图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: THS4521IDGKR
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

THS4521IDGKR产品简介:

ICGOO电子元器件商城为您提供THS4521IDGKR由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 THS4521IDGKR价格参考。Texas InstrumentsTHS4521IDGKR封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 差分 放大器 1 电路 差分,满摆幅 8-VSSOP。您可以下载THS4521IDGKR参考资料、Datasheet数据手册功能说明书,资料中有THS4521IDGKR 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

145MHz

产品目录

集成电路 (IC)半导体

描述

IC OPAMP DIFF 95MHZ RRO 8VSSOP差分放大器 Very low pwr R-R out put fully Diff amp

DevelopmentKit

THS4521EVM

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Texas Instruments

产品手册

http://www.ti.com/litv/sbos458f

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,差分放大器,Texas Instruments THS4521IDGKR-

数据手册

点击此处下载产品Datasheethttp://www.ti.com/lit/pdf/slyb174

产品型号

THS4521IDGKR

产品种类

差分放大器

供应商器件封装

8-VSSOP

共模抑制比—最小值

80 dB

其它名称

296-35973-1

制造商产品页

http://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&orderablePartNumber=THS4521IDGKR

包装

剪切带 (CT)

单位重量

26.500 mg

压摆率

600 V/µs

可用增益调整

0.99 V/V

商标

Texas Instruments

增益带宽生成

95 MHz

增益带宽积

95MHz

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

8-TSSOP,8-MSOP(0.118",3.00mm 宽)

封装/箱体

VSSOP-8

工作温度

-40°C ~ 85°C

工作电源电压

5 V

工厂包装数量

2500

带宽

145 MHz

放大器类型

差分

最大双重电源电压

+/- 2.75 V

最大工作温度

+ 85 C

最小工作温度

- 40 C

标准包装

1

电压-电源,单/双 (±)

2.5 V ~ 5.5 V, ±1.25 V ~ 2.75 V

电压-输入失调

240µV

电流-电源

1.14mA

电流-输入偏置

700nA

电流-输出/通道

55mA

电源电流

1.14 mA

电路数

1

系列

THS4521

视频文件

http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=455&videoID=34936221001

输入补偿电压

2 mV

输出类型

差分,满摆幅

通道数量

1 Channel

推荐商品

型号:OPA548T-1

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LM258DRG3

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LMH6624MAX

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MAX4492ASD+

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:AD8277ARZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:OP270FZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:AD524BDZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:LTC6081HMS8#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
THS4521IDGKR 相关产品

TLC2262QDG4

品牌:Texas Instruments

价格:

TLC084AIPWP

品牌:Texas Instruments

价格:¥9.24-¥18.85

AD8639ARZ-REEL

品牌:Analog Devices Inc.

价格:

THS3122ID

品牌:Texas Instruments

价格:¥40.33-¥74.55

LTC2057HVHMS#TRPBF

品牌:Linear Technology/Analog Devices

价格:

TLC2274CN

品牌:Texas Instruments

价格:¥6.95-¥15.64

LTC6240CS8#TRPBF

品牌:Linear Technology/Analog Devices

价格:

LMP2021MAX/NOPB

品牌:Texas Instruments

价格:¥8.24-¥16.82

PDF Datasheet 数据手册内容提取

Product Sample & Technical Tools & Support & Folder Buy Documents Software Community THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 THS452x Very Low Power, Negative Rail Input, Rail-To-Rail Output, Fully Differential Amplifier 1 Features 3 Description • FullyDifferentialArchitecture The THS4521, THS4522, and THS4524 family of 1 devices are very low-power, fully differential • Bandwidth:145MHz(A =1V/V) V amplifiers with rail-to-rail output and an input • SlewRate:490V/μs common-mode range that includes the negative rail. • HD :–133dBcat10kHz(1V ,R =1kΩ) These amplifiers are designed for low-power data 2 RMS L acquisition systems and high-density applications • HD :–141dBcat10kHz(1V ,R =1kΩ) 3 RMS L where power dissipation is a critical parameter, and • InputVoltageNoise:4.6nV/√Hz(f=100kHz) provide exceptional performance in audio • THD+N:–112dBc(0.00025%)at1kHz(22-kHz applications. BW,G=1,5V ) PP The family includes single FDA (THS4521), dual FDA • Open-LoopGain:119dB(DC) (THS4522),andquadFDA(THS4524)versions. • NRI—NegativeRailInput DeviceInformation(1) • RRO—Rail-to-RailOutput PARTNUMBER PACKAGE BODYSIZE(NOM) • OutputCommon-ModeControl(withLowOffset) SOIC(8) 4.90mm×3.91mm • PowerSupply: THS4521 VSSOP(8) 3.00mm×3.00mm – Voltage:+2.5V(±1.25V)to+5.5V(±2.75V) THS4522 TSSOP(16) 5.00mm×4.40mm – Current:1.14mA/ch THS4524 TSSOP(38) 9.70mm×4.40mm • Power-DownCapability:20μA(typical) (1) Forallavailablepackages,seethepackageoptionaddendum attheendofthedatasheet. 2 Applications • Low-PowerSARandΔΣ ADCDrivers • Low-PowerDifferentialDrivers • Low-PowerDifferentialSignalConditioning • Low-Power,High-PerformanceDifferentialAudio Amplifiers THS4521andADS1278CombinedPerformance 1 kΩ 1-kHz FFT 0 1.5 nF G = 1 -20 RF= RG= 1 kΩ 5 V C = 1.5 nF F -40 V = 5 V 1 kΩ 49.9Ω BFS) -60 LoSad = 2.2 nF VVIINN+- 1 kΩ THS4521 49.9Ω 2.2 nF ADAASIINN1NP27118(CVHCO 1M) Magnitude (d -1-0800 VOCM -120 x1 0.1μF 0.1μF -140 1/2 OPA2350 -160 1.5 nF 0 4 8 12 16 20 24 26 Frequency (kHz) 1 kΩ Tone Signal SINAD SFDR (Hz) (dBFS) SNR (dBc) THD (dBc) (dBc) (dBc) 1 k -0.50 109.1 -107.9 105.5 113.7 Formoreinformationonthiscircuit,viewSBAU197. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com Table of Contents 1 Features.................................................................. 1 8.3 FeatureDescription.................................................25 2 Applications........................................................... 1 8.4 DeviceFunctionalModes........................................34 3 Description............................................................. 1 8.5 Programming...........................................................40 4 RevisionHistory..................................................... 2 9 ApplicationandImplementation........................ 41 9.1 ApplicationInformation............................................41 5 DeviceComparisonTable..................................... 3 9.2 TypicalApplications ...............................................41 6 PinConfigurationandFunctions......................... 4 10 PowerSupplyRecommendations..................... 51 7 Specifications......................................................... 7 11 Layout................................................................... 51 7.1 AbsoluteMaximumRatings......................................7 11.1 LayoutGuidelines.................................................51 7.2 ESDRatings ............................................................7 11.2 LayoutExample....................................................52 7.3 RecommendedOperatingConditions.......................7 12 DeviceandDocumentationSupport................. 53 7.4 ThermalInformation..................................................7 7.5 ElectricalCharacteristics:V –V =3.3V............8 12.1 DeviceSupport......................................................53 S+ S– 7.6 ElectricalCharacteristics:V –V =5V.............10 12.2 RelatedLinks........................................................53 S+ S– 7.7 TypicalCharacteristics............................................12 12.3 CommunityResources..........................................53 7.8 TypicalCharacteristics:V –V =3.3V..............14 12.4 Trademarks...........................................................53 S+ S– 7.9 TypicalCharacteristics:5V....................................19 12.5 ElectrostaticDischargeCaution............................53 12.6 Glossary................................................................53 8 DetailedDescription............................................ 24 13 Mechanical,Packaging,andOrderable 8.1 Overview.................................................................24 Information........................................................... 53 8.2 FunctionalBlockDiagram.......................................25 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionG(December2014)toRevisionH Page • ChangedcapacitorunitsinfrontpagediagramfrommFtoµF(typo)................................................................................... 1 • ChangedRFandRGunitinfrontpageFFTplotfromkWtokΩ(typo)................................................................................. 1 • ChangedAbsoluteMaximumRatingsminimumstoragetemperaturevaluefrom65to–65(typo) ..................................... 7 • AddedCommunityResourcessection................................................................................................................................. 53 ChangesfromRevisionF(September2011)toRevisionG Page • AddedPinConfigurationandFunctionssection,ESDRatingstable,FeatureDescriptionsection,DeviceFunctional Modes,ApplicationandImplementationsection,PowerSupplyRecommendationssection,Layoutsection,Device andDocumentationSupportsection,andMechanical,Packaging,andOrderableInformationsection .............................. 1 ChangesfromRevisionE(December2010)toRevisionF Page • ChangedInputOffsetCurrentvaluesin3.3VElectricalCharacteristics............................................................................... 8 • ChangedInputOffsetCurrentDriftvaluesin3.3VElectricalCharacteristics....................................................................... 8 • ChangedInputOffsetCurrentvaluesin5VElectricalCharacteristics................................................................................ 11 • ChangedInputOffsetCurrentDriftvaluesin5VElectricalCharacteristics........................................................................ 11 • ChangedR41andR42inFigure79..................................................................................................................................... 42 ChangesfromRevisionD(August2010)toRevisionE Page • Changedtestlevelindicationfor5-VinputoffsetvoltagedriftfromBtoC.......................................................................... 10 2 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 5 Device Comparison Table These fully differential amplifiers feature accurate output common-mode control that allows for dc-coupling when driving analog-to-digital converters (ADCs). This control, coupled with an input common-mode range below the negative rail as well as rail-to-rail output, allows for easy interfacing between single-ended, ground-referenced signal sources. Additionally, these devices are ideally suited for driving both successive-approximation register (SAR)anddelta-sigma(ΔΣ)ADCsusingonlyasingle+2.5Vto+5Vandgroundpowersupply. The THS4521, THS4522, and THS4524 family of fully differential amplifiers is characterized for operation over the full industrial temperature range from –40°C to +85°C. Table 1 shows a comparison of the THS4521 device tosimilarTIdevices. Table1.THS4521DeviceComparison BW I THD(dBc) V DUALPART Q N DEVICE (MHz) (mA) AT100kHz (nV/√Hz) RAIL-TO-RAIL NUMBERS THS4531 36 0.25 –104 10.0 NegIn,Out — THS4521 145 0.95 –102 4.6 NegIn,Out THS4522 THS4520 620 14.2 –107 2.0 Out — THS4541 850 10.1 –137 2.2 NegIn,Out — Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com 6 Pin Configuration and Functions THS4521DandDGKPackage 8-PinSOICandVSSOP THS4524DBTPackage TopView 38-PinTSSOP TopView V 1 8 V IN- IN+ PD1 1 38 VS- V 2 7 PD OCM VIN1+ 2 37 VOUT1- V 3 6 V S+ S- VIN1- 3 36 VOUT1+ V 4 5 V OUT+ OUT- VOCM1 4 35 VS1+ VS- 5 34 VS- THS4522PWPackage PD2 6 33 VS- 16-PinTSSOP TopView VIN2+ 7 32 VOUT2- VIN2- 8 31 VOUT2+ PD1 1 16 VS- VOCM2 9 30 VS2+ VIN1+ 2 15 VOUT1- VS- 10 29 VS- VIN1- 3 14 VOUT1+ PD3 11 28 VS- VOCM1 4 13 VS1+ VIN3+ 12 27 VOUT3- PD2 5 12 VS- VIN3- 13 26 VOUT3+ VIN2+ 6 11 VOUT2- VOCM3 14 25 VS3+ VIN2- 7 10 VOUT2+ VS- 15 24 VS- VOCM2 8 9 VS2+ PD4 16 23 VS- VIN4+ 17 22 VOUT4- VIN4- 18 21 VOUT4+ VOCM4 19 20 VS4+ PinFunctions:THS4521 PIN DESCRIPTION NAME NO. V 1 Invertingamplifierinput IN– V 2 Common-modevoltageinput OCM V 3 Amplifierpositivepower-supplyinput S+ V 4 Noninvertingamplifieroutput OUT+ V 5 Invertingamplifieroutput OUT– V 6 Amplifiernegativepower-supplyinput.NotethatV istiedtogetheronmulti-channeldevices. S– S– PD 7 Powerdown.PD=logiclowputsdeviceintolow-powermode.PD=logichighoropenfornormaloperation. V 8 Noninvertingamplifierinput IN+ 4 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 PinFunctions:THS4522 PIN DESCRIPTION NAME NO. PD 1 Powerdown1.PD=logiclowputsdeviceintolow-powermode.PD=logichighoropenfornormaloperation. 1 V 2 Noninvertingamplifier1input IN1+ V 3 Invertingamplifier1input IN1– V 4 Common-modevoltageinput1 OCM1 PD 5 Powerdown2.PD=logiclowputsdeviceintolow-powermode.PD=logichighoropenfornormaloperation. 2 V 6 Noninvertingamplifier2input IN2+ V 7 Invertingamplifier2input IN2– V 8 Common-modevoltageinput2 OCM2 V 9 Amplifier2positivepower-supplyinput S+2 V 10 Noninvertingamplifier2output OUT2+ V 11 Invertingamplifier2output OUT2– V 12 Negativepower-supplyinput.NotethatV istiedtogetheronmulti-channeldevices. S– S– V 13 Amplifier1positivepower-supplyinput S+1 V 14 Noninvertingamplifier1output OUT1+ V 15 Invertingamplifier1output OUT1– V 16 Negativepower-supplyinput.NotethatV istiedtogetheronmulti-channeldevices. S– S– Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com PinFunctions:THS4524 PIN DESCRIPTION NAME NO. PD 1 Powerdown1.PD=logiclowputschannelintolow-powermode.PD=logichighoropenfornormaloperation. 1 V 2 Noninvertingamplifier1input IN1+ V 3 Invertingamplifier1input IN1– V 4 Common-modevoltageinput1 OCM1 V 5 Negativepower-supplyinput.NotethatV istiedtogetheronmulti-channeldevices. S– S– PD 6 Powerdown2.PD=logiclowputschannelintolow-powermode.PD=logichighoropenfornormaloperation. 2 V 7 Noninvertingamplifier2input IN2+ V 8 Invertingamplifier2input IN2– V 9 Common-modevoltageinput2 OCM2 V 10 Negativepower-supplyinput.NotethatV istiedtogetheronmulti-channeldevices. S– S– PD 11 Powerdown3.PD=logiclowputschannelintolow-powermode.PD=logichighoropenfornormaloperation. 3 V 12 Noninvertingamplifier3input IN3+ V 13 Invertingamplifier3input IN3– V 14 Common-modevoltageinput3 OCM3 V 15 Negativepower-supplyinput.NotethatV istiedtogetheronmulti-channeldevices. S– S– PD 16 Powerdown4.PD=logiclowputschannelintolow-powermode.PD=logichighoropenfornormaloperation. 4 V 17 Noninvertingamplifier4input IN4+ V 18 Invertingamplifier4input IN4– V 19 Common-modevoltageinput4 OCM4 V 20 Amplifier4positivepower-supplyinput S4+ V 21 Noninvertingamplifier4output OUT4+ V 22 Invertingamplifier4output OUT4– V 23 Negativepower-supplyinput.NotethatV istiedtogetheronmulti-channeldevices. S– S– V 24 Negativepower-supplyinput.NotethatV istiedtogetheronmulti-channeldevices. S– S– V 25 Amplifier3positivepower-supplyinput S3+ V 26 Noninvertingamplifier3output OUT3+ V 27 Invertingamplifier3output OUT3– V 28 Negativepower-supplyinput.NotethatV istiedtogetheronmulti-channeldevices. S– S– V 29 Negativepower-supplyinput.NotethatV istiedtogetheronmulti-channeldevices. S– S– V 30 Amplifier2positivepower-supplyinput S2+ V 31 Noninvertingamplifier2output OUT2+ V 32 Invertingamplifier2output OUT2– V 33 Negativepower-supplyinput.NotethatV istiedtogetheronmulti-channeldevices. S– S– V 34 Negativepower-supplyinput.NotethatV istiedtogetheronmulti-channeldevices. S– S– V 35 Amplifier1positivepower-supplyinput S1+ V 36 Noninvertingamplifier1output OUT1+ V 37 Invertingamplifier1output OUT1– V 38 Negativepower-supplyinput.NotethatV istiedtogetheronmulti-channeldevices. S– S– 6 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 7 Specifications 7.1 Absolute Maximum Ratings Overoperatingfree-airtemperaturerange(unlessotherwisenoted).(1) MIN MAX UNIT Supplyvoltage,VS–toVS+ 5.5 V Input/outputvoltage,VI(VIN±,VOUT±,VOCMpins) (VS–)–0.7 (VS+)+0.7 V Differentialinputvoltage,VID 1 V Outputcurrent,IO 100 mA Inputcurrent,II(VIN±,VOCMpins) 10 mA Continuouspowerdissipation SeeThermalInformationtable Maximumjunctiontemperature,TJ 150 °C Maximumjunctiontemperature,TJ(continuousoperation,long-termreliability) 125 °C Operatingfree-airtemperature,TA –40 85 °C Storagetemperature,Tstg –65 150 °C (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. 7.2 ESD Ratings VALUE UNIT Humanbodymodel(HBM),perANSI/ESDA/JEDECJS-001,allpins(1) ±1300 V Electrostatic Chargeddevicemodel(CDM),perJEDECspecificationJESD22-C101,allpins(2) ±1000 V (ESD) discharge Machinemodel(MM) ±50 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 7.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT V single-supplyvoltage 2.7 5.0 5.4 V S+ T Ambienttemperature –40 25 85 °C A 7.4 Thermal Information THS4521 THS4522 THS4524 THERMALMETRIC(1) D DGK PW DBT UNIT 8PINS 8PINS 16PINS 38PINS R Junction-to-ambientthermalresistance 127.8 193.8 124.2 106.2 θJA R Junction-to-case(top)thermalresistance 81.8 84.1 62.8 60.9 θJC(top) R Junction-to-boardthermalresistance 68.3 115.3 68.5 65.5 θJB °C/W ψ Junction-to-topcharacterizationparameter 32.2 17.9 15.8 18.5 JT ψ Junction-to-boardcharacterizationparameter 67.8 113.6 68 65.1 JB R Junction-to-case(bottom)thermalresistance N/A N/A N/A N/A θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheICPackageThermalMetricsapplicationreport,SPRA953. Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com 7.5 Electrical Characteristics: V – V = 3.3 V S+ S– AtV =3.3V,V =0V,V =open,V =2V (differential),R =1kΩdifferential,G=1V/V,single-endedinput, S+ S– OCM OUT PP L differentialoutput,andinputandoutputreferencedtomidsupply,unlessotherwisenoted. TEST PARAMETER TESTCONDITIONS LEVEL(1) MIN TYP MAX UNIT ACPERFORMANCE VOUT=100mVPP,G=1 C 135 MHz VOUT=100mVPP,G=2 C 49 MHz Small-signalbandwidth VOUT=100mVPP,G=5 C 18.6 MHz VOUT=100mVPP,G=10 C 9.3 MHz Gainbandwidthproduct VOUT=100mVPP,G=10 C 93 MHz Large-signalbandwidth VOUT=2VPP,G=1 C 95 MHz Bandwidthfor0.1-dBflatness VOUT=2VPP,G=1 C 20 MHz Risingslewrate(differential) VOUT=2-VStep,G=1,RL=200Ω C 420 V/μs Fallingslewrate(differential) VOUT=2-VStep,G=1,RL=200Ω C 460 V/μs Overshoot VOUT=2-VStep,G=1,RL=200Ω C 1.2% Undershoot VOUT=2-VStep,G=1,RL=200Ω C 2.1% Risetime VOUT=2-VStep,G=1,RL=200Ω C 4 ns Falltime VOUT=2-VStep,G=1,RL=200Ω C 3.5 ns Settlingtimeto1% VOUT=2-VStep,G=1,RL=200Ω C 13 ns HARMONICDISTORTION f=1MHz,VOUT=2VPP,G=1 C –85 dBc 2ndharmonic f=1kHz,VOUT=1VRMS,G=1(2), C –133 dBc differentialinput f=1MHz,VOUT=2VPP,G=1 C –90 dBc 3rdharmonic f=1kHz,VOUT=1VRMS,G=1(2), C –141 dBc differentialinput Second-orderintermodulationdistortion Two-tone,f1=2MHz,f2=2.2MHz, C –83 dBc VOUT=2-VPPenvelope Third-orderintermodulationdistortion Two-tone,f1=2MHz,f2=2.2MHz, C –90 dBc VOUT=2-VPPenvelope Inputvoltagenoise f>10kHz C 4.6 nV/√Hz Inputcurrentnoise f>100kHz C 0.6 pA/√Hz Overdriverecoverytime Overdrive=±0.5V C 80 ns Outputbalanceerror VOUT=100mV,f≤2MHz(differentialinput) C –57 dB Closed-loopoutputimpedance f=1MHz(differential) C 0.3 Ω Channel-to-channelcrosstalk(THS4522, f=10kHz,measureddifferentially C –125 dB THS4524) DCPERFORMANCE Open-loopvoltagegain(AOL) A 100 116 dB TA=+25°C A ±0.2 ±2 mV Input-referredoffsetvoltage TA=–40°Cto+85°C B ±0.5 ±3.5 mV Inputoffsetvoltagedrift(3) TA=–40°Cto+85°C C ±2 μV/°C Inputbiascurrent(4) TA=+25°C B 0.65 0.85 μA TA=–40°Cto+85°C B 0.75 0.95 μA Inputbiascurrentdrift(3) TA=–40°Cto+85°C B ±1.75 ±2 nA/°C TA=+25°C B ±30 ±180 nA Inputoffsetcurrent TA=–40°Cto+85°C B ±30 ±215 nA Inputoffsetcurrentdrift(3) TA=–40°Cto+85°C B ±100 ±600 pA/°C (1) Testlevels:(A)100%testedat25°C.Overtemperaturelimitssetbycharacterizationandsimulation.(B)Limitssetbycharacterization andsimulation.(C)Typicalvalueonlyforinformation. (2) Notdirectlymeasurable;calculatedusingnoisegainof101asdescribedintheApplicationssection,AudioPerformance. (3) Inputoffsetvoltagedrift,inputbiascurrentdrift,inputoffsetcurrentdrift,andV driftareaveragevaluescalculatedbytakingdataat OCM themaximum-rangeambient-temperatureendpoints,computingthedifference,anddividingbythetemperaturerange.Maximumdriftis setbythedistributionofalargesamplingofdevices.Driftisnotspecifiedbyatestoraqualityassurance(QA)sampletest. (4) Inputbiascurrentispositiveoutofthedevice. 8 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 Electrical Characteristics: V – V = 3.3 V (continued) S+ S– AtV =3.3V,V =0V,V =open,V =2V (differential),R =1kΩdifferential,G=1V/V,single-endedinput, S+ S– OCM OUT PP L differentialoutput,andinputandoutputreferencedtomidsupply,unlessotherwisenoted. TEST PARAMETER TESTCONDITIONS LEVEL(1) MIN TYP MAX UNIT INPUT TA=+25°C A –0.2 –0.1 V Common-modeinputvoltagelow TA=–40°Cto+85°C B –0.1 0 V TA=+25°C A 1.9 2 V Common-modeinputvoltagehigh TA=–40°Cto+85°C B 1.8 1.9 V Common-moderejectionratio(CMRR) A 80 100 dB Inputimpedance C 0.7pF kΩ∥pF OUTPUT TA=+25°C A 0.08 0.15 V Outputvoltagelow TA=–40°Cto+85°C B 0.09 0.2 V TA=+25°C A 3.0 3.1 V Outputvoltagehigh TA=–40°Cto+85°C B 2.95 3.05 V Outputcurrentdrive(forlinearoperation) RL=50Ω C ±35 mA POWERSUPPLY Specifiedoperatingvoltage B 2.5 3.3 5.5 V TA=+25°C A 0.9 1.0 1.2 mA Quiescentoperatingcurrent,perchannel TA=–40°Cto+85°C B 0.85 1.0 1.25 mA Power-supplyrejectionratio(±PSRR) A 80 100 dB POWERDOWN Enablevoltagethreshold Assuredonabove2.1V A 1.6 2.1 V Disablevoltagethreshold Assuredoffbelow0.7V A 0.7 1.6 V Disablepinbiascurrent C 1 μA Power-downquiescentcurrent C 10 μA Turn-ontimedelay TimetoVOUT=90%offinalvalue,VIN=2V, B 108 ns RL=200Ω Turn-offtimedelay TimetoVOUT=10%oforiginalvalue,VIN=2 B 88 ns V,RL=200Ω VOCMVOLTAGECONTROL Small-signalbandwidth C 23 MHz Slewrate C 55 V/μs Gain A 0.98 0.99 1.02 V/V Common-modeoffsetvoltagefromVOCMinput MVOeCaMsu=re1d.6a5tVVO±U0T.5wVithVOCMinputdriven, B ±2.5 ±4 mV Inputbiascurrent VOCM=1.65V±0.5V B ±5 ±8 μA VOCMvoltagerange A 1 0.8to2.5 2.3 V Inputimpedance C 72∥1.5 kΩ∥pF Defaultoutputcommon-modevoltageoffsetfrom (VS+–VS–)/2 MeasuredatVOUTwithVOCMinputopen A ±1.5 ±5 mV Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com 7.6 Electrical Characteristics: V – V = 5 V S+ S– AtV =5V,V =0V,V =open,V =2V (differential),R =1kΩ,R =1kΩdifferential,G=1V/V,single-ended S+ S– OCM OUT PP F L input,differentialoutput,inputandoutputreferencedtomidsupply,unlessotherwisenoted. TEST PARAMETER TESTCONDITIONS LEVEL(1) MIN TYP MAX UNIT ACPERFORMANCE VOUT=100mVPP,G=1 C 145 MHz VOUT=100mVPP,G=2 C 50 MHz Small-signalbandwidth VOUT=100mVPP,G=5 C 20 MHz VOUT=100mVPP,G=10 C 9.5 MHz Gainbandwidthproduct VOUT=100mVPP,G=10 C 95 MHz Large-signalbandwidth VOUT=2VPP,G=1 C 145 MHz Bandwidthfor0.1-dBflatness VOUT=2VPP,G=1 C 30 MHz Risingslewrate(differential) VOUT=2-VStep,G=1,RL=200Ω C 490 V/μs Fallingslewrate(differential) VOUT=2-VStep,G=1,RL=200Ω C 600 V/μs Overshoot VOUT=2-VStep,G=1,RL=200Ω C 1% Undershoot VOUT=2-VStep,G=1,RL=200Ω C 2.6% Risetime VOUT=2-VStep,G=1,RL=200Ω C 3.4 ns Falltime VOUT=2-VStep,G=1,RL=200Ω C 3 ns Settlingtimeto1% VOUT=2-VStep,G=1,RL=200Ω C 10 ns HARMONICDISTORTION f=1MHz,VOUT=2VPP,G=1 C –85 dBc 2ndharmonic f=1kHz,VOUT=1VRMS,G=1(2), C –133 dBc differentialinput f=1MHz,VOUT=2VPP,G=1 C –91 dBc 3rdharmonic f=1kHz,VOUT=1VRMS,G=1(2), C –141 dBc differentialinput Second-orderintermodulationdistortion Two-tone,f1=2MHz,f2=2.2MHz, C –86 dBc VOUT=2-VPPenvelope Third-orderintermodulationdistortion Two-tone,f1=2MHz,f2=2.2MHz, C –93 dBc VOUT=2-VPPenvelope Inputvoltagenoise f>10kHz C 4.6 nV/√Hz Inputcurrentnoise f>100kHz C 0.6 pA/√Hz SNR VOUT=5VPP,20Hzto22kHzBW, C 123 dBc differentialinput THD+N f=1kHz,VOUT=5VPP,20Hzto22kHz C 112 dBc BW,differentialinput Overdriverecoverytime Overdrive=±0.5V C 75 ns Outputbalanceerror VOUT=100mV,f<2MHz,VINdifferential C –57 dB Closed-loopoutputimpedance f=1MHz(differential) C 0.3 Ω Channel-to-channelcrosstalk(THS4522.THS4524) f=10kHz,measureddifferentially C –125 dB DCPERFORMANCE Open-loopvoltagegain(AOL) A 100 119 dB TA=+25°C A ±0.24 ±2 mV Input-referredoffsetvoltage TA=–40°Cto+85°C B ±0.5 ±3.5 mV Inputoffsetvoltagedrift(3) TA=–40°Cto+85°C C ±2 μV/°C Inputbiascurrent(4) TA=+25°C B 0.7 0.9 μA TA=–40°Cto+85°C B 0.9 1.1 μA Inputbiascurrentdrift(3) TA=–40°Cto+85°C B ±1.8 ±2.2 nA/°C (1) Testlevels:(A)100%testedat25°C.Overtemperaturelimitssetbycharacterizationandsimulation.(B)Limitssetbycharacterization andsimulation.(C)Typicalvalueonlyforinformation. (2) Notdirectlymeasurable;calculatedusingnoisegainof101asdescribedintheApplicationssection,AudioPerformance. (3) Inputoffsetvoltagedrift,inputbiascurrentdrift,inputoffsetcurrentdrift,andV driftareaveragevaluescalculatedbytakingdataat OCM themaximum-rangeambient-temperatureendpoints,computingthedifference,anddividingbythetemperaturerange.Maximumdriftis setbythedistributionofalargesamplingofdevices.Driftisnotspecifiedbyatestoraqualityassurance(QA)sampletest. (4) Inputbiascurrentispositiveoutofthedevice. 10 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 Electrical Characteristics: V – V = 5 V (continued) S+ S– AtV =5V,V =0V,V =open,V =2V (differential),R =1kΩ,R =1kΩdifferential,G=1V/V,single-ended S+ S– OCM OUT PP F L input,differentialoutput,inputandoutputreferencedtomidsupply,unlessotherwisenoted. TEST PARAMETER TESTCONDITIONS LEVEL(1) MIN TYP MAX UNIT TA=+25°C B ±30 ±180 nA Inputoffsetcurrent TA=–40°Cto+85°C B ±30 ±215 nA Inputoffsetcurrentdrift(3) TA=–40°Cto+85°C B ±100 ±600 pA/°C INPUT TA=+25°C A –0.2 –0.1 V Common-modeinputvoltagelow TA=–40°Cto+85°C B –0.1 0 V TA=+25°C A 3.6 3.7 V Common-modeinputvoltagehigh TA=–40°Cto+85°C B 3.5 3.6 V Common-moderejectionratio(CMRR) A 80 102 dB Inputimpedance C 100∥0.7 kΩ∥pF OUTPUT TA=+25°C A 0.10 0.15 V Outputvoltagelow TA=–40°Cto+85°C B 0.115 0.2 V TA=+25°C A 4.7 4.75 V Outputvoltagehigh TA=–40°Cto+85°C B 4.65 4.7 V Outputcurrentdrive(forlinearoperation) RL=50Ω C ±55 mA POWERSUPPLY Specifiedoperatingvoltage B 2.5 5.0 5.5 V TA=+25°C A 0.95 1.14 1.25 mA Quiescentoperatingcurrent,perchannel TA=–40°Cto+85°C B 0.9 1.15 1.3 mA Power-supplyrejectionratio(±PSRR) A 80 100 dB POWERDOWN Enablevoltagethreshold Ensuredonabove2.1V A 1.6 2.1 V Disablevoltagethreshold Ensuredoffbelow0.7V A 0.7 1.6 V Disablepinbiascurrent C 1 μA Power-downquiescentcurrent C 20 μA Turn-ontimedelay TimetoVOUT=90%offinalvalue, B 70 ns VIN=2V,RL=200Ω Turn-offtimedelay TimetoVOUT=10%oforiginalvalue, B 60 ns VIN=2V,RL=200Ω VOCMVOLTAGECONTROL Small-signalbandwidth C 23 MHz Slewrate C 55 V/μs Gain A 0.98 0.99 1.02 V/V Common-modeoffsetvoltagefromVOCMinput MVOeCaMsu=re2d.5aVtV±O1UVTwithVOCMinputdriven, B ±5 ±9 mV Inputbiascurrent VOCM=2.5V±1V B ±20 ±25 μA VOCMvoltagerange A 1 0.8to4.2 4 V Inputimpedance C 46∥1.5 kΩ∥pF Defaultoutputcommon-modevoltageoffsetfrom (VS+–VS–)/2 MeasuredatVOUTwithVOCMinputopen A ±1 ±5 mV Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com 7.7 Typical Characteristics Table2.TableofGraphs:V –V =3.3V S+ S– FIGURE Small-SignalFrequencyResponse Figure1 Large-SignalFrequencyResponse Figure2 Large-andSmall-SignalPulseResponse Figure3 SlewRatevsV Step Figure4 OUT OverdriveRecovery Figure5 10-kHzOutputSpectrumonAPAnalyzer Figure6 HarmonicDistortionvsFrequency Figure7 HarmonicDistortionvsOutputVoltageat1MHz Figure8 HarmonicDistortionvsGainat1MHz Figure9 HarmonicDistortionvsLoadat1MHz Figure10 HarmonicDistortionvsV at1MHz Figure11 OCM Two-Tone,Second-andThird-OrderIntermodulationDistortionvsFrequency Figure12 Single-EndedOutputVoltageSwingvsLoadResistance Figure13 MainAmplifierDifferentialOutputImpedancevsFrequency Figure14 FrequencyResponsevsC (R =1kΩ) Figure15 LOAD LOAD R vsC (R =1kΩ) Figure16 O LOAD LOAD RejectionRatiovsFrequency Figure17 THS4522,THS4524Crosstalk(MeasuredDifferentially) Figure18 Turn-onTime Figure19 Turn-offTime Figure20 Input-ReferredVoltageNoiseandCurrentNoiseSpectralDensity Figure21 MainAmplifierDifferentialOpen-LoopGainandPhase Figure22 OutputBalanceErrorvsFrequency Figure23 V Small-SignalFrequencyResponse Figure24 OCM V Large-SignalFrequencyResponse Figure25 OCM V InputImpedancevsFrequency Figure26 OCM 12 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 Table3.TableofGraphs:V –V =5V S+ S– FIGURE Small-SignalFrequencyResponse Figure27 Large-SignalFrequencyResponse Figure28 Large-andSmall-SignalPulseResponse Figure29 SlewRatevsV Step Figure30 OUT OverdriveRecovery Figure31 10-kHzOutputSpectrumonAPAnalyzer Figure33 HarmonicDistortionvsFrequency Figure34 HarmonicDistortionvsOutputVoltageat1MHz Figure35 HarmonicDistortionvsGainat1MHz Figure36 HarmonicDistortionvsLoadat1MHz Figure37 HarmonicDistortionvsV at1MHz Figure38 OCM Two-Tone,Second-andThird-OrderIntermodulationDistortionvsFrequency Figure39 Single-EndedOutputVoltageSwingvsLoadResistance Figure40 MainAmplifierDifferentialOutputImpedancevsFrequency Figure41 FrequencyResponsevsC (R =1kΩ) Figure42 LOAD LOAD R vsC (R =1kΩ) Figure43 O LOAD LOAD RejectionRatiovsFrequency Figure44 THS4522,THS4524Crosstalk(MeasuredDifferentially) Figure45 Turn-onTime Figure46 Turn-offTime Figure47 Input-ReferredVoltageNoiseandCurrentNoiseSpectralDensity Figure48 MainAmplifierDifferentialOpen-LoopGainandPhase Figure49 OutputBalanceErrorvsFrequency Figure50 V Small-SignalFrequencyResponse Figure51 OCM V Large-SignalFrequencyResponse Figure52 OCM V InputImpedancevsFrequency Figure53 OCM Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com 7.8 Typical Characteristics: V – V = 3.3 V S+ S– AtV =+3.3V,V =0V,V =open,V =2V (differential),R =1kΩ,R =1kΩdifferential,G=1V/V,single-ended S+ S– OCM OUT PP F L input,differentialoutput,andinputandoutputreferencedtomidsupply,unlessotherwisenoted. 6 6 3 3 G = 1 V/V G = 1 V/V 0 0 dB) -3 dB) -3 G = 2 V/V Gain ( -6 G = 5 V/V G = 2 V/V Gain ( -6 G = 5 V/V d -9 d -9 e e maliz -12 G = 10 V/V maliz -12 G = 10 V/V or -15 or -15 N N -18 VS+= 3.3 V -18 VS+= 3.3 V -21 RL= 1 kW -21 RL= 1 kW V = 100 mV V = 2.0 V -24 O PP -24 O PP 100 k 1 M 10 M 100 M 1 G 100 k 1 M 10 M 100 M 1 G Frequency (Hz) Frequency (Hz) Figure1.Small-SignalFrequencyResponse Figure2.Large-SignalFrequencyResponse 1.5 600 V = 3.3 V S+ Rising G = 1 V/V 1.0 R = 1 kW 500 F (V)OUT 0.5 RL= 200W mV/s) 400 Falling ntial V 0 0.5-V Step Rate ( 300 Differe -0.5 Slew 200 V = 3.3 V S+ -1.0 2-V Step 100 G = 1 V/V R = 1 kW F R = 200W -1.5 0 L 0 20 40 60 80 100 0 1 2 3 4 5 Time (ns) Differential V (V) OUT Figure3.Large-andSmall-SignalPulseResponse Figure4.SlewRatevsV OUT 4 2.0 10 VOUTDiff 0 VS+= 3.3 V THS4521 3 Input 1.5 -10 G = 1 V/V -20 RF= 1 kW (V) 2 1.0 In v) --3400 VOUT= 5 VPP Differential VOUT --1012 VS+= 3.3 V 00--01.5..50 put Voltage (V) Magnitude (dB -1-----056789000000 G = 2 V/V -110 -3 RF= 1 kW -1.5 -120 R = 200W -130 -4 L -2.0 -140 0 100 200 300 400 500 600 800 900 1 k 0 5 k 10 k 15 k 20 k 25 k 30 k 35 k Time (ns) Frequency (Hz) Figure5.OverdriveRecovery Figure6.10-kHzOutputSpectrumOnAPAnalyzer 14 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 Typical Characteristics: V – V = 3.3 V (continued) S+ S– AtV =+3.3V,V =0V,V =open,V =2V (differential),R =1kΩ,R =1kΩdifferential,G=1V/V,single-ended S+ S– OCM OUT PP F L input,differentialoutput,andinputandoutputreferencedtomidsupply,unlessotherwisenoted. -10 -50 -20 VGS =+ =1 3V./3V V HaTrmhirodnic -55 VGS =+ =1 3V./3V V c) -30 RF= 1 kW c) -60 RF= 1 kW ortion (dB --4500 RVOLU=T 1= k2W.0 VPP HSaermcoonndic ortion (dB --6750 Rf =L =1 M1 HkWz Dist -60 Dist -75 Second c -70 c -80 Harmonic ni ni mo -80 mo -85 Har -90 Har -90 Third -100 -95 Harmonic -110 -100 1 10 100 1 2 3 4 5 6 Frequency (MHz) V (V ) OUT PP Figure7.HarmonicDistortionvsFrequency Figure8.HarmonicDistortionvsV at1MHz OUT -70 -70 -75 -75 c) Second c) Second B B d Harmonic d Harmonic n ( -80 n ( -80 o o orti orti st -85 st -85 Di Di c c Harmoni --9905 HaTrmhirodnic VRSR+FL=== 311. 3kk WWV Harmoni --9905 VGRSF =+= =1 1 3V k./3WV V HaTrmhirodnic f = 1 MHz f = 1 MHz VOUT= 2.0 VPP VOUT= 2.0 VPP -100 -100 1 2 3 4 5 6 7 8 9 10 0 100 200 300 400 500 600 800 900 1 k Gain (V/V) Load (W) Figure9.HarmonicDistortionvsGainat1MHz Figure10.HarmonicDistortionvsLoadat1MHz -30 -10 -40 VGS =+ =1 3V./3V V c) -20 VGS =+ =1 3V./3V V monic Distortion (dBc) ----56780000 RRfV =OFL U=1=T M11= Hkk2WWz.0 VPP HSaermcoonndic odulation Distortion (dB ------345678000000 VRROFLU==T 11=e nkk2WvW.e0l oVpPeP IntermTohdirudlationInterSmeocdounldation Har erm -90 -90 Third Int -100 Harmonic -100 -110 0 0.5 1.0 1.5 2.0 2.5 3.0 1 10 100 V (V) Frequency (MHz) OCM Figure11.HarmonicDistortionvsV at1MHz Figure12.Two-ToneIntermodulationDistortionvs OCM Frequency Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com Typical Characteristics: V – V = 3.3 V (continued) S+ S– AtV =+3.3V,V =0V,V =open,V =2V (differential),R =1kΩ,R =1kΩdifferential,G=1V/V,single-ended S+ S– OCM OUT PP F L input,differentialoutput,andinputandoutputreferencedtomidsupply,unlessotherwisenoted. 3.5 100 Linear Voltage Range 3.0 VOCM= 1.65 V We () ed V(V)OUT22..50 VOUTmax ut Impedanc 101 d p Single-En 11..50 VOUTmin ential Out 0.1 er 0.5 Diff 0 0.01 10 100 1 k 10 k 100 k 1 M 10 M 100 M Load Resistance (W) Frequency (Hz) Figure13.Single-EndedOutputVoltageSwingvsLoad Figure14.MainAmplifierDifferentialOutputImpedancevs Resistance Frequency 5 1k C = 4.7 pF L 0 R = 150W O ain (dB) -5 CRLO== 170.1050 WpF 100 alized G -10 CRLO== 13050.7 pWF WR()O m -15 10 or N -20 CL= 10 pF R = 124W O -25 1 100 k 1 M 10 M 100 M 1 G 10 100 1000 Frequency (Hz) C (pF) LOAD Figure15.FrequencyResponsevsC R =1kΩ Figure16.R vsC R =1kΩ LOAD LOAD O LOAD LOAD 110 -100 V = 3.3 V Mode Rejection Ratio (dB)pply Rejection Ratio (dB)109870000 CMRR o-Channel Crosstalk (dB) -----111110112250505 GRRAScFL =+t==i v1 e11 V Ckk/WWVhannel VOUT= 1 VRMS Common-Power-Su 60 VGRS =+= =1 1 3V k./3WV V -PSRR +PSRR Channel-t --113305 50 F -140 10 k 100 k 1 M 10 M 100 M 10 100 1 k 10 k 100 k 1 M Frequency (Hz) Frequency (Hz) Figure17.RejectionRatiovsFrequency Figure18.THS4522,THS4524Crosstalk(Differential Measurement) 16 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 Typical Characteristics: V – V = 3.3 V (continued) S+ S– AtV =+3.3V,V =0V,V =open,V =2V (differential),R =1kΩ,R =1kΩdifferential,G=1V/V,single-ended S+ S– OCM OUT PP F L input,differentialoutput,andinputandoutputreferencedtomidsupply,unlessotherwisenoted. 4.0 2.5 3.5 2.0 V = 3.3 V V = 3.3 V S+ S+ 1.8 3.5 G = 1 V/V 3.0 G = 1 V/V RF= 1 kW 2.0 RF= 1 kW 1.6 PDPulse (V) 3221....0505 RL= 200W 11..50 OUTDifferential V PDPulse (V) 221...505 RL= 200W 1110....4208 OUTDifferential V 1.0 VOUTDiff (V) 1.0 V Diff 0.6 (V) PD 0.5 OUT 0.4 0.5 0.5 PD 0.2 0 0 0 0 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 Time (ns) Time (ns) Figure19.Turn-OnTime Figure20.Turn-OffTime )z)z 100 120 0 √H√H Gain Referred Voltage Noise (nV/Referred Current Noise (pA/ 101 CVNNuooroltriaisesegneet OPen-Loop Gain (dB) 10864200000 Phase --4950 Open-Loop Phase (Degree ut-ut- 0 s) pp nn II 0.1 -20 -135 10 100 1 k 10 k 100 k 1 M 1 10 100 1 k 10 k 100 k 1 M 10 M 100 M Frequency (Hz) Frequency (Hz) Figure21.Input-ReferredVoltageandCurrentNoise Figure22.MainAmplifierDifferentialOpen-LoopGainand SpectralDensity Phase -20 0 G = 0 dB -25 dB) -30 -5 e Error ( -35 dB) nc -40 n ( -10 Bala -45 Gai ut utp -50 -15 O -55 G = 0 dB V =-20 dBm -60 -20 IN 100 k 1 M 10 M 100 M 100 k 1 M 10 M 100 M 1 G Frequency (Hz) Frequency (Hz) Figure23.OutputBalanceErrorvsFrequency Figure24.V Small-SignalFrequencyResponse OCM Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com Typical Characteristics: V – V = 3.3 V (continued) S+ S– AtV =+3.3V,V =0V,V =open,V =2V (differential),R =1kΩ,R =1kΩdifferential,G=1V/V,single-ended S+ S– OCM OUT PP F L input,differentialoutput,andinputandoutputreferencedtomidsupply,unlessotherwisenoted. 2.5 100 k V) 2.3 e ( 2.1 W) e Voltag 11..97 dance ( 10 k d e o p M 1.5 m Common-OUT 110...319 VGRS =+= =1 1 3V k./3WV V VInput IOCM 1 k V 0.7 F R = 1 kW L 0.5 100 0 100 200 300 400 100 k 1 M 10 M 100 M Time (ns) Frequency (Hz) Figure25.VOCMLarge-SignalPulseResponse Figure26.VOCMInputImpedancevsFrequency 18 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 7.9 Typical Characteristics: 5 V AtV =+5V,V =0V,V =open,V =2V (differential),R =1kΩ,R =1kΩdifferential,G=1V/V,single-ended S+ S– OCM OUT PP F L input,differentialoutput,andinputandoutputreferencedtomidsupply,unlessotherwisenoted. 6 6 3 3 G = 1 V/V G = 1 V/V 0 0 dB) -3 dB) -3 ain ( -6 G = 2 V/V ain ( -6 G = 2 V/V G G = 5 V/V G G = 5 V/V d -9 d -9 e e aliz -12 aliz -12 m G = 10 V/V m G = 10 V/V or -15 or -15 N N -18 VS+= 5.0 V -18 VS+= 5.0 V -21 RL= 1 kW -21 RL= 1 kW V = 100 mV V = 2.0 V -24 O PP -24 O PP 100 k 1 M 10 M 100 M 1 G 100 k 1 M 10 M 100 M 1 G Frequency (Hz) Frequency (Hz) Figure27.Small-SignalFrequencyResponse Figure28.Large-SignalFrequencyResponse 1.5 800 V = 5 V S+ G = 1 V/V 700 1.0 R = 1 kW F Falling (V) 0.5 RL= 200W s) 600 OUT mV/ 500 ntial V 0 0.5-V Step Rate ( 400 Rising Differe -0.5 Slew 300 V = 5 V 2-V Step 200 S+ -1.0 G = 1 V/V 100 R = 1 kW F R = 200W -1.5 0 L 0 20 40 60 80 100 0 1 2 3 4 5 6 7 Time (ns) Differential V (V) OUT Figure29.Large-andSmall-SignalPulseResponse Figure30.SlewRatevsV OUT 6 3 -80 VOUTDiff Second Harmonic 4 Input 2 -90 Third Harmonic C) Differential V(V)OUT -202 VS+= 5 V 10-1 Input Voltage (V) monic Distortion (dB ----111132100000 -4 GR == 2 1 V k/WV -2 Har RF= 200W -140 -6 L -3 0 100 200 300 400 500 600 700 800 900 1k -150 1 10 100 1000 Time (ns) Frequency (kHz) Figure31.OverdriveRecovery D001 Figure32.HarmonicDistortionvsFrequencyBelow1MHz Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com Typical Characteristics: 5 V (continued) AtV =+5V,V =0V,V =open,V =2V (differential),R =1kΩ,R =1kΩdifferential,G=1V/V,single-ended S+ S– OCM OUT PP F L input,differentialoutput,andinputandoutputreferencedtomidsupply,unlessotherwisenoted. 10 -10 -100 VGS =+ =1 5V./0V V THS4521 -20 VGS =+ =1 5V /VV HaTrmhirodnic -20 RF= 1 kΩ c) -30 RF= 1 kW Magnitude (dBv) -------34567890000000 VOUT= 8 VPP monic Distortion (dB -----4567800000 RVOLU=T 1= k2W.0 VPP HSaermcoonndic --110100 Har -90 -120 -100 -130 -140 -110 0 5 k 10 k 15 k 20 k 25 k 30 k 35 k 1 10 100 Frequency (Hz) Frequency (MHz) Figure33.10-kHzOutputSpectrumOnAPAnalyzerat Figure34.HarmonicDistortionvsFrequency V =8V OUT PP -70 -70 V = 5 V Second S+ n (dBc) --7850 GRRf =FL = =1= 1 M11 V Hkk/WWVz Harmonic n (dBc) --7850 HSaermcoonndic o o orti orti st -85 st -85 Di Third Di monic -90 Harmonic monic -90 RVS+= =1 5k WV Har -95 Har -95 HaTrmhirodnic RFL= 1 kW f = 1 MHz V = 2.0 V OUT PP -100 -100 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 V (V ) Gain (V/V) OUT PP Figure35.HarmonicDistortionvsV at1MHz Figure36.HarmonicDistortionvsGainat1MHz OUT -70 -30 V = 5 V S+ c) -75 c) -40 GRF == 1 1 V k/WV n (dB -80 Second n (dB -50 Rf =L =1 M1 HkWz ortio Harmonic ortio -60 VOUT= 2.0 VPP st -85 st monic Di -90 VGS =+ =1 5V /VV monic Di --7800 HaTrmhirodnic HSaermcoonndic Har -95 Rf =F 1= M1 HkWz HaTrmhirodnic Har -90 V = 2.0 V OUT PP -100 -100 0 100 200 300 400 500 600 800 900 1k 0 1.0 2.0 3.0 4.0 5.0 Load (W) V (V) OCM Figure37.HarmonicDistortionvsLoadat1MHz Figure38.HarmonicDistortionvsV at1MHz OCM 20 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 Typical Characteristics: 5 V (continued) AtV =+5V,V =0V,V =open,V =2V (differential),R =1kΩ,R =1kΩdifferential,G=1V/V,single-ended S+ S– OCM OUT PP F L input,differentialoutput,andinputandoutputreferencedtomidsupply,unlessotherwisenoted. -10 5.0 V = 5 V Linear Output Voltage Range c) -20 GS =+ 1 V/V 4.5 VOCM= 2.5 V on Distortion (dB ----34560000 VRROFLU==T 11=e nkk2WvW.e0l oVpPeP Second nded V(V)OUT4332....0505 VOUTmax odulati --7800 Intermodulation ngle-E 21..05 VOUTmin m Si er -90 1.0 Int -100 Third 0.5 Intermodulation -110 0 1 10 100 10 100 1 k 10 k Frequency (MHz) Load Resistance (W) Figure39.Two-ToneIntermodulationDistortionvs Figure40.Single-EndedOutputVoltageSwingvs Frequency DifferentialLoadResistance 100 5 C = 4.7 pF We () 0 RLO= 150W mpedanc 10 ain (dB) -5 CRLO== 170.1050 WpF ut I 1 d G -10 p e ential Out 0.1 Normaliz -15 CRLO== 13050.7 pWF Differ -20 CRL== 1102 4pFW O 0.01 -25 100 k 1 M 10 M 100 M 100 k 1 M 10 M 100 M 1 G Frequency (Hz) Frequency (Hz) Figure41.MainAmplifierDifferentialOutputImpedancevs Figure42.FrequencyResponsevsC R =1kΩ LOAD LOAD Frequency 1k 110 V = 5.0 V WR()O 10100 Mode Rejection Ratio (dB)pply Rejection Ratio (dB)109870000 GRSF =+=C 1 M1 V Rk/WVR mmon-wer-Su 60 -PSRR CoPo +PSRR 1 50 10 100 1000 10 k 100 k 1 M 10 M 100 M C (pF) Frequency (Hz) LOAD Figure43.R vsC R =1kΩ Figure44.RejectionRatiovsFrequency O LOAD LOAD Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com Typical Characteristics: 5 V (continued) AtV =+5V,V =0V,V =open,V =2V (differential),R =1kΩ,R =1kΩdifferential,G=1V/V,single-ended S+ S– OCM OUT PP F L input,differentialoutput,andinputandoutputreferencedtomidsupply,unlessotherwisenoted. -100 4.0 2.5 dB) -105 VGS =+ =1 5V /VV 3.5 VGS =+ =1 5V /VV el-to-Channel Crosstalk ( -----111111122305050 RRAcFLt==iv e11 CkkWWhannel VOUT= 1 VRMS PDPulse (V) 32211.....05050 RRFL== 210 k0WW 211...050 OUTDifferential V(V) nn 0.5 Cha -135 0.5 VOUTDiff PD -140 0 0 10 100 1 k 10 k 100 k 1 M 0 20 40 60 80 100 120 140 160 180 200 Frequency (Hz) Time (ns) Figure45.THS4522,THS4524Crosstalk(Measured Figure46.Turn-OnTime Differentially) 3.5 2.0 100 VS+= 5 V 1.8 )Hz)Hz PDPulse (V) 322110......050505 GRRVPODFL =U== T1 21D V0 ki0f/WfVW 11110000........64208642 OUTDifferential V(V) √put-Referred Voltage Noise (nV/√put-Referred Current Noise (pA/ 101 CVNNuooroltriaisesegneet nn 0 0 II 0.1 0 20 40 60 80 100 120 140 160 180 200 10 100 1 k 10 k 100 k 1 M Time (ns) Frequency (Hz) Figure47.Turn-OffTime Figure48.Input-ReferredVoltageandCurrentNoise SpectralDensity 120 0 -20 G = 0 dB Gain -25 100 OPen-Loop Gain (dB) 86420000 Phase --4950 Open-Loop Phase (Degre Output Balance Error (dB) -----3344505050 e 0 s) -55 -20 -135 -60 100 k 1 M 10 M 100 M 1 10 100 1 k 10 k 100 k 1 M 10 M 100 M Frequency (Hz) Frequency (Hz) Figure50.OutputBalanceErrorvsFrequency Figure49.MainAmplifierDifferentialOpen-LoopGainand Phase 22 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 Typical Characteristics: 5 V (continued) AtV =+5V,V =0V,V =open,V =2V (differential),R =1kΩ,R =1kΩdifferential,G=1V/V,single-ended S+ S– OCM OUT PP F L input,differentialoutput,andinputandoutputreferencedtomidsupply,unlessotherwisenoted. 0 3.5 V) 3.3 e ( 3.1 -5 ag olt 2.9 V n (dB) -10 Mode 22..75 ai n- G o 2.3 m m -15 Co 2.1 VS+= 5.0 V G = 0 dB VOUT 11..97 GRF == 1 1 V k/WV V =-20 dBm R = 1 kW -20 IN 1.5 L 100 k 1 M 10 M 100 M 1 G 0 100 200 300 400 Frequency (Hz) Time (ns) Figure51.VOCMSmall-SignalFrequencyResponse Figure52.VOCMLarge-SignalPulseResponse 100 k W) e ( nc 10 k a d e p m ut I p In 1 k M C O V 100 100 k 1 M 10 M 100 M Frequency (Hz) Figure53.V InputImpedancevsFrequency OCM Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com 8 Detailed Description 8.1 Overview The THS4521, THS4522, and THS4524 family is tested with the test circuits shown in this section; all circuits are built using the available THS4521 evaluation module (EVM). For simplicity, power-supply decoupling is not shown;seethelayoutintheTypicalApplicationssectionforrecommendations.Dependingonthetestconditions, component values change in accordance with Table 4 and Table 5, or as otherwise noted. In some cases the signal generators used are ac-coupled and in others they dc-coupled 50-Ω sources. To balance the amplifier when ac-coupled, a 0.22-μF capacitor and 49.9-Ω resistor to ground are inserted across R on the alternate IT input; when dc-coupled, only the 49.9-Ω resistor to ground is added across R . A split power supply is used to IT ease the interface to common test equipment, but the amplifier can be operated in a single-supply configuration as described in the Typical Applications section with no impact on performance. Also, for most of the tests, except as noted, the devices are tested with single-ended inputs and a transformer on the output to convert the differential output to single-ended because common lab test equipment has single-ended inputs and outputs. Similarorbetterperformancecanbeexpectedwithdifferentialinputsandoutputs. As a result of the voltage divider on the output formed by the load component values, the amplifier output is attenuated. The Atten column in Table 5 shows the attenuation expected from the resistor divider. When using a transformer at the output (as shown in Figure 55), the signal sees slightly more loss because of transformer and lineloss;thesenumbersareapproximate. Table4.GainComponentValuesforSingle-EndedInput(seeFigure54) Gain RF RG RIT 1V/V 1kΩ 1kΩ 52.3Ω 2V/V 1kΩ 487Ω 53.6Ω 5V/V 1kΩ 191Ω 59.0Ω 10V/V 1kΩ 86.6Ω 69.8Ω 1. Gain setting includes 50-Ω source impedance. Components are chosen to achieve gain and 50-Ω input termination. Table5.LoadComponentValuesFor1:1DifferentialToSingle-EndedOutputTransformer(See Figure55) RL RO ROT Atten 100Ω 24.9Ω Open 6dB 200Ω 86.6Ω 69.8Ω 16.8dB 499Ω 237Ω 56.2Ω 25.5dB 1kΩ 487Ω 52.3Ω 31.8dB 1. Total load includes 50-Ω termination by the test equipment. Components are chosen to achieve load and 50- Ωlineterminationthrougha1:1transformer. 24 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 8.2 Functional Block Diagram Vs+ (RGTPackage) FB+ OUT+ IN– – 5 kΩ High-Aol + Differential I/O Amplifier – 5 kΩ IN+ + OUT– (RGTPackage) FB– Vs+ 275 kΩ – Vcm Error Amplifier + Vocm CMOS PD Buffer 275 kΩ Vs– 8.3 Feature Description 8.3.1 FrequencyResponse ThecircuitshowninFigure54isusedtomeasurethefrequencyresponseofthecircuit. A network analyzer is used as the signal source and the measurement device. The output impedance of the network analyzer is dc-coupled and is 50 Ω. R and R are chosen to impedance-match to 50 Ω and maintain IT G the proper gain. To balance the amplifier, a 49.9-Ω resistor to ground is inserted across R on the alternate IT input. The output is probed using a Tektronix high-impedance differential probe across the 953-Ω resistor and referred totheamplifieroutputbyaddingbackthe0.42-dBbecauseofthevoltagedividerontheoutput. V From IN+ RG 1 kW 50-W Source Calibrated VS+ Differential R Probe IT Across 24.9W R IT Measure with PD Differential Open THS452x 953W 24.9W Probe 0.22mF Across R OT V OCM Open 0.22mF Installed to V S- Balance Amplifier R 1 kW G 49.9W R IT Figure54. FrequencyResponseTestCircuit Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com Feature Description (continued) 8.3.2 Distortion ThecircuitshowninFigure55isusedtomeasureharmonicandintermodulationdistortionoftheamplifier. A signal generator is used as the signal source and the output is measured with a Rhode and Schwarz spectrum analyzer. The output impedance of the HP signal generator is ac-coupled and is 50 Ω. R and R are chosen to IT G impedance match to 50 Ω and maintain the proper gain. To balance the amplifier, a 0.22-μF capacitor and 49.9- ΩresistortogroundareinsertedacrossR onthealternateinput. IT A low-pass filter is inserted in series with the input to reduce harmonics generated at the signal source. The level of the fundamental is measured and then a notch filter is inserted at the output to reduce the fundamental so it doesnotgeneratedistortionintheinputofthespectrumanalyzer. The transformer used in the output to convert the signal from differential to single-ended is an ADT1–1WT. It limitsthefrequencyresponseofthecircuitsothatmeasurementscannotbemadebelowapproximately1MHz. V From IN+ RG RF 50-W Source VS+ R IT V RO 1:1 OUT To 50-W Test PD Equipment Open THS452x R R OT 0.22mF O V OCM Open 0.22mF Installed to V S- Balance Amplifier 0.22mF R RG RF IT 49.9W Figure55. DistortionTestCircuit 8.3.3 SlewRate,TransientResponse,SettlingTime,OutputImpedance,Overdrive,OutputVoltage,and Turn-On/Turn-OffTime The circuit shown in Figure 56 is used to measure slew rate, transient response, settling time, output impedance, overdrive recovery, output voltage swing, and ampliifer turn-on/turn-off time. Turn-on and turn-off time are measured with the same circuit modified for 50-Ω input impedance on the PD input by replacing the 0.22-μF capacitor with a 49.9-Ω resistor. For output impedance, the signal is injected at V with V open; the drop OUT IN acrossthe2x49.9-Ωresistorsisthenusedtocalculatetheimpedanceseenlookingintotheamplifieroutput. V From IN+ RG 1 kW 50-W Source VS+ R IT V 49.9W OUT- Open PD THS452x 49.9W VOUT+ Twoi tOh s5c0i-llWosIcnoppuet 0.22mF V OCM Open 0.22mF Installed to V Balance S- Amplifier R 1 kW 49.9W RIT G Figure56. SlewRate,TransientResponse,SettlingTime,OutputImpedance,OverdriveRecovery,V OUT Swing,andTurn-On/Turn-OffTestCircuit 26 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 Feature Description (continued) 8.3.4 Common-ModeandPower-SupplyRejection The circuit shown in Figure 57 is used to measure the CMRR. The signal from the network analyzer is applied common-mode to the input. Figure 58 is used to measure the PSRR of V and V . The power supply under S+ S– test is applied to the network analyzer dc offset input. For both CMRR and PSRR, the output is probed using a Tektronix high-impedance differential probe across the 953-Ω resistor and referred to the amplifier output by adding back the 0.42-dB as a result of the voltage divider on the output. For these tests, the resistors are matchedforbestresults. V From IN+ 1 kW 1 kW Network Analyzer V S+ 24.9W PD Measure with Open THS452x 953W Differential 24.9W Calibrated 0.22mF Probe Differential 52.3W Probe VOCM Open 0.22mF V S- 1 kW 1 kW Figure57. CMRRTestCircuit Power Supply Network Analyzer Calibrated Differential Probe 1 kW 1 kW Across V and GND Open S+ V S+ 52.3W 24.9W Measure with PD Differential Open THS452x 953W 24.9W Probe 0.22mF Across R OT V OCM Open 0.22mF V S- Open 1 kW 1 kW 52.3W Figure58. PSRRTestCircuit Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 27 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com Feature Description (continued) 8.3.5 V Input OCM The circuit illustrated in Figure 59 is used to measure the frequency response and skew rate of the V input. OCM Frequency response is measured using a Tektronix high-impedance differential probe, with R = 0 Ω at the common point of V and V , formed at the summing junction of the two matched 499-Ω CM OUT+ OUT– resistors,withrespecttoground.TheinputimpedanceismeasuredusingaTektronixhigh-impedancedifferential probe at the V input with R = 10 kΩ and the drop across the 10-kΩ resistor is used to calculate the OCM CM impedanceseenlookingintotheamplifierV input. OCM ThecircuitshowninFigure60measuresthetransientresponseandslewrateoftheV input.A1-Vstepinput OCM is applied to the V input and the output is measured using a 50-Ω oscilloscope input referenced back to the OCM amplifieroutput. 1 kΩ 1 kΩ Open V S+ 49.9Ω 499Ω Measurement Point for Bandwidth PD Open THS452x 499Ω 0.22μF V RCM From OCM Network Calibrated Analyzer VS Measurement Differential 49.9Ω Open Point for Z Probe IN Across 1 kW 1 kW 49.9Ω 49.9Ω Resistor Figure59. V InputTestCircuit OCM 1 kW 1 kW Open V S+ 52.3W 499W PD To Oscilloscope Open THS452x 499W 50-WInput 0.22mF 49.9W V OCM V S- Step Open Input 1 kW 1 kW 52.3W 49.9W Figure60. V TransientResponseandSlewRateTestCircuit OCM 28 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 Feature Description (continued) 8.3.6 TypicalPerformanceVariationWithSupplyVoltage The THS4521, THS4522, and THS4524 family of devices provide excellent performance across the specified power-supply range of 2.5 V to 5.5 V with only minor variations. The input and output voltage compliance ranges track with the power supply in nearly a 1:1 correlation. Other changes can be observed in slew rate, output current drive, open-loop gain, bandwidth, and distortion. Table 6 shows the typical variation to be expected in thesekeyperformanceparameters. 8.3.7 Single-SupplyOperation To facilitate testing with common lab equipment, the THS4521EVM allows for split-supply operation; most of the characterization data presented in this data sheet is measured using split-supply power inputs. The device can easilybeusedwithasingle-supplypowerinputwithoutdegradingperformance. Figure 61 shows a dc-coupled single-supply circuit with single-ended inputs. This circuit can also be applied to differentialinputsources. V IN+ R R G F V S+ R IT R O V OUT- PD PDControl THS452x R 0.22mF O V OUT+ V VS- OCM VOCMControl 0.22mF Optional; installed to balance impedance seen R RG RF atV IT IN+ Figure61. THS4521DC-CoupledSingle-SupplyWithSingle-EndedInputs The input common-mode voltage range of the THS4521, THS4522, and THS4524 family is designed to include the negative supply voltage. in the circuit shown in Figure 61, the signal source is referenced to ground. V is OCM set by an external control source or, if left unconnected, the internal circuit defaults to midsupply. Together with theinputimpedanceoftheamplifiercircuit,R providesinputtermination,whichisalsoreferencedtoground. IT Note that R and optional matching components are added to the alternate input to balance the impedance at IT signalinput. Table6.TypicalPerformanceVariationVersusPower-SupplyVoltage PARAMETER VS=5V VS=3.3V VS=2.5V –3-dBSmall-signalbandwidth 145MHz 135MHz 125MHz Slewrate(2-Vstep) 490V/μs 420V/μs 210V/μs Secondharmonic –85dBc –85dBc –84dBc Harmonicdistortionat1MHz,2VPP,RL=1kΩ Thirdharmonic –91dBc –90dBc –88dBc Open-loopgain(dc) 119dB 116dB 115dB Linearoutputcurrentdrive 55mA 35mA 24mA Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 29 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com 8.3.8 Low-PowerApplicationsandtheEffectsofResistorValuesonBandwidth For low-power operation, it may be necessary to increase the gain setting resistors values to limit current consumption and not load the source. Using larger value resistors lowers the bandwidth of the THS4521, THS4522, and THS4524 family as a result of the interactions between the resistors, the device parasitic capacitance, and printed circuit board (PCB) parasitic capacitance. Figure 62 shows the small-signal frequency response with 1-kΩ and 10-kΩ resistors for R , R , and R (impedance is assumed to typically increase for all F G L threeresistorsinlow-powerapplications). SMALL-SIGNAL FREQUENCY RESPONSE Gain = 1, R = R = R = 1 kΩand 10 kΩ F G L 6 1 kΩ 3 0 –3 n (dB) –6 10 kΩ Gai –9 nal –12 g Si –15 –18 V = 5.0 V S+ –21 VO= 100 mVPP –24 Gain = 1 V/V 0.1 1 10 100 1000 Frequency (MHz) Figure62. THS4521FrequencyResponseWithVariousGainSettingandLoadResistorValues 8.3.9 FrequencyResponseVariationduetoPackageOptions Users can see variations in the small-signal (V = 100 mV ) frequency response between the available OUT PP package options for the THS4521, THS4522, and THS4524 family as a result of parasitic elements associated witheachpackageandboardlayoutchanges.Figure63showsthevariancemeasuredinthelab;thisvarianceis tobeexpectedevenwhenusingagoodlayout. SMALL-SIGNAL FREQUENCY RESPONSE Device and Package Option Comparison 6 THS4522, 3 THS4524 0 THS4521 n (dB) --36 THMSS4O5P21 SOIC Gai -9 nal -12 g Si -15 V = 5.0 V S+ -18 Gain = 1 V/V R = 1 kW -21 F R = 1 kW -24 L 0.1 1 10 100 1000 Frequency (MHz) Figure63. Small-SignalFrequencyResponse:PackageVariations 30 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 8.3.10 DrivingCapacitiveLoads The THS4521, THS4522, and THS4524 family is designed for a nominal capacitive load of 1 pF on each output to ground. When driving capacitive loads greater than 1 pF, it is recommended to use small resistors (R ) in O series with the output, placed as close to the device as possible. Without R , capacitance on the output interacts O with the output impedance of the amplifier and causes phase shift in the loop gain of the amplifier that reduces the phase margin. This reduction in phase margin results in frequency response peaking; overshoot, undershoot, and/or ringing when a step or square-wave signal is applied; and may lead to instability or oscillation. Inserting R isolates the phase shift from the loop gain path and restores the phase margin, but it also limits bandwidth. O Figure 64 shows the recommended values of R versus capacitive loads (C ), and Figure 65 shows an O L illustrationofthefrequencyresponsewithvariousvalues. RECOMMENDED ROvs CLOAD FREQUENCY RESPONSE vs CLOAD For Flat Frequency Response 5 1k RO= 150W C = 4.7 pF 0 L W) B) RO= 7.15W each output utput Resistor ( 100 alized Gain (d -1-05 CL=RC 1OL0==0 1030 7p0.F5 p eWFa ecahc ohu otpuutptut Series O 10 VGRRSFLa+i==n= 11= 5 kk1.0WW V VD/Vifferential Norm --1250 VRRSFL+=== 11 5 kk.0WW Vd, ifGfearienn =ti a1l V/V RCOL== 1102 4pFW 1 VOUT= 100 mVPP -25 VOUT= 100 mVPP each output 10 100 1000 0.1 1 10 100 1000 CLOAD(pF) Frequency (MHz) Figure64.RecommendedSeriesOutputResistorVersus Figure65.FrequencyResponseforVariousR andC O L CapacitiveLoadforFlatFrequencyResponse,WithRLOAD Values,WithRLOAD=1kΩ =1kΩ 8.3.11 AudioPerformance The THS4521, THS4522, and THS4524 family provide excellent audio performance with very low quiescent power. To show performance in the audio band, the device was tested with a SYS-2722 audio analyzer from Audio Precision. THD+N and FFT tests were performed at 1-V output voltage. Performance is the same on RMS both 3.3-V and 5-V supplies. Figure 66 shows the test circuit used; see Figure 67 and Figure 68 for the performanceoftheanalyzerusinginternalloopbackmode(generator)togetherwiththeTHS4521. 1 kW 1 kW V S+ V V IN+ OUT- 24.9W FAroPm VIN- Open PD THS452x 24.9W VOUT+ ATnoa lAyzPer Analyzer 0.22mF V OCM Open 0.22mF V S- 1 kW 1 kW Figure66. THS4521APAnalyzerTestCircuit Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 31 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com Note that the harmonic distortion performance is very close to the same with and without the device meaning the THS4521 performance is actually much better than can be directly measured by this method. The actual device performance can be estimated by placing the device in a large noise gain and using the reduction in loop gain correction. The THS4521 is placed in a noise gain of 101 by adding a 10-Ω resistor directly across the input terminals of the circuit shown in Figure 66. This test was performed using the AP instrument as both the signal source and the analyzer. The second-order harmonic distortion at 1 kHz is estimated to be –122 dBc with V = O 1V ; third-order harmonic distortion is estimated to be –141 dBc. The third-order harmonic distortion result RMS matches exactly with design simulations, but the second-order harmonic distortion is about 10 dB worse. This result is not unexpected because second-order harmonic distortion performance with a differential signal depends heavily on cancellation as a result of the differential nature of the signal, which depends on board layout, bypass capacitors, external cabling, and so forth. Note that the circuit of Figure 66 is also used to measurecrosstalkbetweenchannels. The THS4521 shows even better THD+N performance when driving higher amplitude output, such as 5 V that PP is more typical when driving an ADC. To show performance with an extended frequency range, higher gain, and higher amplitude, the device was tested with 5 V up to 80 kHz with the AP. Figure 69 shows the resulting PP THD+Ngraphwithnoweighting. TOTAL HARMONIC DISTORTION + NOISE 10-kHz OUTPUT SPECTRUM THS4521 Measured on AP Analyzer THS4521 on AP Analyzer -50 10 0 VS+= 5.0 V Generator -60 -10 G = 1 V/V THS4521 -20 RF= 1 kW HD+N (dBv) ---789000 gnitude (dBv) ------345678000000 VOUT= 1 VRMS T -100 THS4521 Ma -1-0900 -110 -110 Signal Generator -120 -130 -120 -140 0 5 10 15 20 0 5 k 10 k 15 k 20 k 25 k 30 k 35 k Frequency (kHz) Frequency (Hz) Figure67.THS45211-VRMS20-Hzto20-kHzThd+N Figure68.THS45211-VRMS10-kHzFFTPlot TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY (No Weighting) -95 -97 -99 -101 dB) -103 N ( -105 + D H -107 T -109 -111 -113 -115 10 100 1 k 10 k 100 k Frequency (Hz) Figure69.Thd+N(NoWeighting)onAp,80-kHzBandwidthatG=1With5-V Output PP 32 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 8.3.12 AudioOn/OffPopPerformance The THS4521 was tested to show on and off pop performance by connecting a speaker between the differential outputs and switching the power supply on and off, and also by using the PD function of the THS4521. Testing wasdonewithandwithouttones.Duringthesetests,noaudiblepopcouldbeheard. With no tone input, Figure 70 shows the pop performance when switching power on to the THS4521 and Figure 71 shows the device performance when turning the power off. The transients during power on and off illustratethatnoaudiblepopshouldbeheard POWER-SUPPLY TURN-ON POP PERFORMANCE POWER-SUPPLY TURN-OFF POP PERFORMANCE 5.0 5.0 4.5 4.5 4.0 4.0 Power Power Supply 3.5 3.5 Supply Outputs Outputs V) 3.0 V) 3.0 e ( e ( g 2.5 g 2.5 a a Volt 2.0 Volt 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0 0 0 50 100 150 200 0 50 100 150 200 Time (ms) Time (ms) Figure70.THS4521Power-SupplyTurn-OnPop Figure71.THS4521Power-SupplyTurn-OffPop Performance Performance With no tone input, Figure 72 shows the pop performance using the PD pin to enable the THS4521, and Figure 73 shows performance using the PD pin to disable the device. Again, the transients during power on and off show that no audible pop should be heard. It should also be noted that the turn on/off times are faster using the PDpintechnique. PDENABLE POP PERFORMANCE PDDISABLE POP PERFORMANCE 5.0 5.0 4.5 4.5 PD 4.0 4.0 PD 3.5 3.5 Outputs Outputs V) 3.0 V) 3.0 e ( e ( g 2.5 g 2.5 a a Volt 2.0 Volt 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0 0 0 50 100 150 200 0 50 100 150 200 Time (ms) Time (ms) Figure72.THS4521PDPinEnablePopPerformance Figure73.THS4521PDPinDisablePopPerformance The power on/off pop performance of the THS4521, whether by switching the power supply or when using the power-down function built into the chip, shows that no special design should be required to prevent an audible pop. Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 33 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com 8.4 Device Functional Modes This wideband FDA requires external resistors for correct signal-path operation. When configured for the desired input impedance and gain setting with these external resistors, the amplifier can be either on with the PD pin assertedtoavoltagegreaterthanV +1.7V,orturned offbyassertingPDlow.Disablingtheamplifiershutsoff S– the quiescent current and stops correct amplifier operation. The signal path is still present for the source signal throughtheexternalresistors. The V control pin sets the output average voltage. Left open, V defaults to an internal midsupply value. OCM OCM Driving this high-impedance input with a voltage reference within its valid range sets a target for the internal V CM erroramplifier. 8.4.1 OperationfromSingle-EndedSourcestoDifferentialOutputs One of the most useful features supported by the FDA device is an easy conversion from a single-ended input to a differential output centered on a user-controlled, common-mode level. While the output side is relatively straightforward, the device input pins move in a common-mode sense with the input signal. This common-mode voltageattheinputpinsmovingwiththeinputsignalactstoincreasetheapparentinputimpedancetobegreater than the R value. This input-active-impedance issue applies to both ac- and dc-coupled designs, and requires G somewhat more complex solutions for the resistors to account for this active impedance, as shown in the followingsubsections. 8.4.1.1 AC-CoupledSignalPathConsiderationsforSingle-EndedInputtoDifferentialOutputConversion Whenthesignalpathcanbeac-coupled,thedcbiasingfortheTHS452xfamilybecomesarelativelysimpletask. Inalldesigns,startbydefiningtheoutputcommon-modevoltage.Theac-couplingissuecanbeseparatedforthe input and output sides of an FDA design. The input can be ac-coupled and the output dc-coupled, or the output canbeac-coupledandtheinputdc-coupled,ortheycanbothbeac-coupled. One situation where the output might be dc-coupled (for an ac-coupled input), is when driving directly into an ADC where the V control voltage uses the ADC common-mode reference to directly bias the FDA output OCM common-mode to the required ADC input common-mode. In any case, the design starts by setting the desired V . OCM When an ac-coupled path follows the output pins, the best linearity is achieved by operating V at midsupply. OCM The V voltage must be within the linear range for the common-mode loop, as specified in the headroom OCM specifications (approximately 0.91 V greater than the negative supply and 1.1 V less than the positive supply). If the output path is also ac-coupled, simply letting the V control pin float is usually preferred in order to get a OCM midsupply default V bias with minimal elements. To limit noise, place a 0.1-µF decoupling capacitor on the OCM V pintoground. OCM After V is defined, check the target output voltage swing to ensure that the V plus the positive or negative OCM OCM output swing on each side do not clip into the supplies. If the desired output differential swing is defined as V , OPP divide by 4 to obtain the ±V swing around V at each of the two output pins (each pin operates 180° out of P OCM phase with the other). Check that V ±V does not exceed the absolute supply rails for this rail-to-rail output OCM P (RRO)device. Going to the device input pins side, because both the source and balancing resistor on the non-signal input side are dc-blocked (see Figure 74), no common-mode current flows from the output common-mode voltage, thus settingtheinputcommon-modeequaltotheoutputcommon-modevoltage. This input headroom also sets a limit for higher V voltages. Because the input V is the output V for ac- OCM ICM OCM coupled sources, the 1.2-V minimum headroom for the input pins to the positive supply overrides the 1.1-V headroom limit for the output V . Also, the input signal moves this input V around the dc bias point, as OCM ICM describedinthesectionResistorDesignEquationsfortheSingle-EndedtoDifferentialConfigurationoftheFDA. 34 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 Device Functional Modes (continued) THS452xWideband, 50-Input Match, Fully-DifferentialAmplifier Gain of 2 V/V from Rt, Rf1 Single-Ended Source to 1.02 kΩ Differential Output C1 Rg1 Vcc 100 nF 499Ω 50-Ω – Source Rt + Rload Output VVooccmm FDA Measurement 52.3Ω – 500Ω Point + PD Rg2 Vcc 523Ω C2 Rf2 100 nF 1.02 kΩ Figure74. AC-coupled,Single-endedSourcetoaDifferentialGainof2V/VTestCircuit 8.4.1.2 DC-CoupledInputSignalPathConsiderationsforSingle-EndedtoDifferentialConversion The output considerations remain the same as for the ac-coupled design. Again, the input can be dc-coupled while the output is ac-coupled. A dc-coupled input with an ac-coupled output might have some advantages to move the input V down if the source is ground referenced. When the source is dc-coupled into the THS452x ICM family (see Figure 75 ), both sides of the input circuit must be dc-coupled to retain differential balance. Normally, the non-signal input side has an R element biased to whatever the source midrange is expected to be. G ProvidingthismidscalereferencegivesabalanceddifferentialswingaroundV attheoutputs. OCM Often, R is simply grounded for dc-coupled, bipolar-input applications. This configuration gives a balanced G2 differential output if the source is swinging around ground. If the source swings from ground to some positive voltage, grounding R gives a unipolar output differential swing from both outputs at V (when the input is at G2 OCM ground) to one polarity of swing. Biasing R to an expected midpoint for the input signal creates a differential G2 outputswingaroundV . OCM One significant consideration for a dc-coupled input is that V sets up a common-mode bias current from the OCM output back through R and R to the source on both sides of the feedback. Without input balancing networks, F G the source must sink or source this dc current. After the input signal range and biasing on the other R element G is set, check that the voltage divider from V to V through R and R (and possibly R ) establishes an input OCM IN F G S V atthedeviceinputpinsthatisinrange. ICM If the average source is at ground, the negative rail input stage for the THS452x family is in range for applications using a single positive supply and a positive output V setting because this dc current lifts the OCM average FDA input summing junctions up off of ground to a positive voltage (the average of the V+ and V– input pinvoltagesontheFDA). THS452xWideband, Fully-DifferentialAmplifier 50-Input Match, Gain of 5 V/V from Rt, Rf1 Single-Ended Source to 1 kΩ Differential Step-ResponseTest Rg1 Vcc 187Ω 50-Ω – Source R59tΩ Vocm FDA +– R5010Ω OMPoueitanpstuutrement + PD Rg2 Vcc 215Ω Rf2 1 kΩ Figure75. DC-Coupled,Single-Ended-to-Differential,SetforaGainof5V/V Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 35 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com Device Functional Modes (continued) 8.4.1.3 ResistorDesignEquationsfortheSingle-EndedtoDifferentialConfigurationoftheFDA The design equations for setting the resistors around an FDA to convert from a single-ended input signal to differential output can be approached from several directions. Here, several critical assumptions are made to simplifytheresults: • Thefeedbackresistorsareselectedfirstandsetequalonthetwosides. • The dc and ac impedances from the summing junctions back to the signal source and ground (or a bias voltage on the non-signal input side) are set equal to retain feedback divider balance on each side of the FDA. BothoftheseassumptionsaretypicalfordeliveringthebestdynamicrangethroughtheFDAsignalpath. After the feedback resistor values are chosen, the aim is to solve for the R (a termination resistor to ground on T the signal input side), R (the input gain resistor for the signal path), and R (the matching gain resistor on the G1 G2 nonsignal input side); see Figure 74 and Figure 75. The same resistor solutions can be applied to either ac- or dc-coupled paths. Adding blocking capacitors in the input-signal chain is a simple option. Adding these blocking capacitors after the R element (as shown in Figure 74) has the advantage of removing any dc currents in the T feedbackpathfromtheoutputV toground. OCM Earlier approaches to the solutions for R and R (when the input must be matched to a source impedance, R ) T G1 S follow an iterative approach. This complexity arises from the active input impedance at the R input. When the G1 FDA is used to convert a single-ended signal to differential, the common-mode input voltage at the FDA inputs must move with the input signal to generate the inverted output signal as a current in the R element. A more G2 recent solution is shown as Equation 1, where a quadratic in R can be solved for an exact value. This quadratic T emergesfromthesimultaneoussolutionforamatchedinputimpedanceandtargetgain.Theonlyinputsrequired are: 1. TheselectedR value. F 2. Thetargetvoltagegain(A )fromtheinputofR tothedifferentialoutputvoltage. v T 3. ThedesiredinputimpedanceatthejunctionofR andR tomatchR . T G1 S SolvingthisquadraticforR startsthesolutionsequence,asshowninEquation1: T R R 2 -R 2RS(2RF + 2S A2V) - 2RFRS2 AV =0 T T 2R (2 + A )-R A (4 + A ) 2R (2 + A )-R A (4 + A F V S V V F V S V V) (1) Being a quadratic, there are limits to the range of solutions. Specifically, after R and R are chosen, there is F S physically a maximum gain beyond which Equation 1starts to solve for negative R values (if input matching is a T requirement).WithR selected,useEquation2toverifythatthemaximumgainisgreaterthanthedesiredgain. F é ù ê RF ú 4 æR ö ê R ú A =ç F - 2÷´ ê1+ 1 + S ú V(MAX) çèRS ÷ø ê æR ö2 ú ê ç F - 2÷ ú ê çR ÷ ú ë è S ø û (2) If the achievable A is less than desired, increase the R value. After R is derived from Equation 1, the R V(MAX) F T G1 elementisgivenbyEquation3: R 2 F -R A S R = V G1 R 1+ S R T (3) 36 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 Device Functional Modes (continued) Then, the simplest approach is to use a single R = R || R + R on the non-signal input side. Often, this G2 T S G1 approach is shown as the separate R and R elements. Using these separate elements provides a better G1 S divider match on the two feedback paths, but a single R is often acceptable. A direct solution for R is given G2 G2 asEquation4: R F 2 A R = V G2 R 1+ S R T (4) This design proceeds from a target input impedance matched to R , signal gain A from the matched input to the S v differential output voltage, and a selected R value. The nominal R value chosen for the THS452x family F F characterization is 402 Ω. As discussed previously, going lower improves noise and phase margin, but reduces the total output load impedance possibly degrading harmonic distortion. Going higher increases the output noise, and might reduce the loop-phase margin because of the feedback pole to the input capacitance, but reduces the totalloadingontheoutputs. UsingEquation2toEquation4tosweepthetargetgainfrom1toA < 14.3V/VgivesTable7,whichshows V(MAX) exact values for R , R , and R , where a 50-Ω source must be matched while setting the two feedback T G1 G2 resistors to 402 Ω. One possible solution for 1% standard values is shown, and the resulting actual input impedanceandgainwith%errorstothetargetsarealsoshowninTable7. Table7.Rf=1kΩ,MatchedInputto50 Ω,Gainfrom1Vto10V/VSingletoDifferential(1) Rt,EXACT Rg1, Rg2, ACTUAL %ERRTO ACTUAL %ERRTO Av Rt1% Rg11% Rg21% (Ω) EXACT(Ω) EXACT(Ω) Z Rs GAIN Av IN 1 51.95 52.3 996.92 1000 1022.48 1020 50.32 0.64% 0.997 –0.30% 2 53.59 53.6 491.51 487 517.37 523 49.95 –0.10% 2.018 0.88% 3 55.21 54.9 322.74 324 348.90 348 49.70 –0.60% 2.989 –0.36% 4 56.88 56.2 238.14 237 264.60 267 49.37 –1.25% 4.017 0.43% 5 58.63 59 189.45 191 216.51 215 50.23 0.47% 4.964 –0.71% 6 60.47 60.4 155.01 154 182.37 182 49.82 –0.37% 6.033 0.56% 7 62.42 61.9 130.39 130 158.05 158 49.51 –0.98% 7.017 0.25% 8 64.49 64.9 112.97 113 141.21 140 50.12 0.23% 7.998 –0.02% 9 66.70 66.5 98.31 97.6 126.85 127 49.69 –0.62% 9.050 0.56% 10 69.06 69.8 87.40 86.6 116.53 118 50.29 0.57% 10.069 0.69% (1) R =1kΩ,R =50Ω. F S These equations and design flow apply to any FDA. Using the feedback resistor value as a starting point is particularly useful for current-feedback-based FDAs such as the LMH6554, where the value of these feedback resistors determines the frequency response flatness. Similar tables can be built using the equations provided hereforothersourceimpedances,R values,andgainranges. F The TINA model correctly shows this actively-set input impedance in the single-ended to differential configuration,andisagoodtooltovalidatethegains,inputimpedances,responseshapes,andnoiseissues. Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 37 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com 8.4.1.4 InputImpedancefortheSingle-EndedtoDifferentialFDAConfiguration The designs so far have included a source impedance, R , that must be matched by R and R . The total S T G1 impedance at the junction of R and R for the circuit of Figure 75 is the parallel combination of R to ground, T G1 T and the ZA (active impedance) presented by R . The expression for ZA, assuming R is set to obtain the G1 G2 differentialdividerbalance,isgivenbyEquation5: æ R öæ R ö ç1+ G1÷ç1+ F ÷ ç R ÷ç R ÷ è G2øè G1ø ZA =R G1 R 2 + F R G2 (5) Fordesignsthatdonotneedimpedancematching,forinstancewheretheinputisdrivenfromthelow-impedance output of another amplifier, R = R is the single-to-differential design used without an R to ground. Setting G1 G2 T R = R = R in Equation 5 produces Equation 6, which is the input impedance of a simple-input FDA driven G1 G2 G fromalow-impedance,single-endedsource. æ R ö ç1+ F ÷ ç R ÷ è Gø ZA = 2R G R 2 + F R G (6) In this case, setting a target gain as R / R ≡ α, and then setting the desired input impedance allows the R F G G element to be resolved first. Then the R is set to get the target gain. For example, targeting an input impedance F of 200 Ω with a gain of 4 V/V, Equation 7 calculates the R value. Multiplying this required R value by a gain G G of4givestheR valueandthedesignofFigure76. F 2 + a R = ZA G 2(1+ a) (7) THS452xWideband, Fully-DifferentialAmplifier Rf1 200-Ω Input Impedance 480Ω Gain of 4 V/V Design Rg1 Vcc 120Ω – + R1 Output + Vocm FDA Measurement Vs – 500Ω – Point + PD Rg2 Vcc 120Ω Rf2 480Ω Figure76. 200-ΩInputImpedance,Single-EndedtoDifferentialDC-CoupledDesignWithGainof4V/V Afterbeingdesigned,thiscircuitcanalsobeac-coupledbyaddingblockingcapsinserieswiththetwo120-Ω R G resistors. This active input impedance has the advantage of increasing the apparent load to the prior stage using lowerresistorsvalues,leadingtoloweroutputnoiseforagivengaintarget. 38 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 8.4.2 Differential-InputtoDifferential-OutputOperation In many ways, this method is a much simpler way to operate the FDA from a design-equations perspective. Again, assuming the two sides of the circuit are balanced with equal R and R elements, the differential input F G impedance is now just the sum of the two R elements to a differential inverting summing junction. In these G designs, the input common-mode voltage at the summing junctions does not move with the signal, but must be dc biased in the allowable range for the input pins with consideration given to the voltage headroom required from each supply. Slightly different considerations apply to ac- or dc-coupled, differential-in to differential-out designs,asdescribedinthefollowingsections. 8.4.2.1 AC-Coupled,Differential-InputtoDifferential-OutputDesignIssues There are two typical ways to use the THS452x family with an ac-coupled differential source. In the first method, the source is differential and can be coupled in through two blocking capacitors. The second method uses either a single-ended or a differential source and couples in through a transformer (or balun). Figure 77 shows a typical blocking capacitor approach to a differential input. An optional differential-input termination resistor (R ) is M included in this design. This R element allows the input R resistors to be scaled up while still delivering lower M G differential input impedance to the source. In this example, the R elements sum to show a 500-Ω differential G impedance, while the R element combines in parallel to give a net 100-Ω, ac-coupled, differential impedance to M the source. Again, the design proceeds ideally by selecting the R element values, then the R to set the F G differential gain, then an R element (if needed) to achieve the target input impedance. Alternatively, the R M M element can be eliminated, the R elements set to the desired input impedance, and R set to the get the G F differentialgain(R /R ). F G THS452xWideband, Fully-DifferentialAmplifier Rf1 1 kΩ C1 Rg1 Vcc 100 nF 250Ω – + R1 Output DoDwiOfnfecurotepnnuvtteiarlter C2 R12m5ΩRg2 Vocm +FDA –VcPcD 500Ω MPoeiansturement 100 nF 250Ω Rf2 1 kΩ Figure77. ExampleDown-ConvertingMixerDeliveringanAC-CoupledDifferentialSignaltotheTHS452x The dc biasing here is very simple. The output V is set by the input control voltage; and because there is no OCM dc-current path for the output common-mode voltage, that dc bias also sets the input pins common-mode operatingpoints. Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 39 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com 8.5 Programming 8.5.1 InputCommon-ModeVoltageRange The input common-mode voltage of a fully-differential amplifier is the voltage at the + and – input pins of the device. It is important to not violate the input common-mode voltage range (V ) of the amplifier. Assuming the amplifier ICR is in linear operation, the voltage across the input pins is only a few millivolts at most. Therefore, finding the voltageatoneinputpindeterminestheinputcommon-modevoltageoftheamplifier. Treatingthenegativeinputasasummingnode,thevoltageisgivenbyEquation8: R R V ´ G + V ´ F OUT+ R + R IN- R + R G F G F (8) To determine the V of the amplifier, the voltage at the negative input is evaluated at the extremes of V . As ICR OUT+ the gain of the amplifier increases, the input common-mode voltage becomes closer and closer to the input common-modevoltageofthesource. 8.5.1.1 SettingtheOutputCommon-ModeVoltage The output common-model voltage is set by the voltage at the V pin. The internal common-mode control OCM circuit maintains the output common-mode voltage within 5-mV offset (typ) from the set voltage. If left unconnected, the common-mode set point is set to midsupply by internal circuitry, which may be overdriven from anexternalsource. Figure 78 represents the V input. The internal V circuit has typically 23 MHz of –3 dB bandwidth, which is OCM OCM required for best performance, but it is intended to be a dc bias input pin. A 0.22-μF bypass capacitor is recommended on this pin to reduce noise. The external current required to overdrive the internal resistor divider isgivenapproximatelybytheformulainEquation9: 2V -(V -V ) I = OCM S+ S- EXT 50 kW where: • V isthevoltageappliedtotheV pin (9) OCM OCM V S+ 275 kΩ I EXT To internal V V circuit OCM OCM 275 kΩ V S– Figure78. V InputCircuit OCM 40 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 9.1 Application Information The following circuits show application information for the THS4521, THS4522, and THS4524 family. For simplicity, power-supply decoupling capacitors are not shown in these diagrams; see Layout Guidelines for suggested guidelines. For more details on the use and operation of fully differential amplifiers, refer to the Application Report Fully-Differential Amplifiers (SLOA054), available for download from the TI web site at www.ti.com. 9.2 Typical Applications 9.2.1 AudioADCDriverPerformance:THS4521andPCM4204CombinedPerformance To show achievable performance with a high-performance audio ADC, the THS4521 is tested as the drive amplifier for the PCM4204. The PCM4204 is a high-performance, four-channel ADC designed for professional and broadcast audio applications. The PCM4204 architecture uses a 1-bit delta-sigma (ΔΣ) modulator per channel that incorporates an advanced dither scheme for improved dynamic performance, and supports PCM output data. The PCM4204 provides a flexible serial port interface and many other advanced features. Refer to thePCM4204productdatasheet formoreinformation. The PCM4204EVM can test the audio performance of the THS4521 as a drive amplifier. The standard PCM4204EVM is provided with four OPA1632 fully-differential amplifiers, which use the same device pinout as the THS4521. For testing, one of these amplifiers is replaced with a THS4521 device in same package (MSOP), and the power supply changes to a single-supply +5V. Figure 79 shows the modifications made to the circuit. Note the resistor connecting the V input of the THS4521 to the input common-mode drive from the PCM4204 OCM is shown removed and is optional; no performance change was noted with it connected or removed. The THS4521 is operated with a +5-V single-supply so the output common-mode defaults to +2.5 V as required at the input of the PCM4204. The EVM power connections were modified by connecting positive supply inputs, +15 V, +5 VA and +5 VD, to a +5-V external power supply (EXT +3.3 was not used) and connecting –15 V and all ground inputs to ground on the external power supply. Note only one external +5-V supply was needed to power alldevicesontheEVM. A SYS-2722 Audio Analyzer from Audio Precision (AP) provides an analog audio input to the EVM; the PCM- formatteddigitaloutputisreadbythedigitalinputontheAP. Data were taken using a 256-f system clock to achieve f = 48-kHz measurements, and audio output uses PCM S S format. Other data rates and formats are expected to show similar performance in line with that shown in the productdatasheet. Figure 82 shows the THD+N vs Frequency response with no weighting; Figure 83 shows an FFT of the output with 1-kHz input tone. Input signals to the PCM4204 for these tests is 0.5 dBFS. Dynamic range is also tested at –60 dBFS, f = 1 kHz, and A-weighted. Table 8 summarizes testing results using the THS4521 together with the IN PCM4204 versus typical data sheet performance measurements, and show that it make an excellent drive amplifierforthisADC. Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 41 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com Typical Applications (continued) The test circuit shown in Figure 79 has a gain = 0.27 and attenuates the input signal. For applications that require higher gain, the circuit was modified to gains of G = 1, G = 2, and G = 5 by replacing the feedback resistors(R33andR34)andre-testedtoshowperformance. R33 270W TP4 C21 GND 1 nF +5V C29 +15V 10mF + C73 100 pF R23 C41 R41 R13 1 kW 0.01mF 40.2W 0W Audio C79 PCM4204 THS4521 Inputs 2.7 nF Inputs R24 C83 R42 R14 1 kW 0.1mF 40.2W 0W C74 GND 100 pF +15V C42 R27 0.01mF 1 kW + C30 10mF C22 1 nF R34 270W Figure79. THS4521andPCM4204TestCircuit 42 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 Typical Applications (continued) Figure84showstheTHS4521andPCM4204THD+Nversusfrequencywithnoweightingathighergains. 9.2.1.1 DesignRequirements Table8.1-kHzACAnalysis:TestCircuitVersusPCM4204DataSheetTypicalSpecifications (F =48kSPS) S Configuration Tone THD+N DynamicRange THS4521andPCM4204 1kHz –106dBc 117dB PCM4204Datasheet(typ) 1kHz –105dBc 118dB 9.2.1.2 DetailedDesignProcedure Table9.THS4521EVMPartsList REFERENCE MANUFACTURER ITEM DESCRIPTION SMDSIZE DESIGNATOR QTY PARTNUMBER 1 Capacitor,10.0μF,ceramic,X5R,6.3V 0805 C7,C8,C9,C10 4 (AVX)08056D106KAT2A 2 Capacitor,0.1μF,ceramic,X7R,16V 0603 C3,C5,C11,C12 4 (AVX)0603YC104KAT2A 3 Capacitor,0.22μF,ceramic,X7R,10V 0603 C1,C4,C6 3 (AVX)0603ZC224KAT2A 4 Open 0603 C2,C13,C14,C15,C16 5 5 Open 0603 R1,R2,R3,R7,R8,R9,R18, 12 R19,R21,R22,R23,R26 6 Resistor,0Ω 0603 R24,R25 2 (ROHM)MCR03EZPJ000 7 Resistor,49.9Ω,1/10W,1% 0603 R6 1 (ROHM)MCR03EZPFX49R9 8 Resistor,52.3Ω,1/10W,1% 0603 R10,R11,R20 3 (ROHM)MCR03EZPFX52R3 9 Resistor,487Ω,1/10W,1% 0603 R16,R17 2 (ROHM)MCR03EZPFX4870 10 Resistor,1kΩ,1/10W,1% 0603 R12,R13,R14,R15 4 (ROHM)MCR03EZPFX1001 11 Resistor,0Ω 0805 R4,R5 2 (ROHM)MCR10EZPJ000 12 Open T1 1 13 Transformer,RF T2 1 (MINI-CIRCUITS)ADT1-1WT 14 Jack,Bananareceptance,0.25-india. J4,J5,J8 3 (SPC)813 hole 15 Open J1,J3,J6,J7,J10,J11 6 16 Connector,edge,SMAPCBjack J2,J9 2 (JOHNSON)142-0701-801 17 Header,0.1inCTRS,0.025-insq.pins 2POS. JP1 1 (SULLINS)PBC36SAAN 18 Shunts JP1 1 (SULLINS)SSC02SYAN 19 Testpoint,Red TP1 1 (KEYSTONE)5000 20 Testpoint,Black TP2,TP3 2 (KEYSTONE)5001 21 IC,THS4521 U1 1 (TI)THS4521D 22 Standoff,4-40hex,0.625inlength 4 (KEYSTONE)1808 23 Screw,Phillips,4-40,.250in 4 SHR-0440-016-SN 24 Board,printedcircuit 1 (TI)EDGE#6494532 Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 43 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com J4 J5 J8 VS- VS- GND VS+ VS+ VS+ C3 C5 C7 C8 C9 C10 C11 C12 OpCe1n5 0.1mF 0.1mF 10mF 10mF 10mF 10mF 0.1mF 0.1mF C13 C14 Open Open C603 C0805 C0805 C603 C16 Open TP2 TP3 VS- J11 J1 0.2C21mF 49R.96W 0.2C24mF JP1 VS- J6 R4 R14 0W 1kW R1 3 T1 4 52.R31W0 1Rk1W2 PW 7 VS- VOUT+ R18 4R8716W 6 T2 1R23 R0W25 J9 R2 R3 21 0RW5 56 R7 R592.R31W1 1Rk1W3 C18M 2 VRS163+5 45VOUT- R19 4R871J7W7 52.R32W0 R21 54 23R02W4R22 R26 J10 1kW J2 C2 R8 TP1 C6 J3 0.22mF Figure80. THS4521EVM:Schematic 44 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 9.2.1.2.1 AudioADCDriverPerformance:THS4521andPCM3168CombinedPerformance The THS4521 is also tested as the drive amplifier for the PCM3168A ADC input. The PCM3168A is a high- performance, single-chip, 24-bit, 6-in/8-out, audio coder/decoder (codec) with single-ended and differential selectable analog inputs and differential outputs. The six-channel, 24-bit ADC employs a ΔΣ modulator and supports 8-kHz to 96-kHz sampling rates and a 16-bit/24-bit width digital audio output word on the audio interface. The eight-channel, 24-bit digital-to-analog converter (DAC) employs a ΔΣ modulator and supports 8- kHz to 192-kHz sampling rates and a 16-bit/24-bit width digital audio input word on the audio interface. Each audio interface supports I2S™, left-/right-justified, and DSP formats with 16-bit/24-bit word width. In addition, the PCM3168A supports the time-division-multiplexed (TDM) format.. The PCM3168A provides flexible serial port interfaceandmanyotheradvancedfeatures.RefertothePCM3168Aproductdatasheet formoreinformation. The PCM3168A EVM is used to test the audio performance of the THS4521 as a drive amplifier. The standard PCM3168AEVMisprovidedwithOPA2134operationalamplifiersthatareusedtoconvertsingle-endedinputsto differentialtodrivetheADC.Fortesting,theoperationalamplifieroutputseriesresistorsareremovedfromoneof the channels and a THS4521, mounted on its standard EVM, is connected to the ADC inputs via short coaxial cables. The THS4521 EVM is configured for both differential inputs as shown in Figure 91 and for single-ended input as shown in Figure 92 with 1-kΩ resistors for R and R , and 24.9-Ω resistors in series with each output to F G isolate the outputs from the reactive load of the coaxial cables. To limit the noise from the external EVM and cables, a 2.7-nF capacitor is placed differentially across the PCM3168A inputs. The THS4521 is operated with a single-supply +5-V supply so the output common-mode of the THS4521 defaults to +2.5 V as required at the input of the PCM3168A. The PCM3168A EVM is configured and operated as described in the PCM3168AEVM User's Guide. The ADC was tested with an external THS4521 EVM with both single-ended input and differential inputs. In both configurations, the results are the same. Figure 81 shows the THD+N versus frequency and Table 10 compares the result to the PCM3168 data sheet typical specification at 1 kHz. Both graphs show that it makes an excellent drive amplifier for this ADC. Note: a 2700 series Audio Analyzer from Audio Precision is usedtogeneratetheinputsignalstotheTHS4521andtoanalyzethedigitaldatafromthePCM3168. THS4521 and PCM3168 THD+N vs FREQUENCY (No Weighting) -80 -82 -84 -86 B) -88 d N ( -90 + D H -92 T -94 -96 -98 -100 10 100 1 k 10 k 20 k Frequency (Hz) Figure81. THS4521andPCM3168:Thd+NVersusFrequencyWithNoWeighting Table10.1-kHzACAnalysis:TestCircuitvsPCM3168DataSheetTypicalSpecifications(F =48kSPS) S Configuration Tone THD+N THS4521andPCM3168 1kHz –92.6dBc PCM3168ADatasheet(typ) 1kHz –93dBc Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 45 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com 9.2.1.3 ApplicationCurves THS4521 and PCM4204 THD+N THS4521 and PCM4204 vs FREQUENCY (No Weighting) 1-kHz FFT -95 0 -10 -97 -20 -99 -30 -40 -101 -50 HD+N (dB) ---111000357 FT (dBFS) ----67890000 T F -100 -109 -110 -111 -120 -130 -113 -140 -115 -150 0 100 1 k 10 k 20 k 0 100 1 k 10 k 20 k Frequency (Hz) Frequency (Hz) Figure82.THS4521andPCM4204:Thd+NVersus Figure83.THS4521andPCM42041-kHzFFT FrequencyWithNoWeighting THS4521 and PCM4204 THD+N vs FREQUENCY (No Weighting, at Higher Gains) -95 -97 -99 -101 G = 5 dB) -103 G = 2 +N ( -105 G = 1 D H -107 T -109 -111 -113 -115 0 100 1 k 10 k 20 k Frequency (Hz) Figure84.THS4521andPCM4204:Thd+NVersusFrequencyWithNoWeightingatHigherGains 46 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 9.2.2 ADCDriverPerformance:THS4521andADS1278CombinedPerformance The THS4521 provides excellent performance when driving high-performance ΔΣ and successive approximation register (SAR) ADCs in audio and industrial applications using a single 3-V to 5-V power supply. To show achievable performance, the THS4521 is tested as the drive amplifier for the ADS1278 24-bit ADC. The ADS1278offersexcellentacandDCperformance,withfourselectableoperating modes from 10 kSPS to 128 kSPS to enable the user to fine-tune performance and power for specific application needs. The circuit shown in Figure 85 was used to test the performance. Data were taken using the High- Resolution mode (52 kSPS) of the ADS1278 with input frequencies at 1 kHz and 10 kHz and signal levels 1/2 dB below full-scale (–0.5 dBFS). FFT plots showing the spectral performance are given in Figure 87 and Figure 88; tabulated ac analysis results are shown in Table 11 and compared to the ADS1278 data sheet typical performancespecifications. 1 kW 1.5 nF 5 V 1 kW 49.9W V AINN1 IN+ THS4521 2.2 nF ADS1278(CH 1) 49.9W V IN- AINP1 V COM 1 kW V OCM x1 0.1mF 0.1mF 1/2 OPA2350 1.5 nF 1 kW Figure85. THS4521andADS1278(Ch1)TestCircuit 9.2.2.1 DesignRequirements Table11. ACAnalysis Configuration Tone Signal(dBFS) SNR(dBc) THD(dBc) SINAD(dBc) SFDR(dBc) THS4521and 1kHz –0.5 109 –108 105 114 ADS1278 10kHz –0.5 102 –110 101 110 ADS1278Data 1kHz –0.5 110 –108 — 109 sheet(typ) Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 47 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com 9.2.2.2 DetailedDesignProcedure 9.2.2.2.1 ADCDriverPerformance:THS4521andADS8321CombinedPerformance To demonstrate achievable performance, the THS4521 is tested as the drive amplifier for the ADS8321 16-bit SARADC.TheADS8321offersexcellentacanddcperformance,withultra-lowpowerandsmallsize.Thecircuit showninFigure86wasusedtotesttheperformance. Data were taken using the ADS8321 at 100 kSPS with input frequencies of 2 kHz and 10 kHz and signal levels that were -0.5 dBFS. FFT plots that illustrate the spectral performance are given in Figure 89 and Figure 90. Tabulated ac analysis results are listed in Table 12 and compared to the ADS8321 data sheet typical performance.NotethesignificantimprovementinSFDusingtheTHS4521driveroverjusttheADCbyitself. 1 kW 5 V 68 pF 1 kW 49.9W V -IN IN+ THS4521 1 nF ADS8321 49.9W V IN- +IN 1 kW V 68 pF OCM Open 0.22mF 1 kW Figure86. THS4521andADS8321TestCircuit Table12. ACAnalysis Configuration Tone Signal(dBFS) SNR(dBc) THD(dBc) SINAD(dBc) SFDR(dBc) THS4521and 2kHz –0.5 86.7 –97.8 86.4 100.7 ADS8321 10kHz –0.5 85.2 –98.1 85.2 102.2 ADS8321Data 10kHz –0.5 87 –86 84 86 sheet(typ) 48 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 9.2.2.3 ApplicationCurves TheapplicationcurvesbelowapplytotheADS14278test. 1-kHz FFT 10-kHz FFT 0 0 G = 1 G = 1 -20 RF= RG= 1 kW -20 RF= RG= 1 kW BFS) --4600 CVLoSFa==d 51= . V52 nxF 49.9W+ 2.2 nF BFS) --4600 CVLoSFa==d 51= . V52 nxF 49.9W+ 2.2 nF Magnitude (d -1-0800 Magnitude (d -1-0800 -120 -120 -140 -140 -160 -160 0 4 8 12 16 20 24 26 0 4 8 12 16 20 24 26 Frequency (kHz) Frequency (kHz) Figure87.1-kHzFFT Figure88.10-kHzFFT TheapplicationcurvesbelowapplytotheADS8321test. 10-kHz FFT 10-kHz FFT 0 0 G = 1 VS= 5.0 V -20 RF= RG= 1 kW -20 G = 1 V/V S) -40 CVSF== 51 .V5 nF S) -40 RLoFa=d R=G 2= x 14 9kW.9W+ 2 pF BF -60 Load = 2 x 49.9W+ 2.2 nF BF -60 d d de ( -80 de ( -80 u u gnit -100 gnit -100 a a M M -120 -120 -140 -140 -160 -160 0 4 8 12 16 20 24 26 0 10 k 20 k 30 k 40 k 50 k Frequency (kHz) Frequency (Hz) Figure89.2-kHZFFT Figure90.10-kHzFFT Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 49 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com 9.2.3 DifferentialInputtoDifferentialOutputAmplifier The THS4521, THS4522, and THS4524 family are fully-differential operational amplifiers that can be used to amplify differential input signals to differential output signals. Figure 91 shows a basic block diagram of the circuit (V andPDinputsnotshown).ThegainofthecircuitissetbyR dividedbyR . OCM F G R F Differential VS+ Differential Input Output R G VIN+ VOUT- THS452x VIN- VOUT+ R G VS- R F Figure91. DifferentialInputtoDifferentialOutputAmplifier 9.2.4 Single-EndedInputtoDifferentialOutputAmplifier The THS4521, THS4522, and THS4524 family can also amplify and convert single-ended input signals to differential output signals. Figure 92 illustrates a basic block diagram of the circuit (V and PD inputs not OCM shown).ThegainofthecircuitisagainsetbyR dividedbyR . F G R R Single-Ended G F Input VS+ Differential Output VOUT- R THS452x G VOUT+ VS- R F Figure92. Single-EndedInputtoDifferentialOutputAmplifier 50 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 10 Power Supply Recommendations The THS452x family is principally intended to operate with a nominal single-supply voltage of +3 V to +5 V. Supply-voltage tolerances are supported with the specified operating range of 2.5 V (10% low on a 3-V nominal supply) and 5.5 V (8% high on a 5-V nominal supply). Supply decoupling is required, as described in the Application and Implementation. Split (or bipolar) supplies can be used with the THS452x family, as long as the totalvalueacrossthedeviceremainslessthan5.5V(absolutemaximum). Using a negative supply to deliver a true swing to ground output in driving SAR ADCs may be desired. While the THS452x family quotes a rail-to-rail output, linear operation requires approximately a 200-mV headroom to the supply rails. One easy option for extending the linear output swing to ground is to provide the small negative supply voltage required using the LM7705 fixed –230-mV, negative-supply generator. This low-cost, fixed negative-supplygeneratoracceptsthe3-to5-VpositivesupplyinputusedbytheTHS452xandprovidesa –230- mV supply for the negative rail. Using the LM7705 provides an effective solution, as shown in the TI Designs TIDU187,ExtendingRail-to-RailOutputRangeforFullyDifferentialAmplifierstoIncludeTrueZeroVolts. 11 Layout 11.1 Layout Guidelines Figure 80 shows the THS4521EVM schematic. PCB layers 1 through 4 are shown in Figure 93; Table 9 lists the bill of materials for the THS4521EVM as supplied from TI. It is recommended to follow the layout of the external components near to the amplifier, ground plane construction, and power routing as closely as possible. Follow thesegeneralguidelines: • Signalroutingshouldbedirectandasshortaspossibleintoandoutoftheamplifiercircuit. • Thefeedbackpathshouldbeshortanddirect. • Groundorpowerplanesshouldberemovedfromdirectlyundertheamplifierinputandoutputpins. • Anoutputresistorisrecommendedineachoutputlead,placedasneartotheoutputpinsaspossible. • Two 0.1-μF power-supply decoupling capacitors should be placed as near to the power-supply pins as possible. • Two 10-μF power-supply decoupling capacitors should be placed within 1 inch of the device and can be sharedamongmultipleanalogdevices. • A 0.22-μF capacitor should be placed between the V input pin and ground near to the pin. This capacitor OCM limitsnoisecoupledintothepin. • The PD pin uses TTL logic levels; a bypass capacitor is not necessary if actively driven, but can be used for robustnessinnoisyenvironmentswhetherdrivenornot. • If input termination resistors R and R are used, a single point connection to ground on L2 is 10 11 recommended. Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 51 ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 SBOS458H–DECEMBER2008–REVISEDJUNE2015 www.ti.com 11.2 Layout Example Figure93. THS4521EVM:Layer1toLayer4Images 52 SubmitDocumentationFeedback Copyright©2008–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS4521 THS4522 THS4524

THS4521,THS4522,THS4524 www.ti.com SBOS458H–DECEMBER2008–REVISEDJUNE2015 12 Device and Documentation Support 12.1 Device Support 12.1.1 Third-PartyProductsDisclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONEORINCOMBINATIONWITHANYTIPRODUCTORSERVICE. 12.2 Related Links Table 13 lists quick access links. Categories include technical documents, support and community resources, toolsandsoftware,andquickaccesstosampleorbuy. Table13.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY THS4521 Clickhere Clickhere Clickhere Clickhere Clickhere THS4522 Clickhere Clickhere Clickhere Clickhere Clickhere THS4524 Clickhere Clickhere Clickhere Clickhere Clickhere 12.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 12.4 Trademarks E2EisatrademarkofTexasInstruments. I2SisatrademarkofNXPSemiconductor. Allothertrademarksarethepropertyoftheirrespectiveowners. 12.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriateprecautions.Failuretoobserveproperhandlingandinstallationprocedurescancausedamage. ESDdamagecanrangefromsubtleperformancedegradationtocompletedevicefailure.Precisionintegratedcircuitsmaybemore susceptibletodamagebecauseverysmallparametricchangescouldcausethedevicenottomeetitspublishedspecifications. 12.6 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2008–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 53 ProductFolderLinks:THS4521 THS4522 THS4524

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) THS4521ID ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 TH4521 & no Sb/Br) THS4521IDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS NIPDAU | NIPDAUAG Level-2-260C-1 YEAR -40 to 85 4521 & no Sb/Br) THS4521IDGKT ACTIVE VSSOP DGK 8 250 Green (RoHS NIPDAU | NIPDAUAG Level-2-260C-1 YEAR -40 to 85 4521 & no Sb/Br) THS4521IDR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 TH4521 & no Sb/Br) THS4522IPW ACTIVE TSSOP PW 16 90 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 THS4522 & no Sb/Br) THS4522IPWR ACTIVE TSSOP PW 16 2000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 THS4522 & no Sb/Br) THS4524IDBT ACTIVE TSSOP DBT 38 50 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 THS4524 & no Sb/Br) THS4524IDBTR ACTIVE TSSOP DBT 38 2000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 THS4524 & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF THS4521, THS4524 : •Enhanced Product: THS4524-EP NOTE: Qualified Version Definitions: •Enhanced Product - Supports Defense, Aerospace and Medical Applications Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 16-Jan-2018 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) THS4521IDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 THS4521IDGKT VSSOP DGK 8 250 180.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 THS4521IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 THS4522IPWR TSSOP PW 16 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 THS4524IDBTR TSSOP DBT 38 2000 330.0 16.4 6.9 10.2 1.8 12.0 16.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 16-Jan-2018 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) THS4521IDGKR VSSOP DGK 8 2500 367.0 367.0 35.0 THS4521IDGKT VSSOP DGK 8 250 210.0 185.0 35.0 THS4521IDR SOIC D 8 2500 367.0 367.0 35.0 THS4522IPWR TSSOP PW 16 2000 367.0 367.0 35.0 THS4524IDBTR TSSOP DBT 38 2000 367.0 367.0 38.0 PackMaterials-Page2

None

None

PACKAGE OUTLINE PW0016A TSSOP - 1.2 mm max height SCALE 2.500 SMALL OUTLINE PACKAGE SEATING PLANE C 6.6 TYP 6.2 A 0.1 C PIN 1 INDEX AREA 14X 0.65 16 1 2X 5.1 4.55 4.9 NOTE 3 8 9 0.30 B 4.5 16X 0.19 1.2 MAX 4.3 0.1 C A B NOTE 4 (0.15) TYP SEE DETAIL A 0.25 GAGE PLANE 0.15 0.05 0.75 0.50 0 -8 DETA 20AIL A TYPICAL 4220204/A 02/2017 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. 5. Reference JEDEC registration MO-153. www.ti.com

EXAMPLE BOARD LAYOUT PW0016A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 16X (1.5) SYMM (R0.05) TYP 1 16X (0.45) 16 SYMM 14X (0.65) 8 9 (5.8) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE: 10X SOLDER MASK METAL UNDER SOLDER MASK OPENING METAL SOLDER MASK OPENING EXPOSED METAL EXPOSED METAL 0.05 MAX 0.05 MIN ALL AROUND ALL AROUND NON-SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDE15.000R MASK DETAILS 4220204/A 02/2017 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN PW0016A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 16X (1.5) SYMM (R0.05) TYP 1 16X (0.45) 16 SYMM 14X (0.65) 8 9 (5.8) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE: 10X 4220204/A 02/2017 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

None

None

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated