图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: THS3095D
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

THS3095D产品简介:

ICGOO电子元器件商城为您提供THS3095D由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 THS3095D价格参考¥33.86-¥64.06。Texas InstrumentsTHS3095D封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 电流反馈 放大器 1 电路 8-SOIC。您可以下载THS3095D参考资料、Datasheet数据手册功能说明书,资料中有THS3095D 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

235MHz

产品目录

集成电路 (IC)半导体

描述

IC OPAMP CFA 235MHZ 8SOIC高速运算放大器 Single Lo-Distort Current Feedback

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,高速运算放大器,Texas Instruments THS3095D-

数据手册

http://www.ti.com/lit/pdf/slos423g

产品型号

THS3095D

产品目录页面

点击此处下载产品Datasheet

产品种类

高速运算放大器

供应商器件封装

8-SOIC

共模抑制比—最小值

60 dB

其它名称

296-16672-5

包装

管件

单位重量

76 mg

压摆率

7300 V/µs

商标

Texas Instruments

增益带宽积

-

安装类型

表面贴装

安装风格

SMD/SMT

封装

Tube

封装/外壳

8-SOIC(0.154",3.90mm 宽)

封装/箱体

SOIC-8

工作温度

-40°C ~ 85°C

工作电源电压

32 V

工厂包装数量

75

放大器类型

电流反馈

最大功率耗散

1020 mW

最大工作温度

+ 85 C

最小工作温度

- 40 C

标准包装

75

电压-电源,单/双 (±)

10 V ~ 30 V, ±5 V ~ 15 V

电压-输入失调

900µV

电流-电源

9.5mA

电流-输入偏置

4µA

电流-输出/通道

280mA

电源电压-最大

30 V

电源电压-最小

10 V

电源电流

10.5 mA

电路数

1

系列

THS3095

设计资源

http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176

转换速度

1900 V/us

输入补偿电压

3 mV

输出类型

-

通道数量

1 Channel

配用

/product-detail/zh/THS3091EVM/296-16738-ND/618973/product-detail/zh/THS3095EVM/296-16739-ND/618974/product-detail/zh/TSW3070EVM/TSW3070EVM-ND/1910058

推荐商品

型号:PA08M/883

品牌:Apex Microtechnology

产品名称:集成电路(IC)

获取报价

型号:TL084BCDT

品牌:STMicroelectronics

产品名称:集成电路(IC)

获取报价

型号:LT1352CN8#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:MAX4486AKA+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:MC1458DT

品牌:STMicroelectronics

产品名称:集成电路(IC)

获取报价

型号:ISL28227FUZ-T13

品牌:Renesas Electronics America Inc.

产品名称:集成电路(IC)

获取报价

型号:OPA452FA/500

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:THS4503IDGNRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
THS3095D 相关产品

NJM2794RB2-TE1

品牌:NJR Corporation/NJRC

价格:

ADA4610-2ARZ

品牌:Analog Devices Inc.

价格:

HFA1412IBZ

品牌:Renesas Electronics America Inc.

价格:

LM2904QPWRQ1

品牌:Texas Instruments

价格:

LMC6482IMMX/NOPB

品牌:Texas Instruments

价格:

AD844JRZ-16

品牌:Analog Devices Inc.

价格:

LM358M

品牌:ON Semiconductor

价格:¥2.55-¥3.24

LM258D

品牌:Texas Instruments

价格:

PDF Datasheet 数据手册内容提取

Product Sample & Technical Tools & Support & Folder Buy Documents Software Community THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 THS309x High-voltage, Low-distortion, Current-feedback Operational Amplifiers 1 Features 3 Description • LowDistortion The THS3091 and THS3095 are high-voltage, low- 1 distortion, high-speed, current-feedback amplifier – 77-dBcHD2at10MHz,R =1kΩ L designed to operate over a wide supply range of ±5 V – 69-dBcHD3at10MHz,R =1kΩ to ±15 V for applications requiring large, linear output L • LowNoise signals such as Pin, Power FET, and VDSL line drivers. – 14-pA/√HzNoninvertingCurrentNoise – 17-pA/√HzInvertingCurrentNoise The THS3095 features a power-down pin (PD) that puts the amplifier in low power standby mode, and – 2-nV/√HzVoltageNoise lowersthequiescentcurrentfrom9.5mAto500 μA. • HighSlewRate:7300V/μs(G=5,V =20V ) O PP The wide supply range combined with total harmonic • WideBandwidth:210MHz(G=2,R =100Ω) L distortion as low as –69 dBc at 10 MHz, in addition, • HighOutputCurrentDrive: ±250mA to the high slew rate of 7300 V/μs makes the • WideSupplyRange:±5Vto ±15V THS309x ideally suited for high-voltage arbitrary waveform driver applications. Moreover, having the • Power-DownFeature:THS3095Only ability to handle large voltage swings driving into high-resistance and high-capacitance loads while 2 Applications maintaining good settling time performance makes • High-VoltageArbitraryWaveformGenerators the devices ideal for Pin driver and Power FET driver applications. • PowerFETDrivers • PinDrivers The THS3091 and THS3095 are offered in an 8-pin SOIC (D), and the 8-pin SOIC (DDA) packages with • VDSLLineDrivers PowerPAD™. DeviceInformation(1) PARTNUMBER PACKAGE BODYSIZE(NOM) SOIC(8) 4.90mm×3.91mm THS309x SOPowerPAD(8) 4.89mm×3.90mm (1) For all available packages, see the orderable addendum at theendofthedatasheet. TypicalArbitraryWaveformGeneratorOutput TotalHarmonicDistortionvsFrequency DriveCircuit −20 G=5, Bc −30 RRFL==110k0WW,, VO=20VPP +− THS3091 on−d −40 VS=±15V storti −50 VO=10VPP DAIIOOCUU56TT8126 +− THS4271 +− THS3091 VOUT Harmonic Di −−7600 VO=5VPP al Tot −80 VO=2VPP −90 − + 100k 1M 10M 100M THS3091 f−Frequency−Hz 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.UNLESSOTHERWISENOTED,thisdocumentcontainsPRODUCTION DATA.

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com Table of Contents 1 Features.................................................................. 1 7.3 DeviceFunctionalModes........................................26 2 Applications........................................................... 1 8 ApplicationandImplementation........................ 29 3 Description............................................................. 1 8.1 ApplicationInformation............................................29 4 RevisionHistory..................................................... 2 8.2 TypicalApplication .................................................32 5 PinConfigurationandFunctions......................... 3 9 PowerSupplyRecommendations...................... 37 6 Specifications......................................................... 4 10 Layout................................................................... 37 6.1 AbsoluteMaximumRatings......................................4 10.1 LayoutGuidelines.................................................37 6.2 ESDRatings..............................................................4 10.2 LayoutExample ...................................................38 6.3 RecommendedOperatingConditions.......................4 10.3 PowerPADDesignConsiderations.......................41 6.4 ThermalInformation..................................................4 11 DeviceandDocumentationSupport................. 43 6.5 ElectricalCharacteristicsTHS3091..........................5 11.1 DeviceSupport......................................................43 6.6 ElectricalCharacteristicsTHS3095..........................8 11.2 DocumentationSupport........................................43 6.7 DissipationRatingsTable.......................................11 11.3 RelatedLinks........................................................43 6.8 TypicalCharacteristics............................................12 11.4 CommunityResources..........................................43 6.9 TypicalCharacteristics(±15V)...............................14 11.5 Trademarks...........................................................44 6.10 TypicalCharacteristics(±5V)...............................21 11.6 ElectrostaticDischargeCaution............................44 7 DetailedDescription............................................ 25 11.7 Glossary................................................................44 7.1 Overview.................................................................25 12 Mechanical,Packaging,andOrderable Information........................................................... 44 7.2 FeatureDescription.................................................25 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionG(February,2007)toRevisionH Page • AddedAddedESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,Applicationand Implementationsection,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentation Supportsection,andMechanical,Packaging,andOrderableInformationsection................................................................ 1 ChangesfromRevisionF(February,2007)toRevisionG Page • Changedcommon-moderejectionratiospecificationsfrom78dB(typ)to69dB(typ);from68dBat+25°Cto62 dB;from65dBat(0°Cto+70°C)and(–40°Cto+85°C)to59dB........................................................................................ 6 • Correctedloadresistorvalueforoutputcurrentspecification(sourcingandsinking)fromR =40ΩtoR =10Ω...........10 L L • Changedoutputcurrent(sourcing)specificationsfrom200mA(typ)to180mA(typ);from160mAat+25°Cto140 mA;from140mAat(0°Cto+70°C)and(–40°Cto+85°C)to120mA............................................................................... 10 • Correctedoutputcurrent(sinking)specificationsfrom180mA(typ)to–160mA(typ);from150mAat+25°Cto–140 mA;from125mAat(0°Cto+70°C)and(–40°Cto+85°C)to–120mA............................................................................. 10 2 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 5 Pin Configuration and Functions D,DDAPackage(THS3091) 8-PinSOICWithPowerPAD TopView NC 1 8 NC VIN− 2 7 VS+ VIN+ 3 6 VOUT VS− 4 5 NC D,DDAPackage(THS3095) 8-PinSOICWithPowerPAD TopView REF 1 8 PD VIN− 2 7 VS+ VIN+ 3 6 VOUT VS− 4 5 NC PinFunctions(1) PIN I/O DESCRIPTION NAME SOIC SOT-23 THS3091 1 NC 5 — — Noconnection 8 V 2 4 I Invertinginput in– V 3 3 I Noninvertinginput in+ –V 4 2 POW Negativepowersupply s V 6 1 O Outputofamplifier out +V 7 5 POW Positivepowersupply s THS3095 NC 5 — — Noconnection Amplifierpowerdown,LOW-Amplifierdisabled,HIGH(default)-Amplifier PD 8 — I enabled REF 1 — I VoltagereferenceinputtosetPDthresholdlevel V 2 4 I Invertinginput in– V 3 3 I Noninvertinginput in+ V 6 1 O Outputofamplifier out –V 4 2 POW Negativepowersupply s +V 7 5 POW Positivepowersupply s (1) NC–Nointernalconnection Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN MAX UNIT V toV Supplyvoltage 33 V S- S+ V Inputvoltage ±V I S V Differentialinputvoltage 4 ±V ID I Outputcurrent 350 mA O Continuouspowerdissipation SeeESDRatings T Maximumjunctiontemperature 150 °C J T (2) Maximumjunctiontemperature,continuousoperation,long-termreliability 125 °C J T Storagetemperature –65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) Themaximumjunctiontemperatureforcontinuousoperationislimitedbypackageconstraints.Operationabovethistemperaturemay resultinreducedreliabilityand/orlifetimeofthedevice. 6.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±2000 V Electrostaticdischarge V (ESD) Charged-devicemodel(CDM),perJEDECspecificationJESD22-C101(2) ±1500 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 6.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT Dualsupply ±5 ±15 ±16 Supplyvoltage V Singlesupply 10 30 32 T Operatingfree-airtemperature –40 85 °C A 6.4 Thermal Information THS309x THERMALMETRIC(1) D(SOIC) PoDwDeArP(ASDO)(2) UNIT 8PINS 8PINS R Junction-to-ambientthermalresistance 113.5 51.8 °C/W θJA R Junction-to-case(top)thermalresistance 57.7 58.3 °C/W θJC(top) R Junction-to-boardthermalresistance 54.2 32.3 °C/W θJB ψ Junction-to-topcharacterizationparameter 11.5 12.2 °C/W JT ψ Junction-to-boardcharacterizationparameter 53.7 32.2 °C/W JB R Junction-to-case(bottom)thermalresistance n/a 7.8 °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report,SPRA953. (2) TheTHS3091andTHS3095mayincorporateaPowerPADontheundersideofthechip.Thisactsasaheatsinkandmustbeconnected toathermallydissipatingplaneforproperpowerdissipation.Failuretodosomayresultinexceedingthemaximumjunctiontemperature whichcouldpermanentlydamagethedevice.SeeTITechnicalBriefSLMA002formoreinformationaboututilizingthePowerPAD thermallyenhancedpackage. 4 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 6.5 Electrical Characteristics THS3091 V =±15V,R =1.21kΩ,R =100Ω,andG=2(unlessotherwisenoted) S F L PARAMETER TESTCONDITIONS MIN TYP MAX UNIT ACPERFORMANCE G=1,RF=1.78kΩ,VO=200mVPP TA=25°C 235 G=2,RF=1.21kΩ,VO=200mVPP TA=25°C 210 Small-signalbandwidth,–3dB G=5,RF=1kΩ,VO=200mVPP TA=25°C 190 MHz G=10,RF=866Ω,VO=200mVPP TA=25°C 180 0.1-dBBandwidthflatness G=2,RF=1.21kΩ,VO=200mVPP TA=25°C 95 Large-signalbandwidth G=5,RF=1kΩ,VO=4VPP TA=25°C 135 G=2,VO=10-Vstep,RF=1.21kΩ TA=25°C 5000 Slewrate(25%to75%level) V/μs G=5,VO=20-Vstep,RF=1kΩ TA=25°C 7300 Riseandfalltime G=2,VO=5-VPP,RF=1.21kΩ TA=25°C 5 ns Settlingtimeto0.1% G=–2,VO=2VPPstep TA=25°C 42 ns Settlingtimeto0.01% G=–2,VO=2VPPstep TA=25°C 72 HARMONICDISTORTION RL=100Ω TA=25°C 66 2ndHarmonicdistortion G=2,RF=1.21kΩ, RL=1kΩ TA=25°C 77 dBc VO=2VPP,f=10MHz RL=100Ω TA=25°C 74 3rdHarmonicdistortion RL=1kΩ TA=25°C 69 Inputvoltagenoise f>10kHz TA=25°C 2 nV/√Hz Noninvertinginputcurrent noise f>10kHz TA=25°C 14 pA/√Hz Invertinginputcurrentnoise f>10kHz TA=25°C 17 pA/√Hz NTSC TA=25°C 0.013% Differentialgain PAL TA=25°C 0.011% G=2,RL=150Ω,RF=1.21kΩ NTSC TA=25°C 0.020° Differentialphase PAL TA=25°C 0.026° DCPERFORMANCE TA=25°C 850 TA=25°C 350 Transimpedance VO=±7.5V,Gain=1 kΩ TA=0°Cto70°C 300 TA=–40°Cto85°C 300 TA=25°C 0.9 TA=25°C 3 Inputoffsetvoltage VCM=0V mV TA=0°Cto70°C 4 TA=–40°Cto85°C 4 TA=0°Cto70°C ±10 Averageoffsetvoltagedrift VCM=0V μV/°C TA=–40°Cto85°C ±10 TA=25°C 4 TA=25°C 15 Noninvertinginputbiascurrent VCM=0V μA TA=0°Cto70°C 20 TA=–40°Cto85°C 20 TA=0°Cto70°C ±20 Averagebiascurrentdrift VCM=0V nA/°C TA=–40°Cto85°C ±20 TA=25°C 3.5 TA=25°C 15 Invertinginputbiascurrent VCM=0V μA TA=0°Cto70°C 20 –40°Cto85°C 20 TA=0°Cto70°C ±20 Averagebiascurrentdrift VCM=0V nA/°C TA=–40°Cto85°C ±20 Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com Electrical Characteristics THS3091 (continued) V =±15V,R =1.21kΩ,R =100Ω,andG=2(unlessotherwisenoted) S F L PARAMETER TESTCONDITIONS MIN TYP MAX UNIT TA=25°C 1.7 TA=25°C 10 Inputoffsetcurrent VCM=0V μA TA=0°Cto70°C 15 TA=–40°Cto85°C 15 TA=0°Cto70°C ±20 Averageoffsetcurrentdrift VCM=0V nA/°C TA=–40°Cto85°C ±20 INPUTCHARACTERISTICS TA=25°C ±13.6 TA=25°C ±13.3 Common-modeinputrange V TA=0°Cto70°C ±13 TA=–40°Cto85°C ±13 TA=25°C 69 TA=25°C 62 Common-moderejectionratio VCM=±10V dB TA=0°Cto70°C 59 TA=–40°Cto85°C 59 Noninvertinginputresistance TA=25°C 1.3 MΩ Noninvertinginputcapacitance TA=25°C 0.1 pF Invertinginputresistance TA=25°C 30 Ω Invertinginputcapacitance TA=25°C 1.4 pF 6 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 Electrical Characteristics THS3091 (continued) V =±15V,R =1.21kΩ,R =100Ω,andG=2(unlessotherwisenoted) S F L PARAMETER TESTCONDITIONS MIN TYP MAX UNIT OUTPUTCHARACTERISTICS TA=25°C ±13.2 TA=25°C ±12.8 RL=1kΩ TA=0°Cto70°C ±12.5 TA=–40°Cto85°C ±12.5 Outputvoltageswing V TA=25°C ±12.5 TA=25°C ±12.1 RL=100Ω TA=0°Cto70°C ±11.8 TA=–40°Cto85°C ±11.8 TA=25°C 280 TA=25°C 225 Outputcurrent(sourcing) RL=40Ω mA TA=0°Cto70°C 200 TA=–40°Cto85°C 200 TA=25°C 250 TA=25°C 200 Outputcurrent(sinking) RL=40Ω mA TA=0°Cto70°C 175 TA=–40°Cto85°C 175 Outputimpedance f=1MHz,Closedloop TA=25°C 0.06 Ω POWERSUPPLY TA=25°C ±15 TA=25°C ±16 Specifiedoperatingvoltage V TA=0°Cto70°C ±16 TA=–40°Cto85°C ±16 TA=25°C 9.5 TA=25°C 10.5 Maximumquiescentcurrent mA TA=0°Cto70°C 11 TA=–40°Cto85°C 11 TA=25°C 9.5 TA=25°C 8.5 Minimumquiescentcurrent mA TA=0°Cto70°C 8 TA=–40°Cto85°C 8 TA=25°C 75 Powersupplyrejection TA=25°C 70 (+PSRR) VS+=15.5Vto14.5V,VS–=15V TA=0°Cto70°C 65 dB TA=–40°Cto85°C 65 TA=25°C 73 Powersupplyrejection TA=25°C 68 (–PSRR) VS+=15V,VS–=–15.5Vto–14.5V TA=0°Cto70°C 65 dB TA=–40°Cto85°C 65 POWER-DOWNCHARACTERISTICS(THS3091ONLY) REFvoltagerange(1) TA=25°C VS+–4 V TA=25°C VS– PD≥ Enable TA=25°C REF+2 Power-downvoltagelevel(1) V PD≤ Disable TA=25°C REF+.8 (1) Fordetailedinformationonthebehaviorofthepower-downcircuit,seethepower-downfunctionalityandpower-downreferencesections intheApplicationInformationsectionofthisdatasheet. Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com Electrical Characteristics THS3091 (continued) V =±15V,R =1.21kΩ,R =100Ω,andG=2(unlessotherwisenoted) S F L PARAMETER TESTCONDITIONS MIN TYP MAX UNIT TA=25°C 500 TA=25°C 700 Power-downquiescentcurrent PD=0V μA TA=0°Cto70°C 800 TA=–40°Cto85°C 800 TA=25°C 11 TA=25°C 15 VPD=0V,REF=0V, TA=0°Cto70°C 20 TA=–40°Cto85°C 20 VPDquiescentcurrent μA TA=25°C 11 TA=25°C 15 VPD=3.3V,REF=0V TA=0°Cto70°C 20 TA=–40°Cto85°C 20 Turnontimedelay 90%offinalvalue TA=25°C 60 μs Turnofftimedelay 10%offinalvalue TA=25°C 150 6.6 Electrical Characteristics THS3095 V =±5V,R =1.15kΩ,R =100Ω,andG=2(unlessotherwisenoted) S F L PARAMETER TESTCONDITIONS MIN TYP MAX UNIT ACPERFORMANCE G=1,RF=1.78kΩ,VO=200mVPP TA=25°C 190 G=2,RF=1.15kΩ,VO=200mVPP TA=25°C 180 Small-signalbandwidth,–3dB G=5,RF=1kΩ,VO=200mVPP TA=25°C 160 MHz G=10,RF=866Ω,VO=200mVPP TA=25°C 150 0.1-dBBandwidthflatness G=2,RF=1.15kΩ,VO=200mVPP TA=25°C 65 Large-signalbandwidth G=2,RF=1.15kΩ,VO=4VPP TA=25°C 160 G=2,VO=5-Vstep,RF=1.21kΩ TA=25°C 1400 Slewrate(25%to75%level) V/μs G=5,VO=5-Vstep,RF=1kΩ TA=25°C 1900 Riseandfalltime G=2,VO=5-Vstep,RF=1.21kΩ TA=25°C 5 ns Settlingtimeto0.1% G=–2,VO=2VPPstep TA=25°C 35 ns Settlingtimeto0.01% G=–2,VO=2VPPstep TA=25°C 73 HARMONICDISTORTION RL=100Ω TA=25°C 77 2ndHarmonicdistortion G=2,RF=1.15kΩ, RL=1kΩ TA=25°C 73 dBc VO=2VPP,f=10MHz RL=100Ω TA=25°C 70 3rdHarmonicdistortion RL=1kΩ TA=25°C 68 Inputvoltagenoise f>10kHz TA=25°C 2 nV/√Hz Noninvertinginputcurrentnoise f>10kHz TA=25°C 14 pA/√Hz Invertinginputcurrentnoise f>10kHz TA=25°C 17 pA/√Hz NTSC TA=25°C 0.027% Differentialgain G=2,RL=150Ω, PAL TA=25°C 0.025% RF=1.15kΩ NTSC TA=25°C 0.04° Differentialphase PAL TA=25°C 0.05° DCPERFORMANCE TA=25°C 700 TA=25°C 250 Transimpedance VO=±2.5V,Gain=1 kΩ TA=0°Cto70°C 200 TA=–40°Cto85°C 200 8 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 Electrical Characteristics THS3095 (continued) V =±5V,R =1.15kΩ,R =100Ω,andG=2(unlessotherwisenoted) S F L PARAMETER TESTCONDITIONS MIN TYP MAX UNIT TA=25°C 0.3 TA=25°C 2 Inputoffsetvoltage VCM=0V TA=0°Cto 3 mV 70°C TA=–40°Cto 3 85°C TA=0°Cto ±10 70°C Averageoffsetvoltagedrift VCM=0V μV/°C TA=–40°Cto ±10 85°C TA=25°C 2 TA=25°C 15 Noninvertinginputbiascurrent VCM=0V TA=0°Cto 20 μA 70°C TA=–40°Cto 20 85°C TA=0°Cto ±20 70°C Averagebiascurrentdrift VCM=0V nA/°C TA=–40°Cto ±20 85°C TA=25°C 5 TA=25°C 15 Invertinginputbiascurrent VCM=0V TA=0°Cto 20 μA 70°C TA=–40°Cto 20 85°C TA=0°Cto ±20 70°C Averagebiascurrentdrift VCM=0V nA/°C TA=–40°Cto ±20 85°C TA=25°C 1 TA=25°C 10 Inputoffsetcurrent VCM=0V TA=0°Cto 15 μA 70°C TA=–40°Cto 15 85°C TA=0°Cto ±20 70°C Averageoffsetcurrentdrift VCM=0V nA/°C TA=–40°Cto ±20 85°C INPUTCHARACTERISTICS TA=25°C ±3.6 TA=25°C ±3.3 Common-modeinputrange TA=0°Cto ±3 V 70°C TA=–40°Cto ±3 85°C TA=25°C 66 TA=25°C 60 Common-moderejectionratio VCM=±2.0V,VO=0V TA=0°Cto 57 dB 70°C TA=–40°Cto 57 85°C Noninvertinginputresistance TA=25°C 1.1 MΩ Noninvertinginputcapacitance TA=25°C 1.2 pF Invertinginputresistance TA=25°C 32 Ω Invertinginputcapacitance TA=25°C 1.5 pF Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com Electrical Characteristics THS3095 (continued) V =±5V,R =1.15kΩ,R =100Ω,andG=2(unlessotherwisenoted) S F L PARAMETER TESTCONDITIONS MIN TYP MAX UNIT OUTPUTCHARACTERISTICS TA=25°C ±3.4 TA=25°C ±3.1 RL=1kΩ TA=0°Cto ±2.8 70°C TA=–40°Cto ±2.8 85°C Outputvoltageswing V TA=25°C ±3.1 TA=25°C ±2.7 RL=100Ω TA=0°Cto ±2.5 70°C TA=–40°Cto ±2.5 85°C TA=25°C 180 TA=25°C 140 Outputcurrent(sourcing) RL=10Ω TA=0°Cto 120 mA 70°C TA=–40°Cto 120 85°C TA=25°C –160 TA=25°C –140 Outputcurrent(sinking) RL=10Ω TA=0°Cto –120 mA 70°C TA=–40°Cto –120 85°C Outputimpedance f=1MHz,Closedloop TA=25°C 0.09 Ω POWERSUPPLY TA=25°C ±5 TA=25°C ±4.5 Specifiedoperatingvoltage V TA=0°Cto70°C ±4.5 TA=–40°Cto85°C ±4.5 TA=25°C 8.2 TA=25°C 9 Maximumquiescentcurrent mA TA=0°Cto70°C 9.5 TA=–40°Cto85°C 9.5 TA=25°C 8.2 TA=25°C 7 Minimumquiescentcurrent mA TA=0°Cto70°C 6.5 TA=–40°Cto85°C 6.5 TA=25°C 73 TA=25°C 68 Powersupplyrejection(+PSRR) VS+=5.5Vto4.5V,VS–=5V TA=0°Cto 63 dB 70°C TA=–40°Cto 63 85°C TA=25°C 71 TA=25°C 65 Powersupplyrejection(–PSRR) VS+=5V,VS–=–4.5Vto–5.5V TA=0°Cto 60 dB 70°C TA=–40°Cto 60 85°C 10 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 Electrical Characteristics THS3095 (continued) V =±5V,R =1.15kΩ,R =100Ω,andG=2(unlessotherwisenoted) S F L PARAMETER TESTCONDITIONS MIN TYP MAX UNIT POWER-DOWNCHARACTERISTICS(THS3095ONLY) REFvoltagerange(1) TA=25°C VS+–4 V TA=25°C VS– Power-downvoltagelevel(1) Enable TA=25°C PD≥REF2 V Disable TA=25°C PD≤REF0.8 TA=25°C 300 TA=25°C 500 Power-downquiescentcurrent PD=0V TA=0°Cto 600 μA 70°C TA=–40°Cto 600 85°C TA=25°C 11 TA=25°C 15 VPD=0V,REF=0V, TA=0°Cto 20 70°C TA–40°Cto 20 85°C VPDquiescentcurrent μA TA=25°C 11 TA=25°C 15 VPD=3.3V,REF=0V TA=0°Cto 20 70°C TA=–40°Cto 20 85°C Turnontimedelay 90%offinalvalue TA=25°C 60 μs Turnofftimedelay 10%offinalvalue TA=25°C 150 (1) Fordetailedinformationonthebehaviorofthepower-downcircuit,seethepower-downfunctionalityandpower-downreferencesections intheApplicationInformationsectionofthisdatasheet. 6.7 Dissipation Ratings Table POWERRATING (2) PACKAGE θJC(°C/W) θJA(°C/W)(1) TJ=125°C T =25°C T =85°C A A D-8 38.3 97.5 1.02W 410mW DDA-8 9.2 45.8 2.18W 873mW (1) ThisdatawastakenusingtheJEDECstandardHigh-KtestPCB. (2) Powerratingisdeterminedwithajunctiontemperatureof125°C.Thisisthepointwheredistortionstartstosubstantiallyincrease. ThermalmanagementofthefinalPCBshouldstrivetokeepthejunctiontemperatureatorbelow125°Cforbestperformanceandlong- termreliability. Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com 6.8 Typical Characteristics Table1.TableOfGraphs ±15-VGRAPHS FIGURE Noninvertingsmall-signalfrequencyresponse Figure1,Figure2 Invertingsmall-signalfrequencyresponse Figure3 0.1-dBgainflatnessfrequencyresponse Figure4 Noninvertinglarge-signalfrequencyresponse Figure5 Invertinglarge-signalfrequencyresponse Figure6 Capacitiveloadfrequencyresponse Figure7 RecommendedR vsCapacitiveload Figure8 ISO Figure9, 2ndHarmonicdistortion vsFrequency Figure11 Figure10, 3rdHarmonicdistortion vsFrequency Figure12 2ndHarmonicdistortion vsFrequency Figure13 3rdHarmonicdistortion vsFrequency Figure14 Figure15, Harmonicdistortion vsOutputvoltageswing Figure16 Figure17, Slewrate vsOutputvoltagestep Figure18, Figure19 Noise vsFrequency Figure20 Figure21, Settlingtime Figure22 Quiescentcurrent vsSupplyvoltage Figure23 Quiescentcurrent vsFrequency Figure24 Outputvoltage vsLoadresistance Figure25 Inputbiasandoffsetcurrent vsCasetemperature Figure26 Inputoffsetvoltage vsCasetemperature Figure27 Transimpedance vsFrequency Figure28 Rejectionratio vsFrequency Figure29 Noninvertingsmall-signaltransientresponse Figure30 Figure31, Invertinglarge-signaltransientresponse Figure32 Overdriverecoverytime Figure33 Differentialgain vsNumberofloads Figure34 Differentialphase vsNumberofloads Figure35 Closed-Loopoutputimpedance vsFrequency Figure36 Power-downquiescentcurrent vsSupplyvoltage Figure37 Turnonandturnofftimedelay Figure38 12 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 Table2.TableOfGraphs(Continued) ±5-VGRAPHS FIGURE Noninvertingsmall-signalfrequencyresponse Figure39 Invertingsmall-signalfrequencyresponse Figure40 0.1-dBgainflatnessfrequencyresponse Figure41 Noninvertinglarge-signalfrequencyresponse Figure42 Invertinglarge-signalfrequencyresponse Figure43 Settlingtime Figure44 Figure45, 2ndHarmonicdistortion vsFrequency Figure47 Figure46, 3rdHarmonicdistortion vsFrequency Figure48 Figure49, Harmonicdistortion vsOutputvoltageswing Figure50 Figure51, Slewrate vsOutputvoltagestep Figure52, Figure53 Quiescentcurrent vsFrequency Figure54 Outputvoltage vsLoadresistance Figure55 Inputbiasandoffsetcurrent vsCasetemperature Figure56 Overdriverecoverytime Figure57 Rejectionratio vsFrequency Figure58 Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com 6.9 Typical Characteristics (±15 V) 9 24 8 RF = 750 W 22 G = 10, RF = 866 W 20 B 7 18 verting Gain − d 456 RRFF R == F 11 .=2.2 111 . k5k WWkW erting Gain − dB 111102468 RVVGOSL = === 5 1±2, 010R050F W Vm=, V1P kPW, Nonin 3 Gain = 2, oninv 46 G = 2, RF = 1.21 kW 2 RL =100 W , N 2 1 VVOS == ±21050 VmVPP, −02 G = 1, RF = 1.78 kW 0 −4 1 M 10 M 100 M 1 G 1 M 10 M 100 M 1 G f − Frequency − Hz f − Frequency − Hz Figure1.NoninvertingSmall-SignalFrequencyResponse Figure2.NoninvertingSmall-SignalFrequencyResponse 24 6.3 22 G = −10, RF = 866 W Gain = 2, 1280 B 6.2 RRFL == 110.201 W k,W , Inverting Gain − dB 11110246468 G RVVG= OSL −= ==5= − , 1 ±22R010,F 050R =WFVm ,9=V0 P19P k,WW Noninverting Gain - d 56..916 VVOS == ±21050 VmVPP, 2 0 5.8 −2 G = −1, RF = 1.05 kW −4 5.7 1 M 10 M 100 M 1 G 100 k 1 M 10 M 100 M 1 G f − Frequency − Hz f - Frequency - Hz Figure3.InvertingSmall-SignalFrequencyResponse Figure4.0.1-dbGainFlatnessFrequencyResponse 1146 G = 5, RF = 1 kW 1146 G = −5, RF = 909 W 12 dB 12 B ng Gain − 108 g Gain − d 1068 G = −2, RF = 1 kW oninverti 6 G = 2, RF = 1.21 kW Invertin 24 N 24 VRVOSL === 1±401 V05P WVP,, −02 VRVOSL === 1±401 V05P WVP,, 0 −4 1 M 10 M 100 M 1 G 1 M 10 M 100 M 1 G f − Frequency − Hz f − Frequency − Hz Figure5.NoninvertingLarge-SignalFrequencyResponse Figure6.InvertingLarge-SignalFrequencyResponse 14 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 Typical Characteristics (±15 V) (continued) 16 R(ISO) = 38.3 W 45 Gain = 5, 14 CL = 10 pF 40 RL = 100 W , 12 35 VS = ±15 V B 10 R(ISO) = 30.9 W W−O 30 ain − d 8 R(ISOC)L = = 2 222.1 p WF d RIS 25 Signal G 46 R(ISOC) L= = 1 457.8 pWF mmende 1250 2 CL = 100 pF eco 10 Gain = 5, R 0 RL = 100 W, 5 −2 VS =±15 V 0 10 M 100 M 1 G 10 100 f − Frequency − Hz CL − Capacitive Load − pF Figure7.CapacitiveLoadFrequencyResponse Figure8.RecommendedR vsCapacitiveLoad ISO −40 -40 −45 VO = 2 VPP, VO = 2 VPP, dBc −50 RVSL == 1±0105 WV, Bc -50 RVSL == 1±0105 WV, 2nd Harmonic Distortion − −−−−−−876765000555 G = 1, RF = G1. 7=8 2 k, WRF = 1.21 kW 3rd Harmonic Distortion - d ----98760000 G = 1, RF = 1.7G8 =kW 2, RF = 1.21 kW −85 −90 -100 100 k 1 M 10 M 100 M 100 k 1 M 10 M 100 M f − Frequency − Hz f - Frequency - Hz Figure9.2ndHarmonicDistortionvsFrequency Figure10.3rdHarmonicDistortionvsFrequency −40 −40 monic Distortion − dBc −−−−87650000 VRVOSL === 1±2G 1 kV5 W=P V, P1,, RF = 1.78 kW monic Distortion − dBc −−−−−−765564000555 VRVOSL ==G= 1 ±2= 1 k V51WP , V,PR,F = 1.78 kW 2nd Har −90 G = 2, RF = 1.21 kW 3rd Har −−8705 G = 2, RF = 1.21 kW −85 −100 −90 100 k 1 M 10 M 100 M 100 k 1 M 10 M 100 M f − Frequency − Hz f − Frequency − Hz Figure11.2ndHarmonicDistortionvsFrequency Figure12.3rdHarmonicDistortionvsFrequency Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com Typical Characteristics (±15 V) (continued) −30 −30 G = 5, G = 5, RF = 1 kW , VO = 20 VPP RF = 1 kW , Bc −40 RL = 100 W , Bc −40 RL = 100 W , n − d VS = ±15 V n − d VS = ±15 V o −50 o −50 Distorti −60 Distorti −60 VO = 20 VPP nic nic o o Harm −70 VO = 10 VPP Harm −70 VO = 10 VPP 2nd −80 VO = 2 VPP 3rd −80 VO = 2 VPP −90 −90 1 M 10 M 100 M 1 M 10 M 100 M f − Frequency − Hz f − Frequency − Hz Figure13.2ndHarmonicDistortionvsFrequency Figure14.3rdHarmonicDistortionvsFrequency -60 -40 Gain = 5, -65 RF = 1 kW -50 RL = 100 W , dBc -70 HD2 dBc fV=S 8 = M ±H15z V n - -75 n - -60 HD2 o o storti -80 storti -70 Di Di nic -85 HD3 nic -80 HD3 o Gain = 5, o Harm -90 RRFL == 110 k0W W , Harm -90 -95 f= 1 MHz VS = ±15 V -100 -100 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 VO - Output Voltage Swing - VPP VO - Output Voltage Swing - VPP Figure15.HarmonicDistortionvsOutputVoltageSwing Figure16.HarmonicDistortionvsOutputVoltageSwing 2000 6000 Gain = 1 ms− V/ 111468000000 RRVSLF === 1±101.7058 W VkW Rise msV/45000000 GRRVSLFa i===n 1±=101. 22051 W VkW ew Rate 11020000 Fall w Rate - 3000 SR − Sl 680000 SR - Sle2000 Rise 400 1000 Fall 200 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1 2 3 4 5 6 7 8 9 10 VO − Output Voltage − VPP VO - Output Voltage - VPP Figure17.SlewRatevsOutputVoltageStep Figure18.SlewRatevsOutputVoltageStep 16 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 Typical Characteristics (±15 V) (continued) 8000 1000 Gain = 5 msSR - Slew Rate - V/ 234567000000000000000000 RRVSLF === 1±101 k05W WV Rise Fall − Voltage Noise − nV/Hzn− Current Noise −pA/Hzn10100 In+In− V I Vn 1000 0 1 0 2 4 6 8 10 12 14 16 18 20 10 100 1 k 10 k 100 k VO - Output Voltage - VPP f − Frequency − Hz Figure19.SlewRatevsOutputVoltageStep Figure20.NoisevsFrequency 1.25 4.5 4 1 3.5 Rising Edge Rising Edge 3 0.75 2.5 e - V 0.5 e - V 1.52 ag 0.25 Gain = -2 ag 1 Gain = -2 utput Volt -0.250 RRVSLF === 11± 01k0W5 WV utput Volt -00-..5150 RRVSLF === 1±101 k05W WV O O -1.5 - O -0.5 - O -2 V -0.75 V -2.5 Falling Edge -3 Falling Edge -1 -3.5 -4 -1.25 -4.5 0 1 2 3 4 5 6 7 8 9 10 0 2 4 6 8 10 12 t - Time - ns t - Time - ns Figure21.SettlingTime Figure22.SettlingTime 10 22 TA = 85 °C 20 9.5 mA TA = 25 °C mA 18 Quiescent Current − 78..5589 TA = −40 °C Quiescent Current − 111102468 VOV O= =4 V2PVPPP − IQ 7 − IQ 46 GRFa i=n =1 k5W , 6.5 2 RVSL == 1±0105 WV, 6 0 3 4 5 6 7 8 9 10 11 12 13 14 15 100 k 1 M 10 M 100 M 1 G VS − Supply Voltage − ±V f − Frequency − Hz Figure23.QuiescentCurrentvsSupplyVoltage Figure24.QuiescentCurrentvsFrequency Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com Typical Characteristics (±15 V) (continued) 16 7 6.5 IIB- VS = ±15 V 12 A 6 A - Output Voltage - VVO -1--240488 VTAS == -±4105 t oV 85°C m- Input Bias Currents -IIBmI- Input Offset Currents -OS12345.....5555512345 IIBIO+S 0.5 -16 0 10 100 1000 -40-30-20-10 0 1020 30405060708090 RL - Load Resistance - W TC - Case Temperature - °C Figure25.OutputVoltagevsLoad Figure26.InputBiasandOffsetCurrentvsCase Resistance Temperature 3 100 2.5 ms 90 VS = ±15 V and ±5 V mV Oh 80 Offset Voltage - 1.52 VS = ±15 V ance Gain − dB 45670000 nput 1 mped 30 - IVOS 0.5 VS = ±5 V Transi 1200 0 0 -40-30-20-10 0 102030405060708090 100 k 1 M 10 M 100 M 1 G TC - Case Temperature - °C f − Frequency − Hz Figure27.InputOffsetVoltagevsCaseTemperature Figure28.TransimpedancevsFrequency 70 0.3 VS = ±15 V 0.25 60 Output PSRR− 0.2 V 0.15 atio − dB 4500 CMRR Voltage - 0.00.51 Input ction R 30 Output -0.050 Gain = 2 Reje 20 PSRR+ - VO-0-.01.51 RRLF == 11 0k0W W 10 -0.2 VS = ±15 V -0.25 0 -0.3 100 k 1 M 10 M 100 M 1 G 0 10 20 30 40 50 60 70 f − Frequency − Hz t - Time - ns Figure29.RejectionRatiovsFrequency Figure30.NoninvertingSmall-SignalTransientResponse 18 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 Typical Characteristics (±15 V) (continued) 6 12 5 10 4 Output 8 GRLa i=n 1=0 -05 W ge − V 23 ge - V 46 RVSF == 9±0195 WV ut Volta 01 Input ut Volta 02 Input utp −1 utp -2 − O −2 - O -4 VO −−43 GRRLFa i==n 91=00 −905 WW VO --86 Output −5 VS = ±15 V -10 −6 -12 0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60 70 t − Time − ns t - Time - ns Figure31.InvertingLarge-SignalTransientResponse Figure32.InvertingLarge-SignalTransientResponse 20 4 0.10 Gain = 2 Output Voltage − V −1105055 GRRVSLFa i===n 1±=101 k505W, WV,, −01231nput Voltage − V erential Gain - % 000000......000000456789 RV4W0SFo Ir==Rs t±E1 C1. 2-5a 1N s VkeTW S±C10 a0n IdR PEa RlamPpAL − VO−10 −2− IVI Diff 00..0023 −15 −3 0.01 NTSC −20 −4 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 8 t − Time − m s Number of Loads - 150 W Figure33.OverdriveRecoveryTime Figure34.DifferentialGainvsNumberofLoads 0.05 100 Gain = 2 Gain = 2, °− 0.04 RV40SF I==R ±E11. 2−51 N VkTWSC and Pal Wdance − 10 RRVSIFS O== ±1=1. 2551. 1 V1K WW ,, Differential Phase 00..0023 Worst Case ±1P0A0L IRE Ramp Loop Output Impe 1 1.21 kW 1.21 kW NTSC d- 0.1 0.01 se − 5.11 W VO o Cl + 0 0.01 0 1 2 3 4 5 6 7 8 1 M 10 M 100 M 1 G Number of Loads − 150 W f − Frequency − Hz Figure35.DifferentialPhasevsNumberofLoads Figure36.Closed-LoopOutputImpedancevsFrequency Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com Typical Characteristics (±15 V) (continued) 600 Power-on Pulse 6 A 5 mown Quiescent Current - 234500000000 TTAA == 2855°°CC TA = -40°C − Output Voltage Level − V 00..23 GVRVISLa = i==n 0 1±=.011 20 5V, WVdc and ±5 V 01234 Power-on Pulse − V d O er V 0.1 Output Voltage w 100 Po 0 0 −0.1 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 VS - Supply Voltage - ±V t − Time − ms Figure37.Power-DownQuiescentCurrentvsSupply Figure38.TurnonandTurnoffTimeDelay Voltage 20 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 6.10 Typical Characteristics (±5 V) 24 24 22 G = 10, RF = 909 W 22 G = −10, RF = 866 W 20 20 B 18 18 d Gain - 1146 G = 5, RF = 1 kW − dB 1146 G = −5, RF = 909 W Noninverting 1102468 RVVGOSL = === 2 1±2, 050R0 0VF W m=,V 1P.1P.5 kW Inverting Gain 1102468 VRVOSL ===G 1±2 05=00 0V− W2m,, VRPFP .= 1 kW 2 2 0 0 -2 G =1, RF = 1.5 kW −2 G = −1, RF = 1.05 W -4 −4 1 M 10 M 100 M 1 G 1 M 10 M 100 M 1 G f - Frequency - Hz f − Frequency − Hz Figure39.NoninvertingSmall-SignalFrequencyResponse Figure40.InvertingSmall-SignalFrequencyResponse 6.3 16 Gain = 2, G = 5, RF = 1 kW 6.2 RF = 1.21 kW , 14 Noninverting Gain - dB 56..916 RVVOSL === 1±20500 0V Wm,VPP, ninverting Gain − dB 110268 G = 2, RF = 1.15 kW o 4 5.8 N RL = 100 W , 2 VO = 4 VPP, VS = ±5 V 5.7 0 1 M 10 M 100 M 1 M 10 M 100 M 1 G f - Frequency - Hz f − Frequency − Hz Figure41.0.1-dbGainFlatnessFrequencyResponse Figure42.NoninvertingLarge-SignalFrequencyResponse 16 1.25 G = −5, RF = 909 W 14 1 Rising Edge 12 0.75 V Inverting Gain − dB 1002468 RL =G 1 =0 0− 2W, ,RF = 1 kW - Output Voltage - VO--00-0..0.0722..555550 FGRRVaSLFall ii===nn g1=±1 05 Ek-0 2WdV Wge −2 VVOS == ±45 V VPP, -1 −4 -1.25 1 M 10 M 100 M 1 G 0 1 2 3 4 5 6 7 8 9 10 f − Frequency − Hz t - Time - ns Figure43.InvertingLarge-SignalFrequencyResponse Figure44.SettlingTime Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com Typical Characteristics (±5 V) (continued) −40 -40 monic Distortion − dBc −−−−87650000 VRVOSLG === = 1±2 05 1V0 ,V P RWPF,, = 1.78 kW monic Distortion - dBc ----87650000 VRVGOSL ==== 11±2,05 VR0 VP FWP =,, 1.78 kW 2nd Har −90 G = 2, RF = 1.15 kW 3rd Har -90 G = 2, RF = 1.15 kW −100 -100 100 k 1 M 10 M 100 M 100 k 1 M 10 M 100 M f − Frequency − Hz f - Frequency - Hz Figure45.2ndHarmonicDistortionvsFrequency Figure46.3rdHarmonicDistortionvsFrequency −40 −40 VO = 2 VPP, VO = 2 VPP, dBc −50 RVSL == 1± 5k WV, dBc −50 RVSL == 1± 5k WV, on − −60 on − −60 Distorti −70 G = 1, RF = 1.78 kW Distorti −70 G = 1, RF = 1.78 kW nic nic o o m −80 m −80 2nd Har −90 G = 2, RF = 1.15 kW 3rd Har −90 G = 2, RF = 1.15 kW −100 −100 100 k 1 M 10 M 100 M 100 k 1 M 10 M 100 M f − Frequency − Hz f − Frequency − Hz Figure47.2ndHarmonicDistortionvsFrequency Figure48.3rdHarmonicDistortionvsFrequency -20 −20 Gain = 5, Gain = 5, on - dBc ---453000 RRfV=SFL 1 === M 1±1H05 k0 zWV W , on − dBc −−−453000 RRfV=SFL 8 === M 1±1H05 k0 zWV W , HD3 storti -60 HD3 storti −60 Di Di nic -70 nic −70 HD2 o o m m ar -80 ar −80 H H -90 HD2 −90 -100 −100 0 1 2 3 4 5 6 0 1 2 3 4 5 6 VO - Output Voltage Swing - VPP VO − Output Voltage Swing − VPP Figure49.HarmonicDistortionvsOutputVoltageSwing Figure50.HarmonicDistortionvsOutputVoltageSwing 22 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 Typical Characteristics (±5 V) (continued) 1600 1600 Gain = 1 Gain = 1 msRate − V/ 111024000000 VRRFSLFa l===l 1±105.70 8V W kW msRate − V/ 111024000000 RRVSLF === 1±105.20 1V W kW FRailsle Slew 800 Slew 800 R − 600 R − 600 S S Rise 400 400 200 200 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1 2 3 4 5 VO − Output Voltage −VPP VO − Output Voltage −VPP Figure51.SlewRatevsOutputVoltageStep Figure52.SlewRatevsOutputVoltageStep 2000 22 msR - Slew Rate - V/ 11111024688000000000000 VGRRSLFa i===n 1±=105 k50 WV W FalRlise uiescent Current − mA 1111120246808 GRRVSFLa iVV===n OO 1±=1 05 ==k50 WV42 W ,VV,PPPP S 600 Q − Q 6 400 I 4 200 2 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 100 k 1 M 10 M 100 M 1 G VO - Output Voltage -VPP f − Frequency − Hz Figure53.SlewRatevsOutputVoltageStep Figure54.QuiescentCurrentvsFrequency 3.5 8 3 VS = ±5 V 2.5 A A 7 - Output Voltage - VVO--1001--....552155012 VTAS == -±450 Vto 85°C m- Input Bias Current -IIBm- Input Offset Current -OS 23456 IIB+ IOS IIB- -2.5 I 1 -3 -3.5 0 10 100 1000 -40-30-20-10 0 102030 405060708090 RL - Load Resistance - W TC - Case Temperature - °C Figure55.OutputVoltagevsLoadResistance Figure56.InputBiasandOffsetCurrentvsCase Temperature Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com Typical Characteristics (±5 V) (continued) 5 1 70 4 GRLa i=n 1=0 50, W , 0.8 60 VS = ±5 V - Output Voltage - AVO---3210123 VRSF == ±15 k WV, ---0000000...246...642 - Input Voltage - VVI Rejection Ratio - dB 23450000 CMRR PSRPRS+RR- 10 -4 -0.8 -5 -1 0 0 0.2 0.4 0.6 0.8 1 100 k 1 M 10 M 100 M t - Time - m s f - Frequency - Hz Figure57.OverdriveRecoveryTime Figure58.RejectionRatiovsFrequency 24 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 7 Detailed Description 7.1 Overview The THS3091 and THS3095 are high-voltage, low-distortion , high-speed, current feedback amplifiers designed to operate over a wide supply range of ± V to ±15 V for applications requiring large, linear output swings such as ArbitraryWaveformGenerators. The THS3095 features a power-down pin that puts the amplifier in low power standby mode, and lowers the quiescentcurrentfrom9.5mAto500uA 7.2 Feature Description 7.2.1 SavingPowerWithPower-DownFunctionalityandSettingThresholdLevelsWiththeReference Pin The THS3095 features a power-down pin (PD) which lowers the quiescent current from 9.5 mA down to 500 μA, idealforreducingsystempower. The power-down pin of the amplifier defaults to the positive supply voltage in the absence of an applied voltage, putting the amplifier in the power-on mode of operation. To turn off the amplifier in an effort to conserve power, the power-down pin can be driven towards the negative rail. The threshold voltages for power on and power downarerelativetothesupplyrailsandaregivenTypicalCharacteristics(±15V)andTypicalCharacteristics(±5 V) tables. Above the Enable Threshold Voltage, the device is on. Below the Disable Threshold Voltage, the deviceisoff.Behaviorinbetweenthesethresholdvoltagesisnotspecified. Note that this power-down functionality is just that; the amplifier consumes less power in power-down mode. The power-down mode is not intended to provide a high-impedance output. In other words, the power-down functionality is not intended to allow use as a 3-state bus driver. When in power-down mode, the impedance looking back into the output of the amplifier is dominated by the feedback and gain-setting resistors, but the outputimpedanceofthedeviceitselfvariesdependingonthevoltageappliedtotheoutputs. Figure 59 shows the total system output impedance which includes the amplifier output impedance in parallel with the feedback plus gain resistors, which cumulate to 2380 Ω. Figure 60 shows this circuit configuration for reference. 2500 W− VS = ±15 V and ±5 V e c an 2000 d e p m ut I 1500 p ut O n w 1000 o erd 1.21 kW 1.21 kW w Po 500 − 50 W VO − + D P ZO 0 100 k 1 M 10 M 100 M 1 G f − Frequency − Hz Figure59. Power-DownOutputImpedancevsFrequency As with most current feedback amplifiers, the internal architecture places some limitations on the system when in power-down mode. Most notably is the fact that the amplifier actually turns ON if there is a ±0.7 V or greater difference between the two input nodes (V+ and V–) of the amplifier. If this difference exceeds ±0.7 V, the output of the amplifier creates an output voltage equal to approximately [(V+ –V–) –0.7 V] × Gain. This also implies that if a voltage is applied to the output while in power-down mode, the V– node voltage is equal to V × O(applied) R /(R + R ). For low gain configurations and a large applied voltage at the output, the amplifier may actually G F G turnON duetotheaforementionedbehavior. Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com Feature Description (continued) Thetimedelaysassociatedwithturningthedeviceonandoffarespecifiedasthetimeittakesfortheamplifierto reach either 10% or 90% of the final output voltage. The time delays are in the order of microseconds because theamplifiermovesinandoutofthelinearmodeofoperationinthesetransitions. 7.2.2 Power-DownReferencePinOperation In addition to the power-down pin, the THS3095 features a reference pin (REF) which allows the user to control the enable or disable power-down voltage levels applied to the PD pin. In most split-supply applications, the reference pin is connected to ground. In either case, the user needs to be aware of voltage-level thresholds that apply to the power-down pin. The tables below show examples and illustrate the relationship between the reference voltage and the power-down thresholds. In the table, the threshold levels are derived by the following equations: PD ≤REF+0.8Vfordisable (1) PD ≥REF+2.0Vforenable (2) wheretheusablerangeattheREFpinis: V ≤ V ≤ (V – 4V). (3) S– REF S+ The recommended mode of operation is to tie the REF pin to midrail, thus setting the enable/disable thresholds toV +2VandV +0.8Vrespectively. midrail midrail Table3.Power-DownThresholdVoltageLevels SUPPLY REFERENCEPIN ENABLE DISABLE VOLTAGE(V) VOLTAGE(V) LEVEL(V) LEVEL(V) ±15,±5 0 2 0.8 ±15 2 4 2.8 ±15 –2 0 –1.2 ±5 1 3 1.8 ±5 –1 1 –0.2 30 15 17 15.8 10 5 7 5.8 Note that if the REF pin is left unterminated, it will float to the positive rail and will fall outside of the recommended operating range given above (V ≤ VREF≤ V –4V). As a result, it will no longer serve as a S– S+ reliablereferenceforthePDpinandtheenable/disablethresholdsgivenabovewillnolongerapply.Ifthe PDpin is also left unterminated, it will also float to the positive rail and the device will be enabled. If balanced, split suppliesareused(±Vs)andtheREFandPDpinsaregrounded,thedevicewillbedisabled. 7.3 Device Functional Modes 7.3.1 Wideband,NoninvertingOperation The THS309x are unity gain stable 235-MHz current-feedback operational amplifiers, designed to operate from a ±5-Vto ±15-Vpowersupply. Figure 60 shows the THS3091 in a noninverting gain of 2-V/V configuration typically used to generate the performance curves. Most of the curves were characterized using signal sources with 50-Ω source impedance, andwithmeasurementequipmentpresentinga50-Ω loadimpedance. 26 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 Device Functional Modes (continued) 15 V +VS + 50-W Source 0.1 m F 6.8 m F VI + 49.9 W 49.9 W T_HS3091 50- W LOAD RF 1.21 kW 1.21 kW RG 0.1 m F 6.8 m F + −VS −15 V Figure60. Wideband,NoninvertingGainConfiguration Current-feedback amplifiers are highly dependent on the feedback resistor R for maximum performance and F stability. Table 4 shows the optimal gain-setting resistors R and R at different gains to give maximum F G bandwidth with minimal peaking in the frequency response. Higher bandwidths can be achieved, at the expense of added peaking in the frequency response, by using even lower values for R . Conversely, increasing R F F decreasesthebandwidth,butstabilityisimproved. Table4.RecommendedResistorValuesforOptimumFrequencyResponse THS3091andTHS3095R andR valuesforminimalpeakingwithR =100Ω F G L GAIN(V/V) SUPPLYVOLTAGE(V) R (Ω) R (Ω) G F ±15 – 1.78k 1 ±5 – 1.78k ±15 1.21k 1.21k 2 ±5 1.15k 1.15k ±15 249 1k 5 ±5 249 1k ±15 95.3 866 10 ±5 95.3 866 –1 ±15and±5 1.05k 1.05k –2 ±15and±5 499 1k –5 ±15and±5 182 909 –10 ±15and±5 86.6 866 7.3.2 Wideband,InvertingOperation Figure 61 shows the THS3091 in a typical inverting gain configuration where the input and output impedances andsignalgainfromFigure60areretainedinaninvertingcircuitconfiguration. Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 27 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com Device Functional Modes (continued) 15 V+VS + 0.1 m F 6.8 m F + 49.9 W THS3091 _ 50- W LOAD 50-W Source RG RF VI 499 W 1 kW RM 0.1 m F 6.8 m F 56.2 W + −15 V −VS Figure61. Wideband,InvertingGainConfiguration 7.3.3 Single-SupplyOperation The THS309x have the capability to operate from a single-supply voltage ranging from 10 V to 30 V. When operating from a single power supply, biasing the input and output at mid-supply allows for the maximum output voltage swing. The circuits shown in Figure 62 show inverting and noninverting amplifiers configured for single- supplyoperations. +VS 50-W Source VI + 49.9 W RT 49.9 W T_HS3091 50-W LOAD +VS RF 2 1.21 kW RG 1.21 kW +VS 2 RF 1 kW 50-W Source VS RG _ VI 499 W THS3091 49.9 W 56.2 W RT + 50- W LOAD +VS +VS 2 2 Figure62. DC-Coupled,Single-SupplyOperation 28 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information 8.1.1 VideoDistribution The wide bandwidth, high slew rate, and high output drive current of the THS309x matches the demands for video distribution for delivering video signals down multiple cables. To ensure high signal quality with minimal degradation of performance, a 0.1-dB gain flatness should be at least 7x the passband frequency to minimize group delay variations from the amplifier. A high slew rate minimizes distortion of the video signal, and supports component video and RGB video signals that require fast transition times and fast settling times for high signal quality. 1.21 kW 1.21 kW 15 V 75 W 75-W Transmission Line VO(1) − VI + −15 V 75 W n Lines 75 W 75 W VO(n) 75 W Figure63. VideoDistributionAmplifierApplication 8.1.2 DrivingCapacitiveLoads Applications such as FET line drivers can be highly capacitive and cause stability problems for high-speed amplifiers. Figure 64 through Figure 69 show recommended methods for driving capacitive loads. The basic idea is to use a resistor or ferrite chip to isolate the phase shift at high frequency caused by the capacitive load from the amplifier’sfeedbackpath.SeeSLOA013forrecommendedresistorvaluesversuscapacitiveload. 45 Gain = 5, 40 RL = 100 W , 35 VS = ±15 V W− O 30 S I R 25 d e d 20 n e m m 15 o ec 10 R 5 0 10 100 CL − Capacitive Load − pF Figure64. RecommendedR vsCapacitiveLoad ISO Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 29 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com Application Information (continued) 1 kW VS 249 W 100-W LOAD _ 5.11 W + RISO −VS 1 m F 49.9 W VS Figure65. DrivingaLargeCapacitiveLoadUsinganOutputSeriesIsolationResistor 1 kW VS 249 W _ Ferrite Bead + 100-W LOAD −VS 1 m F 49.9 W VS Figure66. DrivingaLargeCapacitiveLoadUsinganOutputSeriesFerriteBead Placing a small series resistor, R , between the amplifier’s output and the capacitive load, as shown in ISO Figure65,isaneasywayofisolatingtheloadcapacitance. Using a ferrite chip in place of R , as shown in Figure 66, is another approach of isolating the output of the ISO amplifier. The ferrite's impedance characteristic versus frequency is useful to maintain the low-frequency load independence of the amplifier while isolating the phase shift caused by the capacitance at high frequency. Use a ferritewithsimilarimpedancetoR ,20Ωto50 Ω,at100MHzandlow-impedanceatDC. ISO Figure 67 shows another method used to maintain the low-frequency load independence of the amplifier while isolating the phase shift caused by the capacitance at high frequency. At low frequency, feedback is mainly from theload side of R . At high frequency, the feedback is mainly via the 27-pF capacitor. The resistor R in series ISO IN with the negative input is used to stabilize the amplifier and should be equal to the recommended value of R at F unity gain. Replacing R with a ferrite of similar impedance at about 100 MHz as shown in Figure 68 gives IN similar results with reduced DC offset and low-frequency noise. (See the Related Documentation section for expandingtheusabilityofcurrent-feedbackamplifiers.) 30 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 Application Information (continued) RF 1 kW 27 pF RIN VS RG 1 kW 100-W LOAD _ 5.11 W 249 W + −VS 1 m F 49.9 W VS Figure67. DrivingaLargeCapacitiveLoadUsingaMultipleFeedbackLoopWithStabilizingInput Resistor(R ) IN RF 1 kW 27 pF FIN VS RG FB _ 5.11 W 100-W LOAD 249 W + −VS 1 m F 49.9 W VS Figure68. DrivingaLargeCapacitiveLoadUsingaMultipleFeedbackLoopWithStabilizingInputFerrite Bead(F ) IN Figure 69 is shown using two amplifiers in parallel to double the output drive current to larger capacitive loads. This technique is used when more output current is needed to charge and discharge the load faster like when drivinglargeFETtransistors. 1 kW VS 249 W _ 5.11 W + 24.9 W −VS 1 kW VS VS 1 nF 249 W _ 5.11 W + 24.9 W −VS Figure69. DrivingaLargeCapacitiveLoadUsing2ParallelAmplifierChannels Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 31 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com Application Information (continued) Figure 70 shows a push-pull FET driver circuit typical of ultrasound applications with isolation resistors to isolate thegatecapacitancefromtheamplifier. VS VS + 5.11 W _ −VS 866 W 191 W 866 W VS _ 5.11 W + −VS −VS Figure70. PowerFETDriveCircuit 8.2 Typical Application The fundamental concept of load sharing is to drive a load using two or more of the same operational amplifiers. Each amplifier is driven by the same source. Figure 71 shows two THS3091 amplifiers sharing the same load. Thisconcepteffectivelyreducesthecurerntloadofeachamplifierby1/N,whereNisthenumberofamplifiers. 32 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 Typical Application (continued) R R G F 250W 1 kW TL2 V- Characteristic RS Impedance R 50W 50W SOURCE 50W V OUT THS3091 V 50RWT V+ U3 R50LOWAD IN RG1 RF1 V+ V- 250W 1 kW + + V V 1 2 15 V -15 V V- R S1 100W TL1 THS3091 Characteristic RSOURCE R U1 Impedance 50W 100TW1 V+ 50W V OUT VIN 2R50G2W 1R kFW2 R50LOWAD V- R S2 100W THS3091 U2 R T2 V+ 100W Figure71. ReferenceTHS3091andTHS3091LoadSharingTestConfigurations 8.2.1 DesignRequirements UsetwoTHS3091amplifiersinaparallelload-sharingcircuittoimprovedistortionperformance. Table5.DesignParameters DESIGNPARAMETER VALUE V 20V OPP R 100Ω LOAD 8.2.2 DetailedDesignProcedure In addition to providing higher output current drive to the load, the load sharing configuration can also provide improved distortion performance. In many cases, an operational amplifier shows better distortion performance as the load current decreases (that is, for higher resistive loads) until the feedback resistor starts to dominate the current load. In a load sharing configuration of N amplifiers in parallel, the equivalent current load that each amplifier drives is 1/N times the total load current. For example, in a two-amplifier load sharing configuration with Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 33 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com matching resistance (refer to Figure 71) driving a resistive load (RL), each series resistance is 2*RL and each amplifier drives 2*RL . A convenient indicator of whether an op amp will function well in a load sharing configuration is the characteristic performance graph of harmonic distortion versus load resistance. Such graphs can be found in most of TI’s high-speed amplifier data sheets. These graphs can be used to obtain a general senseofwhetherornotanamplifierwillshowimproveddistortionperformanceinloadsharingconfigurations. Two test circuits are shown in Figure 71, one for a single THS3091 amplifier driving a double-terminated, 50-Ω cable and one with two THS3091 amplifiers in a load sharing configuration. In the load sharing configuration, the two100-Ω seriesoutputresistorsactinparalleltoprovide50-Ω back-matchingtothe50-Ω cable. Figure 72 and Figure 73 show the 32-MHz, 18-VPP sine wave output amplitudes for the single THS3091 configuration and the load sharing configuration, respectively, measured using an oscilloscope. An ideal sine wave is also included as a visual reference (the dashed red line). Figure 72 shows visible distortion in the single THS3091output.IntheloadsharingconfigurationofFigure73,however,noobviousdegradationisvisible. Figure 74 and Figure 75 show the 64-MHz sine wave outputs of the two configurations from Figure 8. While the single THS3091 output is clearly distorted in Figure 74, the output of the load sharing configuration in Figure 75 showsonlyminordeviationsfromtheidealsinewave. The improved output waveform as a result of load sharing is quantified in the harmonic distortion versus frequency graphs shown in Figure 76 and Figure 77 for the single amplifier and load sharing configurations, respectively. While second-harmonic distortion remains largely the same between the single and load sharing cases,third-harmonicdistortionisimprovedbyapproximately8dBinthefrequencyrangebetween20MHzto64 MHz. 34 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 Table6.BillofMaterials THS3091DDAandTHS3095DDAEVM(1) SMD REFERENCE PCB MANUFACTURER'S DISTRIBUTOR'S ITEM DESCRIPTION SIZE DESIGNATOR QTY PARTNUMBER PARTNUMBER 1 Bead,Ferrite,3A,80Ω 1206 FB1,FB2 2 (Steward)HI1206N800R-00 (Digi-Key)240-1010-1-ND 2 Cap,6.8μF,Tantalum,50V,10% D C3,C6 2 (AVX)TAJD685K050R (Garrett)TAJD685K050R 3 Cap,0.1μF,ceramic,X7R,50V 0805 C9,C10 2(2) (AVX)08055C104KAT2A (Garrett)08055C104KAT2A 4 Cap,0.1μF,ceramic,X7R,50V 0805 C4,C7 2 (AVX)08055C104KAT2A (Garrett)08055C104KAT2A 5 Resistor,0Ω,1/8W,1% 0805 R9 1(2) (KOA)RK73Z2ALTD (Garrett)RK73Z2ALTD 6 Resistor,249Ω,1/8W,1% 0805 R3 1 (KOA)RK73H2ALTD2490F (Garrett)RK73H2ALTD2490F 7 Resistor,1kΩ,1/8W,1% 0805 R4 1 (KOA)RK73H2ALTD1001F (Garrett)RK73H2ALTD1001F 8 Open 1206 R8 1 9 Resistor,0Ω,1/4W,1% 1206 R1 1 (KOA)RK73Z2BLTD (Garrett)RK73Z2BLTD 10 Resistor,49.9Ω,1/4W,1% 1206 R2,R7 2 (KOA)RK73Z2BLTD49R9F (Garrett)RK73Z2BLTD49R9F 11 Open 2512 R5,R6 2 12 Header,0.1-inch(2,54mm)centers, JP1,JP2 2(2) (Sullins)PZC36SAAN (Digi-Key)S1011-36-ND 0.025-inch(6,35mm)squarepins 13 Connector,SMAPCBJack J1,J2,J3 3 (Amphenol)901-144-8RFX (Newark)01F2208 Jack,bananareceptacle, 14 J4,J5,J6 3 (SPC)813 (Newark)39N867 0.25-inch(6,35mm)dia.hole 15 Testpoint,black TP1,TP2 2 (Keystone)5001 (Digi-Key)5001K-ND Standoff,4-40hex, 16 4 (Keystone)1808 (Newark)89F1934 0.625-inch(15,9mm)length Screw,Phillips,4-40, 17 4 SHR-0440-016-SN 0.25-inch(6,35mm) IC,THS3091(3) (TI)THS3091DDA(3) 18 IC,THS3095(2) U1 1 (TI)THS3095DDA(2) (TI)EDGE#6446289Rev.A(3) 19 Board,printed-circuit 1 (TI)EDGE#6446290Rev.A(2) (1) AllitemsaredesignatedforboththeTHS3091DDAandTHS3095EVMsunlessotherwisenoted. (2) THS3095EVMonly. (3) THS3091EVMonly. 8.2.3 ApplicationCurves 15 15 10 10 V) V) e ( 5 e ( 5 g g a a olt 0 olt 0 V V ut ut utp –5 utp –5 O O –10 –10 –15 –15 0 10 20 30 40 50 0 10 20 30 40 50 Time (ns) Time (ns) Figure72.32-MHzSineWaveOutput(Gain=5V/V,Signal Figure73.32-MHzSineWaveOutput(Gain=5V/V,Signal AmplitudeReferredtoAmplifierOutput),SingleTHS3091 AmplitudeReferredtoAmplifierOutput),TwoTHS3091 CircuitConfiguration AmplifiersinLoadSharingConfiguration Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 35 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com 15 15 10 10 V) V) e ( 5 e ( 5 g g a a olt 0 olt 0 V V ut ut p p ut –5 ut –5 O O –10 –10 –15 –15 0 5 10 15 20 25 0 5 10 15 20 25 Time (ns) Time (ns) Figure74.64-MHzSineWaveOutput(Gain=5V/V,Signal Figure75.64-MHzSineWaveOutput(Gain=5V/V,Signal AmplitudeReferredtoAmplifierOutput),SingleTHS3091 AmplitudeReferredtoAmplifierOutput),TwoTHS3091 CircuitConfiguration AmplifiersinLoadSharingConfiguration –10 –10 V = 20 V (at amplifier output) V = 20 V (at amplifier output) –20 O PP –20 O PP V = 10 V (at load) V = 10 V (at load) dBc) –30 RSO= 50ΩPP dBc) –30 RSO(Each APmPplifier) = 100Ω on ( –40 RL= 50Ω on ( –40 RL(Shared) = 50Ω orti orti Dist –50 Dist –50 nic –60 nic –60 o o m m ar –70 ar –70 H H –80 Second Harmonic –80 Second Harmonic Third Harmonic Third Harmonic –90 –90 1 10 100 1 10 100 Frequency (MHz) Frequency (MHz) Figure76.HarmonicDistortionvsFrequency,Single Figure77.HarmonicDistortionvsFrequency,Two THS3091CircuitConfiguration THS3091AmplifiersinLoadSharingConfiguration 36 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 9 Power Supply Recommendations The THS3091 can operate off a single supply or with dual supplies as long as the input CM voltage range (CMIR) has the required headroom to either supply rail. Operating from a single supply can have numerous advantages. With the negative supply at ground, the DC errors due to the –PSRR term can be minimized. Supplies should be decoupled with low inductance, often ceramic, capacitors to ground less than 0.5 inches from the device pins. The use of ground plane is recommended, and as in most high speed devices, it is advisable to remove ground plane close to device sensitive pins such as the inputs. An optional supply decoupling capacitor acrossthetwopowersupplies(forsplitsupplyoperation)improvessecondharmonicdistortionperformance. 10 Layout 10.1 Layout Guidelines Achieving optimum performance with a high-frequency amplifier, like the THS309x, requires careful attention to boardlayoutparasiticandexternalcomponenttypes. Recommendationsthatoptimizeperformanceinclude: • Minimize parasitic capacitance to any ac ground for all of the signal I/O pins. Parasitic capacitance on the output and input pins can cause instability. To reduce unwanted capacitance, a window around the signal I/O pins should be opened in all of the ground and power planes around those pins. Otherwise, ground and powerplanesshouldbeunbrokenelsewhereontheboard. • Minimize the distance [< 0.25 inch (6.35 mm)] from the power supply pins to high-frequency 0.1-μF and 100- pF decoupling capacitors. At the device pins, the ground and power plane layout should not be in close proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. The power supply connections should always be decoupled with these capacitors. Larger (6.8 μF or more) tantalum decoupling capacitors, effective at lower frequency, should also beusedonthemainsupplypins.Thesemaybeplacedsomewhatfartherfromthedeviceandmaybeshared amongseveraldevicesinthesameareaofthePCboard. • Careful selection and placement of external components preserve the high-frequency performance of the THS309x. Resistors should be a low reactance type. Surface-mount resistors work best and allow a tighter overall layout. Again, keep their leads and PC board trace length as short as possible. Never use wire-bound type resistors in a high-frequency application. Because the output pin and inverting input pins are the most sensitivetoparasiticcapacitance,alwayspositionthefeedbackandseriesoutputresistors,ifany,ascloseas possible to the inverting input pins and output pins. Other network components, such as input termination resistors, should be placed close to the gain-setting resistors. Even with a low parasitic capacitance shunting the external resistors, excessively high resistor values can create significant time constants that can degrade performance. Good axial metal-film or surface-mount resistors have approximately 0.2 pF in shunt with the resistor. For resistor values > 2 kΩ, this parasitic capacitance can add a pole and/or a zero that can effect circuitoperation.Keepresistorvaluesaslowaspossible,consistentwithload-drivingconsiderations. • Connections to other wideband devices on the board may be made with short direct traces or through onboard transmission lines. For short connections, consider the trace and the input to the next device as a lumped capacitive load. Relatively wide traces [0.05 inch (1.3 mm) to 0.1 inch (2.54 mm)] should be used, preferably with ground and power planes opened up around them. Estimate the total capacitive load and determine if isolation resistors on the outputs are necessary. Low parasitic capacitive loads (< 4 pF) may not need an R because the THS309x are nominally compensated to operate with a 2-pF parasitic load. Higher S parasitic capacitive loads without an RS are allowed as the signal gain increases (increasing the unloaded phase margin). If a long trace is required, and the 6-dB signal loss intrinsic to a doubly terminated transmission line is acceptable, implement a matched impedance transmission line using microstrip or stripline techniques (consult an ECL design handbook for microstrip and stripline layout techniques). A 50-Ω environment is not necessary onboard, and in fact, a higher impedance environment improves distortion as shown in the distortion versus load plots. With a characteristic board trace impedance based on board material and trace dimensions, a matching series resistor into the trace from the output of the THS309x is used as well as a terminating shunt resistor at the input of the destination device. Remember also that the terminating impedance is the parallel combination of the shunt resistor and the input impedance of the destination device; this total effective impedance should be set to match the trace impedance. If the 6-dB attenuationofadoublyterminatedtransmissionlineisunacceptable,alongtracecanbeseries-terminatedat the source end only. Treat the trace as a capacitive load in this case. This does not preserve signal integrity as well as a doubly terminated line. If the input impedance of the destination device is low, there is some Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 37 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com Layout Guidelines (continued) signalattenuationduetothevoltagedividerformedbytheseriesoutputintotheterminatingimpedance. • Socketing a high-speed part like the THS309x is not recommended. The additional lead length and pin-to-pin capacitance introduced by the socket can create an extremely troublesome parasitic network which can make it almost impossible to achieve a smooth, stable frequency response. Best results are obtained by soldering theTHS309xpartsdirectlyontotheboard. 10.2 Layout Example Figure78. LayoutRecommendation 38 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 Layout Example (continued) PIN8 (2) REF R9 C(92) JP(12) C1(02) JP(22) J4 J5 J6 VS− GND VS+ TP1 TP2 (2) THS3095 EVM Only FB1 FB2 VS− VS+ C3 + 6.8 m F + C0.41 m F C6.68 m F C0.71 m F J1 R3 R4 R1 249 W 1 kW 0 W PIN8 VS+ REF R5 J2 27 81 ORp7en J3 6 3 4 49.9 W 5 R8 R6 R492.9 W VS− Open Open THS3091DDA or THS3095DDA Figure79. THS3091EVMCircuitConfiguration Figure80. THS3091EVMBoardLayout(TopLayer) Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 39 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com Layout Example (continued) Figure81. THS3091EVMBoardLayout(SecondandThirdLayers) Figure82. THS3091EVMBoardLayout(BottomLayer) 40 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 10.3 PowerPAD Design Considerations The THS309x are available in a thermally-enhanced PowerPAD family of packages. These packages are constructed using a downset leadframe on which the die is mounted [see Figure 83(a) and Figure 83(b)]. This arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see Figure 83(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance can be achieved by providing a good thermal path away from the thermal pad. Note that devices such as the THS309xhavenoelectricalconnectionbetweenthePowerPADandthedie. The PowerPAD package allows for both assembly and thermal management in one manufacturing operation. During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be soldered to a copper area underneath the package. Through the use of thermal paths within this copper area, heatcanbeconductedawayfromthepackageintoeitheragroundplaneorotherheat-dissipatingdevice. The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of surfacemountwiththe,heretofore,awkwardmechanicalmethodsofheatsinking. DIE Side View (a) Thermal Pad DIE End View (b) Bottom View (c) Figure83. ViewsofThermalEnhancedPackage Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the recommendedapproach. 0.300 (7,62) 0.100 (2,54) 0.026 0.035 0.010 (0,66) (0,89) (0,254) 0.030 0.060 (0,732) 0.176 (1,52) (4,47) 0.140 0.050 (3,56) (1,27) 0.060 (1,52) 0.035 0.080 0.010 (0,89) (2,03) (0.254) vias All Units in inches (millimeters) Figure84. DDAPowerPADPCBEtchandviaPattern 10.3.1 PowerPADLayoutConsiderations 1. PCBwithatop-sideetchpatternisshowninFigure84.Thereshouldbeetchfortheleadsaswellasetchfor thethermalpad. 2. Place 13 holes in the area of the thermal pad. These holes should be 0.01 inch (0.254 mm) in diameter. Keepthemsmallsothatsolderwickingthroughtheholesisnotaproblemduringreflow. 3. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps dissipate the heat generated by the THS309x IC. These additional vias may be larger than the 0.01-inch (0.254 mm) diameter vias directly under the thermal pad. They can be larger because they are not in the thermalpadareatobesolderedsothatwickingisnotaproblem. Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 41 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com PowerPAD Design Considerations (continued) 4. Connect all holes to the internal ground plane. Note that the PowerPAD is electrically isolated from the silicon and all leads. Connecting the PowerPAD to any potential voltage such as V is acceptable as there S– isnoelectricalconnectiontothesilicon. 5. When connecting these holes to the ground plane, do not use the typical web or spoke via connection methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat transfer during soldering operations. This makes the soldering of vias that have plane connections easier. In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the holes under the THS309x PowerPAD package should make their connection to the internal ground plane withacompleteconnectionaroundtheentirecircumferenceoftheplated-throughhole. 6. The top-side solder mask should leave the terminals of the package and the thermal pad area with its 13 holes exposed. The bottom-side solder mask should cover the 13 holes of the thermal pad area. This preventssolderfrombeingpulledawayfromthethermalpadareaduringthereflowprocess. 7. ApplysolderpastetotheexposedthermalpadareaandalloftheICterminals. 8. With these preparatory steps in place, the IC is simply placed in position and run through the solder reflow operationasanystandardsurface-mountcomponent.Thisresultsinapartthatisproperlyinstalled. 10.3.2 PowerDissipationandThermalConsiderations TheTHS309xincorporatesautomaticthermalshutoffprotection.Thisprotectioncircuitryshutsdowntheamplifier if the junction temperature exceeds approximately 160°C. When the junction temperature reduces to approximately 140°C, the amplifier turns on again. But, for maximum performance and reliability, the designer must ensure that the design does not exceed a junction temperature of 125°C. Between 125°C and 150°C, damage does not occur, but the performance of the amplifier begins to degrade and long-term reliability suffers. The thermal characteristics of the device are dictated by the package and the PC board. Maximum power dissipationforagivenpackagecanbecalculatedusingthefollowingformula. T (cid:1)T P (cid:2) max A Dmax (cid:1) JA where: PDmax is the maximum power dissipation in the amplifier (W). Tmax is the absolute maximum junction temperature (°C). TA is the ambient temperature (°C). q JA = q JC + q CA q JC is the thermal coefficient from the silicon junctions to the case (°C/W). q CA is the thermal coefficient from the case to ambient air (°C/W). (4) For systems where heat dissipation is more critical, the THS3091 and THS3095 are offered in an 8-pin SOIC (DDA) with PowerPAD package. The thermal coefficient for the PowerPAD packages are substantially improved over the traditional SOIC. Maximum power dissipation levels are depicted in the graph for the available packages. The data for the PowerPAD packages assume a board layout that follows the PowerPAD layout guidelines referenced above and detailed in the PowerPAD application note (SLMA002). If the PowerPAD is not soldered to the PCB, the thermal impedance will increase substantially which may cause serious heat and performanceissues.BesuretoalwayssolderthePowerPADtothePCBforoptimumperformance. When determining whether or not the device satisfies the maximum power dissipation requirement, it is important to consider not only quiescent power dissipation, but also dynamic power dissipation. Often times, this is difficult to quantify because the signal pattern is inconsistent, but an estimate of the RMS power dissipation can provide visibilityintoapossibleproblem. 42 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 www.ti.com SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 11 Device and Documentation Support 11.1 Device Support 11.1.1 DevelopmentSupport 11.1.1.1 EvaluationFixtures,SpiceModels,andApplicationSupport Texas Instruments is committed to providing its customers with the highest quality of applications support. To support this goal, an evaluation board has been developed for the THS309x operational amplifier. The board is easy to use, allowing for straightforward evaluation of the device. The evaluation board can be ordered through theTexasInstrumentsWebsite,www.ti.com,orthroughyourlocalTexasInstrumentssalesrepresentative. Computer simulation of circuit performance using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for video and RF-amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. A SPICE model for the THS309x is available through the Texas Instruments Web site (www.ti.com). The Product Information Center (PIC) is also availablefordesignassistanceanddetailedproductinformation.Thesemodelsdoagoodjobofpredictingsmall- signalacandtransientperformanceunderawidevarietyofoperatingconditions.Theyarenotintendedtomodel the distortion characteristics of the amplifier, nor do they attempt to distinguish between the package types in their small-signal ac performance. Detailed information about what is and is not modeled is contained in the modelfileitself. 11.2 Documentation Support 11.2.1 RelatedDocumentation Forrelateddocumentation,seethefollowing: • PowerPAD™MadeEasy,applicationbrief(SLMA004) • PowerPAD™ThermallyEnhancedPackage,technicalbrief(SLMA002) • VoltageFeedbackvsCurrentFeedbackAmplifiers,(SLVA051) • CurrentFeedbackAnalysisandCompensation(SLOA021) • CurrentFeedbackAmplifiers:Review,Stability,andApplication(SBOA081) • EffectofParasiticCapacitanceinOpAmpCircuits(SLOA013) • ExpandingtheUsabilityofCurrent-FeedbackAmplifiers,3Q2003AnalogApplicationsJournal. 11.3 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table7.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY THS3091 Clickhere Clickhere Clickhere Clickhere Clickhere THS3095 Clickhere Clickhere Clickhere Clickhere Clickhere 11.4 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. Copyright©2003–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 43 ProductFolderLinks:THS3091 THS3095

THS3091,THS3095 SLOS423H–SEPTEMBER2003–REVISEDDECEMBER2015 www.ti.com 11.5 Trademarks PowerPAD,E2EaretrademarksofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 11.6 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 11.7 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 44 SubmitDocumentationFeedback Copyright©2003–2015,TexasInstrumentsIncorporated ProductFolderLinks:THS3091 THS3095

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) THS3091D ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 3091 & no Sb/Br) THS3091DDA ACTIVE SO PowerPAD DDA 8 75 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 3091 & no Sb/Br) THS3091DDAG3 ACTIVE SO PowerPAD DDA 8 75 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 3091 & no Sb/Br) THS3091DDAR ACTIVE SO PowerPAD DDA 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 3091 & no Sb/Br) THS3091DDARG3 ACTIVE SO PowerPAD DDA 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 3091 & no Sb/Br) THS3091DR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 3091 & no Sb/Br) THS3095D ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 3095 & no Sb/Br) THS3095DDA ACTIVE SO PowerPAD DDA 8 75 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 3095 & no Sb/Br) THS3095DDAR ACTIVE SO PowerPAD DDA 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 3095 & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 26-Feb-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) THS3091DDAR SO DDA 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 Power PAD THS3091DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 THS3095DDAR SO DDA 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 Power PAD PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 26-Feb-2019 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) THS3091DDAR SOPowerPAD DDA 8 2500 350.0 350.0 43.0 THS3091DR SOIC D 8 2500 350.0 350.0 43.0 THS3095DDAR SOPowerPAD DDA 8 2500 350.0 350.0 43.0 PackMaterials-Page2

GENERIC PACKAGE VIEW DDA 8 PowerPAD TM SOIC - 1.7 mm max height PLASTIC SMALL OUTLINE Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4202561/G

None

None

None

PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated