ICGOO在线商城 > 集成电路(IC) > PMIC - 稳压器 - DC DC 切换控制器 > TL594IN
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
TL594IN产品简介:
ICGOO电子元器件商城为您提供TL594IN由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TL594IN价格参考。Texas InstrumentsTL594IN封装/规格:PMIC - 稳压器 - DC DC 切换控制器, 降压,升压,反激,正激转换器,全桥,半桥,推挽 稳压器 正 输出 升压,降压,升压/降压 DC-DC 控制器 IC 16-PDIP。您可以下载TL594IN参考资料、Datasheet数据手册功能说明书,资料中有TL594IN 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
Cuk | 无 |
描述 | IC REG CTRLR BST FLYBK PWM 16DIP开关控制器 PWM Controller |
产品分类 | |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 电源管理 IC,开关控制器 ,Texas Instruments TL594IN- |
数据手册 | |
产品型号 | TL594IN |
PWM类型 | 电压模式 |
上升时间 | 100 ns |
下降时间 | 40 ns |
产品目录页面 | |
产品种类 | 开关控制器 |
倍增器 | 无 |
其它名称 | 296-10223-5 |
分频器 | 无 |
包装 | 管件 |
升压 | 是 |
单位重量 | 1 g |
占空比 | 45% |
占空比-最大 | 45 % |
反向 | 无 |
反激式 | 是 |
同步管脚 | No |
商标 | Texas Instruments |
安装风格 | Through Hole |
封装 | Tube |
封装/外壳 | 16-DIP(0.300",7.62mm) |
封装/箱体 | PDIP-16 |
工作温度 | -40°C ~ 85°C |
工作电源电压 | 15 V |
工厂包装数量 | 25 |
开关频率 | 300 kHz |
拓扑结构 | Buck, Boost, Flyback, Forward, Full-Bridge, Half-Bridge, Push-Pull |
最大工作温度 | + 85 C |
最小工作温度 | - 40 C |
标准包装 | 25 |
电压-电源 | 7 V ~ 40 V |
类型 | Voltage Mode PWM Controllers |
系列 | TL594 |
输出数 | 2 |
输出电压 | 40 V |
输出电流 | 500 mA |
输出端数量 | 2 Output |
降压 | 无 |
隔离式 | 无 |
频率-最大值 | 300kHz |
Product Sample & Technical Tools & Support & Folder Buy Documents Software Community TL594 SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 TL594 Pulse-Width-Modulation Control Circuit 1 Features 3 Description • CompletePWMPower-ControlCircuitry The TL594 device incorporates all the functions 1 required in the construction of a pulse-width- • UncommittedOutputsfor200-mASinkorSource modulation (PWM) control circuit on a single chip. Current Designed primarily for power-supply control, this • OutputControlSelectsSingle-EndedorPush-Pull device offers the systems engineer the flexibility to Operation tailor the power-supply control circuitry to a specific application. • InternalCircuitryProhibitsDoublePulseatEither Output The TL594 device contains two error amplifiers, an • VariableDeadTimeProvidesControlOverTotal on-chip adjustable oscillator, a dead-time control Range (DTC) comparator, a pulse-steering control flip-flop, a 5-V regulator with a precision of 1%, an undervoltage • InternalRegulatorProvidesaStable5-V lockoutcontrolcircuit,andoutputcontrolcircuitry. ReferenceSupplyTrimmedto1% The uncommitted output transistors provide either • CircuitArchitectureAllowsEasySynchronization common-emitter or emitter-follower output capability. • UndervoltageLockout(UVLO)forLow-V CC Each device provides for push-pull or single-ended Conditions output operation, with selection by means of the output-control function. The architecture of these 2 Applications devices prohibits the possibility of either output being pulsed twice during push-pull operation. The • WhiteGoods undervoltage lockout control circuit locks the outputs • PowerSupplies:AC/DC,Isolated, offuntiltheinternalcircuitryisoperational. WithPFC,> 90W • ServerPSUs DeviceInformation • SolarMicro-Inverters PARTNUMBER PACKAGE BODYSIZE(NOM) • PowerSupplies:AC/DC,Isolated, TL594D SOIC(16) 9.90mm×3.91mm NoPFC,< 90W TL594N PDIP(16) 19.30mm×6.35mm • Power:Telecom/ServerAC/DCSupplies TL594NS SO(16) 10.30mm×5.30mm • SolarPowerInverters TL594PW TSSOP(16) 5.00mm×4.40mm BlockDiagram OUTPUT CTRL (see Function Table) 13 6 RT 5 Oscillator CT 8 1D C1 DTC (cid:27)0.1 V Comparator 9 E1 4 DTC C1 PWM 11 Error Amplifier 1 Comparator C2 IN+ 1 + 10 E2 IN(cid:237) 2 (cid:237)1 Pulse-Steering Flip-Flop 12 Error Amplifier 2 VCC 16 Undervoltage IN+ + Lockout IN(cid:237) 15 (cid:237)2 Reference Control Regulator 14 REF 3 7 FEEDBACK GND 0.7 mA Copyright © 2016, Texas Instruments Incorporated ForOUTPUTCTRLfunction,seeTable1. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
TL594 SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 www.ti.com Table of Contents 1 Features.................................................................. 1 8.3 FeatureDescription................................................10 2 Applications........................................................... 1 8.4 DeviceFunctionalModes.......................................12 3 Description............................................................. 1 9 ApplicationandImplementation........................ 13 4 RevisionHistory..................................................... 2 9.1 ApplicationInformation............................................13 9.2 TypicalApplication..................................................13 5 PinConfigurationandFunctions......................... 3 10 PowerSupplyRecommendations..................... 19 6 Specifications......................................................... 4 11 Layout................................................................... 19 6.1 AbsoluteMaximumRatings......................................4 6.2 ESDRatings ............................................................4 11.1 LayoutGuidelines.................................................19 6.3 RecommendedOperatingConditions.......................4 11.2 LayoutExample....................................................20 6.4 ThermalInformation .................................................4 12 DeviceandDocumentationSupport................. 21 6.5 ElectricalCharacteristics...........................................5 12.1 DocumentationSupport........................................21 6.6 SwitchingCharacteristics..........................................6 12.2 ReceivingNotificationofDocumentationUpdates21 6.7 TypicalCharacteristics..............................................6 12.3 CommunityResources..........................................21 7 ParameterMeasurementInformation..................7 12.4 Trademarks...........................................................21 12.5 ElectrostaticDischargeCaution............................21 8 DetailedDescription.............................................. 