ICGOO在线商城 > TDA7100
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
TDA7100产品简介:
ICGOO电子元器件商城为您提供TDA7100由Infineon设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 提供TDA7100价格参考以及InfineonTDA7100封装/规格参数等产品信息。 你可以下载TDA7100参考资料、Datasheet数据手册功能说明书, 资料中有TDA7100详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
描述 | IC TX ASK/FSK 434MHZ 10-TSSOP射频接收器 ASK/FSK TRANSMITTER 10-PIN PKG |
产品分类 | |
品牌 | Infineon Technologies |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | RF集成电路,射频接收器,Infineon Technologies TDA7100- |
数据手册 | http://www.infineon.com/dgdl/TDA7100_V1.0.pdf?folderId=db3a304313d846880113dd9752130268&fileId=db3a30431400ef68011402db35860081 |
产品型号 | TDA7100 |
产品种类 | 射频接收器 |
其它名称 | SP000296466 |
功率-输出 | 6.9dBm |
包装 | 带卷 (TR) |
商标 | Infineon Technologies |
天线连接器 | PCB,表面贴装 |
存储容量 | - |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | 10-TFSOP,10-MSOP(0.118",3.00mm 宽) |
封装/箱体 | TSSOP-10 |
工作温度 | -20°C ~ 70°C |
工作电源电压 | 2.5 V, 3.3 V |
工作频率 | 435 MHz |
工厂包装数量 | 5000 |
带宽 | 435 MHz |
应用 | 警报系统,通信系统 |
数据接口 | PCB,表面贴装 |
数据速率(最大值) | 20 kbps |
最大工作温度 | + 70 C |
最小工作温度 | - 20 C |
标准包装 | 5,000 |
特性 | - |
电压-电源 | 2.1 V ~ 4 V |
电流-传输 | 7.5mA |
电源电压-最大 | 4 V |
电源电压-最小 | 2.1 V |
电源电流 | 3.5 mA |
类型 | Transmitter |
系列 | TDx7100 |
调制或协议 | ASK,FSK |
零件号别名 | SP000296466 TDA7100HTMA1 |
频率 | 433MHz ~ 435MHz |
Data Sheet, V 1.0, May 2007 TDA7100 434 MHz ASK/FSK Transmitter in 10-pin Package Wireless Control Components N e v e r s t o p t h i n k i n g .
Edition 2007-05-02 Published by Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg, Germany © Infineon Technologies AG 2007-05-02. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or the Infineon Technologies Companies and our Infineon Technologies Representatives worldwide (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Data Sheet, V 1.0, May 2007 TDA7100 434 MHz ASK/FSK Transmitter in 10-pin Package Wireless Control Components N e v e r s t o p t h i n k i n g .
TDA7100 Revision History: 2007-05-02 V 1.0 Previous Version: none Page Subjects (major changes since last revision) We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: sensors@infineon.com
TDA7100 Table of Contents Page 1 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.1 PLL Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.2 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.3 Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.4 Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.4.1 Power Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.4.2 PLL Enable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.4.3 Transmit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.4.4 Power mode control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.5 Recommended Timing Diagrams for ASK- and FSK-Modulation . . . . . 17 3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 50 Ohm-Output Testboard Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 50 Ohm-Output Testboard Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Bill of Material (50 Ohm-Output Evalboard) . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Stripline-Antenna Testboard Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.5 Stripline-Antenna Testboard Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.6 Bill of Material (Antenna board) FSK modulation . . . . . . . . . . . . . . . . . . . . 25 3.7 Application Hints on the Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.8 Design Hints on the Clock Output (CLKOUT) . . . . . . . . . . . . . . . . . . . . . . 28 3.9 Application Hints on the Power-Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1 Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 Operating Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.1 AC/DC Characteristic at 3V, 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.2 AC/DC Characteristic at 2.1V ...4.0 V, -20°C ...+70°C . . . . . . . . . . . . . 35 5 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Data Sheet 5 V 1.0, 2007-05-02
TDA7100 Product Description 1 Product Description 1.1 Overview The TDA7100 is a single chip ASK/FSK transmitter for operation in the frequency band 433-435 MHz. The IC offers a high level of integration and needs only a few external components. The device contains a fully integrated PLL synthesizer and a high efficiency power amplifier to drive a loop antenna. A special circuit design and an unique power amplifier design are used to save current consumption and therefore to save battery life. Additional features are a power down mode and a divided clock output. 1.2 Features • fully integrated frequency synthesizer • VCO without external components • ASK and FSK modulation • frequency range 433-435 MHz • high efficiency power amplifier (typically 5 dBm) • low supply current • voltage supply range 2.1 ... 4 V • temperature range −20 ... +70°C • power down mode • crystal oscillator 13.56 MHz • FSK-switch • divided clock output for µC • low external component count 1.3 Application • Remote control systems • Alarm systems • Communication systems Table1 Order Information Type Ordering Code Package TDA7100 SP000296466 PG-TSSOP-10 available on tape and reel Data Sheet 6 V 1.0, 2007-05-02
TDA7100 Functional Description 2 Functional Description 2.1 Pin Configuration CLKOUT 1 10 PDWN VS 2 9 PAOUT GND 3 TDA 7100 8 PAGND FSKOUT 4 7 FSKDTA COSC 5 6 ASKDTA Figure1 IC Pin Configuration 2.2 Pin Definition and Functions Table2 Pin Definition and Functions - Overview Pin Symbol Function No. 1 CLKOUT Clock Driver Output (847.5 kHz) 2 VS Voltage Supply 3 GND Ground 4 FSKOUT Frequency Shift Keying Switch Output 5 COSC Crystal Oscillator Input (13.56 MHz) 6 ASKDTA Amplitude Shift Keying Data Input 7 FSKDTA Frequency Shift Keying Data Input 8 PAGND Power Amplifier Ground 9 PAOUT Power Amplifier Output (434 MHz) 10 PDWN Power Down Mode Control Data Sheet 7 V 1.0, 2007-05-02
TDA7100 Functional Description Table3 Pin Definition and Function1) Pin Symbol Interface Schematic Function No. 1 CLKOUT Clock output to supply an external device. V S An external pull-up resistor has to 1 be added in accordance to the driving requirements of the 300 Ω external device. The clock frequency is 847.5 kHz. 2 VS This pin is the positive supply of the transmitter electronics. An RF bypass capacitor should be connected directly to this pin and returned to GND (pin 3) as short as possible. 3 GND General ground connection. 4 FSKOUT This pin is connected to a switch to GND (pin 3). V V S S The switch is closed when the signal at FSKDTA (pin 7) is in a logic low state. 200 µA 4 The switch is open when the signal at FSKDTA (pin 7) is in a logic high 120 kΩ 200 kΩ state. FSKOUT can switch an additional capacitor to the reference crystal network to pull the crystal frequency by an amount resulting in the desired FSK frequency shift of the transmitter output frequency. Data Sheet 8 V 1.0, 2007-05-02
TDA7100 Functional Description Pin Symbol Interface Schematic Function No. 5 COSC This pin is connected to the reference oscillator circuit. V V S S The reference oscillator is working as a negative impedance 6 kΩ converter. It presents a negative resistance in series to an 5 inductance at the COSC pin. 100 µA 6 ASKDTA Digital amplitude modulation can be imparted to the Power Amplifier V +1.2 V S through this pin. 60 kΩ A logic high (ASKDTA > 1.5 V or 6 +1.1 V open) enables the Power 90 kΩ Amplifier. 50 pF 30 µA A logic low (ASKDTA < 0.5 V) disables the Power Amplifier. Data Sheet 9 V 1.0, 2007-05-02
TDA7100 Functional Description Pin Symbol Interface Schematic Function No. 7 FSKDTA Digital frequency modulation can be imparted to the Xtal Oscillator V +1.2 V S by this pin. The VCO-frequency varies in accordance to the 60 kΩ frequency of the reference 7 +1.1 Voscillator. 90 kΩ A logic high (FSKDTA > 1.5V or 30 µA open) sets the FSK switch to a high impedance state. A logic low (FSKDTA < 0.5 V) closes the FSK switch from FSKOUT (pin 4) to GND (pin 3). A capacitor can be switched to the reference crystal network this way. The Xtal Oscillator frequency will be shifted giving the designed FSK frequency deviation. Data Sheet 10 V 1.0, 2007-05-02
TDA7100 Functional Description Pin Symbol Interface Schematic Function No. 8 PAGND Ground connection of the power amplifier. 9 The RF ground return path of the power amplifier output PAOUT (pin 9) has to be concentrated to this pin. 9 PAOUT RF output pin of the transmitter. 8 A DC path to the positive supply VS has to be supplied by the antenna matching network. 10 PDWN Disable pin for the complete V transmitter circuit. S 40 µA ∗ (ASKDTA+FSKDTA) A logic low (PDWN < 0.7 V) turns off all transmitter functions. 5 kΩ 10 A logic high (PDWN > 1.5 V) gives "ON" access to all transmitter functions. 150 kΩ PDWN input will be pulled up by 40 µA internally by either setting 250 kΩ FSKDTA or ASKDTA to a logic high-state. 1) Indicated voltages and currents apply for PLL Enable Mode and Transmit Mode. In Power Down Mode, the values are zero or high-ohmic. Data Sheet 11 V 1.0, 2007-05-02
TDA7100 Functional Description 2.3 Functional Block Diagram PowerAmplifierOutput PowerAmplifierGround 9 8 n O erP wM PoA 2 : Power SupplyVS 2 PowerSupply VCO LF 3 Ground 0 PowerDownControl 1 OR 4 6 : ASKDataInput 6 D FSKDataInput 7 PF :16 1 ClockOutput TALOsc X 4 5 FSKSwitch Crystal3.56 MHz 1 Figure2 Functional Block Diagram Data Sheet 12 V 1.0, 2007-05-02
TDA7100 Functional Description 2.4 Functional Block Description 2.4.1 PLL Synthesizer The Phase Locked Loop synthesizer consists of a Voltage Controlled Oscillator (VCO), an asynchronous divider chain, a phase detector, a charge pump and a loop filter. It is fully implemented on chip. The tuning circuit of the VCO consisting of spiral inductors and varactor diodes is on chip, too. Therefore no additional external components are necessary. The nominal center frequency of the VCO is 868 MHz. The oscillator signal is fed both, to the synthesizer divider chain and to the power amplifier. The overall division ratio of the asynchronous divider chain is 64. The phase detector is a Type IV PD with charge pump. The passive loop filter is realized on chip. 2.4.2 Crystal Oscillator The crystal oscillator operates at 13.56 MHz. The crystal frequency is divided by 16. The resulting 847.5 kHz are available at the clock output CLKOUT (pin1) to drive the clock input of a micro controller. To achieve FSK transmission, the oscillator frequency can be detuned by a fixed amount by switching an external capacitor via FSKOUT (pin 4). The condition of the switch is controlled by the signal at FSKDTA (pin 7). Table4 FSKDTA - FSK Switch FSKDTA (pin7) FSK Switch Low1) CLOSED Open2), High3) OPEN 1) Low: Voltage at pin < 0.5V 2) Open: Pin open 3) High: Voltage at pin > 1.5V 2.4.3 Power Amplifier The VCO frequency is divided by 2 and fed to the Power Amplifier. The Power Amplifier can be switched on and off by the signal at ASKDTA (pin 6). Data Sheet 13 V 1.0, 2007-05-02
TDA7100 Functional Description Table5 ASKDTA - Power Amplifier ASKDTA (pin6) Power Amplifier Low1) OFF Open2), High3) ON 1) Low: Voltage at pin < 0.5V 2) Open: Pin open 3) High: Voltage at pin > 1.5V The Power Amplifier has an Open Collector output at PAOUT (pin 9) and requires an external pull-up coil to provide bias. The coil is part of the tuning and matching LC circuitry to get best performance with the external loop antenna. To achieve the best power amplifier efficiency, the high frequency voltage swing at PAOUT (pin 9) should be twice the supply voltage. The power amplifier has its own ground pin PAGND (pin 8) in order to reduce the amount of coupling to the other circuits. 2.4.4 Power Modes The IC provides three power modes, the POWER DOWN MODE, the PLL ENABLE MODE and the TRANSMIT MODE. 2.4.4.1 Power Down Mode In the POWER DOWN MODE the complete chip is switched off. The current consumption is typically 0.3 nA at 3 V 25°C. The value is typically 5nA at 70°C. 2.4.4.2 PLL Enable Mode In the PLL ENABLE MODE the PLL is switched on but the power amplifier is turned off to avoid undesired power radiation during the time the PLL needs to settle. The turn on time of the PLL is determined mainly by the turn on time of the crystal oscillator and is less than 1 msec when the specified crystal is used. The current consumption is typically 3.5 mA. Data Sheet 14 V 1.0, 2007-05-02
TDA7100 Functional Description 2.4.4.3 Transmit Mode In the TRANSMIT MODE the PLL is switched on and the power amplifier is turned on too. The current consumption of the IC is typically 7 mA when using a proper transforming network at PAOUT, see Figure 8. 2.4.4.4 Power mode control The bias circuitry is powered up via a voltage V > 1.5 V at the pin PDWN (pin10). When the bias circuitry is powered up, the pins ASKDTA and FSKDTA are pulled up internally. Forcing the voltage at the pins low overrides the internally set state. Alternatively, if the voltage at ASKDTA or FSKDTA is forced high externally, the PDWN pin is pulled up internally via a current source. In this case, it is not necessary to connect the PDWN pin, it is recommended to leave it open. The principle schematic of the power mode control circuitry is shown in Figure3 PDWN ASKDTA OR FSKDTA On Bias Source 120 kΩ e g a Volt 120 kΩ FSKOUT s FSK a On Bi 434 PLL PA PAOUT MHz IC Figure3 Power mode control circuitry Data Sheet 15 V 1.0, 2007-05-02
TDA7100 Functional Description Table 6 provides a listing of how to get into the different power modes Table6 Power Modes PDWN FSKDTA ASKDTA MODE Low1) Low, Open Low, Open POWER DOWN Open2) Low Low High3) Low, Open, High Low PLL ENABLE Open High Low High Low, Open, High Open, High TRANSMIT Open High Open, High Open Low, Open, High High 1) Low: Voltage at pin < 0.7V (PDWN) Voltage at pin < 0.5V (FSKDTA, ASKDTA) 2) Open: Pin open 3) High: Voltage at pin > 1.5V Other combinations of the control pins PDWN, FSKDTA and ASKDTA are not recommended. Data Sheet 16 V 1.0, 2007-05-02
TDA7100 Functional Description 2.4.5 Recommended Timing Diagrams for ASK- and FSK-Modulation ASK Modulation using FSKDTA and ASKDTA, PDWN not connected Modes: Power Down PLL Enable Transmit High FSKDTA Low to t DATA Open, High ASKDTA Low to t min. 1 msec. Figure4 ASK Modulation FSK Modulation using FSKDTA and ASKDTA, PDWN not connected. Modes: Power Down PLL Enable Transmit DATA High FSKDTA Low to t High ASKDTA Low to t min. 1 msec. Figure5 FSK Modulation Data Sheet 17 V 1.0, 2007-05-02
TDA7100 Functional Description Alternative ASK Modulation, FSKDTA not connected. Modes: Power Down PLL Enable Transmit High PDWN Low to t DATA Open, High ASKDTA Low to t min. 1 msec. Figure6 Alternative ASK Modulation Alternative FSK Modulation Modes: Power Down PLL Enable Transmit High PDWN Low to t Open, High ASKDTA Low to t DATA Open, High FSKDTA Low to t min. 1 msec. Figure7 Alternative FSK Modulation Data Sheet 18 V 1.0, 2007-05-02
TDA7100 Applications 3 Applications 3.1 50 Ohm-Output Testboard Schematic Figure8 50 Ohm-output testboard schematic Data Sheet 19 V 1.0, 2007-05-02
TDA7100 Applications 3.2 50 Ohm-Output Testboard Layout Figure9 Top Side of TDA7100-Testboard with 50 Ohm-Output Figure10 Bottom Side of TDA7100-Testboard with 50 Ohm-Output Data Sheet 20 V 1.0, 2007-05-02
TDA7100 Applications 3.3 Bill of Material (50 Ohm-Output Evalboard) Table7 Bill of Materials (cont’d) Ref. Value Specification R1 open R2 open R3 4k7 0603, +/-5% R4 12k 0603, +/-5% R5 open R6 15k 0603, +/-5% R7 open C1 10p 0603, C0G, +/-1% C2 6p8 0603, C0G, +/-0.1p C3 open C4 open C5 100p 0603, X7R, +/-10% C6 12p 0603, C0G, +/-1% C7 39p 0603, C0G, +/-1% C8 330p 0603, C0G, +/-5% C9 3p3 0603, C0G, +/-0.1p C10 47n 0603, X7R, +/-10% L1 47n EPCOS SIMID 0603-C, +/-2% L2 120n EPCOS SIMID 0603-C, +/-2% Data Sheet 21 V 1.0, 2007-05-02
TDA7100 Applications Ref. Value Specification X1 n.e. X2 n.e. X3 Pin single-pole connector, 2.54mm X4 Pin single-pole connector, 2.54mm X5 SMA-connector X6 SMA-connector X7 n.e. JP1 solder bridge in position “XTAL” JP2 solder bridge in position “FSK” Q1 13.56875 MHz Tokyo Denpa TSS-3B 13.56875 MHz Spec.No. 10-50205 IC1 TDA7100 Data Sheet 22 V 1.0, 2007-05-02
TDA7100 Applications 3.4 Stripline-Antenna Testboard Schematic Figure11 Stripline-antenna testboard schematic Data Sheet 23 V 1.0, 2007-05-02
TDA7100 Applications 3.5 Stripline-Antenna Testboard Layout TDA7100 Figure12 Top Side of TDA7100-Testboard with Stripline-Antenna Figure13 Bottom Side of TDA7100-Testboard with Stripline-Antenna Please note that this board layout may be used for both high- and low-power applications, see also the bill of materials on the subsequent pages. In case of ASK operation the solder bridge JP2 has to be shortened in the “ASK”- position, in case of FSK modulation in the“FSK” position. Solder bridge JP1between C1, C2 and C3) gives a choice of operating the board with the on-board crystal as reference (“XTAL” shortened, i.e. close to C1 and C2) or with an external clock generator (solder bridge shorts pads between C3 and C2). Data Sheet 24 V 1.0, 2007-05-02
TDA7100 Applications 3.6 Bill of Material (Antenna board) FSK modulation Table8 Bill of Materials (cont’d) Ref. Value Specification R1 open R2 0R 0603, SMD-Jumper R3 0R 0603, SMD-Jumper R4 82k 0603, +/-5% R5 open R6 open R7 100n 0603, X7R, +/-10% R8 39R 0603, +/-1% R9 15k 0603, +/-5% C1 10p 0603, C0G, +/-1% C2 6p8 0603, C0G, +/-0.1p C3 open C4 open C5 open C6 10n 0603, X7R, +/-10% C7 5p6 0603, C0G, +/-0.1p C8 open C9 4p7 0603, C0G, +/-0.1p C10 47n 0603, X7R, +/-10% L1 100n 0603, EPCOS SIMID, +/-2% L2 0R 0603, SMD-Jumper X1 n.e. X3 n.e. X4 n.e. S1 push-button STTSKHMPW, ALPS JP1 solder bridge in position “XTAL” JP2 solder bridge in position “FSK” Q1 13.56875 MHz Tokyo Denpa TSS-3B 13.56875 MHz Spec.No. 10-50205 Data Sheet 25 V 1.0, 2007-05-02
TDA7100 Applications Ref. Value Specification IC1 TDA7100 P-TSSOP-10 IC2 HCS360 SO8 BAT1 battery holder HU2031-1, Renata battery CR2032, Renata 3.7 Application Hints on the Crystal Oscillator The crystal oscillator achieves a turn on time less than 1 msec when the specified crystal is used. To achieve this, a NIC oscillator type is implemented in the TDA7100. The input impedance of this oscillator is a negative resistance in series to an inductance. Therefore the load capacitance of the crystal CL (specified by the crystal supplier) is transformed to the capacitance Cv. -R L f, CL Cv IC Figure14 Application Hints Formula 1: 1 Cv= 1 +ω2L CL CL: crystal load capacitance for nominal frequency ω: angular frequency L: inductance of the crystal oscillator Data Sheet 26 V 1.0, 2007-05-02
TDA7100 Applications Example for the ASK-Mode: Referring to the application circuit, in ASK-Mode the capacitance C2 is replaced by a short to ground. Assume a crystal frequency of 13.56MHz and a crystal load capacitance of CL = 12 pF. The inductance L at 13.56MHz is about 4.6 µH. Therefore C1 is calculated to 10 pF. 1 Cv = =C1 1 +ω2L CL Example for the FSK-Mode: FSK modulation is achieved by switching the load capacitance of the crystal as shown below. FSKDTA FSKOUT Csw -R L f, CL Cv1 Cv2 COSC IC Figure15 FSK Mode The frequency deviation of the crystal oscillator is multiplied with the divider factor N of the Phase Locked Loop to the output of the power amplifier. In case of small frequency deviations (up to +/- 1000 ppm), the two desired load capacitances can be calculated with the formula below. ∆f 2(C0+CL) CLmC0 (1+ ) N* f1 C1 CL±= ∆f 2(C0+CL) 1± (1+ ) N* f1 C1 Data Sheet 27 V 1.0, 2007-05-02
TDA7100 Applications C : crystal load capacitance for nominal frequency L C : shunt capacitance of the crystal 0 f: frequency ω: ω = 2πf: angular frequency N: division ratio of the PLL df: peak frequency deviation Because of the inductive part of the TDA7100, these values must be corrected by Formula 1 on the preceding page. The value of Cv± can be calculated. 1 Cv±= 1 +ω2L CL± If the FSK switch is closed, Cv- is equal to Cv1 (C1 in the application diagram). If the FSK switch is open, Cv2 (C2 in the application diagram) can be calculated. Csw∗Cv1−(Cv+)∗(Cv1+Csw) Cv2=C2= (Cv+)−Cv1 Csw: parallel capacitance of the FSK switch (3 pF incl. layout parasitics) Remark: These calculations are only approximations. The necessary values depend on the layout also and must be adapted for the specific application board. 3.8 Design Hints on the Clock Output (CLKOUT) The CLKOUT pin is an open collector output. An external pull up resistor (RL) should be connected between this pin and the positive supply voltage. The value of RL is Data Sheet 28 V 1.0, 2007-05-02
TDA7100 Applications depending on the clock frequency and the load capacitance CLD (PCB board plus input capacitance of the microcontroller). RL can be calculated to: 1 RL= fCLKOUT*8*CLD Table9 Clock Output fCLKOUT=847.5 kHz CL[pF] RL[kOhm] 5 27 10 12 20 6.8 Remark: To achieve a low current consumption and a low spurious radiation, the largest possible RL should be chosen. Even harmonics of the signal at CLKOUT can interact with the crystal oscillator input COSC preventing the start-up of oscillation. Care must be taken in layout by sufficient separation of the signal lines to ensure sufficiently small coupling. 3.9 Application Hints on the Power-Amplifier The power amplifier operates in a high efficient class C mode. This mode is characterized by a pulsed operation of the power amplifier transistor at a current flow angle of θ<<π. A frequency selective network at the amplifier output passes the fundamental frequency component of the pulse spectrum of the collector current to the load. The load and its resonance transformation to the collector of the power amplifier can be generalized by the equivalent circuit of Figure 16. The tank circuit L//C//RL in parallel to the output impedance of the transistor should be in resonance at the operating frequency of the transmitter. Data Sheet 29 V 1.0, 2007-05-02
TDA7100 Applications V S L C R L Figure16 Equivalent power amplifier tank circuit The optimum load at the collector of the power amplifier for “critical” operation under idealized conditions at resonance is: V2 R = S LC 2*P O The theoretical value of R for an RF output power of P = 5 dBm (3.16 mW) is: LC o 32 R = =1423Ω LC 2*0.00316 “Critical” operation is characterized by the RF peak voltage swing at the collector of the PA transistor to just reach the supply voltage V . S The high degree of efficiency under “critical” operating conditions can be explained by the low power losses at the transistor. During the conducting phase of the transistor, its collector voltage is very small. This way the power loss of the transistor, equal to i *u C CE is minimized. This is particularly true for small current flow angles of θ<<π. In practice the RF-saturation voltage of the PA transistor and other parasitics reduce the “critical” R . LC The output power P is reduced by operating in an “overcritical” mode characterised by o R > R . L LC The power efficiency (and the bandwidth) increase when operating at a slightly higher R , as shown in Figure 17. L The collector efficiency E is defined as P E = O V I S C The diagram of Figure 17 was measured directly at the PA-output at V = 3 V. Losses in S the matching circuitry decrease the output power by about 1.5 dB. As can be seen from Data Sheet 30 V 1.0, 2007-05-02
TDA7100 Applications the diagram, 550 Ω is the optimum impedance for operation at 3 V. For an approximation of R and P at other supply voltages those two formulas can be used: OPT OUT R ~V S OPT and P ~ R OUT OPT 10*E Po [mW] 7 6 5 4 3 10*E 2 Po 1 0 0 1000 2000 3000 RL [Ohm] Figure17 Output power P (mW) and collector efficiency E vs. load resistor R . o L The DC collector current I of the power amplifier and the RF output power P vary with c o the load resistor R . This is typical for overcritical operation of class C amplifiers. The L collector current will show a characteristic dip at the resonance frequency for this type of “overcritical” operation. The depth of this dip will increase with higher values of R . L Data Sheet 31 V 1.0, 2007-05-02
TDA7100 Reference 4 Reference 4.1 Electrical Data 4.1.1 Absolute Maximum Ratings Attention:The maximum ratings must not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC will result. Table10 Absolute Maximum Ratings, T = -20 °C … +70 °C amb Parameter Symbol Limit Values Unit Remarks min. max. Junction Temperature T −40 +150 °C J Storage Temperature T −40 +125 °C s Thermal Resistance R 220 K/W thJA Supply voltage V −0.3 +4.0 V S Voltage at any pin V -0.3 V + 0.3 V pins S excluding pin 9 Voltage at pin 9 V -0.3 2 * V V No ESD-Diode to V pin9 S S ESD integrity, all pins V -1 +1 kV JEDEC Standard ESD JESD22-A114-B ESD integrity, all pins V -2 +2 kV JEDEC Standard ESD excluding pin 9 JESD22-A114-B Ambient Temperature under bias: T = −20°C to +70°C A Note: All voltages referred to ground (pins) unless stated otherwise. Pins 3 and 8 are grounded. Data Sheet 32 V 1.0, 2007-05-02
TDA7100 Reference 4.2 Operating Ratings Within the operational range the IC operates as described in the circuit description. Table11 Operating Ratings Parameter Symbol Limit Values Unit Test Conditions min. max. Supply voltage V 2.1 4.0 V S Ambient temperature T -20 70 °C A 4.3 AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature. Typical charcateristics are the median of the production. 4.3.1 AC/DC Characteristic at 3V, 25°C Table12 Supply Voltage V =3V, Ambient temperature T =25°C S amb Parameter Symbol Limit Values Unit Test Conditions min. typ. max. Current consumption Power Down mode I 0.3 100 nA V (Pins 10, 6 S PDWN and 7) < 0.2 V PLL Enable mode I 3.5 4.2 mA S PLL_EN Transmit mode I 7.5 mA S TRANSM 434 MHz Output frequency Output frequency f 427 434 442 MHz f = 32 * f OUT OUT COSC Clock Driver Output (Pin 1) Output current (High) I 5 µA V = V CLKOUT CLKOUT S Saturation Voltage V 0.56 V I = 1 mA SATL CLKOUT (Low)1) Data Sheet 33 V 1.0, 2007-05-02
TDA7100 Reference Table12 Supply Voltage V =3V, Ambient temperature T =25°C (cont’d) S amb Parameter Symbol Limit Values Unit Test Conditions min. typ. max. FSK Switch Output (Pin 4) On resistance R 250 Ω V = 0 V FSKOUT FSKDTA On capacitance C 6 pF V = 0 V FSKOUT FSKDTA Off resistance R 10 kΩ V = V FSKOUT FSKDTA S Off capacitance C 1.5 pF V = V FSKOUT FSKDTA S Crystal Oscillator Input (Pin 5) Load capacitance C 5 pF COSCmax Serial Resistance of 100 Ω f = 13.56 MHz the crystal Input inductance of the 4.6 µH f = 13.56 MHz COSC pin ASK Modulation Data Input (Pin 6) ASK Transmit disabled V 0 0.5 V ASKDTA ASK Transmit enabled V 1.5 V V ASKDTA S Input bias current I 30 µA V = V ASKDTA ASKDTA S ASKDTA Input bias current I -20 µA V = 0 V ASKDTA ASKDTA ASKDTA ASK data rate f 20 kHz ASKDTA FSK Modulation Data Input (Pin 7) FSK Switch on V 0 0.5 V FSKDTA FSK Switch off V 1.5 V V FSKDTA S Input bias current I 30 µA V = V FSKDTA FSKDTA S FSKDTA Input bias current I -20 µA V = 0 V FSKDTA FSKDTA FSKDTA FSK data rate f 20 kHz FSKDTA Power Amplifier Output (Pin 9) Output Power2) at 434 P 5.2 dBm OUT434 MHz transformed to 50 Ohm Data Sheet 34 V 1.0, 2007-05-02
TDA7100 Reference Table12 Supply Voltage V =3V, Ambient temperature T =25°C (cont’d) S amb Parameter Symbol Limit Values Unit Test Conditions min. typ. max. Power Down Mode Control (Pin 10) Power Down mode V 0 0.7 V V < 0.2 V PDWN ASKDTA V < 0.2 V FSKDTA PLL Enable mode V 1.5 V V V < 0.5 V PDWN S ASKDTA Transmit mode V 1.5 V V V > 1.5 V PDWN S ASKDTA Input bias current I 30 µA V = V PDWN PDWN S PDWN 1) Derating linearly to a saturation voltage of max. 140 mV at I = 0 mA CLKOUT 2) Power amplifier in overcritical C-operation Matching circuitry as used in the 50 Ohm-Output Testboard at the specified frequency. Tolerances of the passive elements not taken into account. 4.3.2 AC/DC Characteristic at 2.1V ...4.0 V, -20°C ...+70°C Table13 Supply Voltage V =2.1V ... 4.0V, T =-20°C ... +70°C S amb Parameter Symbol Limit Values Unit Test Conditions min. typ. max. Current consumption Power Down mode I 4 µA V (Pins 10, 6 S PDWN and 7) < 0.2 V PLL Enable mode I 3.5 4.6 mA S PLL_EN Transmit mode I 7.5 mA S TRANSM Output frequency Output frequency f 432 434 437 MHz f = 32 * f OUT OUT COSC Clock Driver Output (Pin 1) Output current (High) I 5 µA V = V CLKOUT CLKOUT S Saturation Voltage V 0.5 V I = 0.6 SATL CLKOUT (Low)1) mA Data Sheet 35 V 1.0, 2007-05-02
TDA7100 Reference Table13 Supply Voltage V =2.1V ... 4.0V, T =-20°C ... +70°C (cont’d) S amb Parameter Symbol Limit Values Unit Test Conditions min. typ. max. FSK Switch Output (Pin 4) On resistance R 280 Ω V = 0 V FSKOUT FSKDTA On capacitance C 6 pF V = 0 V FSKOUT FSKDTA Off resistance R 10 kΩ V = V FSKOUT FSKDTA S Off capacitance C 1.5 pF V = V FSKOUT FSKDTA S Crystal Oscillator Input (Pin 5) Load capacitance C 5 pF COSCmax Serial Resistance of 100 Ω f = 13.56 MHz the crystal Input inductance of the 4.6 µH f = 13.56 MHz COSC pin ASK Modulation Data Input (Pin 6) ASK Transmit disabled V 0 0.5 V ASKDTA ASK Transmit enabled V 1.5 V V ASKDTA S Input bias current I 33 µA V = V ASKDTA ASKDTA S ASKDTA Input bias current I -20 µA V = 0 V ASKDTA ASKDTA ASKDTA ASK data rate f 20 kHz ASKDTA FSK Modulation Data Input (Pin 7) FSK Switch on V 0 0.5 V FSKDTA FSK Switch off V 1.5 V V FSKDTA S Input bias current I 33 µA V = V FSKDTA FSKDTA S FSKDTA Input bias current I -20 µA V = 0 V FSKDTA FSKDTA FSKDTA FSK data rate f 20 kHz FSKDTA Data Sheet 36 V 1.0, 2007-05-02
TDA7100 Reference Table13 Supply Voltage V =2.1V ... 4.0V, T =-20°C ... +70°C (cont’d) S amb Parameter Symbol Limit Values Unit Test Conditions min. typ. max. Power Amplifier Output (Pin 9) Output Power 2) at 434 P 2.5 dBm V = 2.1 V OUT, 434 S MHz P 5.2 dBm V = 3.0 V transformed to 50 OUT, 434 S P 6.9 dBm V = 4.0 V Ohm. OUT, 434 S Power Down Mode Control (Pin 10) Power Down mode V 0 0.5 V V < 0.2 V PDWN ASKDTA V < 0.2 V FSKDTA PLL Enable mode V 1.5 V V V < 0.5 V PDWN S ASKDTA Transmit mode V 1.5 V V V > 1.5 V PDWN S ASKDTA Input bias current I 38 µA V = V PDWN PDWN S PDWN 1) Derating linearly to a saturation voltage of max. 140 mV at I = 0 mA CLKOUT 2) Matching circuitry as used in the 50 Ohm-Output Testboard. Tolerances of the passive elements not taken into account. Typ. temperature dependency at 2.1 V: +0.3 dBm@-20°C and -0.5 dBm@+70°C, reference +25°C Typ. temperature dependency at 3.0 V: +0.35 dBm@-20°C and -0.7 dBm@+70°C, reference +25°C Typ. temperature dependency at 4.0 V: +0.7 dBm@-20°C and -1.1 dBm@+70°C, reference +25°C Data Sheet 37 V 1.0, 2007-05-02
TDA7100 Package Outlines 5 Package Outlines 0.15 max. 0.85±0.1 1.1 max. H 3±0.1 C +0.080.125-0.05 6max. 0.5 A 0.1 A 09 0.22±0.05 0.08 M A B C 0. 0.42-+00..115 4.9 0.25 M A B C 3±0.1 B Index Marking Figure18 PG-TSSOP-10 You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products. SMD = Surface Mounted Device Dimensions in mm Data Sheet 38 V 1.0, 2007-05-02
TDA7100 List of Figures Page Figure1 IC Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure2 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure3 Power mode control circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure4 ASK Modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure5 FSK Modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure6 Alternative ASK Modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure7 Alternative FSK Modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure8 50 Ohm-output testboard schematic . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure9 Top Side of TDA7100-Testboard with 50 Ohm-Output . . . . . . . . . . . . 20 Figure10 Bottom Side of TDA7100-Testboard with 50 Ohm-Output. . . . . . . . . . 20 Figure11 Stripline-antenna testboard schematic. . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure12 Top Side of TDA7100-Testboard with Stripline-Antenna. . . . . . . . . . . 24 Figure13 Bottom Side of TDA7100-Testboard with Stripline-Antenna . . . . . . . . 24 Figure14 Application Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure15 FSK Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure16 Equivalent power amplifier tank circuit. . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure17 Output power Po (mW) and collector efficiency E vs. load resistor RL. 31 Figure18 PG-TSSOP-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Data Sheet 39 V 1.0, 2007-05-02
TDA7100 List of Tables Page Table1 Order Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table2 Pin Definition and Functions - Overview . . . . . . . . . . . . . . . . . . . . . . . . 7 Table3 Pin Definition and Function1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table4 FSKDTA - FSK Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table5 ASKDTA - Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table6 Power Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table7 Bill of Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table8 Bill of Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table9 Clock Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table10 Absolute Maximum Ratings, T = -20 °C … +70 °C. . . . . . . . . . . . . 32 amb Table11 Operating Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table12 Supply Voltage V =3V, Ambient temperature T =25°C . . . . . . . . . . 33 S amb Table13 Supply Voltage V =2.1V ... 4.0V, T =-20°C ... +70°C. . . . . . . . . . . . 35 S amb Data Sheet 40 V 1.0, 2007-05-02
w w w . i n f i n e o n . c o m Published by Infineon Technologies AG
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: I nfineon: TDA7100 TDA7100HTMA1