图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: TLC2578IPW
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

TLC2578IPW产品简介:

ICGOO电子元器件商城为您提供TLC2578IPW由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TLC2578IPW价格参考¥66.76-¥111.34。Texas InstrumentsTLC2578IPW封装/规格:数据采集 - 模数转换器, 12 Bit Analog to Digital Converter 4, 8 Input 1 SAR 24-TSSOP。您可以下载TLC2578IPW参考资料、Datasheet数据手册功能说明书,资料中有TLC2578IPW 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC SERIAL OUT A/D 4-CH 24-TSSOP模数转换器 - ADC Serial Out Low Power

DevelopmentKit

TLC2578EVM

产品分类

数据采集 - 模数转换器

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

数据转换器IC,模数转换器 - ADC,Texas Instruments TLC2578IPW-

数据手册

点击此处下载产品Datasheet

产品型号

TLC2578IPW

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=13240

产品目录页面

点击此处下载产品Datasheet

产品种类

模数转换器 - ADC

位数

12

供应商器件封装

24-TSSOP

信噪比

72 dB

其它名称

296-10258-5

分辨率

12 bit

制造商产品页

http://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&orderablePartNumber=TLC2578IPW

包装

管件

单位重量

92.600 mg

商标

Texas Instruments

安装类型

表面贴装

安装风格

SMD/SMT

封装

Tube

封装/外壳

24-TSSOP(0.173",4.40mm 宽)

封装/箱体

TSSOP-24

工作温度

-40°C ~ 85°C

工作电源电压

2.7 V to 5.5 V, 4.75 V to 5.5 V

工厂包装数量

60

接口类型

3-Wire, Serial, SPI

数据接口

DSP,串行,SPI™

最大工作温度

+ 85 C

最小工作温度

- 40 C

标准包装

60

特性

-

电压参考

External

电压源

模拟和数字

系列

TLC2578

结构

SAR

转换器数

1

转换器数量

1

转换速率

200 kS/s

输入数和类型

8个单端,双极4个伪差分,双极

输入类型

Single-Ended

通道数量

8 Channel

配用

/product-detail/zh/TLC2578EVM/296-18898-ND/863722

采样率(每秒)

200k

推荐商品

型号:MAX11634EEE+

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:ADS5424IPJYRG3

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:ADS1255IDBR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:ADS1120IPW

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:AD7893BRZ-2

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:ADS8402IBPFBTG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LTC1096CS8#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:AD7854LARS

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
TLC2578IPW 相关产品

ADS8558IPMR

品牌:Texas Instruments

价格:

AD7893ARZ-2

品牌:Analog Devices Inc.

价格:

ADS62P19IRGCR

品牌:Texas Instruments

价格:

MAX11207EEE+T

品牌:Maxim Integrated

价格:

ADC121S655CIMMX/NOPB

品牌:Texas Instruments

价格:

AD7895ANZ-3

品牌:Analog Devices Inc.

价格:¥55.85-¥59.47

ADS7822EC/250

品牌:Texas Instruments

价格:¥13.82-¥25.68

TLC0838IDW

品牌:Texas Instruments

价格:¥17.98-¥36.67

PDF Datasheet 数据手册内容提取

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 (cid:1) 14-Bit Resolution for TLC3574/78, 12-Bit for TLC3578, TLC2578 TLC2574/2578 DW OR PW PACKAGE (TOP VIEW) (cid:1) Maximum Throughput 200-KSPS (cid:1) Multiple Analog Inputs: SCLK 1 24 CSTART − 8 Single-Ended Channels for FS 2 23 AVDD TLC3578/2578 SDI 3 22 AGND − 4 Single-Ended Channels for EOC/INT 4 21 COMP SDO 5 20 REFM TLC3574/2574 (cid:1) Analog Input Range: ±10 V DGND 6 19 REFP DV 7 18 AGND (cid:1) DD Pseudodifferential Analog Inputs CS 8 17 AV DD (cid:1) SPI/DSP-Compatible Serial Interfaces With A0 9 16 A7 SCLK up to 25-MHz A1 10 15 A6 (cid:1) A2 11 14 A5 Built-In Conversion Clock and 8x FIFO A3 12 13 A4 (cid:1) Single 5-V Analog Supply; 3-/5-V Digital Supply (cid:1) Low-Power TLC3574, TLC2574 − 5.8 mA in Normal Operation DW, N, OR PW PACKAGE − 20 µA in Power Down (TOP VIEW) (cid:1) Programmable Autochannel Sweep and SCLK 1 20 CSTART Repeat FS 2 19 AV DD (cid:1) Hardware-Controlled, Programmable SDI 3 18 AGND Sampling Period EOC/INT 4 17 COMP (cid:1) SDO 5 16 REFM Hardware Default Configuration DGND 6 15 REFP (cid:1) INL: TLC3574/78: ±1 LSB; DV 7 14 AGND DD TLC2574/78: ±0.5 LSB CS 8 13 AV DD (cid:1) DNL: TLC3574/78: ±0.5 LSB; A0 9 12 A3 TLC2574/78: ±0.5 LSB A1 10 11 A2 (cid:1) SINAD: TLC3574/78: 79 dB; TLC2574/78: 72 dB (cid:1) THD: TLC3574/78: −82 dB; TLC2574/78: −82 dB description The TLC3574, TLC3578, TLC2574, and TLC2578 are a family of high-performance, low-power, CMOS analog-to-digital converters (ADC). TLC3574/78 is a 14-bit ADC; TLC2574/78 is a 12-bit ADC. All parts operate from single 5-V analog power supply and 3-V to 5-V digital supply. The serial interface consists of four digital input [chip select (CS), frame sync (FS), serial input-output clock (SCLK), serial data input (SDI)], and a 3-state serial data output (SDO). CS (works as SS, slave select), SDI, SDO and SCLK form an SPI interface. FS, SDI, SDO, and SCLK form DSP interface. The frame sync signal (FS) indicates the start of a serial data frame being transferred. When multiple converters connect to one serial port of a DSP, CS works as the chip select to allow the host DSP to access the individual converter. CS can be tied to ground if only one converter is used. FS must be tied to DV if it is not used (such as in an SPI interface). When SDI is tied to DV , the device is set in DD DD hardware default mode after power on and no software configuration is required. In the simplest case, only three wires (SDO, SCLK, and CS or FS) are needed to interface with the host. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet. (cid:25)(cid:28)(cid:15)(cid:18)(cid:30)(cid:3)(cid:1)(cid:19)(cid:15)(cid:14) (cid:18)(cid:13)(cid:1)(cid:13) (cid:31)!"#$%&’(cid:31)#! (cid:31)( )*$$+!’ &( #" ,*-.(cid:31))&’(cid:31)#! /&’+0 Copyright  2000 − 2003, Texas Instruments Incorporated (cid:25)$#/*)’( )#!"#$% ’# (,+)(cid:31)"(cid:31))&’(cid:31)#!( ,+$ ’1+ ’+$%( #" (cid:1)+2&( (cid:19)!(’$*%+!’( (’&!/&$/ 3&$$&!’40 (cid:25)$#/*)’(cid:31)#! ,$#)+(((cid:31)!5 /#+( !#’ !+)+((&$(cid:31).4 (cid:31)!).*/+ ’+(’(cid:31)!5 #" &.. ,&$&%+’+$(0 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 description (continued) In addition to being a high-speed ADC with versatile control capability, these devices have an on-chip analog multiplexer (MUX) that can select any analog input or one of three self-test voltages. The sample-and-hold function is automatically started after the fourth SCLK (normal sampling) or can be controlled by a special pin, CSTART, to extend the sampling period (extended sampling). The normal sampling period can also be programmed as short sampling (12 SCLKs) or long sampling (44 SCLKs) to accommodate the faster SCLK operation popular among high-performance signal processors. The TLC3574/78 and TLC2574/78 are designed to operate with low-power consumption. The power saving feature is further enhanced with autopower-down mode and programmable conversion speeds. The conversion clock (internal OSC) is built in. The converter can also use an external SCLK as the conversion clock for maximum flexibility. The TLC3574/78 and TLC2574/78 are specified with bipolar input and a full scale range of ±10V. AVAILABLE OPTIONS PACKAGED DEVICES TA 20-TSSOP 20-SOIC 20-PDIP 24-SOIC 24-TSSOP (PW) (DW) (N) (DW) (PW) TLC2574IPW TLC2574IDW TLC2574IN TLC2578IDW TLC2578IPW −−4400°°CC ttoo 8855°°CC TLC3574IPW TLC3574IDW TLC3574IN TLC3578IDW TLC3578IPW functional block diagram DVDD AVDD REFP COMP REFM X8† X4‡ A0 A0 Analog SAR FIFO A1 A1 MUX ADC X8 A2 A2 Signal A3 A3 OSC Scaling A4 X SDO A5 X Conversion A6 X Clock A7 X Command Decode CFR SDI CMR (4 MSBs) SCLK CS FS Control 4-Bit Logic EOC/INT Counter CSTART DGND AGND †TLC3578, TLC2578 ‡TLC3574, TLC2574 NOTE: 4-Bit counter counts the CLOCK, SCLK. The CLOCK is gated in by CS falling edge if CS initiates the conversion operation cycle, or gated in by the rising edge of FS if FS initiates the operation cycle. SCLK is disabled for serial interface when CS is high. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 equivalent input circuit REFP VDD Bipolar Signal Scaling MUX Digital Input 3.94 kΩ 1.5 kΩ 9.9 kΩ Ain Ron C(sample)= 30 pF 6.6 kΩ Equivalent Digital Input Circuit REFM Diode Turn on Voltage: 35 V Equivalent Analog Input Circuit Terminal Functions TERMINAL NO. II//OO DDEESSCCRRIIPPTTIIOONN NAME TLC3574 TLC3578 TLC2574 TLC2578 A0 A0 9 9 I Analog signal inputs. Analog input signals applied to these terminals are internally multiplexed. The A1 A1 10 10 driving source impedance should be less than or equal to 25 Ω for normal sampling. For larger A2 A2 11 11 source impedance, use the external hardware conversion start signal CSTART (the low time of A3 A3 12 12 CSTART controls the sampling period) or reduce the frequency of SCLK to increase the sampling A4 13 time. A5 14 A6 15 A7 16 AGND 14, 18 18, 22 I Analog ground return for the internal circuitry. Unless otherwise noted, all analog voltage measurements are with respect to AGND. AVDD 13, 19 17, 23 I Analog supply voltage COMP 17 21 I Internal compensation pin. Install compensation capacitors 0.1 µF between this pin and AGND. CS 8 8 I Chip select. When CS is high, SDO is in high-impedance state, SDI is ignored, and SCLK is disabled to clock data, but works as conversion clock source if programmed. The falling edge of CS input resets the internal 4-bit counter, enables SDI and SCLK, and removes SDO from high-impedance state. If FS is high at CS falling edge, CS falling edge initiates the operation cycle. CS works as slave select (SS) to provide an SPI interface. If FS is low at CS falling edge, FS rising edge initiates the operation cycle. CS can be used as chip select to allow host to access the individual converter. CSTART 20 24 I External sampling trigger signal, which initiates the sampling from a selected analog input channel when the device works in extended sampling mode (asynchronous sampling). A high-to-low transition starts the sampling of the analog input signal. A low-to-high transition puts the S/H in hold mode and starts the conversion. The low time of the CSTART signal controls the sampling period. CSTART signal must stay low long enough for proper sampling. CSTART must stay high long enough after the low-to-high transition for the conversion to finish maturely. The activation of CSTART is independent of SCLK and the level of CS and FS. However, the first CSTART cannot be issued before the rising edge of the eleventh SCLK. Tie this pin to DVDD if not used. DGND 6 6 I Digital ground return for the internal circuitry DVDD 7 7 I Digital supply voltage POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 Terminal Functions (Continued) TERMINAL NO. II//OO DDEESSCCRRIIPPTTIIOONN NAME TLC3574 TLC3578 TLC2574 TLC2578 EOC(INT) 4 4 O End of conversion (EOC) or interrupt to host processor (INT) EOC: used in conversion mode 00 only. EOC goes from high to low at the end of the sampling and remains low until the conversion is complete and data is ready. INT: Interrupt to the host processor. The falling edge of INT indicates data is ready for output. INT is cleared by the following CS↓, FS↑, or CSTART↓. FS 2 2 I Frame sync input from DSP. The rising edge of FS indicates the start of a serial data frame being transferred (coming into or being sent out of the device). If FS is low at the falling edge of CS, the rising edge of FS initiates the operation cycle, resets the internal 4-bit counter, and enables SDI, SDO, and SCLK. Tie this pin to DVDD if FS is not used to initiate the operation cycle. REFM 16 20 I External low reference input. Connect REFM to AGND. REFP 15 19 I External positive reference input. The range of maximum input voltage is determined by the difference between the voltage applied to this terminal and to the REFM terminal. Always install decoupling capacitors (10 µF in parallel with 0.1 µF) between REFP and REFM. SCLK 1 1 I Serial clock input from the host processor to clock in the input from SDI and clock out the output via SDO. It can also be used as the conversion clock source when the external conversion clock is selected (see Table 2). When CS is low, SCLK is enabled. When CS is high, SCLK is disabled for the data transfer, but can still work as the conversion clock source. SDI 3 3 I Serial data input. The first 4 MSBs, ID[15:12], are decoded as one 4-bit command. All trailing bits, except for the WRITE CFR command, are filled with zeros. The WRITE CFR command requires additional 12-bit data. The MSB of input data, ID(15), is latched at the first falling edge of SCLK following FS falling edge if FS starts the operation, or latched at the falling edge of first SCLK following CS falling edge when CS initiates the operation. The remaining input data (if any) is shifted in on the rising edge of SCLK and latched on the falling edge of SCLK. The input via SDI is ignored after the 4-bit counter counts to 16 (clock edges) or a low-to-high transition of CS, whichever happens first. Refer to the timing specification for the timing requirements. Tie SDI to DVDD if using hardware default mode (refer to Device Initialization). SDO 5 5 O The 3-state serial output for the A/D conversion result. All data bits are shifted out through SDO. SDO is in the high-impedance state when CS is high. SDO is released after a CS falling edge. The output format is MSB (OD15) first. When FS initiates the operation, the MSB of output via SDO, OD(15), is valid before the first falling edge of SCLK following the falling edge of FS. When CS initiates the operation, the MSB, OD(15), is valid before the first falling edge of SCLK following the CS falling edge. The remaining data bits (if any) are shifted out on the rising edge of SCLK and are valid before the falling edge of SCLK. Refer to the timing specification for the details. In select/conversion operation, the first 14 bits (for TLC3574/78) or the first 12 bits (for TLC2574/78) are the results from the previous conversion (data). In a READ FIFO operation, this data is from FIFO. In both cases, the last two bits (for TLC3574/78) or the last four bits (for TLC2574/78) are don’t care. In a WRITE operation, the output from SDO must be ignored. SDO goes into high-impedance state at the 16th falling edge of SCLK after the operation cycle is initiated. SDO is in high-impedance state during conversions in modes 01, 10, and 11. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 absolute maximum ratings over operating free-air temperature (unless otherwise noted)† Supply voltage, GND to AV and DV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6.5 V DD DD Analog input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −17 V to 17 V Analog input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA MAX Reference input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AV + 0.3 V DD Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to DV + 0.3 V DD Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 150°C J Operating free-air temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C A Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C stg Lead temperature 1,6 mm (1.16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C †Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under electrical characteristics and timing characteristics is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. general electrical characteristics over recommended operating free-air temperature range, single-ended input, normal long sampling, 200 KSPS, AV = 5 V, V = 4 V, V = 0 V, DD REFP REFM SCLK frequency = 25 MHz, fixed channel at CONV mode 00, analog input signal source resistance = 25 Ω (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP† MAX UNIT Digital Input DVDD = 5 V 3.8 VVIIHH HHiigghh--lleevveell ddiiggiittaall iinnppuutt vvoollttaaggee VV DVDD = 3 V 2.1 DVDD = 5 V 0.8 VVIILL LLooww--lleevveell ddiiggiittaall iinnppuutt vvoollttaaggee VV DVDD = 3 V 0.6 IIH High-level digital input current VI = DVDD 0.005 2.5 µA IIL Low-level digital input current VI = DGND −2.5 −0.005 µA Input capacitance 20 25 pF Digital Output DVDD = 5 V 4.2 VVOOHH HHiigghh--lleevveell ddiiggiittaall oouuttppuutt aatt 3300 ppFF llooaadd IIoo == −−00..22 mmAA VV DVDD = 3 V 2.4 Io = 0.8 mA 0.4 DDVVDDDD == 55 VV Io = 50 µA 0.1 VVOOLL LLooww--lleevveell ddiiggiittaall oouuttppuutt aatt 3300 ppFF llooaadd VV Io = 0.8 mA 0.4 DDVVDDDD == 33 VV Io = 50 µA 0.1 IIOOZZ OO(hffiffg--sshtt-aaimtteep ooeuudttappnuuctt ecc uusrrtarreetenn)tt VVOO == DDVGDNDD CCSS == DDVVDDDD −1 00..0022 1 µµAA Power Supply AVDD 4.75 5 5.5 V SSuuppppllyy vvoollttaaggee DVDD 2.7 5 5.5 V AVDD current Conversion clock is internal OSC, 4.2 5 PPoowweerr ssuuppppllyy ccuurr-- AlCC IICCCC rent DVDD current AAEVVxcDDluDDd ==in g55 ..b55i pVVo −−la r44 ..in55p VVu,,t CCbSSia s==i nDDgGG cNNurDDre,,nt 1.6 2.0 mmAA DlCC ICCCC For all digital inputs = DVDDDD or DGND, SCLK OFF 20 ((aauuttooppwwrrddnn)):: AAuuttooppoowweerr--ddoowwnn ppoowweerr ssuuppppllyy AAVVDDDD == 55..55 VV,, EExxcclluuddiinngg bbiippoollaarr iinnppuutt µµAA current biasing current, external reference SCLK ON 175 230 Operating temperature −40 85 °C †All typical values are at TA = 25°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 general electrical characteristics over recommended operating free-air temperature range, single- ended input, normal long sampling, 200 KSPS, AV = 5 V, V = 4 V, V = 0 V, DD REFP REFM SCLK frequency = 25 MHz, fixed channel at CONV mode 00, analog input signal source resistance = 25 Ω (unless otherwise noted) TLC3574/78 and TLC2574/78 PARAMETER TEST CONDITIONS MIN TYP† MAX UNIT Resolution 14 bits Analog Input Voltage range −10 10 V Selected channel at 10 V 0.8 1.6 SSeelleecctteedd aannaalloogg iinnppuutt cchhaannnneell bbiiaass ccuurrrreenntt mmAA Selected channel at –10 V −1.6 −1.2 Impedance 10 kΩ Capacitance 30 pF Reference VREFP Positive reference voltage 3.96 4 4.04 V VREFM Negative reference voltage 0 AGND V No conversion (AVDD = 5V, CS= DVDD, 100 MΩ SCLK=DGND) IInnppuutt iimmppeeddaannccee Normal long sampling (AVDD = 5V, CS=DGND, 8.3 12.5 kΩ SCLK = 25 MHz, External conversion clock) No conversion (AVDD = 5 V, 1.5 µA SCLK = DGND, CS = DVDD) Reference current Normal long sampling (AVDD = 5 V, CS = DGND, External conversion clock, SCLK = 25 MHz, 0.4 0.6 mA VREF = 5 V) Internal oscillation frequency DVDD = 2.7 V – 5.5 V 6.5 MHz TLC3574/78 2.785 IInntteerrnnaall OOSSCC,, 66..55 MMHHzz mmiinniimmuumm TLC2574/78 2.015 tt((ccoonnvv)) CCoonnvveerrssiioonn ttiimmee µSS CCoonnvveerrssiioonn cclloocckk iiss eexxtteerrnnaall ssoouurrccee,, TLC3574/78 2.895 SCLK = 25 MHz (see Note 1) TLC2574/78 2.095 Acquisition time Normal short sampling 1.2 µS Normal long sampling, fixed channel Throughput rate (see Note 2) 200 KSPS in mode 00 or 01 †All typical values are at TA = 25°C. NOTES: 1. Conversion time t(conv) is (18 ×4× SCLK) + 15 ns for TLC3574/78. Conversion time is (13 ×4 × SCLK) + 15 ns for TLC2574/78. 2. This is for a fixed channel in conversion mode 00 or 01. When switching the channels, additional multiplexer setting time is required to overcome the memory effect of the charge redistribution DAC. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 AC/DC performance over recommended operating free-air temperature range, single-ended input, normal long sampling, 200 KSPS, AV = 5 V, V = 4 V, V = 0 V, SCLK frequency = 25 MHz, DD REFP REFM fixed channel at CONV mode 00, analog input signal source resistance = 25 Ω (unless otherwise noted) TLC3574/78 DW and PW package device AC/DC performance PARAMETER TEST CONDITIONS MIN TYP† MAX UNIT DC Accuracy—Normal Long Sampling EL Integral linearity error See Note 3 −1.5 ±1 1.5 LSB ED Differential linearity error −1 ±0.5 1 LSB EO Bipolar zero error See Note 4 −0.30 ±0.08 0.36 %FS EFS(+) Positive full scale error See Note 4 −0.55 ±0.04 0.61 %FS EFS(−) Negative full scale error See Note 4 −0.30 ±0.13 0.79 %FS DC Accuracy—Normal Short Sampling EL Integral linearity error See Note 3 ±1 LSB ED Differential linearity error ±0.5 LSB EO Bipolar zero error See Note 4 ±0.08 %FS EFS(+) Positive full scale error See Note 4 ±0.04 %FS EFS(−) Negative full scale error See Note 4 ±0.13 %FS AC Accuracy (see Note 3)—Normal Long Sampling fi = 20 kHz 76 79 SSIINNAADD SSiiggnnaall--ttoo--nnooiissee rraattiioo ++ ddiissttoorrttiioonn ddBB fi = 100 kHz 75 fi = 20 kHz −82 −77 TTHHDD TToottaall hhaarrmmoonniicc ddiissttoorrttiioonn ddBB fi = 100 kHz −78 fi = 20 kHz 78 80 SSNNRR SSiiggnnaall--ttoo--nnooiissee rraattiioo ddBB fi = 100 kHz 78 fi = 20 kHz 12.3 12.8 EENNOOBB EEffffeeccttiivvee nnuummbbeerr ooff bbiittss BBiittss fi = 100 kHz 12.2 fi = 20 kHz 78 84 SSFFDDRR SSppuurriioouuss ffrreeee ddyynnaammiicc rraannggee ddBB fi = 100 kHz 79 Channel-to-channel isolation Fixed channel in conversion mode 00, fi = 35 kHz, 81 dB See Notes 2 and 5 Full power bandwidth, −3 dB 1 MHz AAnnaalloogg iinnppuutt bbaannddwwiiddtthh Full power bandwidth, −1 dB 700 kHz †All typical values are at TA = 25°C. NOTES: 2. This is for a fixed channel in conversion mode 00 or 01. When switching the channels, additional multiplexer setting time is required to overcome the memory effect of the charge redistribution DAC. 3. Linear error is the maximum deviation from the best fit straight line through the A/D transfer characteristics. 4. Bipolar zero error is the difference between 10000000000000 and the converted output for zero input voltage; positive full-scale error is the difference between 11111111111111 and the converted output for positive full-scale input voltage (10 V); negative full-scale error is the difference between 00000000000000 and the converted output for negative full-scale input voltage (−10 V). 5. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the converter samples different channels alternately. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 TLC3574/78 DW and PW package device AC/DC performance (continued) PARAMETER TEST CONDITIONS MIN TYP† MAX UNIT AC Accuracy—Normal Short Sampling fi = 20 kHz 79 SSIINNAADD SSiiggnnaall--ttoo--nnooiissee rraattiioo ++ ddiissttoorrttiioonn ddBB fi = 100 kHz 75 fi = 20 kHz −82 TTHHDD TToottaall hhaarrmmoonniicc ddiissttoorrttiioonn ddBB fi = 100 kHz −78 fi = 20 kHz 80 SSNNRR SSiiggnnaall--ttoo--nnooiissee rraattiioo ddBB fi = 100 kHz 78 fi = 20 kHz 12.8 EENNOOBB EEffffeeccttiivvee nnuummbbeerr ooff bbiittss BBiittss fi = 100 kHz 12.2 fi = 20 kHz 84 SSFFDDRR SSppuurriioouuss ffrreeee ddyynnaammiicc rraannggee ddBB fi = 100 kHz 79 Channel-to-channel isolation Fixed channel in conversion mode 00, fi= 35 kHz, 81 dB See Notes 2 and 5 Full power bandwidth, −3 dB 1 MHz AAnnaalloogg iinnppuutt bbaannddwwiiddtthh Full power bandwidth, −1 dB 700 kHz †All typical values are at TA = 25°C. NOTES: 2. This is for a fixed channel in conversion mode 00 or 01. When switching the channels, additional multiplexer setting time is required to overcome the memory effect of the charge redistribution DAC. 5. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the converter samples different channels alternately. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 TLC3574I N package device AC/DC performance PARAMETER TEST CONDITIONS MIN TYP† MAX UNIT DC Accuracy—Normal Long Sampling EL Integral linearity error See Note 3 −1.5 ±1 1.5 LSB ED Differential linearity error −1 ±0.8 1.5 LSB EO Bipolar zero error See Note 4 −0.30 ±0.08 0.36 %FS EFS(+) Positive full scale error See Note 4 −0.55 ±0.04 0.61 %FS EFS(−) Negative full scale error See Note 4 −0.30 ±0.13 0.79 %FS DC Accuracy—Normal Short Sampling EL Integral linearity error See Note 3 ±1.8 LSB ED Differential linearity error ±0.8 LSB EO Bipolar zero error See Note 4 ±0.08 %FS EFS(+) Positive full-scale error See Note 4 ±0.04 %FS EFS(−) Negative full-scale error See Note 4 ±0.13 %FS AC Accuracy (see Note 3)—Normal Long Sampling fi = 20 kHz 75 78 SSIINNAADD SSiiggnnaall--ttoo--nnooiissee rraattiioo ++ ddiissttoorrttiioonn ddBB fi = 100 kHz 75 fi = 20 kHz −82 −77 TTHHDD TToottaall hhaarrmmoonniicc ddiissttoorrttiioonn ddBB fi = 100 kHz −75 fi = 20 kHz 78 80 SSNNRR SSiiggnnaall--ttoo--nnooiissee rraattiioo ddBB fi = 100 kHz 76 fi = 20 kHz 12.2 12.7 EENNOOBB EEffffeeccttiivvee nnuummbbeerr ooff bbiittss BBiittss fi = 100 kHz 12.2 fi = 20 kHz 78 83 SSFFDDRR SSppuurriioouuss ffrreeee ddyynnaammiicc rraannggee ddBB fi = 100 kHz 75 Channel-to-channel isolation Fixed channel in conversion mode 00, fi = 35 kHz, 81 dB See Notes 2 and 5 Full power bandwidth, −3 dB 1 MHz AAnnaalloogg iinnppuutt bbaannddwwiiddtthh Full power bandwidth, −1 dB 700 kHz †All typical values are at TA = 25°C. NOTES: 2. This is for a fixed channel in conversion mode 00 or 01. When switching the channels, additional multiplexer setting time is required to overcome the memory effect of the charge redistribution DAC. 3. Linear error is the maximum deviation from the best fit straight line through the A/D transfer characteristics. 4. Bipolar zero error is the difference between 10000000000000 and the converted output for zero input voltage; positive full-scale error is the difference between 11111111111111 and the converted output for positive full-scale input voltage (10 V); negative full-scale error is the difference between 00000000000000 and the converted output for negative full-scale input voltage (−10 V). 5. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the converter samples different channels alternately. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 TLC3574I N package device AC/DC performance (continued) PARAMETER TEST CONDITIONS MIN TYP† MAX UNIT AC Accuracy—Normal Short Sampling fi = 20 kHz 76 SSIINNAADD SSiiggnnaall--ttoo--nnooiissee rraattiioo ++ ddiissttoorrttiioonn ddBB fi = 100 kHz 70 fi = 20 kHz −81 TTHHDD TToottaall hhaarrmmoonniicc ddiissttoorrttiioonn ddBB fi = 100 kHz −74 fi = 20 kHz 78 SSNNRR SSiiggnnaall--ttoo--nnooiissee rraattiioo ddBB fi = 100 kHz 75 fi = 20 kHz 12.3 EENNOOBB EEffffeeccttiivvee nnuummbbeerr ooff bbiittss BBiittss fi = 100 kHz 11.3 fi = 20 kHz 83 SSFFDDRR SSppuurriioouuss ffrreeee ddyynnaammiicc rraannggee ddBB fi = 100 kHz 75 Channel-to-channel isolation Fixed channel in conversion mode 00, fi= 35 kHz, 81 dB See Notes 2 and 5 Full power bandwidth, −3 dB 1 MHz AAnnaalloogg iinnppuutt bbaannddwwiiddtthh Full power bandwidth, −1 dB 700 kHz †All typical values are at TA = 25°C. NOTES: 2. This is for a fixed channel in conversion mode 00 or 01. When switching the channels, additional multiplexer setting time is required to overcome the memory effect of the charge redistribution DAC. 5. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the converter samples different channels alternately. 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 TLC2574/78 DW and PW package devices AC/DC performance PARAMETER TEST CONDITIONS MIN TYP† MAX UNIT DC Accuracy EL Integral linearity error See Note 6 −1 ±0.5 1 LSB ED Differential linearity error −1 ±0.5 1 LSB EO Bipolar zero error See Note 7 −0.30 ±0.08 0.36 %FS EFS(+) Positive full scale error See Note 7 −0.55 ±0.04 0.61 %FS EFS(−) Negative full scale error See Note 7 −0.30 ±0.13 0.79 %FS AC Accuracy fi = 20 kHz 70 72 SSIINNAADD SSiiggnnaall--ttoo--nnooiissee rraattiioo ++ ddiissttoorrttiioonn ddBB fi = 100 kHz 70 fi = 20 kHz −82 −76 TTHHDD TToottaall hhaarrmmoonniicc ddiissttoorrttiioonn ddBB fi = 100 kHz −80 fi= 20 kHz 71 72 SSNNRR SSiiggnnaall--ttoo--nnooiissee rraattiioo ddBB fi = 100 kHz 71 fi = 20 kHz 11.3 11.7 EENNOOBB EEffffeeccttiivvee nnuummbbeerr ooff bbiittss BBiittss fi = 100 kHz 11.3 fi = 20 kHz 78 83 SSFFDDRR SSppuurriioouuss ffrreeee ddyynnaammiicc rraannggee ddBB fi = 100 kHz 80 Full power bandwidth, −3 dB 1 MHz AAnnaalloogg iinnppuutt bbaannddwwiiddtthh Full power bandwidth, −1 dB 700 kHz Channel-to-channel Isolation Fixed channel in conversion mode 00, fi = 35 kHz, 81 dB See Note 8 †All typical values are at TA = 25°C. NOTES: 6. Linear error is the maximum deviation from the best fit straight line through the A/D transfer characteristics. 7. Bipolar zero error is the difference between 100000000000 and the converted output for zero input voltage; positive full-scale error is the difference between 111111111111 and the converted output for positive full-scale input voltage (10 V); negative full-scale error is the difference between 000000000000 and the converted output for negative full-scale input voltage (−10 V). 8. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the converter samples different channels alternately. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 TLC2574I N package device AC/DC performance PARAMETER TEST CONDITIONS MIN TYP† MAX UNIT DC Accuracy EL Integral linearity error see Note 6 −1 ±0.7 1 LSB ED Differential linearity error −1 ±0.7 1 LSB EO Bipolar zero error see Note 7 −0.30 ±0.08 0.36 %FS EFS(+) Positive full-scale error see Note 7 −0.55 ±0.04 0.61 %FS EFS(−) Negative full-scale error see Note 7 −0.30 ±0.13 0.79 %FS AC Accuracy fi = 20 kHz 70 72 SSIINNAADD SSiiggnnaall--ttoo--nnooiissee ++ ddiissttoorrttiioonn ddBB fi = 100 kHz 70 fi = 20 kHz −82 −76 TTHHDD TToottaall hhaarrmmoonniicc ddiissttoorrttiioonn ddBB fi = 100 kHz −75 fi= 20 kHz 70 72 SSNNRR SSiiggnnaall--ttoo--nnooiissee rraattiioo ddBB fi = 100 kHz 71 fi = 20 kHz 11.3 11.7 EENNOOBB EEffffeeccttiivvee nnuummbbeerr ooff bbiittss BBiittss fi = 100 kHz 11.3 fi = 20 kHz 77 83 SSFFDDRR SSppuurriioouuss ffrreeee ddyynnaammiicc rraannggee ddBB fi = 100 kHz 75 Full power bandwidth, −3 dB 1 MHz AAnnaalloogg iinnppuutt bbaannddwwiiddtthh Full power bandwidth, −1 dB 700 kHz Channel-to-channel Isolation Fixed channel in conversion mode 00, fi = 35 kHz, 81 dB See Note 8 †All typical values are at TA = 25°C. NOTES: 6. Linear error is the maximum deviation from the best fit straight line through the A/D transfer characteristics. 7. Bipolar zero error is the difference between 100000000000 and the converted output for zero input voltage; positive full-scale error is the difference between 111111111111 and the converted output for positive full-scale input voltage (10 V); negative full-scale error is the difference between 000000000000 and the converted output for negative full-scale input voltage (−10 V). 8. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the converter samples different channels alternately. 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 timing requirements over recommended operating free-air temperature range, AV = 5 V, DD DV = 5 V, V = 4 V, V = 0 V, SCLK frequency = 25 MHz (unless otherwise noted) DD REFP REFM SCLK, SDI, SDO, EOC and INT PARAMETERS MIN TYP MAX UNIT DVDD = 2.7 V 100 ttcc((11)) CCyyccllee ttiimmee ooff SSCCLLKK,, 2255 ppFF llooaadd ((sseeee NNoottee 1100)) nnss DVDD = 5 V 40 tw(1) Pulse width of SCLK High, at 25-pF load 40% 60% tc(1) DVDD = 5 V 6 ttrr((11)) RRiissee ttiimmee ffoorr IINNTT aanndd EEOOCC,, aatt 1100--ppFF llooaadd nnss DVDD = 2.7 V 10 DVDD = 5 V 6 ttff((11)) FFaallll ttiimmee ffoorr IINNTT aanndd EEOOCC,, aatt 1100--ppFF llooaadd nnss DVDD = 2.7 V 10 tsu(1) Setup time, new SDI valid (reaches 90% final level) before the falling edge of SCLK, at 25-pF load 6 − ns th(1) Hold time, old SDI hold (reaches 10% of old data level) after falling edge of SCLK, at 25-pF load 0 − ns DDeellaayy ttiimmee,, nneeww SSDDOO vvaalliidd ((rreeaacchheess 9900%% ooff ffiinnaall lleevveell)) aafftteerr SSCCLLKK rriissiinngg eeddggee,, aatt 1100--ppFF DVDD = 5 V 0 10 ttdd((11)) load (see Note 11) DVDD = 2.7 V 0 23 nnss th(2) Hold time, old SDO hold (reaches 10% of old data level) after SCLK rising edge, at 10-pF load 0 − ns td(2) Delay time, delay from the falling edge of 16th SCLK to EOC falling edge, normal sampling, at 10-pF load 0 6 ns td(3) Delay time, delay from the falling edge of 16th SCLK to INT falling edge, at 10-pF load (see Notes 11 and 12) t(conv) t(conv)+6 ns NOTES: 9. The minimum pulse width of SCLK high and low is 12.5 ns. 10. Specified by design 11. For normal short sampling, td(3) is the delay from the falling edge of 16th SCLK to the falling edge of INT. For normal long sampling, td(3) is the delay from the falling edge of 48th SCLK to the falling edge of INT. Conversion time, t(conv), is equal to 18 × OSC +15 ns (for TLC3574 and TLC3578) or 13 × OSC + 15 ns (for TLC2574 and TLC2578) when using internal OSC as conversion clock, or 72 × tc(1) + 15 ns (for TLC3574 and TLC3578) or 52× tc(1) + 15 ns (for TLC2574 and TLC2578) when external SCLK is conversion clock source. 90% VIH CS 50% 10% VIL tc(1) tw(1) 1 16 SCLK th(1) tsu(1) SDI Don’t Care ID15 ID1 ID0 Don’t Care td(1) th(2) Hi-Z Hi-Z SDO OD15 OD1 OD0 td(2) † tr(1) EOC OR tf(1) td(3) ‡ INT tf(1) tr(1) †For normal long sampling, td(2) is the delay time of EOC low after the falling edge of 48th SCLK. ‡For normal long sampling, td(3) is the delay time of INT low after the falling edge of 48th SCLK. − − − − The dotted line means signal may or may not exist, depending on application. It must be ignored. Normal sampling mode, CS initiatesthe conversion, FS must be tied to high. When CS is high, SDO is in Hi-Z, all inputs (FS, SCLK, SDI) are inactive and are ignored. Figure 1. Critical Timing for SCLK, SDI, SDO, EOC and INT POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 timing requirements over recommended operating free-air temperature range, AV = 5 V, DD DV = 5 V, V = 4 V, V = 0 V, SCLK frequency = 25 MHz (unless otherwise noted) (continued) DD REFP REFM CS trigger PARAMETERS MIN TYP MAX UNIT tsu(2) Setup time, CS falling edge before SCLK rising edge, at 25-pF load 12 ns Delay time, delay time from the falling edge of 16th SCLK to CS rising edge, at 25 pF load td(4) (see Note 12) 5 ns tw(2) Pulse width of CS high, at 25-pF load 1 tc(1) DDeellaayy ttiimmee,, ddeellaayy ffrroomm CCSS ffaalllliinngg eeddggee ttoo MMSSBB ooff SSDDOO vvaalliidd ((rreeaacchheess 9900%% DVDD = 5 V 0 12 ttdd((55)) final level), at 10 pF load DVDD = 2.7 V 0 30† nnss td(6) Delay time, delay from CS rising edge to SDO 3-state, at 10-pF load 0 6 ns DVDD = 5 V 0 6 ttdd((77)) DDeellaayy ttiimmee,, ddeellaayy ffrroomm CCSS ffaalllliinngg eeddggee ttoo IINNTT rriissiinngg eeddggee,, aatt 1100--ppFF llooaadd DVDD = 2.7 V 0 16† nnss †Specified by design NOTE 12:For normal short sampling, td(4) is the delay time from the falling edge of 16th SCLK to CS rising edge. For normal long sampling, td(4) is the delay time from the falling edge of 48th SCLK to CS rising edge. VIH CS VIL tsu(2) td(4) tw(2) 1 16 SCLK SDI Don’t Care ID15 ID1 ID0 Don’t Care Don’t Care td(5) td(6) Hi-Z Hi-Z Hi-Z SDO OD15 OD1 OD0 OD15 OD7 EOC OR td(7) INT − − − − The dotted line means signal may or may not exist, depending on application. It must be ignored. Normal sampling mode, CS initiates the conversion, FS must be tied to high. When CS is high, SDO is in Hi-Z, all inputs (FS, SCLK, SDI) are inactive and are ignored. Figure 2. Critical Timing for CS Trigger 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 timing requirements over recommended operating free-air temperature range, AV = 5 V, DD DV = 5 V, V = 4 V, V = 0 V, SCLK frequency = 25 MHz (unless otherwise noted) (continued) DD REFP REFM FS trigger PARAMETERS MIN TYP MAX UNIT td(8) Delay time, delay from CS falling edge to FS rising edge at 25-pF load 0.5 tc(1) tsu(3) Setup time, FS rising edge before SCLK falling edge at 25-pF load 0.25×tc(1) 0.5×tc(1)+ 5 ns tw(3) Pulse width of FS high, at 25-pF load 0.75×tc(1) tc(1) 1.25×tc(1) ns DDeellaayy ttiimmee,, ddeellaayy ffrroomm FFSS rriissiinngg eeddggee ttoo MMSSBB ooff SSDDOO vvaalliidd DVDD = 5 V 26 ttdd((99)) (reaches 90% final level), at 10-pF load DVDD = 2.7 V 30† nnss Required td(10) Delay time, delay from FS rising edge to next FS rising edge, at 25-pF load sampling time + ns conversion time DDeellaayy ttiimmee,, ddeellaayy ffrroomm FFSS rriissiinngg eeddggee ttoo IINNTT rriissiinngg eeddggee,, aatt DVDD = 5 V 0 6 ttdd((1111)) 10-pF load DVDD = 2.7 V 0 16† nnss †Specified by design td(10) VIH CS VIL td(8) tw(3) FS tsu(3) 1 16 SCLK SDI Don’t Care ID15 ID1 ID0 Don’t Care ID15 Don’t Care td(9) Hi-Z Hi-Z SDO OD15 OD1 OD0 OD15 Don’t Care VOH EOC OR VOH td(11) INT − − − − The dotted line means signal may or may not exist, depending on application. It must be ignored. Normal sampling mode, FS initiates the conversion, CS can be tied to low. When CS is high, SDO is in Hi-Z, all inputs (FS, SCLK, SDI) are inactive and are ignored. Figure 3. Critical Timing for FS Trigger POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 timing requirements over recommended operating free-air temperature range, AV = 5 V, DD DV = 5 V, V = 4 V, V = 0 V, SCLK frequency = 25 MHz (unless otherwise noted) (continued) DD REFP REFM CSTART trigger PARAMETERS MIN TYP MAX UNIT Delay time, delay from CSTART rising edge to EOC falling edge, at 10-pF td(12) load 0 15 21 ns tw(4) Pulse width of CSTART low, at 25-pF load (see Note 13) t(sample_reg)+0.4 µs Delay time, delay from CSTART rising edge to CSTART falling edge, at 25-pF td(13) load (see Note 13 and 14) t(conv)+15 ns Delay time, delay from CSTART rising edge to INT falling edge, at 10-pF td(14) load (see Note 13 and 14) t(conv)+15 t(conv)+21 ns Delay time, delay from CSTART falling edge to INT rising edge, at 10-pF td(15) load 0 6 ns NOTES: 13. The pulse width of the CSTART must be not less than the required sampling time. The delay from CSTART rising edge to following CSTART falling edge must be not less than the required conversion time. The delay from CSTART rising edge to the INT falling edge is equal to the conversion time. 14. The maximum rate of SCLK is 25 MHz for normal long sampling and 10 MHz for normal short sampling. tw(4) td(13) CSTART t(conv) td(12) EOC td(15) OR td(14) INT Figure 4. Critical Timing for Extended Sampling (CSTART Trigger) 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 circuit description converter The converters include a successive-approximation ADC utilizing a charge redistribution DAC. Figure5 shows a simplified block diagram of the ADC. The sampling capacitor acquires the signal on Ain during the sampling period. When the conversion process starts, the control logic directs the charge redistribution DAC to add and subtract fixed amounts of charge from the sampling capacitor to bring the comparator into a balanced condition. When balanced, the conversion is complete and the ADC output code is generated. Charge Redistribution DAC _ Ain Control C(sample) + Logic ADC Code REFM Figure 5. Simplified Block Diagram of the Successive-Approximation System analog input range and internal test voltages TLC3578 and TLC2578 have 8 analog inputs (TLC3574 and TLC2574 have 4) and three test voltages. The inputs are selected by the analog multiplexer according to the command entered (see Table 1). The input multiplexer is a break-before-make type to reduce input-to-input noise injection resulting from channel switching. All converters are specified for bipolar input range of ±10 V. The input signal is scaled to 0–4 V at the SAR ADC input via the bipolar scaling circuit (see the functional block diagram and the equivalent analog input circuit): –10 V to 0 V, 10 V to 4 V, and 0 V to 2V. analog input mode Two input signal modes can be selected: single-ended input and pseudodifferential input. Charge Redistribution DAC S1 _ Ain(+) Control ADC Code Logic Ain(−) + REFM When sampling, S1 is closed and S2 connects to Ain(−). During conversion, S1 is open and S2 connects to REFM. Figure 6. Simplified Pseudodifferential Input Circuit Pseudodifferential input refers to the negative input, Ain(−). Its voltage is limited in magnitude to ±1 V. The input frequency limit of Ain(−) is the same as the positive input Ain(+). This mode is normally used for ground noise rejection or dc offset. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 analog input mode (continued) When pseudodifferential mode is selected, only two analog input channel pairs are available for the TLC3574 and TLC2574 and four channel pairs for the TLC3578 and TLC2578, because half the inputs are used as the negative input. Single Ended Pseudodifferential X8† X4‡ X8† X4‡ A0 A0 A0(+) Pair A A0(+) Pair A A1 A1 A1(−) A1(−) A2 A2 A2(+) Pair B A2(+) Pair B Analog SAR Analog SAR A3 A3 A3(−) A3(−) MUX ADC MUX ADC A4 X A4(+) Pair C A5 X A5(−) A6 X A6(+) Pair D A7 X A7(−) †TLC3578 and TLC2578 ‡TLC3574 and TLC2574 Figure 7. Pin Assignment of Single-Ended Input vs Pseudodifferential Input reference voltage The external reference is applied to the reference-input pins (REFP and REFM). REFM should connect to analog ground. REFP is 4 V. Install decoupling capacitors (10 µF in parallel with 0.1 µF) between REFP and REFM, and compensation capacitors (0.1 µF) between COMP and AGND. ideal conversion characteristics Bipolar Analog Input Voltage −9.99756 V VBZS = 0.0 V 1LSB = 1.22 mV −9.99878 V −0.61 mV 0.61 mV 9.99756 V −9.99939 V VFS− = −10 V VFS+ = 10 V 2s Complement Binary BTC BOB 01111111111111 11111111111111 01111111111110 11111111111110 16383 01111111111101 11111111111101 16382 e 16381 d o C ut Outp 00000000000001 10000000000001 8193 Step al 00000000000000 10000000000000 8192 Digit 11111111111111 01111111111111 8191 10000000000010 00000000000010 2 10000000000001 00000000000001 1 10000000000000 00000000000000 0 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 circuit description (continued) data format INPUT DATA FORMAT (BINARY) MSB LSB ID[15:12] ID[11:0] Command Configuration data field or filled with zeros OUTPUT DATA FORMAT (READ CONVERSION/FIFO) TLC3574 and TLC3578 TLC2574 and TLC2578 MSB LSB MSB LSB OD[15:2] OD[1:0] OD[15:4] OD[3:0] Conversion result Don’t Care Conversion result Don’t Care 14-BIT (TLC3574/78) 12-BIT (TLC2574/78) Bipolar Input, Offset Binary: (BOB) Bipolar Offset Binary Output: (BOB) Negative full scale code = VFS− = 0000h, Vcode = −10 V Negative full scale code = 000h, Vcode = −10 V Midscale code = VBZS = 2000h, Vcode = 0 V Midscale code = 800h, Vcode = 0 V Positive full scale code = VFS+ = 3FFFh, Vcode = 10 V − 1 LSB Positive full scale code = FFFh, Vcode = 10 V − 1 LSB Bipolar Input, Binary 2s Complement: (BTC) Bipolar Input, Binary 2s Complement: (BTC) Negative full scale code = VFS− = 2000 h, Vcode = −10 V Negative full scale code = 800 h, Vcode = −10 V Midscale code = VBZS = 0000h, Vcode = 0 V Midscale code = 000h, Vcode = 0 V Positive full scale code = VFS+ = 1FFFh, Vocde = 10 V − 1 LSB Positive full scale code = 7FFh, Vocde = 10 V − 1 LSB operation description The converter samples the selected analog input signal, then converts the sample into digital output according to the selected output format. The converter has four digital input pins (SDI, SCLK, CS, and FS) and one digital output pin (SDO) to communicate with the host device. SDI is a serial data input pin, SDO is a serial data output pin, and SCLK is a serial clock from host device. This clock is used to clock the serial data transfer. It can also be used as conversion clock source (see Table 2). CS and FS are used to start the operation. The converter has a CSTART pin for external hardware sampling and conversion trigger, and INT/EOC for interrupt purpose. device initialization After power on, the status of EOC/INT is initially high, and the input data register is set to all zeros. The device must be initialized before starting conversion. The initialization procedure depends on the working mode. The first conversion result must be ignored after power on. Hardware Default Mode: Nonprogrammed mode, default. After power on, two consecutive active cycles initiated by CS or FS put the device into hardware default mode if SDI is tied to DV . Each of these cycles must DD last 16 SCLK at least. These cycles initialize the converter and load CFR register with 800h (bipolar offset binary output code, normal long sampling, internal OSC, single-ended input, one-shot conversion mode, and EOC/INT pin as INT). No additional software configuration is required. Software Programmed Mode: Programmed. If the converter needs to be configured, The host must write A000H into converters first after power on, then performs the WRITE CFR operation to configure the device. start of operation cycle Each operation consists of several actions that the converter takes according to the command from the host. The operation cycle includes three periods: command period, sampling period, and conversion period. In the command period, the device decodes the command from host. In the sampling period, the device samples the selected analog signal according to the command. In the conversion period, the sample of the analog signal is converted to digital format. The operation cycle starts from the command period, which is followed by one or several sampling and conversion periods (depending on the setting), and finishes at the end of last conversion period. The operation is initiated by the falling edge of CS or the rising edge of FS. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 start of operation cycle (continued) CS initiates the operation: If FS is high at the falling edge of CS, the falling edge of CS initiates the operation. When CS is high, SDO is in high-impedance state, the signals on SDI are ignored, and SCLK is disabled to clock the serial data. The falling edge of CS resets the internal 4-bit counter and enables SDO, SDI, and SCLK. The MSB of the input data via SDI, ID(15), is latched at the first falling edge of SCLK following the falling edge of CS. The MSB of output data from SDO, OD(15), is valid before this SCLK falling edge. This mode works as an SPI interface when CS is used as SLAVE SELECT (SS). It also can be used as normal DSP interface if CS connects to the frame sync output of the host DSP. FS must be tied to high in this mode. FS initiates the operation: If FS is low at the falling edge of CS, the rising edge of FS initiates the operation. It resets the internal 4-bit counter, and enables SDI, SDO, and SCLK. The ID(15) is latched at the first falling edge of SCLK following the falling edge of FS. OD(15) is valid before this falling edge of SCLK. This mode is used to interface the converter with a serial port of the host DSP. The FS of the device is connected to the frame sync of the host DSP. When several devices are connected to one DSP serial port, CS is used as chip select to allow the host DSP to access each device individually. If only one converter is used, CS can be tied to low. After the initiation, the remaining SDI data bits (if any) are shifted in and the remaining bits of SDO (if any) are shifted out at the rising edge of SCLK. The input data are latched at the falling edge of SCLK, and the output data are valid before the falling edge of SCLK. After the 4-bit counter reaches 16, the SDO goes to high-impedance state. The output data from SDO is the previous conversion result in one shot conversion mode, or the contents in the top of FIFO when FIFO is used (refer to Figure 20). command period After the rising edge of FS (FS triggers the operation) or the falling edge of CS (CS triggers the operation), SDI, SDO, and SCLK are enabled. The first four SCLK clocks form the command period. The four MSBs of input data, ID[15:12], are shifted in and decoded. These bits represent one of the 4-bit commands from the host, which defines the required operation (see Table 1). The four MSB of output, OD[15:12], are also shifted out via SDO during this period. The commands are SELECT/CONVERSION, WRITE CFR, FIFO READ, and HARDWARE DEFAULT. The SELECT/CONVERSION command includes SELECT ANALOG INPUT and SELECT TEST commands. All cause a select/conversion operation. They select the analog signal being converted, and start the sampling/conversion process after the selection. WRITE CFR causes the configuration operation, which writes the device configuration information into CFR register. FIFO READ reads the contents in FIFO. Hardware default mode sets the device into the hardware default mode. After the command period, the remaining 12 bits of SDI are written into the CFR register to configure the device if the command is WRITE CFR. Otherwise, these bits are ignored. The configuration is retained in the autopower-down state. If the SCLK stops (while CS remains low) after the first eight bits are entered, the next eight bits can be entered after the SCLK resumes. The data on SDI are ignored after the 4-bit counter counts to 16 (falling edge of SCLK) or the low-to-high transition of CS, whichever happens first. The remaining 12 bits of output data are shifted out from SDO if the command is SELECT/CONVERSION or FIFO READ. Otherwise, the data on SDO must be ignored. In any case, the SDO goes into high-impedance state after the 4-bit counter counts to 16 (falling edge of SCLK) or the low-to-high transition of CS, whichever happens first. 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 command period (continued) Table 1. Command Set (CMR) SDI Bit D[15:12] TTLLCC33557788 // 22557788 CCOOMMMMAANNDD TTLLCC33557744 // 22557744 CCOOMMMMAANNDD BINARY HEX 0000b 0h SELECT analog input channel 0 SELECT analog input channel 0 0001b 1h SELECT analog input channel 1 SELECT analog input channel 1 0010b 2h SELECT analog input channel 2 SELECT analog input channel 2 0011b 3h SELECT analog input channel 3 SELECT analog input channel 3 0100b 4h SELECT analog input channel 4 SELECT analog input channel 0 0101b 5h SELECT analog input channel 5 SELECT analog input channel 1 0110b 6h SELECT analog input channel 6 SELECT analog input channel 2 0111b 7h SELECT analog input channel 7 SELECT analog input channel 3 1000b 8h Reserved 1001b 9h Reserved 1010b Ah WRITE CFR, the last 12 bits of SDI are written into CFR. This command resets FIFO. 1011b Bh SELECT TEST, voltage = (REFP+REFM)/2 (see Note 15) 1100b Ch SELECT TEST, voltage = REFM (see Note 16) 1101b Dh SELECT TEST, voltage = REFP (see Note 17) 1110b Eh FIFO READ, FIFO contents is shown on SDO; (see Note 18) 1111b Fh HARDWARE DEFAULT mode, CFR is loaded with 800h NOTES: 15. The output code = mid-scale code + bipolar zero error 16. The output code = negative full-scale code + negative full-scale error 17. The output code = positive full-scale code + positive full-scale error 18. The TLC3574 and TLC3578, OD [15:2] is conversion result, OD [1:0] don’t care The TLC2574 and TLC2578, OD [15:4] is conversion result, OD [3:0] don’t care POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 detailed description (continued) Table 2. Configuration Register (CFR) Bit Definition SDI BIT DEFINITION D11 Always 1. Otherwise the performance is degraded. D10 Conversion output code format select: 0: BOB (bipolar offset binary); 1: BTC (binary 2s complement) DD99 Sample period select for normal sampling. Don’t care in extended sampling. 0: Long sampling (4x) 44 SCLKs; 1: Short sampling 12 SCLKs D8 Conversion clock source select: 0: Conversion clock = Internal OSC; 1: Conversion clock = SCLK/4 D7 Input mode select: 0: Single-ended; 1: Pseudodifferential. Pin configuration shown below. Pin Configuration of TLC3578 and TLC2578 Pin Configuration of TLC3574 and TLC2574 Pin No. Single-ended Pseudodifferential polarity Pin No. Single-ended Pseudodifferential polarity 9 A0 Plus Pair A 9 A0 PLUS Pair A 10 A1 Minus 10 A1 MINUS 11 A2 Plus Pair B 11 A2 PLUS Pair B 12 A3 Minus 12 A3 MINUS 13 A4 Plus Pair C 14 A5 Minus 15 A6 Plus Pair D 16 A7 Minus D[6:5] Conversion mode select 00: One shot mode 01: Repeat mode 10: Sweep mode 11: Repeat sweep mode. DD[[44::33]] Sweep auto sequence select (Note: These bits only take effect in conversion mode 10 and 11.) TLC3578 and TLC2578 TLC3574 and TLC2574 Single-ended (by ch) Pseudodifferential (by pair) Single-ended (by ch) Pseudodifferential (by pair) 00: 0−1−2−3−4−5−6−7 00: N/A 00: 0−1−2−3−0−1−2−3 00: N/A 01: 0−2−4−6−0−2−4−6 01: A−B−C−D−A−B−C−D 01: 0−2−0−2−0−2−0−2 01: A−B−A−B−A−B−A−B 10: 0−0−2−2−4−4−6−6 10: A−A−B−B−C−C−D−D 10: 0−0−1−1−2−2−3−3 10: N/A 11: 0−2−0−2−0−2−0−2 11: A−B−A−B−A−B−A−B 11: 0−0−0−0−2−2−2−2 11: A−A−A−A−B−B−B−B D2 EOC/INT pin function select 0: Pin used as INT 1: Pin used as EOC ( for mode 00 only) D[1:0] FIFO trigger level (sweep sequence length). Don’t care in one shot mode. 00: Full (INT generated after FIFO Level 7 filled) 01: 3/4 (INT generated after FIFO Level 5 filled) 10: 1/2 (INT generated after FIFO Level 3 filled) 11: 1/4 (INT generated after FIFO Level 1 filled) sampling period The sampling period follows the command period. The selected signal is sampled during this time. The device has three different sampling modes: normal short mode, normal long mode, and extended mode. Normal Short Sampling Mode: Sampling time is controlled by the SCLK and lasts 12 SCLK periods. At the end of sampling, the converter automatically starts the conversion period. After the configuration, the normal sampling starts automatically after the falling edge of fourth SCLK that follows the falling edge of CS if CS triggers the operation, or follows the rising edge of FS if FS initiates the operation, except the FIFO READ and WRITE CFR commands. 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 sampling period (continued) Normal Long Sampling Mode: It is the same as normal short sampling, except that it lasts 44 SCLKs periods to complete the sampling. Extended Sampling Mode: The external signal, CSTART, triggers sampling and conversion. SCLK is not used for sampling. SCLK is also not needed for conversion if the internal conversion clock is selected. The falling edge of CSTART begins the sampling of the selected analog input. The sampling continues while CSTART is low. The rising edge of CSTART ends the sampling, and starts the conversion (with about 15 ns internal delay). The occurrence of CSTART is independent of SCLK clock, CS, and FS. However, the first CSTART cannot occur before the rising edge of the 11th SCLK. In other words, the falling edge of first CSTART can happen at or after the rising edge of 11th SCLK , but not before. The device enters the extended sampling mode at the falling edge of CSTART and exits this mode once CSTART goes to high followed by two consecutive falling edges of CS or two consecutive rising edges of FS (such as one read data operations followed by WRITE CFR). The first CS or FS does not cause conversion. Extended mode is used when a fast SCLK is not suitable for sampling, or when extended sampling period is needed to accommodate different input signal source impedance. conversion period The conversion period is the third portion of the operation cycle. It begins after the falling edge of 16th SCLK for the normal short sampling mode, or after the falling edge of 48th SCLK for the normal long sampling, or on the rising edge of CSTART (with 15 ns internal delay) for the extended sampling mode. The conversion takes 18 conversion clocks plus 15 ns for TLC3574/78, 13 conversion clocks plus 15 ns for the TLC2574/78. The conversion clock source can be an internal oscillator, OSC, or an external clock, SCLK. The conversion clock is equal to the internal OSC if the internal clock is used, or equal to four SCLKs when the external clock is programmed. To avoid the premature termination of conversion, enough time for the conversion must be allowed between consecutive triggers. EOC goes to low at the beginning of the conversion period and goes to high at the end of the conversion period. INT goes to low at the end of this period, too. conversion mode Four different conversion modes (mode 00, 01, 10, 11) are available. The operation of each mode is slightly different, depending on how the converter samples and what host interface is used. Do not mix different types of triggers throughout the repeat or sweep operations. ONE SHOT Mode (Mode 00): Each operation cycle performs one sampling and one conversion for the selected channel. FIFO is not used. When EOC is selected, it is generated while the conversion period is in progress. Otherwise, INT is generated after the conversion is done. The result is output through the SDO pin during the next select/conversion operation. REPEAT Mode (Mode 01): Each operation cycle performs multiple samplings and conversions for a fixed channel selected according to the 4-bit command. The results are stored in the FIFO. The number of samples to be taken equals the FIFO threshold programmed via D[1:0] in CFR register. Once the threshold is reached, INT is generated, and the operation ends. If the FIFO is not read after the conversions, the data is replaced in the next operation. The operation of this mode starts with the WRITE CFR commands to set conversion mode 01, then the SELECT/CONVERSION commands, followed by a number of samplings and conversions of the fixed channel (triggered by CS, FS, or CSTART) until the FIFO threshold is hit. If CS or FS triggers the sampling, the data on SDI must be any one of the SELECT CHANNEL commands. However, this data is a dummy code for setting the converter in conversion state. It does not change the existing channel selection set at the start of the operation until the FIFO is full. After the operation finishes, the host can read the FIFO, then reselect the channel and start the next REPEAT operation again; or immediately reselect the channel and start next REPEAT operation (by issuing CS or FS or CSTART); or reconfigure the converter then start new operation according to the new setting. If CSTART triggers the sampling, host can also immediately start the next REPEAT operation (on the current channel) after the FIFO is full. Besides, if FS initiates the operation and CSTART triggers the samplings and conversions, CS must not toggle during the conversion. This mode allows the host to set up the converter, continue monitoring a fixed input, and to get a set of samples as needed. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 conversion mode (continued) SWEEP Mode (Mode 10): During each operation, all of the channels listed in the SWEEP SEQUENCE (D[4:3] of CFR register) are sampled and converted one time according to the programmed sequence. The results are stored in the FIFO. When the FIFO threshold is reached, an interrupt (INT) is generated, and the operation ends. If the FIFO threshold is reached before all of the listed channels are visited, the remaining channels are ignored. This allows the host to change the sweep sequence length. The mode 10 operation starts with the WRITE CFR command to set the sweep sequence. The following triggers (CS, FS, or CSTART, depending on the interface) start the samplings and conversions of the listed channels in sequence until the FIFO threshold is hit. If CS or FS starts the sampling, the SDI data must be any one of the SELECT commands to set the converter in conversion state. However, this command is a dummy code. It does not change the existing conversion sequence. After the FIFO is full, the converter waits for FIFO READ. It does nothing before the FIFO READ or WRITE CFR command is issued. The host must read the FIFO completely or WRITE CFR. If CSTART triggers the samplings, the host must issue an extra SELECT/CONVERSION command (select any channel) via CS or FS after the FIFO READ or WRITE CFR. This extra period is named the arm period and is used to set the converter into conversion state, but does not affect the existing conversion sequence. If FS initiates the operation and CSTART triggers the samplings and conversions, CS must not toggle during the conversion. REPEAT SWEEP Mode (Mode 11): This mode works in the same way as mode 10, except that it is not necessary to read the FIFO before the next operation after the FIFO threshold is hit. The next sweep can repeat immediately, but the contents in the FIFO are replaced by the new results. The host can read the FIFO completely, then issue next SWEEP; or repeat the SWEEP immediately (with the existing sweep sequence) by issuing sampling/conversion triggers (CS, FS or CSTART); or change the device setting with the WRITE CFR command. The memory effect of charge redistribution DAC exists when the mux switches from one channel to another. This degrades the channel-to-channel isolation if the channel changes after each conversion. For example, in mode 10 and 11, the isolation is about 70 dB for the sweep sequence 0-1-2-3-4. The memory effect can be reduced by increasing the sampling time or using sweep sequence 0-0-2-2-4-4-6-6 and ignoring the first sample of each channel. 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 operation cycle timing CS Initiates 12 SCLKs for Short 18 OSC for Internal OSC‡ 4 SCLKs 44 SCLKs for Long 72 SCLK for External Clock 15 ns Operation t(setup)† t(sample) t(convert) t(overhead) SDI 4-bit Command 12-bit CFR Data (Optional) § SDO 14-bit Data (Previous Conversion) 2-bit Don’t Care Active CS (FS Is Tied to High) CSTAR (For Extended Sampling) occurs at or after the rising edge of eleventh SCLK FOSp eInraittiiaotnes Delay FromCS 12 SCLKs for Short 18 OSC for Internal OSC‡ Low to FS High 4 SCLKs 44 SCLKs for Long 72 SCLK for External Clock 15 nS t(delay)† t(setup)† t(sample) t(convert) t(overhead) SDI 4-bit Command 12-bit CFR Data (Optional) § SDO 14-bit Data (Previous Conversion) 2-bit Don’t Care Active CS (CS Can Be Tied to Low) Active FS CSTAR (For Extended Sampling) occurs at or after the rising edge of eleventh SCLK †Non JEDEC terms used. ‡18 internal OSC or 72 SCLK for TLC3574 and TLC3578, 13 internal OSC or 52 SCLK for TLC2574 and TLC2578. §For TLC3574 and TLC3578, 14-bits are result of previous conversion, last two bits are don’t care. For TLC2574 and TLC2578, 12-bits are result of previous conversion, last four bits are don’t care. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 operation cycle timing (continued) After the operation finished, the host has several choices. Table 3 summarizes of operation options. Table 3. Operation Options CONVERSION IS INITIATED BY MMOODDEE CS FS CSTART 00 1. Issue new Select/Read operation to 1. Issue new Select/Read operation to 1. Issue new CSTART to start next read data and start new conversion. read data and start new conversion. conversion; old data lost. 2. Reconfigure the device. 2. Reconfigure the device. 2. Issue new Select/Read operation to read data—Issue new CSTART to start new conversion. 3. Reconfigure the device. 01 1. Read FIFO—Select Channel—Start 1. Read FIFO—Select Channel—Start 1. Read FIFO—Select channel—Start new conversion. Channel must be new conversion. Channel must be new conversion. Channel must be selected after FIFO READ. selected after FIFO READ. selected after FIFO READ. 2. Select Channel—Start new 2. Select Channel—Start new 2. Start new conversion (old data lost) conversion (old data lost) conversion (old data lost) with existing setting. 3. Configure device again. 3. Configure device again. 3. Configure device again. 10 1. Read FIFO—Start new conversion 1. Read FIFO—Start new conversion 1. Read FIFO—Arm Period—Start new with existing setting. with existing setting. conversion with existing setting 2. Configure device—New conversion 2. Configure device—New conversion 2. Configure device—Arm Period—New (old data lost) (old data lost) conversion (old data lost) 11 1. Read FIFO—Start new conversion 1. Read FIFO—Start new conversion 1. Read FIFO—Arm Period—Start new with existing setting. with existing setting Conversion with existing setting 2. Start new conversion with the existing 2. Start new conversion with the existing 2. Start new conversion with existing setting. setting. setting. (old data lost) 3. Configure device—Start new 3. Configure Device—Start new 3. Configure device—Arm Period—New conversion with new setting. conversion with new setting. conversion with new setting. operation timing diagrams The nonconversion operation includes FIFO READ and WRITE CFR. Both do not perform a conversion. The conversion operation performs one of four types of conversion: mode 00, 01, 10 and 11 write cycle (WRITE CFR Command): Write cycle does not generate EOC or INT, nor does it carry out any conversion. 1 2 3 4 5 6 7 12 13 14 15 16 1 CS FS ÌÌÌÌÌÌ ÌÌÌÌÌÌÌ SDI ÌÌÌÌÌÌ ID15 1D14 ID13 1D12 ID11 ID10 ID9 ID4 ID3 ID2 ID1 ID0ÌÌÌÌÌÌÌ ID15 OR INT EOC ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ ÌÌÌÌÌÌ Hi-Z SDO ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ ÌÌÌÌÌÌ The dotted lines means signal may or may not exist. ÌÌÌ Don’t care Figure 8. Write Cycle, FS Initiates Operation 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 operation timing diagrams (continued) 1 2 3 4 5 6 7 12 13 14 15 16 1 CS FS = High ÌÌÌÌ ÌÌÌÌÌÌÌÌÌ SDI ID15 1D14 ID13 1D12 ID11 ID10 ID9 ID4 ID3 ID2 ID1 ID0 ID15 ID14 ÌÌÌÌ ÌÌÌÌÌÌÌÌÌ INT OR EOC ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ Hi-Z ÌÌÌÌÌ SDO ÌÌÌThe dotted lines means signal may or may not exist. ÌÌÌ Don’t Care Figure 9. Write Cycle, CS Initiates Operation, FS = 1 FIFO READ Operation: When the FIFO is used, the first command after INT is generated is assumed to be the FIFO READ. The first FIFO content is output immediately before the command is decoded. If this command is not FIFO READ, the output is terminated. Using more layers of FIFO reduces the time taken to read multiple conversion results, because the read cycle does not generate an EOC or INT, nor does it make a data conversion. Once the FIFO is read, the entire contents in FIFO must be read out. Otherwise, the remaining data is lost. 1 2 3 4 5 6 7 12 13 14 15 16 1 SCLK CS FS = High ÌÌÌ ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ SÌDI ÌÌID15 1D14 ID13 1D12ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌID15 ID14 INT OR EOC ÌÌÌÌ Hi-Z SDO OD15 OD14 OD13 OD12 OD11 OD10 OD9 OD4 OD3 OD2 OD15 OD14 ÌÌÌÌ The dotted lines means signal may or may not exist. ÌÌ OD[15:2] (for TLC3574/78) or OD[15:4](for TLC2574/78) is the FIFO content. ÌÌ Don’t Care Figure 10. FIFO Read Cycle, CS Initiates Operation, FS = 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 conversion operation 48 SCLKs for Long Sampling 16 SCLKs for Short Sampling 1 2 3 4 5 6 7 12 13 14 15 16 1 CS FS in HigÌh ÌÌÌÌ ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ Select Channel SDI ÌÌÌÌÌID15 ID14 ID13 1DÌÌ12 ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌID15 INT t(SAMPLE) t(conv) EOC Previous Conversion Result OR ÌÌÌÌÌ Hi−Z SDO OD15 OD14 OD13 OD12 OD11 OD10 OD9 OD4 OD3 OD2 OD15 SDO goes to Hi−Z after 16th SCLK The dotted line means signal may or may not exist. ÌÌ OD[15:2] (for TLC3574/78) or OD [15:4] (for TLC2574/78) is the result of previous conversion. ÌÌ Don’t Care Figure 11. Mode 00, CS Initiates Operation 48 SCLKs for Long Sampling 16 SCLKs for Short Sampling 1 2 3 4 5 6 7 12 13 14 15 16 1 SCLK CS FS ÌÌÌ Select Channel ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ SDI ÌÌÌID15 1D14 ID13 1D1Ì2 ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌID15 INT OR t(SAMPLE) t(conv) EOC Previous Conversion Result SDO Goes Through Hi-Z After 16 SCLK ÌÌÌÌ Hi-Z SDO OD15 OD14 OD13 OD12 OD11 OD10 OD9 OD4 OD3 OD2 OD15 The dotted line means signal may or may not exist. ÌÌÌOD[15:2] (for TLC3574/78) or OD[15:4](for TLC2574/78) is the result of previous conversion. Don’t Care ÌÌÌ Figure 12. Mode 00, FS Initiates Operation 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 conversion operation (continued) Select Channel Select Channel 16 SCLK 16 SCLK CS Tied to Low t(sample) CSTART Possible FS Signal t(convert) SDÌI ÌÌÌ*****ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ** ÌÌÌÌÌÌÌ INT EOC OR Previous Conversion Result Data Lost Conversion Result Hi-Z Hi-Z Hi-Z SDO Possible Signal ÌÌ ** Select Channel ÌÌ Don’t Care Figure 13. Mode 00, CSTART Triggers Sampling/Conversion, FS Initiates Select CS FS Select Any Select Any Select CH1 Channel Select CH2 Channel ÌÌÌÌÌ ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ ÌÌÌÌÌÌÌÌ SDI *** ** ** * * ** ** * * ÌÌÌÌÌ ÌÌÌ DATA1 of CH1 DATA2 of CH1 DATA1 of CH2 DATA2 of CH2 Hi-Z SDO ÌÌÌÌÌ ÌÌÌ 1/4 FIFO FULL 1/4 FIFO FULL Ì INT Ì Don’t Care Possible Signal MODE 01, FS Activates Conversion, FIFO Threshold = 1/4 Full *** −− WRITE CFR Read FIFO After Threshold Is Hit ** −− Select Channel * −− FIFO Read Figure 14. Mode 01, FS Initiates Operations CS FS CSTART Select CH1 Select CH2 ÌÌ ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ SDI *** ** * * ** * * ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ DATA1 of CH1 DATA2 of CH1 DATA1 of CH2 DATA2 of CH2 Hi-Z SDO ÌÌÌÌÌÌ ÌÌ 1/4 FIFO FULL 1/4 FIFO FULL INT ÌÌ Don’t Care Possible Signal MODE 01, FS Initiates Select Period, CSTART Activates Conversion, FIFO Threshold = 1/4 Full, *** −− WRITE CFR Read FIFO After Threshold Is Hit ** −− Select Channel * −− FIFO Read Figure 15. Mode 01, CSTART Triggers Samplings/Conversions POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 conversion operation (continued) Configure Conversion Conversion Conversion Conversion From CH0 From CH3 From CH0 From CH3 CS FS ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ SDI Ì***ÌÌÌÌ**ÌÌ**ÌÌ**ÌÌ**ÌÌÌÌ* ÌÌ* ÌÌ* Ì*ÌÌ**ÌÌ**ÌÌÌ**ÌÌÌ** ÌÌÌ* Ì INT ÌÌ Hi-Z SDO CH0 CH1 CH2 CH3 CH0 ÌÌ 1st Sweep 2nd Sweep Using Existing ÌÌDon’t Care Configuration 1st FIFO Read 2nd FIFO Read *** Command = Configure Write for Mode 10, FIFO Threshold = 1/2 Full, Sweep Sequence: 0−1−2−3 Read FIFO After FIFO Threshold Is Hit ** COMMAND = Select Any Channel * COMMAND = Read FIFO Figure 16. Mode 10, FS Initiates Operations CS Tied Configure Conversion Conversion Conversion Conversion From CH0 From CH2 From CH0 From CH2 to Low FS CSTART Ì ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ SDI *** ** * * * * ** * Ì ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ INT ÌÌÌ ÌÌ Hi-Z SDOÌÌÌ CH0 CH0 CH2 CÌH2 Ì CH0 1st Sweep 2nd Sweep ÌÌ Using Existing Configuration ÌÌ Don’t Care 1st FIFO Read 2nd FIFO Read *** Command = Configure Write for Mode 10, FIFO Read FIFO After FIFO Threshold Is Hit, FS Initiates Select Period Threshold = 1/2 Full, Sweep Sequence: 0−0−2−2 ** COMMAND = Select Any Channel * COMMAND = Read FIFO Figure 17. Mode 10, CSTART Initiates Operations Configure Conversion Conversion Conversion Conversion Conversion From CH0 From CH3 From CH0 From CH3 From CH0 CS START 2nd Round SWEEP CONVERSION, FS=High the DATA of the 1st Round Are Lost ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ ÌÌÌÌÌÌÌÌÌÌÌÌÌÌ SDI *** ** ** ** ** ** ** ** ** * * * * ** INT ÌÌ Ì SDOÌÌ Ì CH0 CH1 CH2 CH3 ÌÌ READ the DATA of 2nd Don’t Care Sweep From FIFO *** Command = Configure Write for Mode 11, FIFO Threshold = 1/2 Full, Sweep Sequence: 0−1−2−3 ** COMMAND = Select Any Channel START 2nd Sweep conversion immediately (NO FIFO READ) after the 1st SWEEP completed. * COMMAND = Read FIFO Figure 18. Mode 11, CS Initiates Operations 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 conversion operation (continued) Configure Conversion Conversion Conversion Conversion From CH0 From CH2 From CH0 From CH2 CS FS CSTART ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ SDI *** ** ** * * * ** * INT ÌÌ 1st SWEEP Ì REPEAT SDO CH0 CH0 CH2 CH2 CH0 Ì 1st FIFO Read 2nd FIFO Read Ì Don’t Care READ FIFO after 1st SWEEP Completed *** Command = Configure Write for Mode 11, FIFO Threshold = 1/2 Full, Sweep Sequence: 0−0−2−2 ** COMMAND = Select Any Channel * COMMAND = Read FIFO Possible Signal Figure 19. Mode 11, CSTART Triggers Samplings/Conversions, FS Initiates SELECT Operation conversion clock and conversion speed The conversion clock source can be the internal OSC, or the external clock, SCLK. The conversion clock is equal to the internal OSC if the internal clock is used, or equal to SCLK/4 when the external clock is selected. It takes 18 conversion clocks plus 15 ns to finish the conversion for TLC3574 and TLC3578, and 13 conversion clocks plus 15 ns for the TLC2574 and TLC2578. If the external clock is selected, the conversion time (not including sampling time) is 18X(4/f )+15 ns for TLC3574 and TLC3578 and 13X(4/f )+15 ns for TLC2574 and SCLK SCLK TLC2578. Table 4 shows the maximum conversion rate (including sampling time) when the analog input source resistor is 25 Ω. Table 4. Maximum Conversion Rate MAX SCLK CONVERSION RATE DEVICE SAMPLING MODE CONVERSION CLK (MHz) TIME (µs) (KSPS) SHORT (16 SCLK) External SCLK/4 10 8.815 113.4 TTLLCC33557744//7788 LONG (48 SCLK) External SCLK/4 25 4.815 207.7 ((RRss == 2255 Ω)) SHORT (16 SCLK) Internal 6.5 MHz 10 4.384 228.0 LONG (48 SCLK) Internal 6.5 MHz 25 4.705 212.5 SHORT (16 SCLK) Exernal SCLK/4 10 6.815 146.7 TTLLCC22557744//7788 LONG (48 SCLK) External SCLK/4 25 4.015 249.1 ((RRss == 2255 Ω)) SHORT (16 SCLK) Internal 6.5 MHz 10 3.615 276.6 LONG (48 SCLK) Internal 6.5 MHz 25 3.935 254.1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 FIFO operation Serial SOD ×8 FIFO ADC 7 6 5 4 3 2 1 0 FIFO Full FIFO 1/2 Full FIFO 3/4 Full FIFO 1/4 Full FIFO Threshold Pointer Figure 20. FIFO Structure FIFO operation (continued) The device has an 8-level FIFO that can be programmed for different thresholds. An interrupt is sent to the host after the preprogrammed threshold is reached. The FIFO is used to store conversion results in mode 01, 10, and 11, from either a fixed channel or a series of channels according to the preprogrammed sweep sequence. For example, an application may require eight measurements from channel 3. In this case, if the threshold is set to full, the FIFO is filled with 8 data conversions sequentially taken from channel 3. Another application may require data from channel 0, 2, 4, and 6 in that order. The threshold is set to 1/2 full and sweep sequence is selected as 0−2−4−6−0−2−4−6. An interrupt is sent to the host as soon as all four data conversions are in the FIFO. FIFO is reset after power on and WRITE CFR operation. The contents of the FIFO are retained during autopower down. Autopower-Down Mode: The device enters the autopower-down state at the end of conversion. The power current is about 20 µA if SCLK stops, and 120 µA maximum if SCLK is running. Active CS , FS, or CSTART resumes the device from power-down state. The bipolar input current is not turned off when device is in power-down mode. The configuration register is not affected by the power-down mode but the SWEEP operation sequence must be started over again. All FIFO contents are retained in power-down mode. 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 TYPICAL CHARACTERISTICS INTEGRAL NONLINEARITY vs DIGITAL OUTPUT CODE 2 B S Reference = 4 V L y − 1.5 AVDD = 5 V, TA = 25°C rit a ne 1 nli o N al 0.5 r g e nt 0 − I L N −0.5 I 0 2000 4000 6000 8000 10000 12000 14000 16000 Digital Output Code Figure 21 DIFFERENTIAL NONLINEARITY vs DIGITAL OUTPUT CODE B S 0.6 L − y 0.4 rit a e n 0.2 nli o N −0.0 al nti −0.2 e r e Diff −0.4 Reference = 4 V L − −0.6 AVDD = 5 V, TA = 25°C N D 0 2000 4000 6000 8000 10000 12000 14000 16000 Digital Output Code Figure 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 TYPICAL CHARACTERISTICS BIPOLAR ZERO ERROR, POSITIVE FULL SCALE ERROR INL (LSB) AND DNL (LSB) AND NEGATIVE FULL SCALE ERROR (% FS) vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 1.3 0.500 Reference = 4 V Reference = 4 V AVDD = 5 V AVDD = 5 V S) F B) INL (% 0.400 S −) L (L 1 FS( N E Negative Full Scale Error D d nd an 0.300 B) a S(+) S F L E L ( 0.7 ,0 Positive Full Scale Error N E I 0.200 DNL Bipolar Zero Error 0.100 0.4 −40.00 25 85 −40.00 25 85 TA − Free-Air Temperature − °C TA − Free-Air Temperature − °C Figure 23 Figure 24 FFT OF SNR (dB) 00 −−2200 Reference = 4 V AVDD = 5 V −−4400 TA = 25°C B −−6600 200 KSPS d R − −−8800 Input Signal = 20 kHz, 0dB N−−110000 S of −−112200 T F−−114400 F −−116600 −−118800 00.0 2244..44 4488..88 7733..22 9977.6.7 f − Frequency − kHz Figure 25 34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 TYPICAL CHARACTERISTICS SINAD ENOB vs vs INPUT SIGNAL FREQUENCY INPUT SIGNAL FREQUENCY 82 13.2 Reference = 4 V Reference = 4 V AVDD = 5 V AVDD = 5 V 80 TA = 25°C TA = 25°C 12.8 − dB 78 Bits) NAD B − ( 12.4 SI 76 O N E 12 74 72 1 k 20 k 40 k 60 k 80 k 100 k 11.6 1 k 20 k 40 k 60 k 80 k 100 k fI − Input Signal Frequency − Hz fI − Input Signal Frequency − Hz Figure 26 Figure 27 TOTAL HARMONIC DISTORTION SFDR vs vs INPUT SIGNAL FREQUENCY INPUT SIGNAL FREQUENCY −78 85 Reference = 4 V Reference = 4 V − dB ATAV D=D 2 5=° C5 V ATAV D=D 2 5=° C5 V n 83 o orti −80 st Di B onic R − d 81 m D r F a S H al −82 ot T − 79 D H T −84 77 1 k 20 k 40 k 60 k 80 k 100 k 1 k 20 k 40 k 60 k 80 k 100 k fI − Input Signal Frequency − Hz fI − Input Signal Frequency − Hz Figure 28 Figure 29 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 TYPICAL CHARACTERISTICS SUPPLY CURRENT SUPPLY CURRENT AT AUTOPOWER DOWN vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 5.6 4 Reference = 4 V Reference = 4 V AVDD = 5 V AVDD = 5 V SCLK Stops A m A nt − 5.4 µnt − e e urr urr C C y y 3 pl pl p p u u Autopower Down S S − C 5.2 − C C I C I 5 2 −40.00 25 85 −40 25 85 TA − Free-Air Temperature − °C TA − Free-Air Temperature − °C Figure 30 Figure 31 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 APPLICATION INFORMATION interface with host Figure 32 shows the examples of the interface between a single converter and host DSP (TMS320C54xDSP) or microprocessor. The C54x is set as FWID=1 (active pulse width=1CLK); (R/X) DATDLY=1 (1 bit data delay); CLK(X/R)P=0 (transmit data are clocked out at rising edge of CLK, receive data are sampled on falling edge of CLK); and FS(X/R)P=1 (FS is active high). If multiple converters connect to the same C54x, use CS as chip select. The host microprocessor is set as the SPI master, CPOL=0 (active high clock), and CPHA=1 (transmit data is clock out at rising edge of CLK, receive data are sampled at falling edge of CLK). 16 bits (or more) per transfer is required. VDD VDD 10 kΩ 10 kΩ 10 kΩ TMS320C54X Converter Host Converter Microprocessor FSR CS SS CS FSX FS FS DX SDI Ain Ain MOSI SDI DR SDO MISO SDO CLKR CLKX SCLK SCK SCLK IRQ INT/EOC IRQ INT/EOC Single Converter Connects to DSP Converter Connects to Microprocessor Figure 32. Typical Interface to Host DSP and Microprocessor sampling time analysis Figure 33 shows the equivalent circuit to evaluate the required sampling time. Req is the Thevenin equivalent resistor (Req = 3.5 K). The C is sampling capacitor (30 pF maximum). (sampling) To get 1/4 LSB accuracy, the sampling capacitor, C , has to be charged to sampling V = V ± voltage of 1/4 LSB = V ± (V /65532) for 14 bit converter (TLC3574 and TLC3578) C S S S = V ± (V /16384) for 12 bit converter (TLC2574 and TLC2578) S S During the sampling time t , C is charge to (sampling) (sampling) (cid:5) (cid:7) (cid:3) (cid:8) –t (cid:2) (sampling) (cid:2) VC(cid:1)VS(cid:4)1–exp Req(cid:6)C (cid:9) (sampling) Therefore, the required sampling time is t = Req × C × In (65532) for 14-bit (TLC3574 and TLC3578) (sampling) (sampling) t(sampling) = Req × C(sampling) × In (16384) for 12-bit (TLC2574 and TLC2578). TMS320C54x is a trademark of Texas Instruments. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:10)(cid:5)(cid:6)(cid:9) (cid:5)(cid:11)(cid:12) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:8) (cid:4)(cid:11)(cid:17)(cid:5)(cid:11)(cid:12) (cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2)(cid:8) (cid:20)(cid:7)(cid:11)(cid:17)(cid:20)(cid:10)(cid:11)(cid:21)(cid:19)(cid:1)(cid:8) (cid:10)(cid:22)(cid:22)(cid:11)(cid:23)(cid:24)(cid:25)(cid:24)(cid:8) (cid:7)(cid:11)(cid:17)(cid:9)(cid:11)(cid:3)(cid:26)(cid:13)(cid:14)(cid:14)(cid:27)(cid:2) (cid:24)(cid:27)(cid:28)(cid:19)(cid:13)(cid:2) (cid:13)(cid:14)(cid:13)(cid:2)(cid:15)(cid:16)(cid:11)(cid:1)(cid:15)(cid:11)(cid:18)(cid:19)(cid:16)(cid:19)(cid:1)(cid:13)(cid:2) (cid:3)(cid:15)(cid:14)(cid:12)(cid:27)(cid:28)(cid:1)(cid:27)(cid:28)(cid:24) (cid:29)(cid:19)(cid:1)(cid:26) ±(cid:20)(cid:22)(cid:11)(cid:12) (cid:19)(cid:14)(cid:25)(cid:30)(cid:1)(cid:24) SLAS262C − OCTOBER 2000 − REVISED MAY 2003 APPLICATION INFORMATION REFP Bipolar Signal Scaling MUX Req 3.94 kΩ 1.1 kΩ Max Ain 9.9 kΩ Converter Ron Vs C(sample) = 30 pF Max 6.6 kΩ C(sample) = 30 pF Req = Thevenin Equivalent Resistance Vs = Thevenin Equivalent Voltage REFM Figure 33. Equivalent Input Circuit Including the Driving Source 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright  2004, Texas Instruments Incorporated