ 10 kΩ VCC+ VCC+ 4.7 kΩ 4.7 kΩ IN− − IN− − OUT OUT IN+ + IN+ + VCC− VCC− (a) STANDARD ADJUSTMENT (b) ADJUSTMENT WITH IMPROVED SENSITIVITY Figure 55. Input Offset Voltage Nulling Circuits voltage-follower applications The TLE2027 circuitry includes input-protection diodes to limit the voltage across the input transistors; however, no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent degradation of the device. Also, this feedback resistor forms a pole with the input capacitance of the device. For feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 56). CF = 20 to 50 pF ≤ IF 1 mA RF VCC − VO VI + VCC− Figure 56. Voltage Follower www.ti.com 31
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y (cid:2) EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using MicrosimParts™, the model generation software used with Microsim PSpice™. The Boyle macromodel (see Note 6) and subcircuit in Figure 57, Figure 58, and Figure 59 were generated using the TLE20x7 typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): • • Maximum positive output voltage swing Gain-bandwidth product • • Maximum negative output voltage swing Common-mode rejection ratio • • Slew rate Phase margin • • Quiescent power dissipation DC output resistance • • Input bias current AC output resistance • • Open-loop voltage amplification Short-circuit output current limit NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 VCC+ 3 9 egnd + dln 92 rc1 c1 rc2 + − fb ro2 90 91 1 rp 11 12 vb +dip + − IN+ + − hlim vip vin IN− Q1 Q2 vc r2 C2 − − + 2 − 6 7 dp 13 14 ree 53 + re1 re2 cee dc gcm ga vlim − 8 lee 10 ro1 54 de VCC− − + 5 4 ve OUT Figure 57. Boyle Macromodel PSpice and Parts are trademarks of MicroSim Corporation. 32 www.ti.com
(cid:2) TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 APPLICATION INFORMATION macromodel information (continued) .subckt TLE2027 1 2 3 4 5 q2 12 1 14 qx * r2 6 9 100.0E3 c1 11 12 4.003E-12 rc1 3 11 530.5 c2 6 7 20.00E-12 rc2 3 12 530.5 dc 5 53 dz re1 13 10 −393.2 de 54 5 dz re2 14 10 −393.2 dlp 90 91 dz ree 10 99 3.571E6 dln 92 90 dx ro1 8 5 25 dp 4 3 dz ro2 7 99 25 egnd 99 0 poly(2) (3,0) rp 3 4 8.013E3 (4,0) 0 5 .5 vb 9 0 dc 0 fb 7 99 poly(5) vb vc vc 3 53 dc 2.400 ve vlp vln 0 954.8E6 −1E9 1E9 1E9 ve 54 4 dc 2.100 −1E9 vlim 7 8 dc 0 ga 6 0 11 12 vlp 91 0 dc 40 2.062E-3 vln 0 92 dc 40 gcm 0 6 10 99 .modeldx D(Is=800.0E-18) 531.3E-12 .modelqx NPN(Is=800.0E-18 iee 10 4 dc 56.01E-6 Bf=7.000E3) hlim 90 0 vlim 1K .ends q1 11 2 13 qx Figure 58. TLE2027 Macromodel Subcircuit .subckt TLE2037 1 2 3 4 5 q2 12 1 14 qz * r2 6 9 100.0E3 c1 11 12 4.003E−12 rc1 3 11 471.5 c2 6 7 7.500E−12 rc2 3 12 471.5 dc 5 53 dz re1 13 10 A448 de 54 5 dz re2 14 10 A448 dlp 90 91 dz ree 10 99 3.555E6 dln 92 90 dx ro1 8 5 25 dp 4 3 dz ro2 7 99 25 egnd 99 0 poly(2) (3,0) rp 3 4 8.013E3 (4,0) 0 .5 .5 vb 9 0 dc 0 fb 7 99 poly(5) vb vc vc 3 53 dc 2.400 ve vip vln 0 923.4E6 A800E6 ve 54 4 dc 2.100 800E6 800E6 A800E6 vlim 7 8 dc 0 ga 6 0 11 12 2.121E−3 vlp 91 0 dc 40 gcm 0 6 10 99 597.7E−12 vln 0 92 dc 40 iee 10 4 dc 56.26E−6 .model dxD(Is=800.0E−18) hlim 90 0 vlim 1K .model qxNPN(Is=800.0E−18 q1 11 2 13 qx Bf=7.031E3) .ends Figure 59. TLE2037 Macromodel Subcircuit www.ti.com 33
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y (cid:2) EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010 REVISION HISTORY Changes from Revision B (October 2006) to Revision C • Changed values of V , V , and I n N(PP) n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 11 34 www.ti.com
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) 5962-9089601M2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 5962- 9089601M2A TLE2027MFKB 5962-9089601MPA ACTIVE CDIP JG 8 1 TBD Call TI N / A for Pkg Type -55 to 125 9089601MPA TLE2027M 5962-9089603Q2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 5962- 9089603Q2A TLE2027AMFKB 5962-9089603QPA ACTIVE CDIP JG 8 1 TBD Call TI N / A for Pkg Type -55 to 125 9089603QPA TLE2027AM TLE2027AMD ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -55 to 125 2027AM & no Sb/Br) TLE2027AMDG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM 2027AM & no Sb/Br) TLE2027AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 5962- 9089603Q2A TLE2027AMFKB TLE2027AMJG ACTIVE CDIP JG 8 1 TBD Call TI N / A for Pkg Type -55 to 125 TLE2027 AMJG TLE2027AMJGB ACTIVE CDIP JG 8 1 TBD Call TI N / A for Pkg Type -55 to 125 9089603QPA TLE2027AM TLE2027CD ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM 2027C & no Sb/Br) TLE2027CDG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM 2027C & no Sb/Br) TLE2027CDR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM 0 to 70 2027C & no Sb/Br) TLE2027ID ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM 2027I & no Sb/Br) TLE2027IDR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM 2027I & no Sb/Br) TLE2027MD ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -55 to 125 2027M & no Sb/Br) TLE2027MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 5962- 9089601M2A Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TLE2027MFKB TLE2027MJG ACTIVE CDIP JG 8 1 TBD Call TI N / A for Pkg Type -55 to 125 TLE2027MJG TLE2027MJGB ACTIVE CDIP JG 8 1 TBD Call TI N / A for Pkg Type -55 to 125 9089601MPA TLE2027M TLE2037AMD ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -55 to 125 2037AM & no Sb/Br) TLE2037AMDG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -55 to 125 2037AM & no Sb/Br) TLE2037CD ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM 2037C & no Sb/Br) TLE2037CDG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM 2037C & no Sb/Br) TLE2037CDR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM 2037C & no Sb/Br) TLE2037ID ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM 2037I & no Sb/Br) TLE2037IDR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM 2037I & no Sb/Br) TLE2037IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM 2037I & no Sb/Br) TLE2037MD ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -55 to 125 2037M & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. Addendum-Page 2
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TLE2027, TLE2027M, TLE2037A : •Catalog: TLE2027 •Automotive: TLE2037A-Q1 •Enhanced Product: TLE2027-EP, TLE2027-EP •Military: TLE2027M NOTE: Qualified Version Definitions: •Catalog - TI's standard catalog product •Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects •Enhanced Product - Supports Defense, Aerospace and Medical Applications •Military - QML certified for Military and Defense Applications Addendum-Page 3
PACKAGE MATERIALS INFORMATION www.ti.com 23-Sep-2010 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TLE2027CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLE2027IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLE2037CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLE2037IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 23-Sep-2010 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TLE2027CDR SOIC D 8 2500 340.5 338.1 20.6 TLE2027IDR SOIC D 8 2500 340.5 338.1 20.6 TLE2037CDR SOIC D 8 2500 340.5 338.1 20.6 TLE2037IDR SOIC D 8 2500 340.5 338.1 20.6 PackMaterials-Page2
MECHANICAL DATA MCER001A – JANUARY 1995 – REVISED JANUARY 1997 JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE 0.400 (10,16) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 4 0.065 (1,65) 0.045 (1,14) 0.063 (1,60) 0.020 (0,51) MIN 0.310 (7,87) 0.015 (0,38) 0.290 (7,37) 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.023 (0,58) 0°–15° 0.015 (0,38) 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040107/C 08/96 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification. E. Falls within MIL STD 1835 GDIP1-T8 • POST OFFICE BOX 655303 DALLAS, TEXAS 75265
None
PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com
EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated