ICGOO在线商城 > 集成电路(IC) > PMIC - 显示器驱动器 > TC7107ACKW
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
TC7107ACKW产品简介:
ICGOO电子元器件商城为您提供TC7107ACKW由Microchip设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TC7107ACKW价格参考。MicrochipTC7107ACKW封装/规格:PMIC - 显示器驱动器, 。您可以下载TC7107ACKW参考资料、Datasheet数据手册功能说明书,资料中有TC7107ACKW 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC ADC 3 1/2DGT LED DVR 44-MQFPLED显示驱动器 w/LED Driver |
产品分类 | |
LED数量 | 7 |
品牌 | Microchip Technology |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 驱动器IC,LED显示驱动器,Microchip Technology TC7107ACKW- |
数据手册 | 点击此处下载产品Datasheethttp://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en011547http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en023833 |
产品型号 | TC7107ACKW |
产品种类 | LED显示驱动器 |
供应商器件封装 | 44-MQFP(10x10) |
功率耗散 | 1 W |
包装 | 托盘 |
商标 | Microchip Technology |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Tray |
封装/外壳 | 44-QFP |
封装/箱体 | PQFP-44 |
工作温度 | 0°C ~ 70°C |
工作电源电压 | 5 V |
工厂包装数量 | 96 |
接口 | - |
数位数量 | 3.5 |
数字或字符 | A/D,3.5 位数字 |
显示类型 | LED |
最大工作温度 | + 70 C |
最大电源电流 | 1.8 mA |
最小工作温度 | 0 C |
标准包装 | 96 |
片段数量 | 24 |
电压-电源 | 5V |
电流-电源 | 800µA |
配置 | 7 段显示 |
TC7106/A/TC7107/A 3-1/2 Digit Analog-to-Digital Converters Features General Description • InternalReferencewithLowTemperatureDrift The TC7106A and TC7107A 3-1/2 digit direct display - TC7106/7:80ppm/°CTypical drive analog-to-digital converters allow existing 7106/ 7107basedsystemstobeupgraded.Eachdevicehas - TC7106A/7A:20ppm/°CTypical a precision reference with a 20ppm/°C max tempera- (cid:127) DrivesLCD(TC7106)orLED(TC7107) turecoefficient.Thisrepresentsa4to7timesimprove- DisplayDirectly mentoversimilar3-1/2digitconverters.Existing7106 (cid:127) ZeroReadingwithZeroInput and 7107 based systems may be upgraded without (cid:127) LowNoiseforStableDisplay changing external passive component values. The (cid:127) Auto-ZeroCycleEliminatesNeedforZero TC7107A drives common anode light emitting diode Adjustment (LED) displays directly with 8mA per segment. A low cost, high resolution indicating meter requires only a (cid:127) TruePolarityIndicationforPrecisionNull display, four resistors, and four capacitors.The Applications TC7106A low power drain and 9V battery operation (cid:127) Convenient9VBatteryOperation(TC7106A) makeitsuitableforportableapplications. (cid:127) HighImpedanceCMOSDifferentialInputs:10 12Ω TheTC7106A/TC7107Areduceslinearityerrortoless (cid:127) DifferentialReferenceInputsSimplifyRatiometric than1count. Rollovererror–thedifferenceinreadings Measurements forequalmagnitude,butoppositepolarityinputsignals, (cid:127) LowPowerOperation:10mW is below ±1 count. High impedance differential inputs offer 1pA leakage current and a 1012Ω input imped- Applications ance.Thedifferentialreferenceinputallowsratiometric (cid:127) Thermometry measurements for ohms or bridge transducer mea- surements.The15µV noiseperformanceensuresa (cid:127) BridgeReadouts:StrainGauges,LoadCells,Null P–P “rock solid” reading. The auto-zero cycle ensures a Detectors zerodisplayreadingwithazerovoltsinput. (cid:127) DigitalMeters: Voltage/Current/Ohms/Power,pH (cid:127) DigitalScales,ProcessMonitors (cid:127) PortableInstrumentation Device Selection Table Package Temperature Package PinLayout Code Range CPI 40-PinPDIP Normal 0°Cto+70°C IPL 40-PinPDIP Normal -25°Cto+85°C IJL 40-PinCERDIP Normal -25°Cto+85°C CKW 44-PinPQFP FormedLeads 0°Cto+70°C CLW 44-PinPLCC — 0°Cto+70°C 2002MicrochipTechnologyInc. DS21455B-page 1
TC7106/A/TC7107/A Package Type 40-Pin PDIP 40-Pin CERDIP V+ 1 40 OSC1 OSC1 1 40 V+ Normal Pin Reverse D1 2 Configuration 39 OSC2 OSC2 2 Configuration 39 D1 C1 3 38 OSC3 OSC3 3 38 C1 B1 4 37 TEST TEST 4 37 B1 1's A1 5 36 VREF+ VREF+ 5 36 A1 1's F1 6 35 VREF- VREF- 6 35 F1 G1 7 34 CREF+ CREF+ 7 34 G1 E1 8 TC7106ACPL 33 CREF- CREF- 8 TC7106AIJL 33 E1 D2 9 TC7107AIPL 32 ACNOAMLMOOGN CAONMAMLOOGN 9 TC7107AIJL 32 D2 C2 10 31 VIN+ VIN+ 10 31 C2 B2 11 30 VIN- VIN- 11 30 B2 10's 10's A2 12 29 CAZ CAZ 12 29 A2 F2 13 28 VBUFF VBUFF 13 28 F2 E2 14 27 VINT VINT 14 27 E2 D3 15 26 V- V- 15 26 D3 B3 16 25 G2 G2 16 25 B3 100's 100's F3 17 24 C3 C3 17 24 F3 100's 100's E3 18 23 A3 A3 18 23 E3 1000's AB4 19 22 G3 G3 19 22 AB4 1000's POL 20 21 BP/GND BP/GND 20 21 POL (Minus Sign) (7106A/7107A) (7106A/7107A) (Minus Sign) 44-Pin PLCC 44-Pin PQFP A1 B1 C1 D1 V+ NC OSC1 OSC2 OSC3 TEST REF HI REF HI REF LO CREF CREF COM IN HI IN LO A/Z BUFF INT V- 6 5 4 3 2 1 44 43 42 41 40 44 43 42 41 40 39 38 37 36 35 34 F1 7 39 REF LO NC 1 33 NC G1 8 38 CREF NC 2 32 G2 E1 9 37 CREF TEST 3 31 C3 D2 10 36 COMMON OSC3 4 30 A3 C2 11 35 IN HI NC 5 29 G3 TC7106ACLW TC7106ACKW NC 12 34 NC OSC2 6 28 BP/GND TC7107ACLW TC7107ACKW B2 13 33 IN LO OSC1 7 27 POL A2 14 32 A/Z V+ 8 26 AB4 F2 15 31 BUFF D1 9 25 E3 E2 16 30 INT C1 10 24 F3 D3 17 29 V- B1 11 23 B3 18 19 20 21 22 23 24 25 26 27 28 12 13 14 15 16 17 18 19 20 21 22 B3 F3 E3 AB4 POL NC GND G3 A3 C3 G2 A1 F1 G1 E1 D2 C2 B2 A2 F2 E2 D3 P/ B DS21455B-page 2 2002MicrochipTechnologyInc.
TC7106/A/TC7107/A TypicalApplication 0.1µF LCD Display (TC7106/A) or 34 33 Common Node w/ LED Display (TC7107/A) 1MΩ CREF+ CREF- + 31 VIN+ 222 -- 1295 SDerigvement Analog 0.01µF Input 20 – 30 VIN- POL Minus Sign Backplane ANALOG BP 21 Drive 32 COMMON V+ 1 TC7106/A TC7107/A 24kΩ 28 VBUFF + 47kΩ 0.47µF VREF+ 36 VREF 1kΩ 9V 0.22µF 29 CAZ VREF- 35 100mV 27 VINT V- 26 OSC2 OSC3 OSC1 To Analog 39 38 COSC 40 Common (Pin 32) ROSC 100pF 3 Conversions/Sec 200mV Full Scale 100kΩ 2002MicrochipTechnologyInc. DS21455B-page 3
TC7106/A/TC7107/A 1.0 ELECTRICAL *Stresses above those listed under "Absolute Maximum Ratings"maycausepermanentdamagetothedevice.These CHARACTERISTICS arestressratingsonlyandfunctionaloperationofthedevice attheseoranyotherconditionsabovethoseindicatedinthe Absolute Maximum Ratings* operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for TC7106A extendedperiodsmayaffectdevicereliability. SupplyVoltage(V+toV-).......................................15V AnalogInputVoltage(eitherInput)(Note1)...V+toV- ReferenceInputVoltage(eitherInput)............V+toV- ClockInput...................................................TesttoV+ PackagePowerDissipation(T ≤70°C)(Note2): A 40-PinCERDIP.......................................2.29W 40-PinPDIP............................................1.23W 44-PinPLCC...........................................1.23W 44-PinPQFP...........................................1.00W OperatingTemperatureRange: C(Commercial)Devices..............0°Cto+70°C I (Industrial)Devices................-25°Cto+85°C StorageTemperatureRange..............-65°Cto+150°C TC7107A SupplyVoltage(V+)...............................................+6V SupplyVoltage(V-)..................................................-9V AnalogInputVoltage(eitherInput)(Note1)...V+toV- ReferenceInputVoltage(eitherInput)............V+toV- ClockInput..................................................GNDtoV+ PackagePowerDissipation(T ≤70°C)(Note2): A 40-PinCERDip........................................2.29W 40-PinPDIP............................................1.23W 44-PinPLCC...........................................1.23W 44-PinPQFP...........................................1.00W OperatingTemperatureRange: C(Commercial)Devices..............0°Cto+70°C I (Industrial)Devices................-25°Cto+85°C StorageTemperatureRange..............-65°Cto+150°C TC7106/AANDTC7107/AELECTRICALSPECIFICATIONS ElectricalCharacteristics:Unlessotherwisenoted,specificationsapplytoboththeTC7106/AandTC7107/AatT =25°C, A f =48kHz.PartsaretestedinthecircuitoftheTypicalOperatingCircuit. CLOCK Symbol Parameter Min Typ Max Unit TestConditions Z ZeroInputReading -000.0 ±000.0 +000.0 Digital V =0.0V IR IN Reading FullScale=200.0mV RatiometricReading 999 999/1000 1000 Digital V =V IN REF Reading V =100mV REF R/O RolloverError(DifferenceinReadingfor -1 ±0.2 +1 Counts V -=+V + ≅ 200mV IN IN EqualPositiveandNegative ReadingNearFullScale) Linearity(Max.DeviationfromBest -1 ±0.2 +1 Counts FullScale=200mVor StraightLineFit) FullScale=2.000V Note 1: Inputvoltagesmayexceedthesupplyvoltages,providedtheinputcurrentislimitedto±100µA. 2: Dissipationratingassumesdeviceismountedwithallleadssolderedtoprintedcircuitboard. 3: Referto“DifferentialInput”discussion. 4: Backplanedriveisinphasewithsegmentdrivefor“OFF”segment,180°outofphasefor“ON”segment. Frequencyis20timesconversionrate.AverageDCcomponentislessthan50mV. DS21455B-page 4 2002MicrochipTechnologyInc.
TC7106/A/TC7107/A TC7106/AANDTC7107/AELECTRICALSPECIFICATIONS(CONTINUED) ElectricalCharacteristics:Unlessotherwisenoted,specificationsapplytoboththeTC7106/AandTC7107/AatT =25°C, A f =48kHz.PartsaretestedinthecircuitoftheTypicalOperatingCircuit. CLOCK Symbol Parameter Min Typ Max Unit TestConditions CMRR CommonModeRejectionRatio(Note3) — 50 — µV/V V =±1V,V =0V, CM IN FullScale=200.0mV e Noise(PeaktoPeakValuenotExceeded — 15 — µV V =0V N IN 95%ofTime) FullScale-200.0mV I LeakageCurrentatInput — 1 10 pA V =0V L IN ZeroReadingDrift — 0.2 1 µV/°C V =0V IN “C”Device=0°Cto+70°C — 1.0 2 µV/°C V =0V IN “I”Device=-25°Cto+85°C TC ScaleFactorTemperatureCoefficient — 1 5 ppm/°C V =199.0mV, SF IN “C”Device=0°Cto+70°C (Ext.Ref=0ppm°C) — — 20 ppm/°C V =199.0mV IN “I”Device=-25°Cto+85°C I SupplyCurrent(DoesnotincludeLED — 0.8 1.8 mA V =0.8 DD IN CurrentForTC7107/A) V AnalogCommonVoltage 2.7 3.05 3.35 V 25kΩBetweenCommonand C (withRespecttoPositiveSupply) PositiveSupply V TemperatureCoefficient ofAnalog — — — — 25kΩBetweenCommonand CTC Common(withRespecttoPositiveSupply) PositiveSupply 7106/7/A 20 50 ppm/°C 0°C≤T ≤+70°C A 7106/7 80 — ppm/°C (“C”CommercialTemperature RangeDevices) V TemperatureCoefficient ofAnalog — — 75 ppm/°C 0°C≤T ≤+70°C CTC A Common(withRespecttoPositiveSupply) (“I”IndustrialTemperature RangeDevices) V TC7106AONLYPeaktoPeak 4 5 6 V V+toV-=9V SD SegmentDriveVoltage (Note4) V TC7106AONLYPeaktoPeak 4 5 6 V V+toV-=9V BD BackplaneDriveVoltage (Note4) TC7107AONLY 5 8.0 — mA V+=5.0V SegmentSinkingCurrent(ExceptPin19) SegmentVoltage=3V TC7107AONLY 10 16 — mA V+=5.0V SegmentSinkingCurrent(Pin19) SegmentVoltage=3V Note 1: Inputvoltagesmayexceedthesupplyvoltages,providedtheinputcurrentislimitedto±100µA. 2: Dissipationratingassumesdeviceismountedwithallleadssolderedtoprintedcircuitboard. 3: Referto“DifferentialInput”discussion. 4: Backplanedriveisinphasewithsegmentdrivefor“OFF”segment,180°outofphasefor“ON”segment. Frequencyis20timesconversionrate.AverageDCcomponentislessthan50mV. 2002MicrochipTechnologyInc. DS21455B-page 5
TC7106/A/TC7107/A 2.0 PIN DESCRIPTIONS ThedescriptionsofthepinsarelistedinTable2-1. TABLE 2-1: PINFUNCTIONTABLE PinNumber PinNo. (40-PinPDIP) (40-PinPDIP) Symbol Description Normal (Reversed 1 (40) V+ Positivesupplyvoltage. 2 (39) D ActivatestheDsectionoftheunitsdisplay. 1 3 (38) C ActivatestheCsectionoftheunitsdisplay. 1 4 (37) B ActivatestheBsectionoftheunitsdisplay. 1 5 (36) A ActivatestheAsectionoftheunitsdisplay. 1 6 (35) F ActivatestheFsectionoftheunitsdisplay. 1 7 (34) G ActivatestheGsectionoftheunitsdisplay. 1 8 (33) E ActivatestheEsectionoftheunitsdisplay. 1 9 (32) D ActivatestheDsectionofthetensdisplay. 2 10 (31) C ActivatestheCsectionofthetensdisplay. 2 11 (30) B ActivatestheBsectionofthetensdisplay. 2 12 (29) A ActivatestheAsectionofthetensdisplay. 2 13 (28) F ActivatestheFsectionofthetensdisplay. 2 14 (27) E ActivatestheEsectionofthetensdisplay. 2 15 (26) D ActivatestheDsectionofthehundredsdisplay. 3 16 (25) B ActivatestheBsectionofthehundredsdisplay. 3 17 (24) F ActivatestheFsectionofthehundredsdisplay. 3 18 (23) E ActivatestheEsectionofthehundredsdisplay. 3 19 (22) AB Activatesbothhalvesofthe1inthethousandsdisplay. 4 20 (21) POL Activatesthenegativepolaritydisplay. 21 (20) BP/GND LCDBackplanedriveoutput(TC7106A).DigitalGround(TC7107A). 22 (19) G ActivatestheGsectionofthehundredsdisplay. 3 23 (18) A ActivatestheAsectionofthehundredsdisplay. 3 24 (17) C ActivatestheCsectionofthehundredsdisplay. 3 25 (16) G ActivatestheGsectionofthetensdisplay. 2 26 (15) V- Negativepowersupplyvoltage. 27 (14) V Integratoroutput.Connectionpointforintegrationcapacitor.SeeINTEGRATING INT CAPACITORsectionformoredetails. 28 (13) V Integrationresistorconnection.Usea47kΩresistorfora200mVfullscalerangeand BUFF a47kΩresistorfor2Vfullscalerange. 29 (12) C Thesizeoftheauto-zerocapacitorinfluencessystemnoise.Usea0.47µFcapacitor AZ for200mVfullscale,anda0.047µFcapacitorfor2Vfullscale.SeeSection7.1on Auto-ZeroCapacitorformoredetails. 30 (11) V - TheanalogLOWinputisconnectedtothispin. IN 31 (10) V + TheanalogHIGHinputsignalisconnectedtothispin. IN 32 (9) ANALOG ThispinisprimarilyusedtosettheAnalogCommonmodevoltageforbatteryopera- COMMON tionorinsystemswheretheinputsignalisreferencedtothepowersupply.Italso actsasareferencevoltagesource.SeeSection8.3onANALOGCOMMONformore details. 33 (8) C - SeePin34. REF 34 (7) C + A0.1µFcapacitorisusedinmostapplications.IfalargeCommonmodevoltage REF exists(forexample,theV -pinisnotatanalogcommon),anda200mVscaleis IN used,a1µFcapacitorisrecommendedandwillholdtherollovererrorto0.5count. 35 (6) V - SeePin36. REF DS21455B-page 6 2002MicrochipTechnologyInc.