9 12.6 Glossary................................................................21 8.1 Overview ..................................................................9 13 Mechanical,Packaging,andOrderable 8.2 FunctionalBlockDiagram.........................................9 Information........................................................... 21 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionH(January2014)toRevisionI Page • AddedApplicationssection,ESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,Application andImplementationsection,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentation Supportsection,andMechanical,Packaging,andOrderableInformationsection................................................................ 1 • ChangedvaluesintheThermalInformationtablefrom73to73.5(D),from67to43.5(N),from64to73.6(NS),and from108to101.5(PW).......................................................................................................................................................... 4 ChangesfromRevisionG(January2007)toRevisionH Page • DeletedOrderingInformationtable;seePOAattheendofthedatasheet........................................................................... 1 • UpdateddocumenttonewTIdatasheetformat-nospecificchanges................................................................................. 1 • AddedESDwarning............................................................................................................................................................... 1 2 SubmitDocumentationFeedback Copyright©1988–2016,TexasInstrumentsIncorporated ProductFolderLinks:TL594
TL594 www.ti.com SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 5 Pin Configuration and Functions D,N,NS,orPWPackage 16-PinSOIC,PDIP,SO,orTSSOP TopView 1IN+ 1 16 2IN+ 1IN– 2 15 2IN– FEEDBACK 3 14 REF DTC 4 13 OUTPUT CTRL CT 5 12 VCC RT 6 11 C2 GND 7 10 E2 C1 8 9 E1 Not to scale PinFunctions PIN I/O DESCRIPTION NO. NAME 1 1IN+ I Noninvertinginputtoerroramplifier1 2 1IN– I Invertinginputtoerroramplifier1 3 FEEDBACK I Inputpinforfeedback 4 DTC I Dead-timecontrolcomparatorinput 5 CT — Capacitorterminalusedtosetoscillatorfrequency 6 RT — Resistorterminalusedtosetoscillatorfrequency 7 GND — Ground 8 C1 O CollectorterminalofBJToutput1 9 E1 O EmitterterminalofBJToutput1 10 E2 O EmitterterminalofBJToutput2 11 C2 O CollectorterminalofBJToutput2 12 V — Positivesupply CC 13 OUTPUTCTRL I Selectssingle-ended,paralleloutput,orpush-pulloperation 14 REF O 5-Vreferenceregulatoroutput 15 2IN– I Invertinginputtoerroramplifier2 16 2IN+ I Noninvertinginputtoerroramplifier2 Copyright©1988–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:TL594
TL594 SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN MAX UNIT Supplyvoltage,V (2) 41 V CC Amplifierinputvoltage V +0.3 V CC Collectoroutputvoltage 41 V Collectoroutputcurrent 250 mA Operatingjunctiontemperature,T 150 °C J Storagetemperature,T –65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) Allvoltagevalues,exceptdifferentialvoltages,arewithrespecttothenetworkgroundterminal. 6.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) 1000 V Electrostaticdischarge V (ESD) Charged-devicemodel(CDM),perJEDECspecificationJESD22-C101(2) 1000 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 6.3 Recommended Operating Conditions MIN MAX UNIT V Supplyvoltage 7 40 V CC V Amplifierinputvoltage –0.3 V –2 V I CC V Collectoroutputvoltage 40 V O Collectoroutputcurrent(eachtransistor) 200 mA CurrentintoFEEDBACKterminal 0.3 mA C Timingcapacitor 0.47 10000 nF T R Timingresistor 1.8 500 kΩ T f Oscillatorfrequency 1 300 kHz osc TL594C 0 70 T Operatingfree-airtemperature °C A TL594I –40 85 6.4 Thermal Information TL594 THERMALMETRIC(1) D(SOIC) N(PDIP) NS(SO) PW(TSSOP) UNIT 16PINS 16PINS 16PINS 16PINS R Junction-to-ambientthermalresistance 73.5 43.5 73.6 101.5 °C/W θJA R Junction-to-case(top)thermalresistance 32.8 30.6 30.3 29.4 °C/W θJC(top) R Junction-to-boardthermalresistance 30.8 23.5 34.4 47.3 °C/W θJB ψ Junction-to-topcharacterizationparameter 6.1 15.3 3.4 1.4 °C/W JT ψ Junction-to-boardcharacterizationparameter 30.6 23.4 34.1 46.6 °C/W JB (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report. 4 SubmitDocumentationFeedback Copyright©1988–2016,TexasInstrumentsIncorporated ProductFolderLinks:TL594
TL594 www.ti.com SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 6.5 Electrical Characteristics V =15V,overrecommendedoperatingfree-airtemperaturerange(unlessotherwisenoted) CC PARAMETER TESTCONDITIONS(1) MIN TYP(2) MAX UNIT REFERENCE Outputvoltage(REF) I =1mA,T =25°C 4.95 5 5.05 V O A Inputregulation V =7Vto40V,T =25°C 2 25 mV CC A Outputregulation I =1mAto10mA,T =25°C 14 35 mV O A Output-voltagechangewithtemperature ΔT =MINtoMAX 2 10 mV/V A Short-circuitoutputcurrent(3) V =0 10 35 50 mA ref AMPLIFIER(SEEFigure3) Inputoffsetvoltage,erroramplifier FEEDBACK=2.5V 2 10 mV Inputoffsetcurrent FEEDBACK=2.5V 25 250 nA Inputbiascurrent FEEDBACK=2.5V 0.2 1 µA Commonmodeinputvoltage, 0.3to V =7Vto40V V erroramplifier CC V –2 CC Open-loopvoltageamplification, ΔV =3V,R =2kΩ,V =0.5Vto3.5V 70 95 dB erroramplifier O L O Unity-gainbandwidth V =0.5Vto3.5V,R =2kΩ 800 kHz O L Commonmoderejectionratio, V =40V,T =25°C 65 80 dB erroramplifier CC A Outputsinkcurrent,FEEDBACK V =–15mVto–5V,FEEDBACK=0.5V 0.3 0.7 mA ID Outputsourcecurrent,FEEDBACK V =15mVto5V,FEEDBACK=3.5V –2 mA ID OSCILLATOR,C =0.01µF,R =12kΩ(SEEFigure4) T T Frequency 10 kHz Standarddeviationoffrequency(4) AllvaluesofV ,C ,R ,andT constant 100 Hz/kHz CC T T A Frequencychangewithvoltage V =7Vto40V,T =25°C 1 Hz/kHz CC A Frequencychangewithtemperature(5) ΔT =MINtoMAX 50 Hz/kHz A DEAD-TIMECONTROL(SEEFigure4) Inputbiascurrent V =0to5.25V –2 –10 µA I Maximumdutycycle,eachoutput DTC=0V 0.45 Zerodutycycle 3 3.3 Inputthresholdvoltage V Maximumdutycycle 0 OUTPUT V =40V,V =0V,V =40V 2 100 C E CC Collectoroff-statecurrent DTCandOUTPUTCTRL=0V,V =15V, µA C 4 200 V =0V,V =1Vto3V E CC Emitteroff-statecurrent V =V =40V,V =0 –100 µA CC C E Commonemitter,V =0,I =200mA 1.1 1.3 E C Collector-emittersaturationvoltage V Emitterfollower,V =15V,I =–200mA 1.5 2.5 C E Outputcontrolinputcurrent V =V 3.5 mA I ref (1) ForconditionsshownasMINorMAX,usetheappropriatevaluespecifiedunderrecommendedoperatingconditions. (2) Alltypicalvalues,exceptforparameterchangeswithtemperature,areatT =25°C. A (3) Durationoftheshortcircuitmustnotexceedonesecond. (4) Standarddeviationisameasureofthestatisticaldistributionaboutthemean,asderivedfromtheformula: N å(X -X)2 n s= n=1 N-1 (5) Temperaturecoefficientoftimingcapacitorandtimingresistorisnottakenintoaccount. Copyright©1988–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:TL594
TL594 SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 www.ti.com Electrical Characteristics (continued) V =15V,overrecommendedoperatingfree-airtemperaturerange(unlessotherwisenoted) CC PARAMETER TESTCONDITIONS(1) MIN TYP(2) MAX UNIT PWMCOMPARATOR(SEEFigure4) Inputthresholdvoltage,FEEDBACK Zerodutycycle 4 4.5 V Inputsinkcurrent,FEEDBACK FEEDBACK=0.5V 0.3 0.7 mA UNDERVOLTAGELOCKOUT(SEEFigure4) T =25°C 6 A Thresholdvoltage V ΔT =MINtoMAX 3.5 6.9 A Hysteresis(6) 100 mV OVERALLDEVICE Standbysupplycurrent RTatVref, VCC=15V 9 15 mA Allotherinputsandoutputsopen V =40V 11 18 CC Averagesupplycurrent DTC=2V,seeFigure4 12.4 mA (6) Hysteresisisthedifferencebetweenthepositive-goinginputthresholdvoltageandthenegative-goinginputthresholdvoltage. 6.6 Switching Characteristics V =15V,T =25°C,overrecommendedoperatingconditions(unlessotherwisenoted) CC A PARAMETER TESTCONDITIONS MIN TYP MAX UNIT Output-voltagerisetime Common-emitterconfiguration(seeFigure5) 100 200 ns Output-voltagefalltime Common-emitterconfiguration(seeFigure5) 30 100 ns Output-voltagerisetime Emitter-followerconfiguration(seeFigure6) 200 400 ns Output-voltagefalltime Emitter-followerconfiguration(seeFigure6) 45 100 ns 6.7 Typical Characteristics 100 k 100 40 k VTACC= =2 51°5CV 90 V∆VCCO== 135VV -2% TA= 25°C 80 10 k -1% 0.001 µF Hz B Frequency - 14 kk 0% 0.1µF 0.01 µF plification - d 567000 ator 400 Df = 1% Ame 40 Oscill 100 (see Note A) Voltag 30 CT= 1µF 20 40 10 10 0 1 k 4 k 10 k 40 k 100 k 400 k 1 M 1 10 100 1 k 10 k 100 k 1 M RT- Timing Resistance - W f - Frequency - Hz Frequencyvariation(Δf)isthechangeinoscillatorfrequencythat occursoverthefulltemperaturerange. Figure1.OscillatorFrequencyandFrequencyVariation Figure2.AmplifierVoltageAmplification vsTimingResistance vsFrequency 6 SubmitDocumentationFeedback Copyright©1988–2016,TexasInstrumentsIncorporated ProductFolderLinks:TL594
TL594 www.ti.com SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 7 Parameter Measurement Information Amplifier UnderTest + VI FEEDBACK - + Vref - Other Amplifier Figure3. Amplifier-CharacteristicsTestCircuit VCC= 15V 12 150W 150W 2W 2W VCC 4 8 Test DTC C1 Output 1 Inputs 3 9 FEEDBACK E1 12 kW 6 TL594 11 RT C2 Output 2 5 10 CT E2 0.01 µF 1 IN+ 2 IN- Error 16 IN+ Amplifiers 15 IN- 13 OUTPUT REF 14 CTRL GND 50 kW 7 TEST CIRCUIT Voltage VCC at C1 0V Voltage VCC at C2 0V Voltage at CT ThresholdVoltage DTC Input 0V ThresholdVoltage Feedback Input 0.7V 0% Duty Cycle MAX 0% VOLTAGEWAVEFORMS Figure4. OperationalTestCircuitandWaveforms Copyright©1988–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:TL594
TL594 SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 www.ti.com Parameter Measurement Information (continued) 15V 68W tf tr Each Output 2W Circuit Output 90% 90% CL= 15 pF (includes probe and 10% 10% jig capacitance) TEST CIRCUIT OUTPUT-VOLTAGEWAVEFORM Figure5. Common-EmitterConfiguration 15V Each Output Circuit 90% 90% 10% 10% Output 68W CL= 15 pF 2W tr tf (includes probe and jig capacitance) TEST CIRCUIT OUTPUT-VOLTAGEWAVEFORM Figure6. Emitter-FollowerConfiguration 8 SubmitDocumentationFeedback Copyright©1988–2016,TexasInstrumentsIncorporated ProductFolderLinks:TL594
TL594 www.ti.com SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 8 Detailed Description 8.1 Overview The design of the TL594 not only incorporates the primary building blocks required to control a switching power supply, but also addresses many basic problems and reduces the amount of additional circuitry required in the total design. The TL594 is a fixed-frequency pulse-width-modulation (PWM) control circuit. Modulation of output pulses is accomplished by comparing the sawtooth waveform created by the internal oscillator on the timing capacitor (CT) to either of two control signals. The output stage is enabled during the time when the sawtooth voltage is greater than the voltage control signals. As the control signal increases, the time during which the sawtooth input is greater decreases; therefore, the output pulse duration decreases. A pulse-steering flip-flop alternatelydirectsthemodulatedpulsetoeachofthetwooutputtransistors. The error amplifiers have a common-mode voltage range of –0.3 V to V – 2 V. The DTC comparator has a CC fixed offset that provides approximately 5% dead time. The on-chip oscillator can be bypassed by terminating RT to the reference output and providing a sawtooth input to CT, or it can be used to drive the common circuitry in synchronous multiple-rail power supplies. For more information on the operation of the TL594, see Designing SwitchingVoltageRegulatorsWiththeTL494 (SLVA001). 8.2 Functional Block Diagram OUTPUT CTRL (see Function Table) 13 6 RT 5 Oscillator CT 8 1D C1 DTC 9 (cid:27)0.1 V Comparator E1 4 DTC C1 PWM 11 Error Amplifier 1 Comparator C2 IN+ 1 + 10 E2 IN(cid:237) 2 (cid:237)1 Pulse-Steering Flip-Flop 12 Error Amplifier 2 VCC 16 Undervoltage IN+ + Lockout IN(cid:237) 15 (cid:237)2 Control Reference Regulator 14 REF 3 7 FEEDBACK GND 0.7 mA Copyright © 2016, Texas Instruments Incorporated ForOUTPUTCTRLfunction,seeTable1. Copyright©1988–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:TL594
TL594 SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 www.ti.com 8.3 Feature Description 8.3.1 5-VReferenceRegulator The TL594 internal 5-V reference regulator output is the REF pin. In addition to providing a stable reference, it actsasapreregulatorandestablishesastablesupplyfromwhichtheoutput-controllogic,pulse-steeringflip-flop, oscillator, dead-time control comparator, and PWM comparator are powered. The regulator employs a band-gap circuit as its primary reference to maintain thermal stability of less than 100-mV variation over the operating free- air temperature range of 0°C to 70°C. Short-circuit protection is provided to protect the internal reference and preregulator; 10 mA of load current is available for additional bias circuits. The reference is internally programmed to an initial accuracy of ±1% and maintains a stability of less than 25-mV variation over an input voltage range of 7 V to 40 V. For input voltages less than 7 V, the regulator saturates within 1 V of the input and tracksit. 8.3.2 UndervoltageLockout The TL594 has circuitry to provide an undervoltage-lockout functionality. A minimum recommended V voltage CC of 7 V is recommended for operation, but if the V voltage drops below 6 V during operation, then the device CC shutsoff.SeeElectricalCharacteristicsforadditionalinformationregardingtheundervoltagelockoutcircuitry. 8.3.3 Oscillator The oscillator provides a positive sawtooth waveform to the dead-time and PWM comparators for comparison to thevariouscontrolsignals. The frequency of the oscillator is programmed by selecting timing components R and C . The oscillator charges T T the external timing capacitor, C , with a constant current, the value of which is determined by the external timing T resistor, R . This produces a linear-ramp voltage waveform. When the voltage across C reaches 3 V, the T T oscillator circuit discharges it, and the charging cycle is reinitiated. The charging current is determined by Equation1. 3V I = CHARGE R T (1) TheperiodofthesawtoothwaveformisEquation2. 3V´C T = T I CHARGE (2) ThefrequencyoftheoscillatorbecomesEquation3. 1 f = OSC R ´C T T (3) However, the oscillator frequency is equal to the output frequency only for single-ended applications. For push- pullapplications,theoutputfrequencyisone-halftheoscillatorfrequency. Single-endedapplicationsarecalculatedwithEquation4. 1 f = R ´C T T (4) Push-pullapplicationsarecalculatedwithEquation5. 1 f = 2R ´C T T (5) 10 SubmitDocumentationFeedback Copyright©1988–2016,TexasInstrumentsIncorporated ProductFolderLinks:TL594
TL594 www.ti.com SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 Feature Description (continued) 8.3.4 Dead-TimeControl The dead-time control input provides control of the minimum dead time (off time). The output of the comparator inhibits switching transistors Q1 and Q2 when the voltage at the input is greater than the ramp voltage of the oscillator. An internal offset of 110 mV ensures a minimum dead time of approximately 3% with the dead-time control input grounded. Applying a voltage to the dead-time control input can impose additional dead time. This providesalinearcontrolofthedeadtimefromitsminimumof3%to100%astheinputvoltageisvariedfrom0V to 3.3 V, respectively. With full-range control, the output can be controlled from external sources without disrupting the error amplifiers. The dead-time control input is a relatively high-impedance input (I < 10 µA) and I must be used where additional control of the output duty cycle is required. However, for proper control, the input mustbeterminated.Anopencircuitisanundefinedcondition. 8.3.5 Comparator The comparator is biased from the 5-V reference regulator. This provides isolation from the input supply for improved stability. The input of the comparator does not exhibit hysteresis, so protection against false triggering near the threshold must be provided. The comparator has a response time of 400 ns from either of the control- signal inputs to the output transistors, with only 100 mV of overdrive. This ensures positive control of the output withinone-halfcycleforoperationwithintherecommended300-kHzrange. 8.3.6 Pulse-WidthModulation(PWM) The comparator also provides modulation control of the output pulse width. For this, the ramp voltage across timing capacitor C is compared to the control signal present at the output of the error amplifiers. The timing T capacitor input incorporates a series diode that is omitted from the control signal input. This requires the control signal (error amplifier output) to be approximately 0.7 V greater than the voltage across C to inhibit the output T logic, and ensures maximum duty cycle operation without requiring the control voltage to sink to a true ground potential. The output pulse width varies from 97% of the period to 0 as the voltage present at the error amplifier outputvariesfrom0.5Vto3.5V,respectively. 8.3.7 ErrorAmplifiers Both high-gain error amplifiers receive their bias from the V supply rail. This permits a common-mode input I voltage range from –0.3 V to 2 V less than V. Both amplifiers behave characteristically of a single-ended single- I supply amplifier, in that each output is active high only. This allows each amplifier to pull up independently for a decreasing output pulse-width demand. With both outputs ORed together at the inverting input node of the PWM comparator, the amplifier demanding the minimum pulse out dominates. The amplifier outputs are biased low by acurrentsinktoprovidemaximumpulsewidthoutwhenbothamplifiersarebiasedoff. 8.3.8 Output-ControlInput The output-control input determines whether the output transistors operate in parallel or push-pull. This input is the supply source for the pulse-steering flip-flop. The output-control input is asynchronous and has direct control over the output, independent of the oscillator or pulse-steering flip-flop. The input condition is intended to be a fixed condition that is defined by the application. For parallel operation, the output-control input must be grounded. This disables the pulse-steering flip-flop and inhibits its outputs. In this mode, the pulses seen at the output of the dead-time control or PWM comparator are transmitted by both output transistors in parallel. For push-pulloperation,theoutput-controlinputmustbeconnectedtotheinternal5-Vreferenceregulator.Underthis condition,eachoftheoutputtransistorsisenabled,alternately,bythepulse-steeringflip-flop. 8.3.9 OutputTransistors Two output transistors are available on the TL594. Both transistors are configured as open collector/open emitter, and each is capable of sinking or sourcing up to 200 mA. The transistors have a saturation voltage of less than 1.3 V in the common-emitter configuration and less than 2.5 V in the emitter-follower configuration. The outputs are protected against excessive power dissipation to prevent damage, but do not employ sufficient currentlimitingtoallowthemtobeoperatedascurrent-sourceoutputs. Copyright©1988–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:TL594
TL594 SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 www.ti.com 8.4 Device Functional Modes When the OUTPUT CTRL pin is tied to ground, the TL594 is operating in single-ended or parallel mode. When theOUTPUTCTRLpinistiedtoV ,theTL594isoperatinginnormalpush-pulloperation(seeTable1). REF Table1.FunctionTable INPUT OUTPUTFUNCTION OUTPUTCTRL V =0 Single-endedorparalleloutput I V =V Normalpush-pulloperation I ref 12 SubmitDocumentationFeedback Copyright©1988–2016,TexasInstrumentsIncorporated ProductFolderLinks:TL594
TL594 www.ti.com SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 9.1 Application Information The TL594 device contains an adjustable oscillator, a dead-time control comparator, a pulse-steering flip flop, two error amplifiers, and a 5-V regulator. The TL594 device can be used for a wide variety of switching converter applications over a frequency range of 1 Hz to 300 kHz, where the oscillation frequency is set by the RT and CT values. For additional information regarding designing switching voltage regulators with the TL594, see DesigningSwitchingVoltageRegulatorsWiththeTL494. 9.2 Typical Application This design example uses the TL594 to create a 5-V, 10-A power supply. This application is from Designing SwitchingVoltageRegulatorsWiththeTL494. 140 (cid:29)H 30 (cid:13) 100 (cid:13) 5.1 k(cid:13) 1 k(cid:13) 4 k(cid:13) 270 (cid:13) 5.1 k(cid:13) TL594 1 nF 50 k(cid:13) 51 k(cid:13) 510 (cid:13) 9.1 k(cid:13) 5.1 k(cid:13) 5.1 k(cid:13) 1 k(cid:13) 2.5 (cid:29)F 0.1 (cid:13) Copyright © 2016, Texas Instruments Incorporated Figure7. 32-Vto5-V,10-APowerSupplyApplication Copyright©1988–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:TL594
TL594 SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 www.ti.com Typical Application (continued) 9.2.1 DesignRequirements • V =32V I • V =5V O • I =10A O • f =20-kHzswitchingfrequency OSC • V =20-mVpeak-to-peak(V ) R RIPPLE • ΔI =1.5-Ainductorcurrentchange L 9.2.2 DetailedDesignProcedure 9.2.2.1 InputPowerSource The 32-V dc power source for this supply uses a 120-V input, 24-V output transformer rated at 75 VA. The 24-V secondary winding feeds a full-wave bridge rectifier, followed by a current-limiting resistor (0.3 Ω) and two filter capacitors(seeFigure8). Bridge Rectifier 0.3 (cid:13) 3 A/50 V +32 V + 20 mF+ 20 mF 24V 120 VAC 3 A Figure8. InputPowerSource TheoutputvoltageandcurrentaredeterminedbyEquation6 andEquation7. V = V ´ 2 =24V´ 2=34V RECTIFIER SECONDARY (6) V 5V I » O ´I » ´10A=1.6A RECTIFIER(AVG) O V 32V I (7) The 3-A, 50-V full-wave bridge rectifier meets these calculated conditions. Figure 7 shows the switching and controlsections. 9.2.2.2 ControlCircuits 9.2.2.2.1 Oscillator Connecting an external capacitor and resistor to pins 5 and 6 controls the TL594 oscillator frequency. The oscillatorissettooperateat20kHz,usingthecomponentvaluescalculatedbyEquation8 andEquation9. 1 f = OSC R ´C T T (8) ChooseC =0.001µFandcalculateR withEquation9. T T R (cid:3) 1 (cid:3) 1 (cid:3)50 k(cid:1) T f (cid:1)C (20(cid:1)103)(cid:1)(0.001(cid:1)10(cid:2)6) OSC T (9) 9.2.2.2.2 ErrorAmplifier The error amplifier compares a sample of the 5-V output to the reference and adjusts the PWM to maintain a constantoutputcurrent(seeFigure9). 14 SubmitDocumentationFeedback Copyright©1988–2016,TexasInstrumentsIncorporated ProductFolderLinks:TL594
TL594 www.ti.com SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 Typical Application (continued) k(cid:13) k(cid:13) (cid:13) TL594 k(cid:13) k(cid:13) TL594 k(cid:13) Figure9. Error-AmplifierSection The TL594 internal 5-V reference is divided to 2.5 V by R3 and R4. The output-voltage error signal also is dividedto2.5VbyR8andR9.Iftheoutputmustberegulatedtoexactly5V,a10-kΩ potentiometercanbeused inplaceofR8toprovideanadjustment. To increase the stability of the error-amplifier circuit, the output of the error amplifier is fed back to the inverting inputthroughR ,reducingthegainto101. T 9.2.2.2.3 Current-LimitingAmplifier The power supply was designed for a 10-A load current and an I swing of 1.5 A; therefore, the short-circuit L currentiscalculatedasEquation10. I I =I + L =10.75A SC O 2 (10) Figure10showsthecurrent-limitingcircuit. k(cid:13) k(cid:13) TL594 k(cid:13) TL594 Figure10. Current-LimitingCircuit Resistors R1 and R2 set the reference of about 1 V on the inverting input of the current-limiting amplifier. Resistor R13, in series with the load, applies 1 V to the noninverting terminal of the current-limiting amplifier when the load current reaches 10 A. The output-pulse width is reduced accordingly. The value of R13 is calculatedasEquation11. 1V R13= =0.1W 10A (11) 9.2.2.2.4 SoftStart To reduce stress on the switching transistors at start-up, the start-up surge that occurs as the output filter capacitorchargesmustbereduced.Theavailabilityofthedead-timecontrolmakesimplementationofasoft-start circuitrelativelysimple(seeFigure11). Copyright©1988–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:TL594
TL594 SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 www.ti.com Typical Application (continued) Figure11. Soft-StartCircuit The soft-start circuit allows the pulse width at the output to increase slowly (see Figure 11) by applying a negativeslopewaveformtothedead-timecontrolinput(pin4). Initially, capacitor C2 forces the dead-time control input to follow the 5-V regulator, which disables the outputs (100% dead time). As the capacitor charges through R6, the output pulse width slowly increases until the control loop takes command. With a resistor ratio of 1:10 for R6 and R7, the voltage at pin 4 after start-up is 0.1 × 5 V, or0.5V. The soft-start time generally is in the range of 25 to 100 clock cycles. If 50 clock cycles at a 20-kHz switching rateisselected,thesoft-starttimeiscalculatedasEquation12. 1 1 t = = =50msperclockcycle f 20kHz (12) ThevalueofthecapacitorthenisdeterminedwithEquation13. soft-starttime 50ms´50cycles C2= = =2.5mF R6 1kW (13) Thishelpseliminateanyfalsesignalsthatmightbecreatedbythecontrolcircuitaspowerisapplied. 9.2.2.2.5 SettingtheDeadTime The primary function of the dead-time control is to control the minimum off time of the output of the TL594 device. The dead-time control input provides control from 5% to 100% dead time. The TL594 device can be tailored to the specific power transistor switches that are used, to ensure that the output transistors never experienceacommonon-time.Figure12showsthebiascircuitforthebasicfunction. 16 SubmitDocumentationFeedback Copyright©1988–2016,TexasInstrumentsIncorporated ProductFolderLinks:TL594
TL594 www.ti.com SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 Typical Application (continued) V REF R1 T = RC(0.05 + 0.35R2) D T T R2 in kW Dead-Time Control In R1 + R2 = 5 kW R2 Figure12. SettingDeadTime 9.2.2.3 InductorCalculations Figure13showstheswitchingcircuitused. L S1 C1 VI D1 R1 VO Figure13. SwitchingCircuit Thesizeoftheinductor(L)requiredis: d = dutycycle=V /V =5V/32V=0.156 O I f = 20kHz(designobjective) t = timeon(S1closed)=(1/f)×d=7.8µs on t = timeoff(S1open)=(1/f)–ton=42.2µs off L ≉ (V –V )×t /ΔI I O on L ≉ [(32V–5V)×7.8µs]/1.5A ≉ 140.4µH 9.2.2.4 OutputCapacitanceCalculations Once the filter inductor has been calculated, the value of the output filter capacitor is calculated to meet the output ripple requirements. An electrolytic capacitor can be modeled as a series connection of an inductance, a resistance, and a capacitance. To provide good filtering, the ripple frequency must be far below the frequencies at which the series inductance becomes important. So, the two components of interest are the capacitance and the effective series resistance (ESR). The maximum ESR is calculated with Equation 14 according to the relation betweenthespecifiedpeak-to-peakripplevoltageandthepeak-to-peakripplecurrent. ESR(max)= DVO(ripple) = V »0.067W DI 1.5A L (14) The minimum capacitance of C3 necessary to maintain the V ripple voltage at less than the 100-mV design O objectiveiscalculatedaccordingtoEquation15. DI 1.5A C3= L = =94mF 8fDVO 8´20´103´0.1V (15) A 220-mF, 60-V capacitor is selected because it has a maximum ESR of 0.074 Ω and a maximum ripple current of2.8A. Copyright©1988–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:TL594
TL594 SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 www.ti.com 9.2.2.5 TransistorPower-SwitchCalculations The transistor power switch was constructed with an NTE153 pnp drive transistor and an NTE331 npn output transistor. These two power devices were connected in a pnp hybrid Darlington circuit configuration (see Figure14). (cid:13) (cid:13) (cid:13) TL594 Figure14. Power-SwitchSection The hybrid Darlington circuit must be saturated at a maximum output current of I + ΔI /2 or 10.8 A. The O L Darlington h at 10.8 A must be high enough not to exceed the 250-mA maximum output collector current of the FE TL594. Based on published NTE153 and NTE331 specifications, the required power-switch minimum drive was calculatedbyEquation16throughEquation18 tobe144mA. h (Q1)atI of3A =15 FE C (16) h (Q2)atI of10.0A =5 FE C (17) I I + L O i ³ 2 ³144mA B h (Q2)´h (Q1) FE FE (18) ThevalueofR10wascalculatedbyEquation19. V -[V (Q1)+V (TL494)] 32-(1.5+0.7) R10£ I BE CE = i 0.144 B R10£207W (19) Based on these calculations, the nearest standard resistor value of 220 Ω was selected for R10. Resistors R11 andR12permitthedischargeofcarriersinswitchingtransistorswhentheyareturnedoff. The power supply described demonstrates the flexibility of the TL594 PWM control circuit. This power-supply design demonstrates many of the power-supply control methods provided by the TL594, as well as the versatility ofthecontrolcircuit. 18 SubmitDocumentationFeedback Copyright©1988–2016,TexasInstrumentsIncorporated ProductFolderLinks:TL594
TL594 www.ti.com SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 9.2.3 ApplicationCurve 6 (V) 5 − e g a olt 4 V e c en 3 r e ef R 2 − F E R V 1 0 0 1 2 3 4 5 6 7 VI−Input Voltage−(V) Figure15.ReferenceVoltagevsInputVoltage 10 Power Supply Recommendations The TL594 is designed to operate from an input voltage supply range between 7 V and 40 V. This input supply must be well regulated. If the input supply is placed more than a few inches from the device, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. A tantalum capacitor with a value of 47µFisatypicalchoice;howeverthismayvarydependingupontheoutputpowerbeingdelivered. 11 Layout 11.1 Layout Guidelines Always try to use a low EMI inductor with a ferrite type closed core. Some examples would be toroid and encased E core inductors. Open core can be used if they have low EMI characteristics and are placed a bit more away from the low power traces and components. Make the poles perpendicular to the PCB as well if using an opencore.Stickcoresusuallyemitthemostunwantednoise. 11.1.1 FeedbackTraces Try to run the feedback trace as far from the inductor and noisy power traces as possible. The feedback trace must be as direct as possible and wider to decrease impedance. These two sometimes involve a trade-off, but keepingitawayfrominductorEMIandothernoisesourcesisthemorecriticalofthetwo.Runthefeedbacktrace onthesideofthePCBoppositeoftheinductor,ideallywithagroundplaneseparatingthetwo. 11.1.2 InputorOutputCapacitors When using a low value ceramic input filter capacitor, it must be placed as close to the VCC pin of the IC as possible. This eliminates as much trace inductance effects as possible and give the internal IC rail a cleaner voltage supply. Some designs require the use of a feed-forward capacitor connected from the output to the feedback pin as well, usually for stability reasons. In this case it must also be positioned as close to the IC as possible.Usingsurfacemountcapacitorsalsoreducesleadlengthandreducesthechanceofnoisecouplinginto theeffectiveantennacreatedbythrough-holecomponents. 11.1.3 CompensationComponents External compensation components for stability must also be placed close to the IC. Surface mount components are recommended here as well for the same reasons discussed for the filter capacitors. These must not be placedveryclosetotheinductoreither. Copyright©1988–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:TL594
TL594 SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 www.ti.com Layout Guidelines (continued) 11.1.4 TracesandGroundPlanes Make all of the power (high current) traces as short and direct as possible, while trying to maximize trace width for the appropriate current carrying capability. It is good practice on a standard PCB board to make the traces an absolute minimum of 15 mils (0.381 mm) per Ampere. The inductor, output capacitors, and output diode must be as close to each other possible. This helps reduce the EMI radiated by the power traces due to the high switchingcurrentsthroughthem.Thisalsoreducesleadinductanceandresistanceaswell,whichinturnreduces noisespikes,ringing,andresistivelossesthatproducevoltageerrors. The grounds of the IC, input capacitors, output capacitors, and output diode (if applicable) must be connected close together directly to a ground plane. It would also be a good idea to have a ground plane on both sides of the PCB. This reduces noise as well by reducing ground loop errors as well as by absorbing more of the EMI radiated by the inductor. For multi-layer boards with more than two layers, a ground plane can be used to separate the power plane (where the power traces and components are) and the signal plane (where the feedbackandcompensationandcomponentsare)forimprovedperformance. On multi-layer boards the use of vias are required to connect traces and different planes. It is good practice to use one standard via per 200 mA of current if the trace requires conduct to a significant amount of current from one plane to the other. Arrange the components so that the switching current loops curl in the same direction. Due to the way switching regulators operate, there are two power states. One state when the switch is on and one when the switch is off. During each state there is a current loop made by the power components that are currently conducting. Place the power components so that during each of the two states the current loop is conducting in the same direction. This prevents magnetic field reversal caused by the traces between the two half-cyclesandreducesradiatedEMI. 11.2 Layout Example - - TL594 Copyright © 2016, Texas Instruments Incorporated Figure16. TL594LayoutExample 20 SubmitDocumentationFeedback Copyright©1988–2016,TexasInstrumentsIncorporated ProductFolderLinks:TL594
TL594 www.ti.com SLVS052I–APRIL1988–REVISEDSEPTEMBER2016 12 Device and Documentation Support 12.1 Documentation Support 12.1.1 RelatedDocumentation Forrelateddocumentationseethefollowing: DesigningSwitchingVoltageRegulatorsWiththeTL494 (SLVA001) 12.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed.Forchangedetails,reviewtherevisionhistoryincludedinanyreviseddocument. 12.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 12.4 Trademarks E2EisatrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 12.5 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 12.6 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©1988–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:TL594
PACKAGE OPTION ADDENDUM www.ti.com 24-Aug-2018 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TL594CD ACTIVE SOIC D 16 40 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL594C & no Sb/Br) TL594CDR ACTIVE SOIC D 16 2500 Green (RoHS CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 TL594C & no Sb/Br) TL594CDRG4 ACTIVE SOIC D 16 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL594C & no Sb/Br) TL594CN ACTIVE PDIP N 16 25 Green (RoHS CU NIPDAU N / A for Pkg Type 0 to 70 TL594CN & no Sb/Br) TL594CNE4 ACTIVE PDIP N 16 25 Green (RoHS CU NIPDAU N / A for Pkg Type 0 to 70 TL594CN & no Sb/Br) TL594CNSR ACTIVE SO NS 16 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL594 & no Sb/Br) TL594CPW ACTIVE TSSOP PW 16 90 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 T594 & no Sb/Br) TL594CPWR ACTIVE TSSOP PW 16 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 T594 & no Sb/Br) TL594CPWRG4 ACTIVE TSSOP PW 16 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM 0 to 70 T594 & no Sb/Br) TL594ID ACTIVE SOIC D 16 40 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL594I & no Sb/Br) TL594IDG4 ACTIVE SOIC D 16 40 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL594I & no Sb/Br) TL594IDR ACTIVE SOIC D 16 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL594I & no Sb/Br) TL594IDRG4 ACTIVE SOIC D 16 2500 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL594I & no Sb/Br) TL594IN ACTIVE PDIP N 16 25 Green (RoHS CU NIPDAU N / A for Pkg Type -40 to 85 TL594IN & no Sb/Br) TL594INE4 ACTIVE PDIP N 16 25 Green (RoHS CU NIPDAU N / A for Pkg Type -40 to 85 TL594IN & no Sb/Br) TL594INSR ACTIVE SO NS 16 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL594I & no Sb/Br) TL594INSRG4 ACTIVE SO NS 16 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL594I & no Sb/Br) Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 24-Aug-2018 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) TL594IPWR ACTIVE TSSOP PW 16 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 85 Z594 & no Sb/Br) TL594IPWRG4 ACTIVE TSSOP PW 16 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 85 Z594 & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 21-Jan-2015 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) TL594CDR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 TL594CDRG4 SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 TL594CPWR TSSOP PW 16 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 TL594IDR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 TL594IPWR TSSOP PW 16 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 21-Jan-2015 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) TL594CDR SOIC D 16 2500 333.2 345.9 28.6 TL594CDRG4 SOIC D 16 2500 333.2 345.9 28.6 TL594CPWR TSSOP PW 16 2000 367.0 367.0 35.0 TL594IDR SOIC D 16 2500 333.2 345.9 28.6 TL594IPWR TSSOP PW 16 2000 367.0 367.0 35.0 PackMaterials-Page2
None
None
PACKAGE OUTLINE PW0016A TSSOP - 1.2 mm max height SCALE 2.500 SMALL OUTLINE PACKAGE SEATING PLANE C 6.6 TYP 6.2 A 0.1 C PIN 1 INDEX AREA 14X 0.65 16 1 2X 5.1 4.55 4.9 NOTE 3 8 9 0.30 B 4.5 16X 0.19 1.2 MAX 4.3 0.1 C A B NOTE 4 (0.15) TYP SEE DETAIL A 0.25 GAGE PLANE 0.15 0.05 0.75 0.50 0 -8 DETA 20AIL A TYPICAL 4220204/A 02/2017 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. 5. Reference JEDEC registration MO-153. www.ti.com
EXAMPLE BOARD LAYOUT PW0016A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 16X (1.5) SYMM (R0.05) TYP 1 16X (0.45) 16 SYMM 14X (0.65) 8 9 (5.8) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE: 10X SOLDER MASK METAL UNDER SOLDER MASK OPENING METAL SOLDER MASK OPENING EXPOSED METAL EXPOSED METAL 0.05 MAX 0.05 MIN ALL AROUND ALL AROUND NON-SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDE15.000R MASK DETAILS 4220204/A 02/2017 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN PW0016A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 16X (1.5) SYMM (R0.05) TYP 1 16X (0.45) 16 SYMM 14X (0.65) 8 9 (5.8) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE: 10X 4220204/A 02/2017 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com
None
None
IMPORTANTNOTICEANDDISCLAIMER TIPROVIDESTECHNICALANDRELIABILITYDATA(INCLUDINGDATASHEETS),DESIGNRESOURCES(INCLUDINGREFERENCE DESIGNS),APPLICATIONOROTHERDESIGNADVICE,WEBTOOLS,SAFETYINFORMATION,ANDOTHERRESOURCES“ASIS” ANDWITHALLFAULTS,ANDDISCLAIMSALLWARRANTIES,EXPRESSANDIMPLIED,INCLUDINGWITHOUTLIMITATIONANY IMPLIEDWARRANTIESOFMERCHANTABILITY,FITNESSFORAPARTICULARPURPOSEORNON-INFRINGEMENTOFTHIRD PARTYINTELLECTUALPROPERTYRIGHTS. TheseresourcesareintendedforskilleddevelopersdesigningwithTIproducts.Youaresolelyresponsiblefor(1)selectingtheappropriate TIproductsforyourapplication,(2)designing,validatingandtestingyourapplication,and(3)ensuringyourapplicationmeetsapplicable standards,andanyothersafety,security,orotherrequirements.Theseresourcesaresubjecttochangewithoutnotice.TIgrantsyou permissiontousetheseresourcesonlyfordevelopmentofanapplicationthatusestheTIproductsdescribedintheresource.Other reproductionanddisplayoftheseresourcesisprohibited.NolicenseisgrantedtoanyotherTIintellectualpropertyrightortoanythird partyintellectualpropertyright.TIdisclaimsresponsibilityfor,andyouwillfullyindemnifyTIanditsrepresentativesagainst,anyclaims, damages,costs,losses,andliabilitiesarisingoutofyouruseoftheseresources. TI’sproductsareprovidedsubjecttoTI’sTermsofSale(www.ti.com/legal/termsofsale.html)orotherapplicabletermsavailableeitheron ti.comorprovidedinconjunctionwithsuchTIproducts.TI’sprovisionoftheseresourcesdoesnotexpandorotherwisealterTI’sapplicable warrantiesorwarrantydisclaimersforTIproducts. MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265 Copyright©2019,TexasInstrumentsIncorporated