ICGOO在线商城 > 集成电路(IC) > PMIC - LED 驱动器 > TLC5916IDR
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
TLC5916IDR产品简介:
ICGOO电子元器件商城为您提供TLC5916IDR由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TLC5916IDR价格参考。Texas InstrumentsTLC5916IDR封装/规格:PMIC - LED 驱动器, LED 驱动器 IC 8 输出 线性 移位寄存器 120mA 16-SOIC。您可以下载TLC5916IDR参考资料、Datasheet数据手册功能说明书,资料中有TLC5916IDR 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)光电子产品 |
描述 | IC LED DRIVER LINEAR 16-SOICLED照明驱动器 8B Constant-Current LED Sink Driver |
产品分类 | |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | LED照明电子器件,LED照明驱动器,Texas Instruments TLC5916IDR- |
数据手册 | |
产品型号 | TLC5916IDR |
产品目录页面 | |
产品种类 | LED照明驱动器 |
低电平输出电流 | 1 mA |
供应商器件封装 | 16-SOIC N |
其它名称 | 296-22710-1 |
内部驱动器 | 是 |
功率耗散 | 1.5 W |
包装 | 剪切带 (CT) |
单位重量 | 141.700 mg |
商标 | Texas Instruments |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | 16-SOIC(0.154",3.90mm 宽) |
封装/箱体 | SOIC-16 |
工作温度 | -40°C ~ 125°C |
工作频率 | 30 MHz |
工厂包装数量 | 2500 |
恒压 | - |
恒流 | 是 |
拓扑 | 8 位移位寄存器 |
拓扑结构 | Boost |
最大工作温度 | + 125 C |
最大电源电流 | 22 mA |
最小工作温度 | - 40 C |
标准包装 | 1 |
电压-电源 | 3 V ~ 5.5 V |
电压-输出 | 17V |
类型 | Linear |
类型-初级 | LED 照明显示器,标牌,汽车 |
类型-次级 | 颜色 |
系列 | TLC5916 |
输入电压 | 3 V to 5.5 V |
输出数 | 8 |
输出电流 | 120 mA |
输出端数量 | 8 Output |
输出类型 | Constant Current |
频率 | 30MHz |
高电平输出电流 | - 1 mA |
Product Sample & Technical Tools & Support & Folder Buy Documents Software Community TLC5916,TLC5917 SLVS695D–JUNE2007–REVISEDJANUARY2015 TLC591x 8-Channel Constant-Current LED Sink Drivers 1 Features 3 Description • EightConstant-CurrentOutputChannels The TLC591x Constant-Current LED Sink Drivers are 1 designed to work alone or cascaded. Since each • OutputCurrentAdjustedThroughSingleExternal output is independently controlled, they can be Resistor programmed to be on or off by the user. The high • ConstantOutputCurrentRange:3-mAto120-mA LED voltage (VLED) allows for the use of a single perChannel LED per output or multiple LEDs on a single string. With independently controlled outputs supplied with • ConstantOutputCurrentInvarianttoLoadVoltage constant current, the LEDs can be combined in Change parallel to create higher currents on a single string. • OpenLoad,ShortLoadandOvertemperature The constant sink current for all channels is set Detection through a single external resistor. This allows • 256-StepProgrammableGlobalCurrentGain different LED drivers in the same application to sink various currents which provides optional • ExcellentOutputCurrentAccuracy: implementation of multi-color LEDs. An additional – BetweenChannels:< ±3%(Maximum) advantage of the independent outputs is the ability to – BetweenICs: <±6%(Maximum) leave unused channels floating. The flexibility of the TLC591x LED drivers is ideal for applications such as • FastResponseofOutputCurrent (but not limited to): 7-segment displays, scrolling • 30-MHzClockFrequency single color displays, gaming machines, white goods, • Schmitt-TriggerInput videobillboardsandvideopanels. • 3.3-Vor5-VSupplyVoltage DeviceInformation(1) • MaximumLEDVoltage20-V PARTNUMBER PACKAGE BODYSIZE(NOM) • ThermalShutdownforOvertemperature SOIC(16) 9.90mm×3.91mm Protection TLC5916 PDIP(16) 19.30mm×6.35mm 2 Applications TSSOP(16) 5.00mm×4.40mm SOIC(16) 9.90mm×3.91mm • GeneralLEDLightingApplications TLC5917 PDIP(16) 19.30mm×6.35mm • LEDDisplaySystems TSSOP(16) 5.00mm×4.40mm • LEDSignage (1) For all available packages, see the orderable addendum at • AutomotiveLEDLighting theendofthedatasheet. • WhiteGoods • GamingMachines/Entertainment SingleImplementationofTLC5916/TLC5917Device 3.0V to 5.5V VLED . . . T0 T1 . . . T6 T7 U U U U O O O O SDI SDI VDD CLK CLK TLC5917 er SDO To Controller if Error ntroll LE LE Detection Used o C OE OE R-EXT GND 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
TLC5916,TLC5917 SLVS695D–JUNE2007–REVISEDJANUARY2015 www.ti.com Table of Contents 1 Features.................................................................. 1 9 DetailedDescription............................................ 13 2 Applications........................................................... 1 9.1 Overview.................................................................13 3 Description............................................................. 1 9.2 FunctionalBlockDiagram.......................................14 4 RevisionHistory..................................................... 2 9.3 FeatureDescription.................................................14 9.4 DeviceFunctionalModes........................................16 5 DeviceComparisonTable..................................... 3 10 ApplicationandImplementation........................ 21 6 PinConfigurationandFunctions......................... 3 10.1 ApplicationInformation..........................................21 7 Specifications......................................................... 4 10.2 TypicalApplication................................................24 7.1 AbsoluteMaximumRatings......................................4 11 PowerSupplyRecommendations..................... 27 7.2 ESDRatings..............................................................4 12 Layout................................................................... 27 7.3 RecommendedOperatingConditions.......................4 7.4 ThermalInformation..................................................4 12.1 LayoutGuidelines.................................................27 7.5 ElectricalCharacteristics:V =3V.........................5 12.2 LayoutExample....................................................27 DD 7.6 ElectricalCharacteristics:V =5.5V......................6 13 DeviceandDocumentationSupport................. 29 DD 7.7 SwitchingCharacteristics:V =3V........................7 13.1 RelatedLinks........................................................29 DD 7.8 SwitchingCharacteristics:V =5.5V.....................8 13.2 Trademarks...........................................................29 DD 7.9 TimingRequirements................................................9 13.3 ElectrostaticDischargeCaution............................29 7.10 TypicalCharacteristics............................................9 13.4 Glossary................................................................29 8 ParameterMeasurementInformation................10 14 Mechanical,Packaging,andOrderable Information........................................................... 29 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionC(February2011)toRevisionD Page • AddedPinConfigurationandFunctionssection,ESDRatingstable,FeatureDescriptionsection,DeviceFunctional Modes,ApplicationandImplementationsection,PowerSupplyRecommendationssection,Layoutsection,Device andDocumentationSupportsection,andMechanical,Packaging,andOrderableInformationsection .............................. 1 ChangesfromRevisionB(February2011)toRevisionC Page • ReplacedthePowerDissipationandThermalImpedancetablewiththeThermalInformationtables.................................. 4 ChangesfromRevisionA(November2010)toRevisionB Page • AddedMaximumLEDVoltage20-VtoFeatures................................................................................................................... 1 • AddedAbstractsection........................................................................................................................................................... 1 • ChangedresistorvalueinSingleImplementationdiagramfrom840Ωto720Ω.................................................................. 13 • ChangedDefaultRelationshipCurvetoreflectcorrectdata. .............................................................................................. 21 • ChangedresistorvalueinCascadingImplementationdiagramfrom840Ωto720Ω........................................................... 22 • ChangedresistorvalueinSingleImplementationdiagramfrom840Ωto720Ω.................................................................. 24 2 SubmitDocumentationFeedback Copyright©2007–2015,TexasInstrumentsIncorporated ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 www.ti.com SLVS695D–JUNE2007–REVISEDJANUARY2015 5 Device Comparison Table DEVICE(1) OVERTEMPERATURE OPEN-LOAD SHORTTOGND SHORTTOVLED DETECTION DETECTION DETECTION DETECTION TLC5916 X X X — TLC5917 X X X X (1) Thedevicehasonesingleerrorregisterforalltheseconditions(oneerrorbitperchannel). 6 Pin Configuration and Functions 16-PIN D,N,OR PW PACKAGE (TOPVIEW) GND 1 16 VDD SDI 2 15 R-EXT CLK 3 14 SDO LE(ED1) 4 13 OE(ED2) OUT0 5 12 OUT7 OUT1 6 11 OUT6 OUT2 7 10 OUT5 OUT3 8 9 OUT4 PinFunctions PIN I/O DESCRIPTION NAME NO. CLK 3 I Clockinputfordatashiftonrisingedge GND 1 – Groundforcontrollogicandcurrentsink Datastrobeinput SerialdataistransferredtotherespectivelatchwhenLE(ED1)ishigh.Thedataislatched LE(ED1) 4 I whenLE(ED1)goeslow.Also,acontrolsignalinputforanErrorDetectionModeandCurrent AdjustMode(seeTimingDiagram).LE(ED1)hasaninternalpulldown. Outputenable.WhenOE(ED2)isactive(low),theoutputdriversareenabled;when OE(ED2)ishigh,alloutputdriversareturnedOFF(blanked).Also,acontrolsignalinputfor OE(ED2) 13 I anErrorDetectionModeandCurrentAdjustMode(seeFigure11).OE(ED2)hasaninternal pullup. OUT0toOUT7 5to12 O Constant-currentoutputs R-EXT 15 I ExternalResistor-Connectanexternalresistortogroundtosetthecurrentforalloutputs SDI 2 I Serial-datainputtotheShiftregister SDO 14 O Serial-dataoutputtothefollowingSDIofnextdriverICortothemicrocontroller VDD 16 I Supplyvoltage Copyright©2007–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 SLVS695D–JUNE2007–REVISEDJANUARY2015 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN MAX UNIT V Supplyvoltage 0 7 V DD V Inputvoltage –0.4 V +0.4 V I DD V Outputvoltage –0.5 20 V O f Clockfrequency 25 MHz clk I Outputcurrent 120 mA OUT I GNDterminalcurrent 960 mA GND T Operatingfree-airtemperature –40 125 °C A T Operatingjunctiontemperature –40 150 °C J T Storagetemperature –55 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. 7.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±1500 V(ESD) Electrostaticdischarge Charged-devicemodel(CDM),perJEDECspecificationJESD22- ±500 V C101(2) (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 7.3 Recommended Operating Conditions MIN MAX UNIT V Supplyvoltage 3 5.5 V DD V Supplyvoltagetooutputpins OUT0–OUT7 20 V O V ≥0.6V 3 O I Outputcurrent DCtestcircuit mA O V ≥1V 120 O I High-leveloutputcurrentsource SDOshortedtoGND –1 mA OH I Low-leveloutputcurrentsink SDOshortedtoV 1 mA OL CC V High-levelinputvoltage CLK,OE(ED2),LE(ED1),andSDI 0.7×V V V IH DD DD V Low-levelinputvoltage CLK,OE(ED2),LE(ED1),andSDI 0 0.3×V V IL DD 7.4 Thermal Information TLC5916 TLC5917 THERMALMETRIC(1) 16PINS 16PINS UNIT D N PW D N PW R Junction-to-ambientthermalresistance 87.4 51.8 113.9 87.4 51.8 114.8 θJA R Junction-to-case(top)thermalresistance 48.1 39.1 35.2 48.1 39.1 35.9 θJC(top) R Junction-to-boardthermalresistance 44.4 31.8 59.2 44.4 31.8 59.8 θJB °C/W ψ Junction-to-topcharacterizationparameter 12.5 23.9 1.3 12.5 23.9 1.3 JT ψ Junction-to-boardcharacterizationparameter 44.2 31.7 58.5 44.2 31.7 59.2 JB R Junction-to-case(bottom)thermalresistance — — — — — — θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheICPackageThermalMetricsapplicationreport,SPRA953. 4 SubmitDocumentationFeedback Copyright©2007–2015,TexasInstrumentsIncorporated ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 www.ti.com SLVS695D–JUNE2007–REVISEDJANUARY2015 7.5 Electrical Characteristics: V = 3 V DD V =3V,T =–40°Cto125°C(unlessotherwisenoted) DD J PARAMETER TESTCONDITIONS MIN TYP(1) MAX UNIT V Inputvoltage 3 5.5 V DD V Supplyvoltagetotheoutputpins 20 V O V ≥0.6V 3 O I Outputcurrent mA O V ≥1V 120 O I High-leveloutputcurrent,source –1 mA OH I Low-leveloutputcurrent,sink 1 mA OL V High-levelinputvoltage 0.7×V V V IH DD DD V Low-levelinputvoltage GND 0.3×V V IL DD T =25°C 0.5 J I Outputleakagecurrent V =17V μA leak OH T =125°C 2 J V High-leveloutputvoltage SDO,I =–1mA V –0.4 V OH OL DD V Low-leveloutputvoltage SDO,I =1mA 0.4 V OL OH V =0.6V,R =720Ω, Outputcurrent1 OUT ext 26 mA CG=0.992 I =26mA,V =0.6V,R =720Ω, I Outputcurrenterror,die-die OL O ext ±3% ±6% O(1) T =25°C J Outputcurrentskew,channel-to- I =26mA,V =0.6V,R =720Ω, OL O ext ±1.5% ±3% channel T =25°C J Outputcurrent2 V =0.8V,R =360Ω,CG=0.992 52 mA O ext I =52mA,V =0.8V,R =360Ω, Outputcurrenterror,die-die OL O ext ±2% ±6% I T =25°C O(2) J Outputcurrentskew,channel-to- I =52mA,V =0.8V,R =360Ω, OL O ext ±1.5% ±3% channel T =25°C J V =1Vto3 V,I =26mA ±0.1 O O I vs Outputcurrentvs VOOUUTT outputvoltageregulation VDD=3.0Vto5.5V, ±1 %/V I =26mA/120mA O Pullupresistance OE(ED2) 500 kΩ Pulldownresistance LE(ED1) 500 kΩ T Overtemperatureshutdown(2) 150 175 200 °C sd T Restarttemperaturehysteresis(2) 15 °C hys Thresholdcurrentforopenerror 0.5× I I =3mAto120mA OUT,Th detection OUT,target I % target Triggerthresholdvoltagefor V short-errordetection I =3mAto120mA 2.5 2.7 3.1 V OUT,TTh OUT,target (TLC5917only) Returnthresholdvoltagefor V short-errordetection I =3mAto120mA 2.2 V OUT,RTh OUT,target (TLC5917only) R =Open 5 10 ext R =720Ω 8 14 ext I Supplycurrent mA DD R =360Ω 11 18 ext R =180Ω 16 22 ext (1) Typicalvaluesrepresentthelikelyparametricnominalvaluesdeterminedatthetimeofcharacterization.Typicalvaluesdependonthe applicationandconfigurationandmayvaryovertime.Typicalvaluesarenotensuredonproductionmaterial. (2) Specifiedbydesign. Copyright©2007–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 SLVS695D–JUNE2007–REVISEDJANUARY2015 www.ti.com 7.6 Electrical Characteristics: V = 5.5 V DD V =5.5V,T =–40°Cto125°C(unlessotherwisenoted) DD J PARAMETER TESTCONDITIONS MIN TYP(1) MAX UNIT V Inputvoltage 3 5.5 V DD V Supplyvoltagetotheoutputpins 20 V O V ≥0.6V 3 O I Outputcurrent mA O V ≥1V 120 O I High-leveloutputcurrent,source –1 mA OH I Low-leveloutputcurrent,sink 1 mA OL V High-levelinputvoltage 0.7×V V V IH DD DD V Low-levelinputvoltage GND 0.3×V V IL DD T =25°C 0.5 J I Outputleakagecurrent V =17V μA leak OH T =125°C 2 J V High-leveloutputvoltage SDO,I =–1mA V –0.4 V OH OL DD V Low-leveloutputvoltage SDO,I =1mA 0.4 V OL OH V =0.6V,R =720Ω, Outputcurrent1 OUT ext 26 mA CG=0.992 I =26mA,V =0.6V,R =720Ω, I Outputcurrenterror,die-die OL O ext ±3% ±6% O(1) T =25°C J Outputcurrentskew,channel-to- I =26mA,V =0.6V,R =720Ω, OL O ext ±1.5% ±3% channel T =25°C J Outputcurrent2 V =0.8V,R =360Ω,CG=0.992 52 mA O ext I =52mA,V =0.8V,R =360Ω, Outputcurrenterror,die-die OL O ext ±2% ±6% I T =25°C O(2) J Outputcurrentskew,channel-to- I =52mA,V =0.8V,R =360Ω, OL O ext ±1.5% ±3% channel T =25°C J V =1Vto3V,I =26mA ±0.1 O O I vs Outputcurrentvs VOOUUTT outputvoltageregulation VDD=3.0Vto5.5V, ±1 %/V I =26mA/120mA O Pullupresistance OE(ED2), 500 kΩ Pulldownresistance LE(ED1), 500 kΩ T Overtemperatureshutdown(2) 150 175 200 °C sd T Restarttemperaturehysteresis(2) 15 °C hys Thresholdcurrentforopenerror 0.5× I I =3mAto120mA OUT,Th detection OUT,target I % target Triggerthresholdvoltagefor V short-errordetection I =3mAto120mA 2.5 2.7 3.1 V OUT,TTh OUT,target (TLC5917only) Returnthresholdvoltagefor V short-errordetection I =3mAto120mA 2.2 V OUT,RTh OUT,target (TLC5917only) R =Open 6 10 ext R =720Ω 11 14 ext I Supplycurrent mA DD R =360Ω 13 18 ext R =180Ω 19 24 ext (1) Typicalvaluesrepresentthelikelyparametricnominalvaluesdeterminedatthetimeofcharacterization.Typicalvaluesdependonthe applicationandconfigurationandmayvaryovertime.Typicalvaluesarenotensuredonproductionmaterial. (2) Specifiedbydesign. 6 SubmitDocumentationFeedback Copyright©2007–2015,TexasInstrumentsIncorporated ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 www.ti.com SLVS695D–JUNE2007–REVISEDJANUARY2015 7.7 Switching Characteristics: V = 3 V DD V =3V,T =–40°Cto125°C(unlessotherwisenoted) DD J PARAMETER TESTCONDITIONS MIN TYP(1) MAX UNIT t Low-to-highpropagationdelaytime,CLKtoOUTn 40 65 95 ns PLH1 t Low-to-highpropagationdelaytime,LE(ED1)toOUTn 40 65 95 ns PLH2 t Low-to-highpropagationdelaytime,OE(ED2)toOUTn 40 65 95 ns PLH3 t Low-to-highpropagationdelaytime,CLKtoSDO 12 20 30 ns PLH4 t High-to-lowpropagationdelaytime,CLKtoOUTn 300 365 ns PHL1 t High-to-lowpropagationdelaytime,LE(ED1)toOUTn 300 365 ns PHL2 t High-to-lowpropagationdelaytime,OE(ED2)toOUTn 300 365 ns PHL3 t High-to-lowpropagationdelaytime,CLKtoSDO 12 20 30 ns PHL4 t Pulseduration,CLK 20 ns w(CLK) t Pulseduration,LE(ED1) 20 ns w(L) t Pulseduration,OE(ED2) 500 ns w(OE) V =V ,V =GND, IH DD IL tw(ED2) Pulseduration,OE(ED2)inErrorDetectionMode Rext=360Ω,VL=4V, 2 μs th(ED1,ED2) Holdtime,LE(ED1)andOE(ED2) RL=44Ω,CL=10pF, 10 ns CG=0.992 t Holdtime,SDI 2 ns h(D) t Setuptime,SDI,LE(ED1) 3 ns su(D,ED1) t Setuptime,OE(ED2) 8.5 ns su(ED2) t Holdtime,LE(ED1),NormalMode 15 ns h(L) t Setuptime,LE(ED1),NormalMode 15 ns su(L) t Risetime,CLK(2) 500 ns r t Falltime,CLK(2) 500 ns f t Risetime,outputs(off) 40 85 105 ns or t Risetime,outputs(off),T =25°C 83 100 ns or J t Risetime,outputs(on) 100 280 370 ns of t Risetime,outputs(on),T =25°C 170 225 ns of J f Clockfrequency Cascadeoperation 30 MHz CLK (1) Typicalvaluesrepresentthelikelyparametricnominalvaluesdeterminedatthetimeofcharacterization.Typicalvaluesdependonthe applicationandconfigurationandmayvaryovertime.Typicalvaluesarenotensuredonproductionmaterial. (2) Ifthedevicesareconnectedincascadeandt ort islarge,itmaybecriticaltoachievethetimingrequiredfordatatransferbetweentwo r f cascadeddevices. Copyright©2007–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 SLVS695D–JUNE2007–REVISEDJANUARY2015 www.ti.com 7.8 Switching Characteristics: V = 5.5 V DD V =5.5V,T =–40°Cto125°C(unlessotherwisenoted) DD J PARAMETER TESTCONDITIONS MIN TYP(1) MAX UNIT t Low-to-highpropagationdelaytime,CLKtoOUTn 40 65 95 ns PLH1 t Low-to-highpropagationdelaytime,LE(ED1)toOUTn 40 65 95 ns PLH2 t Low-to-highpropagationdelaytime,OE(ED2)toOUTn 40 65 95 ns PLH3 t Low-to-highpropagationdelaytime,CLKtoSDO 8 20 30 ns PLH4 t High-to-lowpropagationdelaytime,CLKtoOUTn 300 365 ns PHL1 t High-to-lowpropagationdelaytime,LE(ED1)toOUTn 300 365 ns PHL2 t High-to-lowpropagationdelaytime,OE(ED2)toOUTn 300 365 ns PHL3 t High-to-lowpropagationdelaytime,CLKtoSDO 8 20 30 ns PHL4 t Pulseduration,CLK 20 ns w(CLK) t Pulseduration,LE(ED1) 20 ns w(L) t Pulseduration,OE(ED2) 500 ns w(OE) V =V ,V =GND, IH DD IL tw(ED2) Pulseduration,OE(ED2)inErrorDetectionMode Rext=360Ω,VL=4V, 2 μs th(D,ED1,ED2) Holdtime,SDI,LE(ED1),andOE(ED2) RL=44Ω,CL=10pF, 10 ns CG=0.992 t Holdtime,SDI 2 ns h(D) t Setuptime,SDI,LE(ED1) 3 ns su(D,ED1) t Setuptime,OE(ED2) 8.5 ns su(ED2) t Holdtime,LE(ED1),NormalMode 15 ns h(L) t Setuptime,LE(ED1),NormalMode 15 ns su(L) t Risetime,CLK(2) 500 ns r t Falltime,CLK(2) 500 ns f t Risetime,outputs(off) 40 85 105 ns or t Risetime,outputs(off),T =25°C 83 100 ns or J t Risetime,outputs(on) 100 280 370 ns of t Risetime,outputs(on),T =25°C 170 225 ns of J f Clockfrequency Cascadeoperation 30 MHz CLK (1) Typicalvaluesrepresentthelikelyparametricnominalvaluesdeterminedatthetimeofcharacterization.Typicalvaluesdependonthe applicationandconfigurationandmayvaryovertime.Typicalvaluesarenotensuredonproductionmaterial. (2) Ifthedevicesareconnectedincascadeandt ort islarge,itmaybecriticaltoachievethetimingrequiredfordatatransferbetweentwo r f cascadeddevices. 8 SubmitDocumentationFeedback Copyright©2007–2015,TexasInstrumentsIncorporated ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 www.ti.com SLVS695D–JUNE2007–REVISEDJANUARY2015 7.9 Timing Requirements V =3Vto5.5V(unlessotherwisenoted) DD MIN MAX UNIT t LE(ED1)pulseduration NormalMode 20 ns w(L) t CLKpulseduration NormalMode 20 ns w(CLK) NormalMode,I <60mA 500 OUT t OE(ED2)pulseduration ns w(OE) NormalMode,I >60mA 700 OUT t SetuptimeforSDI NormalMode 3 ns su(D) t HoldtimeforSDI NormalMode 2 ns h(D) t SetuptimeforLE(ED1) NormalMode 15 ns su(L) t HoldtimeforLE(ED1) NormalMode 15 ns h(L) t CLKpulseduration ErrorDetectionMode 20 ns w(CLK) t OE(ED2)pulseduration ErrorDetectionMode 2000 ns w(ED2) t SetuptimeforLE(ED1) ErrorDetectionMode 4 ns su(ED1) t HoldtimeforLE(ED1) ErrorDetectionMode 10 ns h(ED1) t SetuptimeforOE(ED2) ErrorDetectionMode 6 ns su(ED2) t HoldtimeforOE(ED2) ErrorDetectionMode 10 ns h(ED2) f Clockfrequency Cascadeoperation 30 MHz CLK 7.10 Typical Characteristics LE = 5V (active) Turn on only one channel OE= GND (active) Channel 1 CLK OE OUTn OUT1 Figure1.ResponseTime,CLKtoOUTn Figure2.ResponseTime,OEtoOUT1 150 Turn on only one channel Temperature=25°C Channel 8 125 IO=120mA IO=100mA OE mA) 100 urrent( 75 IO=80mA utC IO=60mA p ut O 50 IO=40mA OUT7 25 IO=20mA IO=5mA 0 0 0.5 1 1.5 2 2.5 3 OutputVoltage(V) Figure3.ResponseTime,OEtoOUT7 Figure4.OutputCurrentvsOutputVoltage Copyright©2007–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 SLVS695D–JUNE2007–REVISEDJANUARY2015 www.ti.com 8 Parameter Measurement Information I DD V DD I OE(ED2) OUT0 OUT I ,I IH IL CLK LE(ED1) OUT7 SDI V ,V IH IL R-EXT GND SDO I ref Figure5. TestCircuitforElectricalCharacteristics I DD I OUT V ,V V IH IL DD OUT0 OE(ED2) CLK Function Generator LE(ED1) OUT7 R L SDI C L SDO R-EXT GND Logic Input Waveform I C V V = 5V ref L L IH V = 0V IL Figure6. TestCircuitforSwitchingCharacteristics 10 SubmitDocumentationFeedback Copyright©2007–2015,TexasInstrumentsIncorporated ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 www.ti.com SLVS695D–JUNE2007–REVISEDJANUARY2015 Parameter Measurement Information (continued) t w(CLK) 50% CLK 50% 50% 50% t t su(D) h(D) SDI 50% 50% t ,t PLH4 PHL4 SDO 50% t w(L) 50% LE(ED1) t t h(L) su(L) OE(ED2) LOW t ,t PLH2 PHL2 Outputoff OUTn 50% Output on t ,t PLH1 PHL1 t w(OE) HIGH OE(ED2) 50% 50% t t PHL3 PLH3 Output off 80% 80% OUTn 50% 50% 20% 20% t t of or Figure7. NormalModeTimingWaveforms Copyright©2007–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 SLVS695D–JUNE2007–REVISEDJANUARY2015 www.ti.com Parameter Measurement Information (continued) t w(CLK) CLK 50% t t su(ED2) h(ED2) OE(ED2) 50% t t su(ED1) h(ED1) LE(ED1) 50% 2 CLK Figure8. SwitchingtoSpecialModeTimingWaveforms CLK 50% OE(ED2) 50% t w(ED2) Figure9. ReadingErrorStatusCodeTimingWaveforms 12 SubmitDocumentationFeedback Copyright©2007–2015,TexasInstrumentsIncorporated ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 www.ti.com SLVS695D–JUNE2007–REVISEDJANUARY2015 9 Detailed Description 9.1 Overview The TLC591x is designed for LED displays and LED lighting applications with constant-current control and open- load,shorted-load,andovertemperaturedetection.TheTLC591xcontainsan8-bitshiftregisteranddatalatches, which convert serial input data into parallel output format. At the output stage, eight regulated current ports are designed to provide uniform and constant current for driving LEDs within a wide range of LED Forward Voltage (VF) variations. Used in system design for LED display applications, for example, LED panels, it provides great flexibility and device performance. Users can adjust the output current from 3 mA to 120 mA per channel through anexternalresistor,R ,whichgivesflexibilityincontrollingthelightintensityofLEDs.Thedevicesaredesigned ext for up to 20 V at the output port. The high clock frequency, 30 MHz, also satisfies the system requirements of high-volumedatatransmission. The TLC591x provides two operation modes: Normal Mode and Special Mode. Normal mode is used for shifting LED data into and out of the driver. Special Mode includes two functions: Error Detection and Current Gain Control. The two operation modes include three phases: Normal Mode phase, Mode Switching transition phase, and Special Mode phase. The signal on the multiple function pin OE(ED2) is monitored to determine the mode. When a one-clock-wide pulse appears on OE(ED2), the device enters the Mode Switching phase. At this time, thevoltagelevelonLE(ED1)determineswhichmodetheTLC591xswitchesto. In the Normal Mode phase, the serial data can be transferred into TLC591x through the pin SDI, shifted in the shift register, and transferred out via the pin SDO. LE(ED1) can latch the serial data in the shift register to the outputlatch. OE(ED2)enablestheoutputdriverstosinkcurrent. In the Special Mode phase, the low-voltage-level signal on OE(ED2) can enable output channels and detect the status of the output current to determine if the driving current level is sufficient. The detected Error Status is loaded into the 8-bit shift register and shifted out via the pin SDO, synchronous to the CLK signal. The system controllercanreadtheerrorstatusanddetermineiftheLEDsareproperlylit. In the Special Mode phase, the TLC591x allows users to adjust the output current level by setting a runtime- programmable Configuration Code. The code is sent into the TLC591x through SDI. The positive pulse of LE(ED1) latches the code in the shift register into a built-in 8-bit configuration latch, instead of the output latch. The code affects the voltage at the terminal R-EXT and controls the output-current regulator. The output current can be finely adjusted by a gain ranging from 1/12 to 127/128 in 256 steps. Therefore, the current skew between ICs can be compensated within less than 1%. This feature is suitable for white balancing in LED color display panels. Copyright©2007–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 SLVS695D–JUNE2007–REVISEDJANUARY2015 www.ti.com 9.2 Functional Block Diagram OUT0 OUT1 OUT6 OUT7 R-EXT I/O Regulator 8 Output Driver and OE(ED2) Error Detection Control Logic 8 VDD 8 LE(ED1) 8-Bit Output Latch Configuration Latches 8 CLK 8 8-Bit Shift SDI SDO Register 8 9.3 Feature Description 9.3.1 Open-CircuitDetectionPrinciple The LED Open-Circuit Detection compares the effective current level I with the open load detection threshold out current I . If I is below the I threshold, the TLC591x detects an open-load condition. This error OUT,Th OUT OUT,Th status can be read as an error status code in the Special Mode. For open-circuit error detection, a channel must beon. Table1.Open-CircuitDetection CONDITIONOFOUTPUT STATEOFOUTPUTPORT ERRORSTATUSCODE MEANING CURRENT Off I =0mA 0 Detectionnotpossible OUT I <I (1) 0 Opencircuit OUT OUT,Th On I ≥I (1) Channelnerrorstatusbit1 Normal OUT OUT,Th (1) I =0.5×I (typical) OUT,Th OUT,target 9.3.2 Short-CircuitDetectionPrinciple(TLC5917Only) The LED short-circuit detection compares the effective voltage level (V ) with the shorted-load detection OUT threshold voltages V and V . If V is above the V threshold, the TLC5917 detects an OUT,TTh OUT,RTh OUT OUT,TTh shorted-load condition. If V is below the V threshold, no error is detected/error bit is reset. This error OUT OUT,RTh status can be read as an error status code in the Special Mode. For short-circuit error detection, a channel must beon. 14 SubmitDocumentationFeedback Copyright©2007–2015,TexasInstrumentsIncorporated ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 www.ti.com SLVS695D–JUNE2007–REVISEDJANUARY2015 Table2.Shorted-LoadDetection CONDITIONOFOUTPUT STATEOFOUTPUTPORT ERRORSTATUSCODE MEANING VOLTAGE Off I =0mA 0 Detectionnotpossible OUT V ≥V 0 Shortcircuit OUT OUT,TTh On V <V 1 Normal OUT OUT,RTh Minimum Minimum Maximum Return Trigger Trigger Threshold Threshold Threshold No Fault Short Fault 2.2 V 2.5 V 3.1 V V OUT V V OUT,RTh OUT,TTh Figure10. Short-CircuitDetectionPrinciple 9.3.3 OvertemperatureDetectionandShutdown TLC591x is equipped with a global overtemperature sensor and eight individual, channel-specific, overtemperaturesensors. • When the global sensor reaches the trip temperature, all output channels are shut down, and the error status is stored in the internal Error Status register of every channel. After shutdown, the channels automatically restart after cooling down, if the control signal (output latch) remains on. The stored error status is not reset aftercoolingdownandcanbereadoutastheerrorstatuscodeintheSpecialMode. • When one of the channel-specific sensors reaches trip temperature, only the affected output channel is shut down, and the error status is stored only in the internal Error Status register of the affected channel. After shutdown, the channel automatically restarts after cooling down, if the control signal (output latch) remains on. The stored error status is not reset after cooling down and can be read out as error status code in the SpecialMode. Forchannel-specificovertemperatureerrordetection,achannelmustbeon. TheerrorstatuscodeisresetwhenTLC591xreturnstoNormalMode. Copyright©2007–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 SLVS695D–JUNE2007–REVISEDJANUARY2015 www.ti.com Table3.OvertemperatureDetection(1) STATEOFOUTPUTPORT CONDITION ERRORSTATUSCODE MEANING Off I =0mA 0 OUT On T <T global 1 Normal j j,trip On→allchannels Off Tj>Tj,tripglobal Allerrorstatusbits=0 Globalovertemperature On Tj<Tj,tripchanneln 1 Normal On→Off T >T channeln Channelnerrorstatusbit=0 Channelnovertemperature j j,trip (1) Theglobalshutdownthresholdtemperatureisapproximately170°C. 9.4 Device Functional Modes The TLC591x provides two operation modes: Normal Mode and Special Mode. Normal mode is used for shifting LED data into and out of the driver. Special Mode includes two functions: Error Detection and Current Gain Control. The two operation modes include three phases: Normal Mode phase, Mode Switching transition phase, and Special Mode phase. The signal on the multiple function pin OE(ED2) is monitored to determine the mode. When a one-clock-wide pulse appears on OE(ED2), the device enters the Mode Switching phase. At this time, thevoltagelevelonLE(ED1)determineswhichmodetheTLC591xswitchesto. In the Normal Mode phase, the serial data can be transferred into TLC591x through the pin SDI, shifted in the shift register, and transferred out via the pin SDO. LE(ED1) can latch the serial data in the shift register to the outputlatch.OE(ED2)enablestheoutputdriverstosinkcurrent. In the Special Mode phase, the low-voltage-level signal on OE(ED2) can enable output channels and detect the status of the output current to determine if the driving current level is sufficient. The detected Error Status is loaded into the 8-bit shift register and shifted out via the pin SDO, synchronous to the CLK signal. The system controllercanreadtheerrorstatusanddetermineiftheLEDsareproperlylit. In the Special Mode phase, the TLC591x allows users to adjust the output current level by setting a runtime- programmable Configuration Code. The code is sent into the TLC591x through SDI. The positive pulse of LE(ED1) latches the code in the shift register into a built-in 8-bit configuration latch, instead of the output latch. The code affects the voltage at the terminal R-EXT and controls the output-current regulator. The output current can be finely adjusted by a gain ranging from 1/12 to 127/128 in 256 steps. Therefore, the current skew between ICs can be compensated within less than 1%. This feature is suitable for white balancing in LED color display panels. 16 SubmitDocumentationFeedback Copyright©2007–2015,TexasInstrumentsIncorporated ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 www.ti.com SLVS695D–JUNE2007–REVISEDJANUARY2015 Device Functional Modes (continued) 0 1 2 3 4 5 6 7 CLK OE(ED2) 1 LE(ED1) 0 SDI off OUT0 on off OUT1 on off OUT2 on off OUT3 on off OUT7 on SDO Don't care Figure11. NormalMode Table4.TruthTableinNormalMode CLK LE(ED1) OE(ED2) SDI OUT0...OUT7 SDO ↑ H L Dn Dn...Dn–7 Dn–7 ↑ L L Dn+1 Nochange Dn–6 ↑ H L Dn+2 Dn+2...Dn–5 Dn–5 ↓ X L Dn+3 Dn+2...Dn–5 Dn–5 ↓ X H Dn+3 Off Dn–5 ThesignalsequenceshowninFigure12makestheTLC591xenterCurrentAdjustandErrorDetectionMode. 1 2 3 4 5 CLK OE(ED2) 1 0 1 1 1 LE(ED1) 0 0 0 1 0 Figure12. SwitchingtoSpecialMode In the Current Adjust Mode, sending the positive pulse of LE(ED1), the content of the shift register (a current adjustcode)iswrittentothe8-bitconfigurationlatch(seeFigure13). Copyright©2007–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 SLVS695D–JUNE2007–REVISEDJANUARY2015 www.ti.com 0 1 2 3 6 7 CLK OE(ED2) 1 LE(ED1) 0 SDI 8-bit Configuration Code Figure13. WritingConfigurationCode When the TLC591x is in the Error Detection Mode, the signal sequence shown in Figure 14 enables a system controllertoreaderrorstatuscodesthroughSDO. 1 2 3 CLK >2 µs OE(ED2) 1 LE(ED1) 0 SDO Error Status Code Figure14. ReadingErrorStatusCode The signal sequence shown in Figure 15 makes TLC591x resume the Normal Mode. Switching to Normal Mode resets all internal Error Status registers. OE(ED2) always enables the output port, whether the TLC591x enters CurrentAdjustModeornot. 1 2 3 4 5 CLK OE(ED2) 1 0 1 1 1 LE(ED1) 0 0 0 0 0 Figure15. SwitchingtoNormalMode 9.4.1 OperationModeSwitching To switch between its two modes, TLC591x monitors the signal OE(ED2). When an one-clock-wide pulse of OE(ED2) appears, TLC591x enters the two-clock-period transition phase, the Mode Switching phase. After poweron,thedefaultoperationmodeistheNormalMode(seeFigure16). 18 SubmitDocumentationFeedback Copyright©2007–2015,TexasInstrumentsIncorporated ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 www.ti.com SLVS695D–JUNE2007–REVISEDJANUARY2015 Switching to Special Mode Switching to Normal Mode 1 2 3 4 5 1 2 3 4 5 CLK CLK OE(ED2) 1 0 1 1 1 OE(ED2) 1 0 1 1 1 LE(ED1) 0 0 0 1 0 LE(ED1) 0 0 0 0 0 Actual Mode Mode Special Actual Mode Mode Normal Phase Phase (Normal or Special) Switching Mode (Normal or Special) Switching Mode Figure16. ModeSwitching As shown in Figure 16, once a one-clock-wide short pulse (101) of OE(ED2) appears, TLC591x enters the Mode Switching phase. At the fourth rising edge of CLK, if LE(ED1) is sampled as voltage high, TLC591x switches to Special Mode; otherwise, it switches to Normal Mode. The signal LE(ED1) between the third and the fifth rising edges of CLK cannot latch any data. Its level is used only to determine into which mode to switch. However, the short pulse of OE(ED2) can still enable the output ports. During mode switching, the serial data can still be transferredthroughSDIandshiftedoutfromSDO. NOTE 1. The signal sequenceforthemode switching maybe usedfrequentlyto ensurethatTLC591xis inthepropermode. 2. The 1 and 0 on the LE(ED1) signal are sampled at the rising edge of CLK. The X means its leveldoesnotaffecttheresultofmodeswitchingmechanism. 3. Afterpoweron,thedefaultoperationmodeisNormalMode. 9.4.1.1 NormalModePhase Serial data is transferred into TLC591x through SDI, shifted in the Shift Register, and output via SDO. LE(ED1) can latch the serial data in the Shift Register to the Output Latch. OE(ED2) enables the output drivers to sink current. These functions differ only as described in Operation Mode Switching, in which case, a short pulse triggers TLC591x to switch the operation mode. However, as long as LE(ED1) is high in the Mode Switching phase,TLC591xremainsintheNormalMode,asifnomodeswitchingoccurred. 9.4.1.2 SpecialModePhase In the Special Mode, as long as OE(ED2) is not low, the serial data is shifted to the Shift Register via SDI and shifted out via SDO, as in the Normal Mode. However, there are two differences between the Special Mode and theNormalMode,asshowninthefollowingsections. 9.4.2 ReadingErrorStatusCodeinSpecialMode When OE(ED2) is pulled low while in Special Mode, error detection and load error status codes are loaded into the Shift Register, in addition to enabling output ports to sink current. Figure 17 shows the timing sequence for error detection. The 0 and 1 signal levels are sampled at the rising edge of each CLK. At least three zeros must be sampled at the voltage low signal OE(ED2). Immediately after the second zero is sampled, the data input source of the Shift Register changes to the 8-bit parallel Error Status Code register, instead of from the serial data on SDI. Normally, the error status codes are generated at least 2 μs after the falling edge of OE(ED2). The occurrence of the third or later zero saves the detected error status codes into the Shift Register. Therefore, whenOE(ED2)islow,theserialdatacannotbeshiftedintoTLC591xthroughSDI.When OE(ED2)ispulledhigh, the data input source of the Shift Register is changed back to SDI. At the same time, the output ports are disabled and the error detection is completed. Then, the error status codes saved in the Shift Register can be shifted out via SDO bit by bit along with CLK, as well as the new serial data can be shifted into TLC591x through SDI. Copyright©2007–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 SLVS695D–JUNE2007–REVISEDJANUARY2015 www.ti.com WhileinSpecialMode,theTLC591xcannotsimultaneouslytransferserialdataanddetectLEDloaderrorstatus. 1 2 3 CLK >2 µs OE(ED2) 1 0 0 0 0 0 1 1 1 1 LE(ED1) 0 0 0 0 0 0 0 0 0 0 SDO Error Status Code Bit 7 Bit 6 Bit 5 Bit 4 Data source of SDI Error Detection SDI shift register Figure17. ReadingErrorStatusCode 9.4.3 WritingConfigurationCodeinSpecialMode When in Special Mode, the active high signal LE(ED1) latches the serial data in the Shift Register to the ConfigurationLatch,insteadoftheOutputLatch.ThelatchedserialdataisusedastheConfigurationCode. The code is stored until power off or the Configuration Latch is rewritten. As shown in Figure 18, the timing for writing the Configuration Code is the same as the timing in the Normal Mode to latching output channel data. Both the Configuration Code and Error Status Code are transferred in the common 8-bit Shift Register. Users must pay attention to the sequence of error detection and current adjustment to avoid the Configuration Code beingoverwrittenbyErrorStatusCode. 0 1 2 3 4 5 6 7 CLK OE(ED2) 1 LE(ED1) 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SDI 8-Bit Configuration Code Figure18. WritingConfigurationCode 20 SubmitDocumentationFeedback Copyright©2007–2015,TexasInstrumentsIncorporated ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 www.ti.com SLVS695D–JUNE2007–REVISEDJANUARY2015 10 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 10.1 Application Information 10.1.1 ConstantCurrent In LED display applications, TLC591x provides nearly no current variations from channel to channel and from IC to IC. While 5 mA ≤ I ≤ 100 mA, the maximum current skew between channels is less than ±3% and between OUT ICsislessthan±6%. 10.1.2 AdjustingOutputCurrent TLC591x scales up the reference current, I , set by the external resistor R to sink a current, I , at each ref ext out output port. Users can follow the below formulas to calculate the target output current I in the saturation OUT,target region.Intheequations, R istheresistanceoftheexternalresistorconnectedbetweentheR-EXTterminalandgroundandV isthe ext R-EXT voltageofR-EXT,whichiscontrolledbytheprogrammablevoltagegain(VG).VGisdefinedbytheConfiguration Code. V =1.26V×VG (1) R-EXT I =V /R , (2) ref R-EXT ext I =I ×15×3CM–1 (3) OUT,target ref The Current Multiplier (CM) determines that the ratio I /I is 15 or 5. After power on, the default value of OUT,target ref VG is 127/128 = 0.992, and the default value of CM is 1, so that the ratio I /I = 15. Based on the default OUT,target ref VGandCM: V =1.26V×127/128=1.25V (4) R-EXT I =(1.25V/R )×15 (5) OUT,target ext Therefore, the default current is approximately 52 mA at 360 Ω and 26 mA at 720 Ω. The default relationship afterpoweronbetweenI andR isshowninFigure19. OUT,target ext 140 120 100 A) 80 m ( OUT 60 I 40 20 0 0 1000 2000 3000 4000 5000 6000 R (Ω) ext Figure19. DefaultRelationshipCurveBetweenI andR AfterPowerUp OUT,target ext Copyright©2007–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 SLVS695D–JUNE2007–REVISEDJANUARY2015 www.ti.com Application Information (continued) 10.1.3 CascadingImplementationofTLC591xDevice VLED ... ... ... VDD: 3.0V to 5.5V 0 7 0 7 0 7 UT ... UT UT ... UT UT ... UT O O O O O O VDD VDD VDD SDI 17 SDO SDI 17 SDO ... SDI 17 SDO 9 720Ω 9 720Ω 9 720Ω 5 5 5 C R-EXT C R-EXT C R-EXT L L L T T T GND GND GND CLK LE OE CLK LE OE CLK LE OE SDI er CLK oll ntr LE o C OE Read Back Multiple Cascaded Drivers 26mAApplication Figure20. CascadingImplementationofTLC591xDevice 22 SubmitDocumentationFeedback Copyright©2007–2015,TexasInstrumentsIncorporated ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 www.ti.com SLVS695D–JUNE2007–REVISEDJANUARY2015 Application Information (continued) 10.1.4 8-BitConfigurationCodeandCurrentGain BitdefinitionoftheConfigurationCodeintheConfigurationLatchisshowninTable5. Table5.BitDefinitionof8-BitConfigurationCode 0 1 2 3 4 5 6 7 Meaning CM HC CC0 CC1 CC2 CC3 CC4 CC5 Default 1 1 1 1 1 1 1 1 Bit7isfirstsentintoTLC591xthroughSDI.Bits1to7{HC,CC[0:5]}determinethevoltagegain(VG)thataffects the voltage at R-EXT and indirectly affects the reference current, I , flowing through the external resistor at R- ref EXT. Bit 0 is the Current Multiplier (CM) that determines the ratio I /I . Each combination of VG and CM OUT,target ref givesaspecificCurrentGain(CG). • VG: the relationship between {HC,CC[0:5]} and the voltage gain is calculated as shown in Equation 6 and Equation7: VG=(1+HC)×(1+D/64)/4 (6) D=CC0×25+CC1×24+CC2×23+CC3×22+CC4×21+CC5×20 (7) Where HC is 1 or 0, and D is the binary value of CC[0:5]. So, the VG could be regarded as a floating-point number with 1-bit exponent HC and 6-bit mantissa CC[0:5]. {HC,CC[0:5]} divides the programmable voltage gainVGinto128stepsandtwosub-bands: Lowvoltagesub-band(HC=0):VG=1/4~127/256,linearlydividedinto64steps Highvoltagesub-band(HC=1):VG=1/2~127/128,linearlydividedinto64steps • CM:InadditiontodeterminingtheratioI /I ,CMlimitstheoutputcurrentrange. OUT,target ref HighCurrentMultiplier(CM=1):I /I =15,suitableforoutputcurrentrangeI =10mAto120mA. OUT,target ref OUT LowCurrentMultiplier(CM=0):I /I =5,suitableforoutputcurrentrangeI =3mAto40mA OUT,target ref OUT • CG:ThetotalCurrentGainisdefinedasthefollowing. V =1.26V×VG (8) R-EXT I =V /R ,iftheexternalresistor,R ,isconnectedtoground. (9) ref R-EXT ext ext I =I ×15×3CM–1=1.26V/R ×VG×15×3CM–1=(1.26V/R ×15)×CG (10) OUT,target ref ext ext CG=VG×3CM–1 (11) Therefore, CG = (1/12) to (127/128), and it is divided into 256 steps. If CG = 127/128 = 0.992, the I - OUT,target R . ext Examples • ConfigurationCode{CM,HC,CC[0:5]}={1,1,111111} VG=127/128=0.992andCG=VG × 30=VG=0.992 • ConfigurationCode={1,1,000000} VG=(1+1) ×(1+0/64)/4=1/2=0.5,andCG=0.5 • ConfigurationCode={0,0,000000} VG=(1+0) ×(1+0/64)/4=1/4,andCG=(1/4) ×3–1=1/12 After power on, the default value of the Configuration Code {CM, HC, CC[0:5]} is {1,1,111111}. Therefore, VG=CG=0.992.TherelationshipbetweentheConfigurationCodeandtheCurrentGainisshowninFigure21. Copyright©2007–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 SLVS695D–JUNE2007–REVISEDJANUARY2015 www.ti.com 1.00 CM = 0 (Low Current Multiplier) 0.75 HC = 0 (Low Voltage SubBand) HC = 1 (High G) Voltage SubBand) C ain ( 0.50 HC = 0 (Low G Voltage SubBand) nt HC = 1 (High e urr Voltage SubBand) C 0.25 CM = 1 (High Current Multiplier) 0.00 Configuration Code (CM,HC,CC[0:5]) in Binary Format Figure21. CurrentGainvsConfigurationCode 10.2 Typical Application Figure 22 shows implementation of a single TLC591x device. Figure 20 shows a cascaded driver implementation. 3.0V to 5.5V VLED . . . 0 1 6 7 T T . . . T T U U U U O O O O SDI VDD SDI CLK CLK TLC5917 er SDO To Controller if Error ntroll LE LE Detection Used o C OE OE R-EXT GND Figure22. SingleImplementationofTLC591xDevice 24 SubmitDocumentationFeedback Copyright©2007–2015,TexasInstrumentsIncorporated ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 www.ti.com SLVS695D–JUNE2007–REVISEDJANUARY2015 Typical Application (continued) 10.2.1 DesignRequirements For this design example, use the parameters listed in Table 6. The purpose of this design procedure is to calculatethepowerdissipationinthedeviceandtheoperatingjunctiontemperature. Table6.DesignParameters DESIGNPARAMETERS EXAMPLEVALUE NumberofLEDstrings 8 NumberofLEDsperstring 3 LEDCurrent(mA) 20 ForwardvoltageofeachLED(V) 3.5 Junction-to-ambientthermalresistance(°C/W) 87.4 Ambienttemperatureofapplication(°C) 115 V (V) 5 DD I (mA) 10 DD Maxoperatingjunctiontemperature(°C) 150 10.2.2 DetailedDesignProcedure T =T +R ×P J A θJA D_TOT where • T isthejunctiontemperature. J • T istheambienttemperature. A • R isthejunction-to-ambientthermalresistance. θJA • P isthetotalpowerdissipationintheIC. (12) D_TOT P =P +I ×V D_TOT D_CS DD DD where • P isthepowerdissipationintheLEDcurrentsinks. D_CS • I istheICsupplycurrent. DD • V istheICsupplyvoltage. (13) DD P =I ×V ×n D_CS O O CH where • I istheLEDcurrent. O • V isthevoltageattheoutputpin. O • n isthenumberofLEDstrings. (14) CH V =V –(n ×V ) O LED LED F where • V isthevoltageappliedtotheLEDstring. LED • n isthenumberofLEDsinthestring. LED • V istheforwardvoltageofeachLED. (15) F V must not be too high as this causes excess power dissipation inside the current sink. However, V also must O O notbetoolowasthisdoesnotallowthefullLEDcurrent(Figure4).WithV =12V: LED V =12V–(3×3.5V)=1.5V (16) O P =20mA×1.5V×8=0.24W (17) D_CS UsingP ,calculate: D_CS P =P +I ×V =0.24W+0.01A×5V=0.29W (18) D_TOT D_CS DD DD UsingP ,calculate: D_TOT T =T +R ×P =115°C+87.4°C/W×0.29W=140°C (19) J A θJA D_TOT Copyright©2007–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 SLVS695D–JUNE2007–REVISEDJANUARY2015 www.ti.com This design example demonstrates how to calculate power dissipation in the IC and ensure that the junction temperatureiskeptbelow150°C. NOTE This design example assumes that all channels have the same electrical parameters (n , I , V , V ). If the parameters are unique for each channel, then the power LED O F LED dissipation must be calculated for each current sink separately. Then, each result must be addedtogethertocalculatethetotalpowerdissipationinthecurrentsinks. 10.2.3 ApplicationCurve 150 Temperature=25°C 125 IO=120mA IO=100mA A) 100 m urrent( 75 IO=80mA utC IO=60mA p ut O 50 IO=40mA 25 IO=20mA IO=5mA 0 0 0.5 1 1.5 2 2.5 3 OutputVoltage(V) Figure23. OutputCurrentvsOutputVoltage 26 SubmitDocumentationFeedback Copyright©2007–2015,TexasInstrumentsIncorporated ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 www.ti.com SLVS695D–JUNE2007–REVISEDJANUARY2015 11 Power Supply Recommendations The device is designed to operate from a VDD supply between 3 V and 5.5 V. The LED supply voltage is determinedbythenumberofLEDsineachstringandtheforwardvoltageoftheLEDs. 12 Layout 12.1 Layout Guidelines The traces that carry current from the LED cathodes to the OUTx pins must be wide enough to support the defaultcurrent(upto120mA). The SDI, CLK, LE (ED1), OE (ED2), and SDO pins are to be connected to the microcontroller. There are several waystoachievethis,includingthefollowingmethods: • Tracesmayberoutedunderneaththepackageonthetoplayer. • Thesignalmaytravelthroughaviatoanotherlayer. 12.2 Layout Example GND VDD VDD To µC SDI R-EXT To µC CLK To µC SDO To µC LE(ED1) To µC OE(ED2) OUT0 OUT7 OUT1 OUT6 OUT2 OUT5 OUT3 OUT4 VLED VIA to GND Figure24. PWPackageLayout Copyright©2007–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 27 ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 SLVS695D–JUNE2007–REVISEDJANUARY2015 www.ti.com Layout Example (continued) GND VDD VDD To µC SDI R-EXT To µC CLK To µC SDO To µC LE(ED1) To µC OE(ED2) OUT0 OUT7 OUT1 OUT6 OUT2 OUT5 OUT3 OUT4 VLED VIA to GND Figure25. DPackageLayout 28 SubmitDocumentationFeedback Copyright©2007–2015,TexasInstrumentsIncorporated ProductFolderLinks:TLC5916 TLC5917
TLC5916,TLC5917 www.ti.com SLVS695D–JUNE2007–REVISEDJANUARY2015 13 Device and Documentation Support 13.1 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table7.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY TLC5916 Clickhere Clickhere Clickhere Clickhere Clickhere TLC5917 Clickhere Clickhere Clickhere Clickhere Clickhere 13.2 Trademarks Alltrademarksarethepropertyoftheirrespectiveowners. 13.3 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 13.4 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2007–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 29 ProductFolderLinks:TLC5916 TLC5917
PACKAGE OPTION ADDENDUM www.ti.com 24-Aug-2018 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TLC5916ID ACTIVE SOIC D 16 40 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLC5916I & no Sb/Br) TLC5916IDG4 ACTIVE SOIC D 16 40 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLC5916I & no Sb/Br) TLC5916IDR ACTIVE SOIC D 16 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLC5916I & no Sb/Br) TLC5916IN ACTIVE PDIP N 16 25 Green (RoHS CU NIPDAU N / A for Pkg Type -40 to 125 TLC5916IN & no Sb/Br) TLC5916INE4 ACTIVE PDIP N 16 25 Green (RoHS CU NIPDAU N / A for Pkg Type -40 to 125 TLC5916IN & no Sb/Br) TLC5916IPW ACTIVE TSSOP PW 16 90 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 Y5916 & no Sb/Br) TLC5916IPWR ACTIVE TSSOP PW 16 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 Y5916 & no Sb/Br) TLC5916IPWRG4 ACTIVE TSSOP PW 16 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 Y5916 & no Sb/Br) TLC5917ID ACTIVE SOIC D 16 40 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLC5917I & no Sb/Br) TLC5917IDR ACTIVE SOIC D 16 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLC5917I & no Sb/Br) TLC5917IDRG4 ACTIVE SOIC D 16 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLC5917I & no Sb/Br) TLC5917IN ACTIVE PDIP N 16 25 Green (RoHS CU NIPDAU N / A for Pkg Type -40 to 125 TLC5917IN & no Sb/Br) TLC5917INE4 ACTIVE PDIP N 16 25 Green (RoHS CU NIPDAU N / A for Pkg Type -40 to 125 TLC5917IN & no Sb/Br) TLC5917IPW ACTIVE TSSOP PW 16 90 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 Y5917 & no Sb/Br) TLC5917IPWR ACTIVE TSSOP PW 16 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 Y5917 & no Sb/Br) TLC5917IPWRG4 ACTIVE TSSOP PW 16 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 Y5917 & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 24-Aug-2018 LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TLC5916, TLC5917 : •Automotive: TLC5916-Q1, TLC5917-Q1 NOTE: Qualified Version Definitions: •Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 1-Oct-2014 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TLC5916IDR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 TLC5916IPWR TSSOP PW 16 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 TLC5917IDR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 TLC5917IPWR TSSOP PW 16 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 1-Oct-2014 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TLC5916IDR SOIC D 16 2500 333.2 345.9 28.6 TLC5916IPWR TSSOP PW 16 2000 367.0 367.0 35.0 TLC5917IDR SOIC D 16 2500 333.2 345.9 28.6 TLC5917IPWR TSSOP PW 16 2000 367.0 367.0 35.0 PackMaterials-Page2
None
None
PACKAGE OUTLINE PW0016A TSSOP - 1.2 mm max height SCALE 2.500 SMALL OUTLINE PACKAGE SEATING PLANE C 6.6 TYP 6.2 A 0.1 C PIN 1 INDEX AREA 14X 0.65 16 1 2X 5.1 4.55 4.9 NOTE 3 8 9 0.30 B 4.5 16X 0.19 1.2 MAX 4.3 0.1 C A B NOTE 4 (0.15) TYP SEE DETAIL A 0.25 GAGE PLANE 0.15 0.05 0.75 0.50 0 -8 DETA 20AIL A TYPICAL 4220204/A 02/2017 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. 5. Reference JEDEC registration MO-153. www.ti.com
EXAMPLE BOARD LAYOUT PW0016A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 16X (1.5) SYMM (R0.05) TYP 1 16X (0.45) 16 SYMM 14X (0.65) 8 9 (5.8) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE: 10X SOLDER MASK METAL UNDER SOLDER MASK OPENING METAL SOLDER MASK OPENING EXPOSED METAL EXPOSED METAL 0.05 MAX 0.05 MIN ALL AROUND ALL AROUND NON-SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDE15.000R MASK DETAILS 4220204/A 02/2017 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN PW0016A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 16X (1.5) SYMM (R0.05) TYP 1 16X (0.45) 16 SYMM 14X (0.65) 8 9 (5.8) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE: 10X 4220204/A 02/2017 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com
None
IMPORTANTNOTICEANDDISCLAIMER TIPROVIDESTECHNICALANDRELIABILITYDATA(INCLUDINGDATASHEETS),DESIGNRESOURCES(INCLUDINGREFERENCE DESIGNS),APPLICATIONOROTHERDESIGNADVICE,WEBTOOLS,SAFETYINFORMATION,ANDOTHERRESOURCES“ASIS” ANDWITHALLFAULTS,ANDDISCLAIMSALLWARRANTIES,EXPRESSANDIMPLIED,INCLUDINGWITHOUTLIMITATIONANY IMPLIEDWARRANTIESOFMERCHANTABILITY,FITNESSFORAPARTICULARPURPOSEORNON-INFRINGEMENTOFTHIRD PARTYINTELLECTUALPROPERTYRIGHTS. TheseresourcesareintendedforskilleddevelopersdesigningwithTIproducts.Youaresolelyresponsiblefor(1)selectingtheappropriate TIproductsforyourapplication,(2)designing,validatingandtestingyourapplication,and(3)ensuringyourapplicationmeetsapplicable standards,andanyothersafety,security,orotherrequirements.Theseresourcesaresubjecttochangewithoutnotice.TIgrantsyou permissiontousetheseresourcesonlyfordevelopmentofanapplicationthatusestheTIproductsdescribedintheresource.Other reproductionanddisplayoftheseresourcesisprohibited.NolicenseisgrantedtoanyotherTIintellectualpropertyrightortoanythird partyintellectualpropertyright.TIdisclaimsresponsibilityfor,andyouwillfullyindemnifyTIanditsrepresentativesagainst,anyclaims, damages,costs,losses,andliabilitiesarisingoutofyouruseoftheseresources. TI’sproductsareprovidedsubjecttoTI’sTermsofSale(www.ti.com/legal/termsofsale.html)orotherapplicabletermsavailableeitheron ti.comorprovidedinconjunctionwithsuchTIproducts.TI’sprovisionoftheseresourcesdoesnotexpandorotherwisealterTI’sapplicable warrantiesorwarrantydisclaimersforTIproducts. MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265 Copyright©2018,TexasInstrumentsIncorporated