TC7106/A/TC7107/A TABLE 2-1: PINFUNCTIONTABLE(CONTINUED) PinNumber PinNo. (40-PinPDIP) (40-PinPDIP) Symbol Description Normal (Reversed 36 (5) V + Theanaloginputrequiredtogenerateafullscaleoutput(1999counts).Place100mV REF betweenPins35and36for199.9mVfullscale.Place1VbetweenPins35and36for 2Vfullscale.SeeparagraphonReferenceVoltage. 37 (4) TEST Lamptest.WhenpulledHIGH(toV+)allsegmentswillbeturnedonandthedisplay shouldread-1888.Itmayalsobeusedasanegativesupplyforexternallygenerated decimalpoints.SeeparagraphunderTESTforadditionalinformation. 38 (3) OSC3 SeePin40. 39 (2) OSC2 SeePin40. 40 (1) OSC1 Pins40,39,38makeuptheoscillatorsection.Fora48kHzclock(3readingsper section),connectPin40tothejunctionofa100kΩresistoranda100pFcapacitor. The100kΩresistoristiedtoPin39andthe100pFcapacitoristiedtoPin38. 2002MicrochipTechnologyInc. DS21455B-page 7
TC7106/A/TC7107/A 3.0 DETAILED DESCRIPTION ForaconstantV : IN (AllPindesignationsreferto40-PinPDIP.) EQUATION3-2: 3.1 DualSlope Conversion Principles T V =V RI IN R T TheTC7106AandTC7107Aaredualslope,integrating SI analog-to-digital converters. An understanding of the The dual slope converter accuracyisunrelatedtothe dualslopeconversiontechniquewillaidinfollowingthe integrating resistor and capacitor values as long as detailedoperationtheory. theyarestableduringameasurementcycle.Aninher- The conventional dual slope converter measurement ent benefit is noise immunity. Noise spikes are inte- cyclehastwodistinctphases: grated or averaged to zero during the integration (cid:127) InputSignalIntegration periods.IntegratingADCsareimmunetothelargecon- (cid:127) ReferenceVoltageIntegration(De-integration) version errors that plague successive approximation convertersinhighnoiseenvironments.Interferingsig- The input signal being converted is integrated for a nals with frequency components at multiples of the fixedtime period (T ). Time is measuredby counting SI averagingperiodwill beattenuated. Integrating ADCs clock pulses. An opposite polarity constant reference commonlyoperatewiththesignalintegrationperiodset voltage is then integrated until the integrator output to a multiple of the 50/60Hz power line period (see voltagereturnstozero.Thereferenceintegrationtime Figure3-2). is directly proportional to the input signal (T ). See RI Figure3-1. FIGURE3-2: NORMALMODE REJECTIONOFDUAL FIGURE3-1: BASICDUALSLOPE SLOPECONVERTER CONVERTER 30 C Analog Input Signal Integrator Comparator B) – – n (d20 + o + cti e +/– Rej Switch e Driver d Clock o REF Phase Control M10 Voltage Control Logic al m Polarity Control or N T = Measured Period DISPLAY Counter 0 0.1/T 1/T 10/T ntegratorOutput VVIINN ≈≈ V1/R2E VFREF Input Frequency I Fixed Variable Signal Reference Integrate Integrate Time Time In a simple dual slope converter, a complete conver- sion requires the integrator output to “ramp-up” and “ramp-down.” A simple mathematical equation relates theinputsignal,referencevoltageandintegrationtime. EQUATION3-1:∫ 1 TSI VRTRI V (t)dt= RC 0 IN RC Where: V = Referencevoltage R T = Signalintegrationtime(fixed) SI T = Referencevoltageintegrationtime(variable). RI DS21455B-page 8 2002MicrochipTechnologyInc.
TC7106/A/TC7107/A 4.0 ANALOG SECTION Thetimerequiredfortheoutputtoreturntozeroispro- portionaltotheinputsignalandisbetween0and2000 In addition to the basic signal integrate and de- counts. integrate cyclesdiscussed, the circuit incorporates an Thedigitalreadingdisplayedis: auto-zero cycle. This cycle removes buffer amplifier, integrator, and comparator offset voltage error terms EQUATION4-2: fromtheconversion.Atruedigitalzeroreadingresults V without adjustingexternal potentiometers. Acomplete 1000= IN conversion consists of three cycles: an auto-zero, VREF signalintegrateandreferenceintegratecycle. 4.1 Auto-Zero Cycle 5.0 DIGITAL SECTION (TC7106A) Duringtheauto-zerocycle,thedifferentialinputsignal The TC7106A (Figure5-2) contains all the segment is disconnected from the circuit by opening internal drivers necessary to directly drive a 3-1/2 digit liquid analoggates.Theinternalnodesareshortedtoanalog crystal display (LCD). An LCD backplane driver is common (ground) to establish a zero input condition. included. The backplane frequency is the external Additional analoggatescloseafeedbacklooparound clockfrequencydividedby800.Forthreeconversions/ theintegratorandcomparator. Thislooppermitscom- second, the backplane frequency is 60Hz with a 5V paratoroffsetvoltageerrorcompensation.Thevoltage nominalamplitude.Whenasegmentdriverisinphase levelestablishedonCAZcompensatesfordeviceoffset with the backplane signal, the segment is “OFF.” An voltages. The offset error referred to the input is less outofphasesegmentdrivesignalcausesthesegment than10µV. to be “ON” or visible. This AC drive configuration Theauto-zerocyclelengthis1000to3000counts. resultsinnegligibleDCvoltageacrosseachLCDseg- ment. This insures long LCD display life. The polarity 4.2 SignalIntegrate Cycle segment driver is “ON” for negative analog inputs. If V +andV -arereversed,thisindicatorwillreverse. IN IN Theauto-zeroloopisenteredandtheinternaldifferen- WhentheTESTpinontheTC7106AispulledtoV+,all tial inputs connect to V + and V -. The differential IN IN segments are turned “ON.” The display reads -1888. input signal is integrated for a fixed time period. The Duringthismode, theLCDsegmentshaveaconstant TC7136/Asignal integrationperiodis1000clockperi- DC voltage impressed. DO NOT LEAVE THE DIS- ods or counts. The externally set clock frequency is PLAY IN THIS MODE FOR MORE THAN SEVERAL dividedbyfourbeforeclockingtheinternalcounters. MINUTES!LCDdisplaysmaybedestroyedifoperated Theintegrationtimeperiodis: withDClevelsforextendedperiods. EQUATION4-1: Thedisplayfontandthesegmentdriveassignmentare showninFigure5-1. 4 T = x1000 SI F OSC FIGURE5-1: DISPLAYFONTAND Where: FOSC=externalclockfrequency. SEGMENTASSIGNMENT Thedifferentialinputvoltagemustbewithinthedevice Display Font Common mode range when the converter and mea- sured system share the same power supply common (ground).Iftheconverterandmeasuredsystemdonot 1000's 100's 10's 1's sharethesamepowersupplycommon,V -shouldbe IN tiedtoanalogcommon. Polarity is determined at the end of signal integrate phase. Thesignbitisatruepolarityindication, inthat signalsless than1LSBarecorrectlydetermined. This allows precision null detection limited only by device IntheTC7106A,aninternaldigitalgroundisgenerated noiseandauto-zeroresidualoffsets. froma6-voltzenerdiodeandalargePchannelsource follower. This supply is made stiff to absorb the large 4.3 Reference Integrate Phase capacitive currents when the backplane voltage is switched. Thethirdphase isreferenceintegrateor de-integrate. V - is internally connected to analog common and IN V +isconnectedacrossthepreviouslychargedrefer- IN ence capacitor. Circuitry within the chip ensures that thecapacitorwillbeconnectedwiththecorrectpolarity tocausetheintegratoroutputtoreturntozero. 2002MicrochipTechnologyInc. DS21455B-page 9
TC7106/A/TC7107/A FIGURE5-2: TC7106ABLOCKDIAGRAM T S ne V+ TE V- a ckpl 1 37 26 a Ω B 21 ÷ 200 6.2V 500 nt gmecode nits ee U SD 7 s CD Display Segment Driver 7 SegmentDecode Data Latch Tens Control Logic dV= 1VTH L CD nt s oun L mede ed Gr 7 SegDeco Hundr Digital ÷4 nal Typical Segment OutputV+ 0.5mA SegmentOutput 2mA Internal Digital Ground CCAZINT VINT 2927IntegratorToDigital– Section++–A/Z ComparatorThousands To Switch DriversFrom Comparator Output ClockFOSC Inter 394038OSC2OSC3OSC1 ROSCCOSC RINT V+ 81 LowTempcoVREF 2 A FF 6 U TC710 C-VREFB 33 – + – + V+ – 3.0V 6 2 Z V- EFV-REF 35 A/ DE(+) DE (–) & DE (±) CR+F 36 A/Z DE(–) E (+) AZ E D R V 4 3 +F 10µA INT A/Z NT E I R C 31 32 30 +VIN LOGMON V-IN AM ANO C DS21455B-page 10 2002MicrochipTechnologyInc.
TC7106/A/TC7107/A 6.0 DIGITAL SECTION (TC7107A) 6.2 Clock Circuit Figure6-2 shows a TC7107A block diagram. It is Threeclockingmethodsmaybeused(seeFigure6-1): designedtodrivecommonanodeLEDs. Itisidentical 1. AnexternaloscillatorconnectedtoPin40. totheTC7106A,except thattheregulatedsupplyand 2. AcrystalbetweenPins39and40. backplanedrivehavebeeneliminatedandthesegment 3. AnRCoscillatorusingallthreepins. driveistypically8mA.The1000'soutput(Pin19)sinks currentfromtwoLEDsegments,andhasa16mAdrive capability. FIGURE6-1: CLOCKCIRCUITS Inbothdevices,thepolarityindicationis“ON”forneg- TC7106A ativeanaloginputs.IfV -andV +arereversed,this IN IN TC7107A indicationcanbereversedalso,ifdesired. ÷4 To ThedisplayfontisthesameastheTC7106A. Counter 6.1 System Timing 40 39 38 Theoscillatorfrequencyisdividedby4priortoclocking Crystal the internal decade counters. The four-phase mea- EXT surementcycletakesatotalof4000counts,or16,000 OSC RC Network clock pulses. The 4000-count cycle is independent of To TEST Pin on TSC7106A inputsignalmagnitude. To GND Pin on TSC7107A Eachphaseofthemeasurementcyclehasthefollow- inglength: 1. Auto-zerophase:1000to3000counts(4000to 12000clockpulses). Forsignalslessthanfullscale,theauto-zerophaseis assignedtheunusedreferenceintegratetimeperiod: 2. Signal integrate: 1000 counts (4000 clock pulses). Thistimeperiodisfixed.Theintegrationperiodis: EQUATION6-1: 1 T =4000 SI F OSC Where: F istheexternallysetclockfrequency. OSC 3. ReferenceIntegrate:0to2000counts(0to8000 clockpulses). TheTC7106A/7107Aaredrop-inreplacementsforthe 7106/7107 parts. External component value changes are not required to benefit from the low drift internal reference. 2002MicrochipTechnologyInc. DS21455B-page11
TC7106/A/TC7107/A FIGURE6-2: TC7107ABLOCKDIAGRAM d V+ DigitalGroun 1 1 2 7 T 3 S E T SegmentDecode Units Ω500 7 s er ol Led Display LCD Segment Driv 7 Segment7 SegmentDecodeDecode Data Latch TensHundreds Logic Contr Digital Ground 4 ÷ Typical Segment OutputV+ 0.5mA SegmentOutput 8mA Internal Digital Ground CCAZINT VINT 2927IntegratorToDigital –Section++–A/Z ComparatorThousands To Switch Driversfrom Comparator Output ClockFOSC 394038OSC3OSC1OSC2 ROSCCOSC 1 o RINT V+ 28 LowTempcVREF A FF 7 U TC710 C-VREFB 33 – + – + V+ – 3.0V 6 2 V- Z EFV-REF 35 A/ DE(+) DE (–) & DE (±) CR+EF 36 A/Z DE(–) DE (+) AZ R V 4 3 +F 10µA INT A/Z NT RE I C 31 32 30 V+IN LOGMON V-IN AM ANO C DS21455B-page 12 2002MicrochipTechnologyInc.
TC7106/A/TC7107/A 7.0 COMPONENT VALUE 7.4 Integrating Resistor(R ) INT SELECTION The input buffer amplifier and integrator aredesigned withclassAoutputstages.Theoutputstageidlingcur- 7.1 Auto-Zero Capacitor(CAZ) rent is 100µA. The integrator and buffer can supply 20µA drive currents with negligible linearity errors. TheC capacitorsizehassomeinfluenceonsystem AZ noise.A0.47µFcapacitorisrecommendedfor200mV RINTischosentoremainintheoutputstagelineardrive fullscaleapplicationswhere1LSBis100µV.A0.047µF region, but not solargethatprintedcircuit boardleak- age currents induce errors. For a 200mV full scale, capacitorisadequatefor2.0Vfullscaleapplications.A R is47kΩ. 2.0Vfullscalerequires470kΩ. mylartypedielectriccapacitorisadequate. INT NominalFullScaleVoltage 7.2 Reference Voltage Capacitor Component Value (C ) 200.0mV 2.000V REF Thereferencevoltageusedtoramptheintegratorout- CAZ 0.47µF 0.047µF putvoltagebacktozeroduringthereferenceintegrate R 47kΩ 470kΩ INT cycleisstoredonCREF.A0.1µFcapacitorisacceptable C 0.22µF 0.22µF INT whenV -istiedtoanalogcommon.IfalargeCommon IN Note: F =48kHz(3readingspersec). modevoltageexists(VREF-–analogcommon)andthe OSC applicationrequires200mVfullscale,increaseC to REF 7.5 OscillatorComponents 1.0µF.Rollovererrorwillbeheldtolessthan1/2count. Amylardielectriccapacitorisadequate. R (Pin 40 to Pin 39) should be 100kΩ. C is OSC OSC selectedusingtheequation: 7.3 Integrating Capacitor(C ) INT C shouldbeselectedtomaximizetheintegratorout- EQUATION7-2: INT put voltage swing without causing output saturation. 0.45 DuetotheTC7106A/7107Asuperiortemperaturecoef- F = OSC RC ficientspecification,analogcommonwillnormallysup- ply the differential voltage reference. For this case, a ±2V full scale integrator output swing is satisfactory. ForFOSCof48kHz,COSCis100pFnominally. For3readings/second(FOSC=48kHz),a0.22µFvalue Note that FOSC is divided by four to generate the issuggested.Ifadifferentoscillatorfrequencyisused, TC7106A internal control clock. The backplane drive CINTmustbechangedininverseproportiontomaintain signalisderivedbydividingFOSCby800. thenominal±2Vintegratorswing. To achieve maximum rejection of 60Hz noise pickup, AnexactexpressionforCINTis: the signal integrate period should be a multiple of 60Hz. Oscillator frequencies of 240kHz, 120kHz, EQUATION7-1: 80kHz,60kHz,48kHz,40kHz,etc.shouldbeselected. (4000) 1 VFS F10o0rk5H0zH,z66re-2je/3cktiHonz,,5o0skcHillaz,to4r0fkrHeqzu,eentcc.iewsouolfd2b0e0ksHuizt-, F R OSC INT able. Notethat40kHz(2.5readings/second)willreject C = INT V both50Hzand60Hz. INT Where: 7.6 Reference Voltage Selection F = ClockFrequencyatPin38 OSC A full scale reading (2000 counts) requires the input V = FullScaleInputVoltage FS signalbetwicethereferencevoltage. R = IntegratingResistor INT V = DesiredFullScaleIntegratorOutputSwing RequiredFullScaleVoltage* V INT REF 200.0mV 100.0mV CINT must have low dielectric absorption to minimize 2.000V 1.000V rollover error. A polypropylene capacitor is recom- * V =2V mended. FS REF. In some applications, a scale factor other than unity mayexistbetweenatransduceroutputvoltageandthe requireddigital reading. Assume,for example,apres- sure transducer output is 400mV for 2000 lb/in2. Ratherthandividingtheinputvoltagebytwo,therefer- encevoltageshouldbesetto200mV. Thispermitsthe transducerinputtobeuseddirectly. 2002MicrochipTechnologyInc. DS21455B-page13
TC7106/A/TC7107/A Thedifferentialreferencecanalsobeusedwhenadig- FIGURE8-1: COMMONMODE ital zero reading is required when VIN is not equal to VOLTAGEREDUCES zero. Thisiscommonintemperaturemeasuringinstru- AVAILABLEINTEGRATOR mentation. A compensating offset voltage can be SWING(V ≠ V ) COM IN appliedbetweenanalogcommonandV -. Thetrans- IN ducer output is connected between V + and analog CI IN Input Buffer common. + + RI The internal voltage reference potential available at – analog common will normally be used to supply the VIN – + VI converter's reference. This potential is stable when- Integrator everthesupplypotentialisgreaterthanapproximately – 7V. In applicationswhereanexternallygeneratedref- VI = TI [ VCM – VIN[ erencevoltageisdesired,refertoFigure7-1. VCM Where: RI CI 4000 TI = Integration Time = FOSC FIGURE7-1: EXTERNALREFERENCE CI = Integration Capacitor V+ V+ RI = Integration Resistor V+ VREF+ 6Z.e8nVer V+ 6.8kΩ 8.2 DifferentialReference V + (Pin 36),V - (Pin 35) VREF- TC7106A 20kΩ REF REF TC7106A TC7107A The reference voltage can be generated anywhere TC7107A IZ withintheV+toV-powersupplyrange. VREF+ Topreventrollover type errorsbeinginducedbylarge VREF- 1.2V Common mode voltages, C should be large com- Ref REF Common paredtostraynodecapacitance. (a) (b) The TC7106A/TC7107A circuits have a significantly lower analog common temperature coefficient. This givesaverystablevoltagesuitableforuseasarefer- 8.0 DEVICE PIN FUNCTIONAL ence.Thetemperaturecoefficientofanalogcommonis DESCRIPTION 20ppm/°Ctypically. 8.1 DifferentialSignalInputs 8.3 Analog Common (Pin 32) V + (Pin 31), V - (Pin 30) IN IN The analog common pin is set at a voltage potential approximately3.0VbelowV+.Thepotentialisbetween The TC7106A/7017A is designed with truedifferential 2.7Vand3.35VbelowV+.Analogcommonistiedinter- inputsandacceptsinputsignalswithintheinputstage nally to the N channel FET capable of sinking 20mA. commonmodevoltagerange(V ). Thetypicalrange CM ThisFETwillholdthecommonlineat 3.0Vshouldan is V+ – 1.0 to V+ + 1V. Common mode voltages are external load attempt to pull the common line toward removed from the system when the TC7106A/ V+.Analogcommonsourcecurrentislimitedto10µA. TC7107A operates from a battery or floating power Analog common is, therefore, easily pulled to a more source (isolated from measured system) and V - is IN negativevoltage(i.e.,belowV+–3.0V). connectedtoanalogcommon(V )(seeFigure8-2). COM The TC7106A connects the internal V + and V - In systems where Common mode voltages exist, the IN IN inputs to analog common during the auto-zero cycle. 86dB Common mode rejection ratio minimizes error. During the reference integrate phase, V - is con- Common mode voltages do, however, affect the inte- IN nectedtoanalogcommon.IfV -isnotexternallycon- gratoroutputlevel.Integratoroutputsaturationmustbe IN nected to analog common, a Common mode voltage prevented. Aworstcaseconditionexistsifalargepos- exists. This is rejected by the converter's 86dB Com- itiveV existsinconjunctionwithafullscalenegative CM monmoderejectionratio. Inbatteryoperation, analog differentialsignal. Thenegativesignaldrivestheinte- common and V - are usually connected, removing gratoroutputpositivealongwithV (seeFigure8-1). IN CM Commonmodevoltageconcerns.InsystemswhereV- For such applications the integrator output swing can isconnectedtothepowersupplyground,ortoagiven be reduced below the recommended 2.0V full scale voltage,analogcommonshouldbeconnectedtoV -. swing. The integrator output will swing within 0.3V of IN V+or V-withoutincreasinglinearityerrors. DS21455B-page 14 2002MicrochipTechnologyInc.
TC7106/A/TC7107/A FIGURE8-2: COMMONMODE VOLTAGEREMOVEDINBATTERYOPERATIONWITH V -=ANALOGCOMMON IN Segment Drive LCD Display Measured VBUF CAZ VINT POL BP System OSC1 VIN+ TC7106A V+ OSC3 VIN- V- GND Analog OSC2 Common VREF-VREF+ V+ V- V+ V- GND Power + Source 9V Theanalogcommonpinservestosettheanalogsection FIGURE8-3: ANALOGCOMMON referenceorcommonpoint.TheTC7106Aisspecifically TEMPERATURE designedtooperatefromabattery,or inanymeasure- COEFFICIENT ment system where input signals are not referenced (float),withrespecttotheTC7106Apowersource.The 200 analogcommonpotentialofV+–3.0Vgivesa6Vendof 180 No Maximum Specified No batterylifevoltage.Thecommonpotentialhasa0.001% C) Maximum voltagecoefficientanda15Ωoutputimpedance. °m/ 160 Specified W7.0itVh),suafnfiaclieongtlcyohmigmhontotiaslasuvpeprylysvtaobltlaegpeo(tVen+ti–alVw-it>h ent (pp 114200 Typical excellent temperature stability, typically 20ppm/°C. effici 100 MaxNimo um This potential can be used to generate the reference Co Maximum Specified voltage.Anexternalvoltagereferencewillbeunneces- ure 80 Limit Typical saryinmostcasesbecauseofthe50ppm/°Cmaximum at 60 er temperature coefficient. See Internal Voltage Refer- p Typical m 40 encediscussion. e T 20 TC 8.4 TEST (Pin 37) 7106A ICL7106 ICL7136 0 TheTESTpinpotentialis5VlessthanV+.TESTmay be used as the negative power supply connection for FIGURE8-4: INTERNALVOLTAGE externalCMOSlogic.TheTESTpinistiedtotheinter- REFERENCE nally generated negative logic supply (Internal Logic CONNECTION Ground)througha 500ΩresistorintheTC7106A.The TESTpinloadshouldbenomorethan1mA. IfTESTispulledtoV+allsegmentsplustheminussign willbeactivated.Donotoperateinthismodeformore 1 than several minutes with the TC7106A. With V- V+ 24kΩ TC7106A TEST=V+, the LCD segments are impressed with a TC7107A DCvoltagewhichwilldestroytheLCD. TheTESTpinwillsinkabout10mAwhenpulledtoV+. VREF+ 36 1kΩ 8.5 InternalVoltage Reference VREF 35 VREF- Theanalogcommonvoltagetemperaturestabilityhas Analog 32 been significantly improved (Figure8-3). The “A” ver- Common sion of the industry standard circuits allow users to upgradeoldsystemsanddesignnewsystemswithout Set VREF = 1/2 VFULL SCALE external voltage references. External R and C values do not need to be changed. Figure8-4 shows analog commonsupplyingthenecessaryvoltagereferencefor theTC7106A/TC7107A. 2002MicrochipTechnologyInc. DS21455B-page15
TC7106/A/TC7107/A 9.0 POWER SUPPLIES 9.1 TC7107 Power Dissipation Reduction TheTC7107A isdesignedtowork from ±5V supplies. However,ifanegativesupplyisnotavailable,itcanbe The TC7107A sinks the LED display current and this generated from the clock output with two diodes, two causesheattobuildupintheICpackage. Iftheinter- capacitors,andaninexpensiveIC(Figure9-1). nal voltage reference isused, the changing chip tem- peraturecancausethedisplaytochangereading. By FIGURE9-1: GENERATINGNEGATIVE reducing the LED common anode voltage, the SUPPLYFROM +5V TC7107Apackagepowerdissipationisreduced. Figure9-3 is a curve tracer display showing the rela- V+ tionshipbetweenoutputcurrentandoutputvoltagefor CD4009 atypicalTC7107CPL.SinceatypicalLEDhas1.8volts acrossitat7mA,anditscommonanodeisconnected V+ to +5V, the TC7107A output is at 3.2V (point A on OSC1 Figure9-3). Maximum power dissipation is 8.1mA x OSC2 0.047 1N914 µF 3.2Vx24segments=622mW. OSC3 10 + TC7107A µF – 1N914 FIGURE9-3: TC7107OUTPUT GND CURRENTVS.OUTPUT V- VOLTAGE V-= -3.3V 10.000 In selected applications a negative supply is not required. The conditions to use a single +5V supply A) 9.000 m are: ( A nt (cid:127) Theinputsignalcanbereferencedtothecenter urre 8.000 B oftheCommonmoderangeoftheconverter. C C ut (cid:127) Thesignalislessthan±1.5V. utp 7.000 O (cid:127) Anexternalreferenceisused. TheTSC7660DCtoDCconvertermaybeusedtogen- 6.000 erate-5Vfrom+5V(Figure9-2). 2.00 2.50 3.00 3.50 4.00 OutputVoltage(V) FIGURE9-2: NEGATIVE POWER SUPPLYGENERATION Notice,however,thatoncetheTC7107Aoutputvoltage WITHTC7660 isabovetwovolts,the LED currentisessentiallycon- stantasoutputvoltageincreases. Reducingtheoutput +5V voltageby0.7V(pointBinFigure9-3)resultsin7.7mA ofLEDcurrent,onlya5percentreduction. Maximum powerdissipationisonly7.7mAx2.5Vx24=462mW, a reduction of 26%. An output voltage reduction of 1 volt(pointC)reducesLEDcurrentby10%(7.3mA)but power dissipation by 38% (7.3mA x 2.2V x 24 = 1 385mW). V+VREF+ 36 Reduced power dissipation is very easy to obtain. 35 VREF- Figure9-4showstwoways:eithera5.1ohm,1/4watt LED DRIVE COM 32 resistorora1Ampdiodeplacedinserieswiththedis- TC7107A play(butnotinserieswiththeTC7107A).Theresistor VIN+ 31 will reduce the TC7107A output voltage, when all 24 VIN segments are “ON,” to point “C” of Figure9-4. When 30 segmentsturnoff,theoutputvoltagewillincrease.The VIN- diode, on the other hand, will result in a relatively 21 V- GND steadyoutputvoltage,aroundpoint“B.” 8 26 2 Inadditiontolimitingmaximum power dissipation, the 10µF+ 4 TC7660 5 (-5V) resistorreducesthechangeinpowerdissipationasthe displaychanges.Thiseffectiscausedbythefactthat, 3 as fewer segmentsare“ON,” each “ON” output drops + 10µF morevoltageandcurrent.Forthebestcaseofsixseg- DS21455B-page 16 2002MicrochipTechnologyInc.
TC7106/A/TC7107/A ments(a“111”display)toworstcase(a“1888”display), 10.2 Light Emitting Diode Display the resistor will change about 230mW, while a circuit Sources without the resistor will change about 470mW. There- fore,theresistorwillreducetheeffectof displaydissi- Several LED manufacturers supply seven segment pationonreferencevoltagedriftbyabout50%. digits with and without decimal point annunciators for theTC7107A. ThechangeinLEDbrightnesscausedbytheresistoris almostunnoticeableasmoresegmentsturnoff.Ifdis- Manufacturer Address/Phone Display play brightness remaining steady is very important to Hewlett-Packard 640PageMillRd. LED the designer, a diode may be used instead of the Components PaloAlto,CA94304 resistor. AND 720PalomarAve. LED Sunnyvale,CA94086 FIGURE9-4: DIODE ORRESISTOR 408-523-8200 LIMITSPACKAGEPOWER DISSIPATION 10.3 Decimal Point and Annunciator Drive +5V IN -5V + – TheTESTpinisconnectedtotheinternallygenerated 24kΩ 1MΩ 150Ω digitallogicsupplygroundthrougha500Ω resistor.The 1kΩ TP3 TESTpinmaybeusedasthenegativesupplyforexter- 0.47 1p0F0 0µ.0F1 µF 0.µ2F2 naatolrCsMfoOrSdgeacteimsaelgmpoeinnttsd,rivloewrs.bLaCttDerdyisipnldaiycaatnionnu,ncoir- TP5 1k0Ω0 TTPP12 0µ.F1 k4Ω7 Display faudndcittiioonnailnsduicpaptlioy.nNmoamyobree tahdadned1mwAithsohuotuladddbiengsuapn- pliedbytheTESTpin; itspotentialisapproximately5V 40 30 TP 21 4 belowV+(seeFigure10-1). TC7107A 1 10 20 FIGURE10-1: DECIMALPOINTDRIVE USINGTESTASLOGIC Display GROUND 5.1Ω 1/4W 1N4001 V+ V+ 10.0 TYPICAL APPLICATIONS 4049 TC7106A 10.1 Liquid CrystalDisplay Sources 21 To LCD BP Decimal Point SeveralmanufacturerssupplystandardLCDstointer- 37 GND face with the TC7106A 3-1/2 digit analog-to-digital TEST converter. To LCD Backplane Representative Manufacturer Address/Phone PartNumbers* Crystaloid 5282HudsonDr. C5335,H5535, Electronics Hudson,OH44236 T5135,SX440 V+ 216-655-2429 V+ BP AND 720PalomarAve. FE0201,0701 Sunnyvale,CA94086 FE0203,0701 408-523-8200 FE0501 TC7106A Decimal To LCD Epson 3415Kashikawast. LD-B709BZ Point Decimal Torrance,CA90505 LD-H7992AZ Select Point 213-534-0360 Hamlin,Inc. 612E.LakeSt. 3902,3933,3903 LakeMills,WI53551 TEST 4030 414-648-236100 GND Note: ContactLCDmanufacturerforfullproductlistingand specifications. 2002MicrochipTechnologyInc. DS21455B-page17
TC7106/A/TC7107/A 10.4 Ratiometric Resistance FIGURE10-4: POSITIVETEMPERATURE Measurements COEFFICIENTRESISTOR TEMPERATURESENSOR The true differential input and differential reference makeratiometricreadingpossible.Typicallyinaratio- + 9V metricoperation,anunknownresistanceismeasured, withrespecttoaknownstandardresistance.Noaccu- 5.6kΩ 160kΩ ratelydefinedreferencevoltageisneeded. V+ V- Theunknownresistanceis put in serieswithaknown 1N914 R1 VIN- standard and a current passed through the pair. The 20kΩ voltagedevelopedacrosstheunknownisappliedtothe VIN+ input and the voltage across the known resistor is TC7106A applied to the reference input. If the unknown equals 0.7%P/T°CC R3 20kRΩ2 VREF+ thestandard,thedisplaywillread1000. The displayed reading can be determined from the VREF- followingexpression: Common Displayed(Reading) = R-----U-----n----k---n----o---w-----n--x1000 RStandard FIGURE10-5: TC7106A,USINGTHE INTERNALREFERENCE: Thedisplaywilloverrangefor: R ≥ 2xR 200mVFULLSCALE,3 UNKNOWN STANDARD READINGS-PER-SECOND FIGURE10-2: LOWPARTSCOUNT (RPS) RATIOMETRIC To Pin 1 RESISTANCE Set VREF = 100mV MEASUREMENT 40 100kΩ 39 38 VREF+ V+ 37 100pF 36 RSTANDARD VREF- 35 LCD Display 34 0.1µF 1kΩ 22kΩ VIN+ 33 1MΩ + RUNKNOWN TC7106A TC7106A 3312 0.01µF IN 30 0.47µF + – VIN- 29 47kΩ 28 9V ACnoamlomgon 27 0.22µF – 26 25 24 To Display FIGURE10-3: TEMPERATURE SENSOR 23 22 + 9V 21 To Backplane 160kΩ 300kΩ 300kΩ V+ V- VIN- 1N4148 R1 VIN+ Sensor 50kΩ TC7106A 50kRΩ2 VREF+VFS = 2V VREF- Common DS21455B-page 18 2002MicrochipTechnologyInc.
TC7106/A/TC7107/A FIGURE10-6: TC7107INTERNAL FIGURE10-8: TC7106/TC7107: REFERENCE:200mV RECOMMENDED FULLSCALE, 3RPS, COMPONENTVALUES V - TIEDTOGNDFOR FOR2.00VFULLSCALE IN SINGLEENDEDINPUTS To Pin 1 To Pin 1 40 100kΩ Set VREF = 100mV 3490 100kΩ Set VREF = 1V 39 38 38 37 100pF 37 100pF 36 24kΩ 36 35 V+ 333345 0.1µF 1kΩ 212MkΩΩ + +5V TC7106A 333234 0.1µF 25kΩ 1MΩ + TC7107A 3312 0.01µF IN TC7107A 31 0.01µF IN 2390 0.47µF 47kΩ – 223890 0.047µF 470kΩ – 28 27 0.22µF 2267 0.22µF V- 26 -5V 25 25 24 24 To Display 23 To Display 23 22 22 21 21 FIGURE10-7: CIRCUITFOR FIGURE10-9: TC7107OPERATEDFROM DEVELOPINGUNDER SINGLE+5V SUPPLY RANGEANDOVER To PIn 1 RANGESIGNALSFROM TC7106AOUTPUTS 40 100kΩ 39 Set VREF = 100mV 38 37 100pF V+ 1 40 36 10kΩ 10kΩ 35 V+ 34 1kΩ To Logic 33 0.1µF 1.2V VCC TC7107A 32 31 0.01µF 1MΩ IN To Logic TC7106A VCC 2390 0.47µF 47kΩ – 28 27 0.22µF 26 25 24 To Display O/R V- 2223 21 U/R Note:Anexternalreferencemustbeusedinthisapplication. 20 21 CD4023 OR 74C10 CD4077 O/R = Over Range U/R = Under Range 2002MicrochipTechnologyInc. DS21455B-page19
TC7106/A/TC7107/A FIGURE10-10: 3-1/2DIGITTRUERMSACDMM + 9V + 200mIVN4148 1µF – 26 VIN 10kΩ 1 14 1 V+ V- 27 9MΩ 2V 0.µ0F2 1MΩ 2 13 24kΩ TC7106A 29 900kΩ 20V 1MΩ 34 AD636 1112 1kΩ 36 VREF+ 90kΩ 471kWΩ 6.8µF – 5 10 35 VREF- 28 200V 10% + 6 9 32 Analog Common 10kΩ 7 8 1MΩ 10% 31 VIN+ 40 2100k%Ω 2.2µF 0µ.F01 30 38 COM VIN- C1 = 3 - 10pF Variable 26 39 C2 = 132pF Variable V- SEG BP DRIVE LCD Display FIGURE10-11: INTEGRATEDCIRCUITTEMPERATURE SENSOR 9V 2 1 Constant 5V V+ V+ VREF+ TC7106A REF02 6 51kΩ 5.1kΩ TC911 50kΩ VOUT R2 VREF- R4 R5 ADJ 5 NC 2 – 8 VFS = 2.00V 1 3 3 VIN- TEMP + 4 VOUT = 1.86V @ VIN+ Temperature 25°C 50kΩ Dependent 1.3k R1 Common Output GND V- 4 26 DS21455B-page 20 2002MicrochipTechnologyInc.
TC7106/A/TC7107/A 11.0 PACKAGING INFORMATION 11.1 Package Marking Information Packagemarkingdatanotavailableatthistime. 11.2 Taping Form Component Taping Orientation for 44-Pin PLCC Devices User Direction of Feed PIN 1 W P Standard Reel Component Orientation for TR Suffix Device Carrier Tape, Number of Components Per Reel and Reel Size Package Carrier Width (W) Pitch (P) Part Per Full Reel Reel Size 44-Pin PLCC 32 mm 24 mm 500 13 in Note: Drawing does not represent total number of pins. Component Taping Orientation for 44-Pin PQFP Devices User Direction of Feed PIN 1 W P Standard Reel Component Orientation for TR Suffix Device Carrier Tape, Number of Components Per Reel and Reel Size Package Carrier Width (W) Pitch (P) Part Per Full Reel Reel Size 44-Pin PQFP 24 mm 16 mm 500 13 in Note: Drawing does not represent total number of pins. 2002MicrochipTechnologyInc. DS21455B-page21
TC7106/A/TC7107/A 11.3 Package Dimensions 40-Pin PDIP (Wide) PIN 1 .555 (14.10) .530 (13.46) 2.065 (52.45) .610 (15.49) 2.027 (51.49) .590 (14.99) .200 (5.08) .140 (3.56) .040 (1.02) .020 (0.51) .015 (0.38) .150 (3.81) 3° MIN. .008 (0.20) .115 (2.92) .700 (17.78) .610 (15.50) .110 (2.79) .070 (1.78) .022 (0.56) .090 (2.29) .045 (1.14) .015 (0.38) Dimensions:inches(mm) 40-Pin CERDIP (Wide) PIN 1 .540 (13.72) .510 (12.95) .098 (2.49) MAX. .030 (0.76) MIN. 2.070 (52.58) .620 (15.75) 2.030 (51.56) .590 (15.00) .060 (1.52) .210 (5.33) .020 (0.51) .170 (4.32) .015 (0.38) .200 (5.08) .150 (3.81) .008 (0.20) 3° MIN. .125 (3.18) MIN. .700 (17.78) .620 (15.75) .110 (2.79) .065 (1.65) .020 (0.51) .090 (2.29) .045 (1.14) .016 (0.41) Dimensions:inches(mm) DS21455B-page 22 2002MicrochipTechnologyInc.
TC7106/A/TC7107/A 11.3 Package Dimensions (Continued) 44-Pin PLCC PIN 1 .050 (1.27) TYP. .021 (0.53) .013 (0.33) .695 (17.65) .685 (17.40) .630 (16.00) .591 (15.00) .656 (16.66) .650 (16.51) .032 (0.81) .026 (0.66) .020 (0.51) MIN. .656 (16.66) .650 (16.51) .120 (3.05) .695 (17.65) .090 (2.29) .685 (17.40) .180 (4.57) .165 (4.19) Dimensions:inches(mm) 44-Pin PQFP 7° MAX. .009 (0.23) PIN 1 .005 (0.13) .041 (1.03) .026 (0.65) .018 (0.45) .012 (0.30) .398 (10.10) .390 (9.90) .557 (14.15) .031 (0.80) TYP. .537 (13.65) .010 (0.25) TYP. .398 (10.10) .390 (9.90) .083 (2.10) .075 (1.90) .557 (14.15) .537 (13.65) .096 (2.45) MAX. Dimensions:inches(mm) 2002MicrochipTechnologyInc. DS21455B-page23
TC7106/A/TC7107/A PRODUCT IDENTIFICATION SYSTEM Toorderorobtaininformation,e.g.,onpricingordelivery,refertothefactoryorthelistedsalesoffice. PART CODE TC711X X X XXX 6 = LCD} 7 = LED A or blank* R (reversed pins) or blank (CPL pkg only) * "A" parts have an improved reference TC Package Code (see below): SALES AND SUPPORT DataSheets ProductssupportedbyapreliminaryDataSheetmayhaveanerratasheetdescribingminoroperationaldifferencesandrecom- mendedworkarounds.Todetermineifanerratasheetexistsforaparticulardevice,pleasecontactoneofthefollowing: 1. YourlocalMicrochipsalesoffice 2. TheMicrochipCorporateLiteratureCenterU.S.FAX:(480)792-7277 3. TheMicrochipWorldwideSite(www.microchip.com) Pleasespecifywhichdevice,revisionofsiliconandDataSheet(includeLiterature#)youareusing. NewCustomerNotificationSystem Registeronourwebsite(www.microchip.com/cn)toreceivethemostcurrentinformationonourproducts. DS21455B-page 24 2002MicrochipTechnologyInc.
TC7106/A/TC7107/A Information contained in this publication regarding device Trademarks applicationsandthelikeisintendedthroughsuggestiononly andmaybesupersededbyupdates.Itisyourresponsibilityto The Microchip name and logo, the Microchip logo, FilterLab, ensure that your application meets with your specifications. KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, No representation or warranty is given and no liability is PICSTART,PROMATE, SEEVAL and TheEmbedded Control assumedbyMicrochipTechnologyIncorporatedwithrespect SolutionsCompanyareregisteredtrademarksofMicrochipTech- totheaccuracyoruseofsuchinformation,orinfringementof nologyIncorporatedintheU.S.A.andothercountries. patentsorotherintellectualpropertyrightsarisingfromsuch dsPIC,ECONOMONITOR,FanSense,FlexROM,fuzzyLAB, useorotherwise.UseofMicrochip’sproductsascriticalcom- In-Circuit Serial Programming, ICSP, ICEPIC, microPort, ponentsinlifesupportsystemsisnotauthorizedexceptwith Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, expresswritten approvalbyMicrochip.Nolicensesarecon- MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode veyed,implicitlyorotherwise,underanyintellectualproperty andTotalEndurancearetrademarksofMicrochipTechnology rights. IncorporatedintheU.S.A. SerializedQuickTurnProgramming(SQTP)isaservicemark ofMicrochipTechnologyIncorporatedintheU.S.A. All other trademarks mentioned herein are property of their respectivecompanies. © 2002, Microchip Technology Incorporated, Printed in the U.S.A.,AllRightsReserved. Printedonrecycledpaper. MicrochipreceivedQS-9000qualitysystem certificationforitsworldwideheadquarters, designandwaferfabricationfacilitiesin ChandlerandTempe,ArizonainJuly1999 andMountainView,CaliforniainMarch2002. TheCompany’squalitysystemprocessesand proceduresareQS-9000compliantforits PICmicro®8-bitMCUs,KEELOQ®codehopping devices,SerialEEPROMs,microperipherals, non-volatilememoryandanalogproducts.In addition,Microchip’squalitysystemforthe designandmanufactureofdevelopment systemsisISO9001certified. 2002MicrochipTechnologyInc. DS21455B-page25
WORLDWIDE SALES AND SERVICE AMERICAS ASIA/PACIFIC Japan CorporateOffice Australia MicrochipTechnologyJapanK.K. BenexS-16F 2355WestChandlerBlvd. MicrochipTechnologyAustraliaPtyLtd 3-18-20,Shinyokohama Chandler,AZ 85224-6199 Suite22,41RawsonStreet Kohoku-Ku,Yokohama-shi Tel: 480-792-7200 Fax: 480-792-7277 Epping2121,NSW Kanagawa,222-0033,Japan TechnicalSupport:480-792-7627 Australia Tel:81-45-471-6166 Fax:81-45-471-6122 WebAddress:http://www.microchip.com Tel:61-2-9868-6733Fax:61-2-9868-6755 Korea RockyMountain China-Beijing 2355WestChandlerBlvd. Microchip Technology Consulting (Shanghai) MicrochipTechnologyKorea 168-1,YoungboBldg.3Floor Chandler,AZ 85224-6199 Co.,Ltd.,BeijingLiaisonOffice Samsung-Dong,Kangnam-Ku Tel: 480-792-7966 Fax: 480-792-7456 Unit915 BeiHaiWanTaiBldg. Seoul,Korea135-882 Atlanta Tel:82-2-554-7200 Fax:82-2-558-5934 No.6ChaoyangmenBeidajie 500SugarMillRoad,Suite200B Beijing,100027,No.China Singapore Atlanta,GA 30350 Tel:86-10-85282100Fax:86-10-85282104 MicrochipTechnologySingaporePteLtd. Tel:770-640-0034 Fax:770-640-0307 China-Chengdu 200MiddleRoad Boston #07-02PrimeCentre Microchip Technology Consulting (Shanghai) 2LanDrive,Suite120 Singapore,188980 Co.,Ltd.,ChengduLiaisonOffice Westford,MA 01886 Tel: 65-6334-8870 Fax:65-6334-8850 Rm.2401,24thFloor, Tel:978-692-3848 Fax:978-692-3821 MingXingFinancialTower Taiwan Chicago No.88TIDUStreet MicrochipTechnologyTaiwan 333PierceRoad,Suite180 Chengdu610016,China 11F-3,No.207 Itasca,IL 60143 Tel:86-28-6766200 Fax:86-28-6766599 TungHuaNorthRoad Tel:630-285-0071Fax:630-285-0075 Taipei,105,Taiwan China-Fuzhou Dallas Tel:886-2-2717-7175 Fax:886-2-2545-0139 Microchip Technology Consulting (Shanghai) 4570WestgroveDrive,Suite160 Co.,Ltd.,FuzhouLiaisonOffice Addison,TX75001 Unit28F,WorldTradePlaza EUROPE Tel:972-818-7423 Fax:972-818-2924 No.71WusiRoad Detroit Fuzhou350001,China Denmark Tri-AtriaOfficeBuilding Tel:86-591-7503506 Fax:86-591-7503521 MicrochipTechnologyNordicApS 32255NorthwesternHighway,Suite190 China-Shanghai RegusBusinessCentre FarmingtonHills,MI 48334 Microchip Technology Consulting (Shanghai) Lautruphoj1-3 Tel:248-538-2250Fax:248-538-2260 BallerupDK-2750Denmark Co.,Ltd. Kokomo Room701,Bldg.B Tel:4544209895Fax:4544209910 2767S.AlbrightRoad FarEastInternationalPlaza France Kokomo,Indiana 46902 No.317XianXiaRoad MicrochipTechnologySARL Tel:765-864-8360Fax:765-864-8387 Shanghai,200051 Parcd’ActiviteduMoulindeMassy LosAngeles Tel:86-21-6275-5700 Fax:86-21-6275-5060 43RueduSauleTrapu 18201VonKarman,Suite1090 China-Shenzhen BatimentA-lerEtage Irvine,CA 92612 Microchip Technology Consulting (Shanghai) 91300Massy,France Tel:949-263-1888 Fax:949-263-1338 Co.,Ltd.,ShenzhenLiaisonOffice Tel:33-1-69-53-63-20 Fax:33-1-69-30-90-79 NewYork Rm.1315,13/F,ShenzhenKerryCentre, Germany 150MotorParkway,Suite202 RenminnanLu MicrochipTechnologyGmbH Hauppauge,NY 11788 Shenzhen518001,China Gustav-HeinemannRing125 Tel:631-273-5305 Fax:631-273-5335 Tel:86-755-2350361 Fax:86-755-2366086 D-81739Munich,Germany SanJose HongKong Tel:49-89-627-1440 Fax:49-89-627-144-44 Italy MicrochipTechnologyInc. MicrochipTechnologyHongkongLtd. 2107NorthFirstStreet,Suite590 Unit901-6,Tower2,Metroplaza MicrochipTechnologySRL SanJose,CA 95131 223HingFongRoad CentroDirezionaleColleoni Tel:408-436-7950 Fax:408-436-7955 KwaiFong,N.T.,HongKong PalazzoTaurus1V.LeColleoni1 Toronto Tel:852-2401-1200 Fax:852-2401-3431 20041AgrateBrianza Milan,Italy 6285NorthamDrive,Suite108 India Tel:39-039-65791-1 Fax:39-039-6899883 Mississauga,OntarioL4V1X5,Canada MicrochipTechnologyInc. UnitedKingdom Tel:905-673-0699 Fax: 905-673-6509 IndiaLiaisonOffice DivyasreeChambers ArizonaMicrochipTechnologyLtd. 505EskdaleRoad 1Floor,WingA(A3/A4) WinnershTriangle No.11,O’ShaugnesseyRoad Bangalore,560025,India Wokingham Berkshire,EnglandRG415TU Tel:91-80-2290061Fax:91-80-2290062 Tel:441189215869 Fax:44-118921-5820 03/01/02 *DS21455B* DS21455B-page 26 2002MicrochipTechnologyInc.
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: M icrochip: TC7106CKW713 TC7107CKW713 TC7107ACPL TC7107ACKW TC7107ACLW TC7107CKW TC7107CLW TC7107CPL TC7106RCPL TC7107ARCPL TC7107AIPL TC7107IPL TC7106ARCPL TC7106ACKW713 TC7107ACKW713 TC7106ACPL TC7106ACLW TC7106CPL TC7106IPL TC7106ACKW TC7106CKW TC7106IKW