图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: TC1186-3.3VCT713
  • 制造商: Microchip
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

TC1186-3.3VCT713产品简介:

ICGOO电子元器件商城为您提供TC1186-3.3VCT713由Microchip设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 TC1186-3.3VCT713价格参考¥2.51-¥3.35。MicrochipTC1186-3.3VCT713封装/规格:PMIC - 稳压器 - 线性, Linear Voltage Regulator IC Positive Fixed 1 Output 150mA SOT-23-5。您可以下载TC1186-3.3VCT713参考资料、Datasheet数据手册功能说明书,资料中有TC1186-3.3VCT713 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC REG LDO 3.3V 0.15A SOT23-5低压差稳压器 150mA LDO w/Shtdn

产品分类

PMIC - 稳压器 - 线性

品牌

Microchip Technology

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

电源管理 IC,低压差稳压器,Microchip Technology TC1186-3.3VCT713-

数据手册

点击此处下载产品Datasheethttp://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en011677http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en023833

产品型号

TC1186-3.3VCT713

PSRR/纹波抑制—典型值

64 dB

产品

LDO Regulators

产品种类

低压差稳压器

供应商器件封装

SOT-23-5

其它名称

TC11863.3VCT713

包装

带卷 (TR)

商标

Microchip Technology

回动电压—最大值

400 mV

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

SC-74A,SOT-753

封装/箱体

SOT-23A-5

工作温度

-40°C ~ 125°C

工厂包装数量

3000

最大工作温度

+ 125 C

最大输入电压

6 V

最小工作温度

- 40 C

最小输入电压

2.7 V

标准包装

3,000

电压-跌落(典型值)

0.27V @ 150mA

电压-输入

最高 6V

电压-输出

3.3V

电压调节准确度

0.5 %

电流-输出

150mA

电流-限制(最小值)

-

电源电流

50 uA

稳压器拓扑

正,固定式

稳压器数

1

类型

LDO with Shutdown

线路调整率

0.05 %

负载调节

0.5 %

输出电压

3.3 V

输出电流

150 mA

输出端数量

1 Output

输出类型

Fixed

推荐商品

型号:BA178M18FP-E2

品牌:Rohm Semiconductor

产品名称:集成电路(IC)

获取报价

型号:LP2967IMM-2528/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MC79L05ACLPME3

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT3015IQ-15#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LT3060ITS8#TRMPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:UA78M33QDCYRQ1

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LD39300PT-R

品牌:STMicroelectronics

产品名称:集成电路(IC)

获取报价

型号:MAX883ESA+

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
TC1186-3.3VCT713 相关产品

LT1529IQ-3.3#PBF

品牌:Linear Technology/Analog Devices

价格:

MAX8559ETAJ1+T

品牌:Maxim Integrated

价格:¥7.90-¥8.26

NCV2951ACDR2

品牌:ON Semiconductor

价格:

L6933H1.2TR

品牌:STMicroelectronics

价格:

L7815ABV

品牌:STMicroelectronics

价格:¥1.05-¥2.23

TC1265-3.0VOATR

品牌:Microchip Technology

价格:

SI9183DT-18-T1-E3

品牌:Vishay Siliconix

价格:

LT1965IMS8E#PBF

品牌:Linear Technology/Analog Devices

价格:

PDF Datasheet 数据手册内容提取

M TC1054/TC1055/TC1186 50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown and ERROR Output Features Package Type • Low Ground Current for Longer Battery Life 5-Pin SOT-23A • Low Dropout Voltage V ERROR OUT • Choice of 50mA (TC1054), 100mA (TC1055) and 150mA (TC1186) Output 5 4 • High Output Voltage Accuracy TC1054 • Standard or Custom Output Voltages TC1055 • Power-Saving Shutdown Mode TC1186 • ERROR Output Can Be Used as a Low Battery Detector or Microcontroller Reset Generator 1 2 3 • Over-Current and Over-Temperature Protection • 5-Pin SOT-23A Package V GND SHDN IN • Pin Compatible Upgrades for Bipolar Regulators NOTE: 5-Pin SOT-23A is equivalent to the EIAJ (SC-74A) Applications General Description • Battery Operated Systems The TC1054, TC1055 and TC1186 are high accuracy • Portable Computers (typically ±0.5%) CMOS upgrades for older (bipolar) • Medical Instruments low dropout regulators. Designed specifically for • Instrumentation battery-operated systems, the devices’ CMOS • Cellular/GSM/PHS Phones construction minimizes ground current, extending bat- • Linear Post-Regulators for SMPS tery life. Total supply current is typically 50µA at full load (20 to 60 times lower than in bipolar regulators). • Pagers The devices’ key features include low noise operation, Typical Application low dropout voltage – typically 85mV (TC1054), 180mV (TC1055) and 270mV (TC1186) at full load — and fast response to step changes in load. An error out- 1 5 put (ERROR) is asserted when the devices are out-of- V V V V IN IN OUT OUT regulation (due to a low input voltage or excessive out- TC1054 + 1µF put current). ERROR can be used as a low battery TC1055 TC1186 warning or as a processor RESET signal (with the addi- 2 GND tion of an external RC network). Supply current is 1MΩ reduced to 0.5µA (max), with both V and ERROR OUT disabled when the shutdown input is low. The devices incorporate both over-temperature and over-current 3 4 protection. SHDN ERROR ERROR The TC1054, TC1055 and TC1186 are stable with an output capacitor of only 1µF and have a maximum output current of 50mA, 100mA and 150mA, respectively. For higher output current regulators, please refer to the TC1173 (I = 300mA) data sheet OUT Shutdown Control (DS21632). (from Power Control Logic)  2003 Microchip Technology Inc. DS21350C-page 1

TC1054/TC1055/TC1186 1.0 ELECTRICAL † Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These CHARACTERISTICS are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the Absolute Maximum Ratings † operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for Input Voltage....................................................................6.5V extended periods may affect device reliability. Output Voltage.....................................(-0.3V) to (V + 0.3V) IN Power Dissipation.........................Internally Limited (Note6) Maximum Voltage on Any Pin ...................V +0.3V to -0.3V IN Operating Junction Temperature Range..-40°C < T < 125°C J Storage Temperature....................................-65°C to +150°C DC CHARACTERISTICS Electrical Specifications: Unless otherwise noted, V = V + 1V, I = 100µA, C = 3.3µF, SHDN > V , T = +25°C. IN OUT L L IH A Boldface type specifications apply for junction temperatures of -40°C to +125°C. Parameters Sym Min Typ Max Units Conditions Input Operating Voltage V 2.7 — 6.0 V Note8 IN Maximum Output Current I 50 — — mA TC1054 OUTMAX 100 — — TC1055 150 — — TC1186 Output Voltage V V – 2.5% V ±0.5% V + 2.5% V Note1 OUT R R R V Temperature Coefficient TCV — 20 — ppm/°C Note2 OUT OUT — 40 — Line Regulation ∆V /∆V — 0.05 0.35 % (V + 1V) ≤ V ≤ 6V OUT IN R IN Load Regulation: ∆V /V (Note3) OUT OUT TC1054; TC1055 — 0.5 2 % I = 0.1mA to I L OUTMAX TC1186 — 0.5 3 I = 0.1mA to I L OUTMAX Dropout Voltage: V -V — 2 — mV I = 100µA IN OUT L — 65 — I = 20mA L — 85 120 I = 50mA L TC1055; TC1186 — 180 250 I = 100mA L TC1186 — 270 400 I = 150mA (Note4) L Supply Current I — 50 80 µA SHDN = V , I = 0µA (Note9) IN IH L Shutdown Supply Current I — 0.05 0.5 µA SHDN = 0V INSD Power Supply Rejection Ratio PSRR — 64 — dB f ≤ 1kHz Output Short Circuit Current I — 300 450 mA V = 0V OUTSC OUT Thermal Regulation ∆V /∆P — 0.04 — V/W Notes5,6 OUT D Thermal Shutdown Die T — 160 — °C SD Temperature Thermal Shutdown Hysteresis ∆T — 10 — °C SD Note 1: V is the regulator output voltage setting. For example: V = 1.8V, 2.5V, 2.7V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V. R R 2: TC VOUT = (VOUTMAX – VOUTMIN)x 106 VOUT x ∆T 3: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification. 4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value. 5: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I at V = 6V for T = 10msec. LMAX IN 6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction tem- perature and the thermal resistance from junction-to-air (i.e., T , T , θ ). Exceeding the maximum allowable power dis- A J JA sipation causes the device to initiate thermal shutdown. Please see Section5.0, “Thermal Considerations”, for more details. 7: Hysteresis voltage is referenced by V . R 8: The minimum V has to justify the conditions: V ≥ V + V and V ≥ 2.7V for I = 0.1mA to I . IN IN R DROPOUT IN L OUTMAX 9: Apply for junction temperatures of -40C to +85C. DS21350C-page 2  2003 Microchip Technology Inc.

TC1054/TC1055/TC1186 DC CHARACTERISTICS (CONTINUED) Electrical Specifications: Unless otherwise noted, V = V + 1V, I = 100µA, C = 3.3µF, SHDN > V , T = +25°C. IN OUT L L IH A Boldface type specifications apply for junction temperatures of -40°C to +125°C. Parameters Sym Min Typ Max Units Conditions Output Noise eN — 260 — nV/√Hz I = I L OUTMAX SHDN Input SHDN Input High Threshold V 45 — — %V V = 2.5V to 6.5V IH IN IN SHDN Input Low Threshold V — — 15 %V V = 2.5V to 6.5V IL IN IN ERROR Output Minimum VIN Operating Voltage VINMIN 1.0 — — V Output Logic Low Voltage V — — 400 mV 1mA Flows to ERROR OL ERROR Threshold Voltage V — 0.95 x V — V See Figure4-2 TH R ERROR Positive Hysteresis V — 50 — mV Note7 HYS Note 1: V is the regulator output voltage setting. For example: V = 1.8V, 2.5V, 2.7V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V. R R 2: TC V = (V – V )x 106 OUT OUTMAX OUTMIN V x ∆T OUT 3: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification. 4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value. 5: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I at V = 6V for T = 10msec. LMAX IN 6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction tem- perature and the thermal resistance from junction-to-air (i.e., T , T , θ ). Exceeding the maximum allowable power dis- A J JA sipation causes the device to initiate thermal shutdown. Please see Section5.0, “Thermal Considerations”, for more details. 7: Hysteresis voltage is referenced by V . R 8: The minimum V has to justify the conditions: V ≥ V + V and V ≥ 2.7V for I = 0.1mA to I . IN IN R DROPOUT IN L OUTMAX 9: Apply for junction temperatures of -40C to +85C.  2003 Microchip Technology Inc. DS21350C-page 3

TC1054/TC1055/TC1186 2.0 TYPICAL PERFORMANCE CURVES Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. Note: Unless otherwise indicated, V = V + 1V, I = 100µA, C = 3.3µF, SHDN > V , T = +25°C. IN OUT L L IH A 0.020 0.100 0.018 ILOAD = 10 mA 0.090 ILOAD = 50 mA GE (V) 00..001146 GE (V) 00..007800 A A T 0.012 T 0.060 L L VO 0.010 VO 0.050 UT 0.008 UT 0.040 O O P 0.006 P 0.030 O O R 0.004 R 0.020 D 0.002 CCIONU =T 1= µ1F µF D 0.010 CCIONU =T 1= µ1F µF 0.000 0.000 -40 -20 0 20 50 70 125 -40 -20 0 20 50 70 125 TEMPERATURE (°C) TEMPERATURE (°C) FIGURE 2-1: Dropout Voltage vs. FIGURE 2-4: Dropout Voltage vs. Temperature (I = 10mA). Temperature (I = 50mA). LOAD LOAD 0.200 0.300 0.180 ILOAD = 100 mA ILOAD = 150 mA GE (V) 00..114600 GE (V) 00..220500 TA 0.120 TA L L VO 0.100 VO 0.150 UT 0.080 UT O O 0.100 P 0.060 P O O DR 00..002400 CCIONU =T 1= µ1F µF DR 0.050 CCIONU =T 1= µ1F µF 0.000 0.000 -40 -20 0 20 50 70 125 -40 -20 0 20 50 70 125 TEMPERATURE (°C) TEMPERATURE (°C) FIGURE 2-2: Dropout Voltage vs. FIGURE 2-5: Dropout Voltage vs. Temperature (I = 100mA). Temperature (I = 150mA). LOAD LOAD 90 90 80 ILOAD = 10 mA 80 ILOAD = 100 mA µENT (A) 567000 µENT (A) 567000 R R UR 40 UR 40 C C D 30 D 30 N N G 20 G 20 10 CCIONU =T 1= µ1F µF 10 CCIONU =T 1= µ1F µF 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 VIN (V) VIN (V) FIGURE 2-3: Ground Current vs. V FIGURE 2-6: Ground Current vs. V IN IN (I = 10mA). (I = 100mA). LOAD LOAD DS21350C-page 4  2003 Microchip Technology Inc.

TC1054/TC1055/TC1186 Note: Unless otherwise indicated, V = V + 1V, I = 100µA, C = 3.3µF, SHDN > V , T = +25°C. IN OUT L L IH A 80 3.5 70 ILOAD = 150 mA 3 ILOAD = 0 µA) 60 2.5 T ( 50 RREN 40 (V) UT 2 U O1.5 C 30 V D N 1 G 20 10 CCIONU =T 1= µ1F µF 0.5 CCIONU =T 1= µ1F µF 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 VIN (V) VIN (V) FIGURE 2-7: Ground Current vs. V FIGURE 2-10: V vs. V IN OUT IN (I = 150mA). (I =0mA). LOAD LOAD 3.5 ILOAD = 100 mA 3.320 3.0 3.315 ILOAD = 10 mA 2.5 3.310 V) 2.0 3.305 V (OUT1.5 (V) OUT 33..239050 1.0 V 3.290 00..05 CCIONU =T 1= µ1F µF 33..228805 VCCIIONNU ==T 41=. 3µ1VF µF 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 3.275 VIN (V) -40 -20 -10 0 20 40 85 125 TEMPERATURE (°C) FIGURE 2-8: V vs. V OUT IN (I =100mA). FIGURE 2-11: Output Voltage (3.3V) vs. LOAD Temperature (I = 10mA). LOAD 3.290 3.288 ILOAD = 150 mA 5.025 3.286 5.020 ILOAD = 10 mA V) 3.284 5.015 (UT3.282 V) 5.010 VO3.280 (UT 5.005 O 333...222777468 CCVIIONNU ==T 41=. 3µ1VF µF V 445...990990050 VCCIIONNU ==T 61=V µ1F µF 4.985 -40 -20 -10 0 20 40 85 125 -40 -20 -10 0 20 40 85 125 TEMPERATURE (°C) TEMPERATURE (°C) FIGURE 2-9: V vs. V OUT IN (I =150mA). FIGURE 2-12: Output Voltage (5V) vs. LOAD Temperature (I = 10mA). LOAD  2003 Microchip Technology Inc. DS21350C-page 5

TC1054/TC1055/TC1186 Note: Unless otherwise indicated, V = V + 1V, I = 100µA, C = 3.3µF, SHDN > V , T = +25°C. IN OUT L L IH A 10.0 4.994 RLOAD = 50 Ω 4.992 ILOAD = 150 mA CCOINU =T 1= µ1F µF 4.990 4.988 Hz) 1.0 V) 4.986 √V/ (UT 4.984 µE ( O 4.982 S V OI 4.980 N 44..997768 VCCIIONNU ==T 61=V µ1F µF 0.1 4.974 -40 -20 -10 0 20 40 85 125 0.0 TEMPERATURE (°C) 0.01K 0.1K 1K 10K 100K 1000K FREQUENCY (Hz) FIGURE 2-13: Output Voltage (5V) vs. FIGURE 2-16: Output Noise vs. Frequency. Temperature (I = 10mA). LOAD 1000 COUT = 1 µF 70 to 10 µF ILOAD = 10 mA 60 100 A) µENT ( 4500 ΩSR() 10 R E CUR 30 OUT 1 Stable Region D C N 20 G 10 CVCIIONNU ==T 61=V µ1F µF 0.1 0 0.01 -40 -20 -10 0 20 40 85 125 0 10 20 30 40 50 60 70 80 90100 TEMPERATURE (°C) LOAD CURRENT (mA) FIGURE 2-14: GND Current vs. FIGURE 2-17: Stability Region vs. Load Temperature (I = 10mA). Current. LOAD 80 70 ILOAD = 150 mA A) 60 VSHDN µ NT ( 50 E R 40 R U C 30 D GN 1200 VCCIIONNU ==T 61=V µ1F µF VOUT 0 -40 -20 -10 0 20 40 85 125 TEMPERATURE (°C) Conditions: C = 1µF, C = 1µF, IN OUT FIGURE 2-15: GND Current vs. I = 100mA, V = 4.3V, Temp = +25°C, LOAD IN Temperature (I = 150mA). Fall Time = 184µs LOAD FIGURE 2-18: Measure Rise Time of 3.3V LDO. DS21350C-page 6  2003 Microchip Technology Inc.

TC1054/TC1055/TC1186 Note: Unless otherwise indicated, V = V + 1V, I = 100µA, C = 3.3µF, SHDN > V , T = +25°C. IN OUT L L IH A VSHDN VSHDN VOUT VOUT Conditions: CIN = 1µF, COUT = 1µF, Conditions: CIN = 1µF, COUT = 1µF, ILOAD = 100mA, VIN = 6V, Temp = +25°C, ILOAD = 100mA, VIN = 4.3V, Temp = +25°C, Fall Time = 192µs Fall Time = 52µs FIGURE 2-19: Measure Rise Time of 5.0V FIGURE 2-21: Measure Fall Time of 3.3V LDO. LDO. VSHDN VOUT VOUT Conditions: VIN = 6V, CIN = 0µF, COUT = 1µF Conditions: CIN = 1µF, COUT = 1µF, I = 100mA, V = 6V, Temp = +25°C, LOAD IN ILOAD was increased until temperature of die Fall Time = 88µs reached about 160°C, at which time integrated ther- mal protection circuitry shuts the regulator off when FIGURE 2-22: Measure Fall Time of 5.0V die temperature exceeds approximately 160°C. The LDO. regulator remains off until die temperature drops to approximately 150°C. FIGURE 2-20: Thermal Shutdown Response of 5.0V LDO.  2003 Microchip Technology Inc. DS21350C-page 7

TC1054/TC1055/TC1186 3.0 PIN DESCRIPTIONS 3.3 Shutdown Control Input (SHDN) The descriptions of the pins are listed in Table3-1. The regulator is fully enabled when a logic-high is applied to SHDN. The regulator enters shutdown when TABLE 3-1: PIN FUNCTION TABLE a logic-low is applied to SHDN. During shutdown, out- put voltage falls to zero, ERROR is open-circuited and Pin No. Symbol Description supply current is reduced to 0.5µA (max). 1 VIN Unregulated supply input 3.4 Out Of Regulation Flag (ERROR) 2 GND Ground terminal ERROR goes low when V is out-of-tolerance by OUT 3 SHDN Shutdown control input approximately -5%. 4 ERROR Out-of-Regulation Flag (Open-drain output) 3.5 Regulated Voltage Output (V ) OUT 5 V Regulated voltage output OUT Connect the output load to V of the LDO. Also con- OUT nect the positive side of the LDO output capacitor as 3.1 Unregulated Supply Input (V ) IN close as possible to the V pin. OUT Connect unregulated input supply to the V pin. If IN there is a large distance between the input supply and the LDO regulator, some input capacitance is neces- sary for proper operation. A 1µF capacitor connected from V to ground is recommended for most IN applications. 3.2 Ground Terminal (GND) Connect the unregulated input supply ground return to GND. Also connect the negative side of the 1µF typical input decoupling capacitor close to GND and the negative side of the output capacitor C to GND. OUT DS21350C-page 8  2003 Microchip Technology Inc.

TC1054/TC1055/TC1186 4.0 DETAILED DESCRIPTION 4.1 ERROR Open-Drain Output The TC1054, TC1055 and TC1186 are precision fixed ERROR is driven low whenever VOUT falls out of output voltage regulators (If an adjustable version is regulation by more than -5% (typical). This condition desired, please see the TC1070/TC1071/TC1187 data may be caused by low input voltage, output current sheet (DS21353)). Unlike bipolar regulators, the limiting or thermal limiting. The ERROR threshold is 5% TC1054, TC1055 and TC1186 supply current does not below rated VOUT, regardless of the programmed out- increase with load current. put voltage value (e.g. ERROR = VOL at 4.75V (typ.) for a 5.0V regulator and 2.85V (typ.) for a 3.0V regulator). Figure4-1 shows a typical application circuit, where the ERROR output operation is shown in Figure4-2. regulator is enabled any time the shutdown input (SHDN) is at or above VIH, and shutdown (disabled) Note that ERROR is active when VOUT falls to VTH and when SHDN is at or below VIL. SHDN may be inactive when VOUT rises above VTH by VHYS. controlled by a CMOS logic gate or I/O port of a As shown in Figure4-1, ERROR can be used either as microcontroller. If the SHDN input is not required, it a battery low flag or as a processor RESET signal (with should be connected directly to the input supply. While the addition of timing capacitor C ). R x C should be 2 1 2 in shutdown, supply current decreases to 0.05µA chosen to maintain ERROR below V of the processor IH (typical), VOUT falls to zero volts, and ERROR is open- RESET input for at least 200msec to allow time for the circuited. system to stabilize. Pull-up resistor R can be tied to 1 V , V or any other voltage less than (V + 0.3V). OUT IN IN + VIN VOUT VOUT + 1µF TTTCCC111001558456 +1C1µF VOUT Battery V HYSTERESIS (VH) GND TH V+ ERROR SHDN ERROR Shutdown Control 1RM1 W VIH (to CMOS Logic or Tie BATTLOW to VIN if unused) or RESET VOL C2 Required Only 0.2µF if ERROR is used as a C2 FIGURE 4-2: Error Output Operation. Processor RESET Signal (See Text) 4.2 Output Capacitor FIGURE 4-1: Typical Application Circuit. A 1µF (min) capacitor from V to ground is OUT recommended. The output capacitor should have an effective series resistance greater than 0.1Ω and less than 5.0Ω, with a resonant frequency above 1MHz. A 1µF capacitor should be connected from V to GND if IN there is more than 10 inches of wire between the regulator and the AC filter capacitor or if a battery is used as the power source. Aluminum electrolytic or tantalum capacitor types can be used (Since many aluminum electrolytic capacitors freeze at approxi- mately -30°C, solid tantalums are recommended for applications operating below -25°C.). When operating from sources other than batteries, supply-noise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.  2003 Microchip Technology Inc. DS21350C-page 9

TC1054/TC1055/TC1186 5.0 THERMAL CONSIDERATIONS Equation5-1 can be used in conjunction with Equation5-2 to ensure regulator thermal operation is 5.1 Thermal Shutdown within limits. For example: Integrated thermal protection circuitry shuts the regulator off when die temperature exceeds 160°C. Given: The regulator remains off until the die temperature V = 3.0V +5% drops to approximately 150°C. INMAX V = 2.7V – 2.5% OUTMIN 5.2 Power Dissipation I = 40mA LOADMAX T = +125°C The amount of power the regulator dissipates is JMAX primarily a function of input voltage, output voltage and TAMAX = +55°C output current. The following equation is used to Find: 1. Actual power dissipation calculate worst case actual power dissipation: 2. Maximum allowable dissipation EQUATION 5-1: Actual power dissipation: PD≈(VINMAX–VOUTMIN)ILOADMAX PD≈(VINMAX–VOUTMIN)ILOADMAX Where: = [(3.0×1.05)–(2.7×0.975)]40×10-3 P = Worst case actual power dissipation D = 20.7mW V = Maximum voltage on V INMAX IN V = Minimum regulator output voltage OUTMIN Maximum allowable power dissipation: I = Maximum output (load) current LOADMAX (T –T ) The maximum allowable power dissipation PDMAX = ------J---M----A---X--θ-----------A---M----A---X----- JA (Equation5-2) is a function of the maximum ambient (125–55) temperature (T ), the maximum allowable die = ------------------------- AMAX 220 temperature (T ) and the thermal resistance from JMAX = 318mW junction-to-air (θ ). The 5-Pin SOT-23A package has JA a θ of approximately 220°C/Watt. JA In this example, the TC1054 dissipates a maximum of 20.7mW; below the allowable limit of 318mW. In a EQUATION 5-2: similar manner, Equation5-1 and Equation5-2 can be (T –T ) used to calculate maximum current and/or input P = -------J--M----A----X------------A---M----A----X---- DMAX θ voltage limits. JA 5.3 Layout Considerations Where all terms are previously defined. The primary path of heat conduction out of the package is via the package leads. Therefore, layouts having a ground plane, wide traces at the pads and wide power supply bus lines combine to lower θ and, therefore, JA increase the maximum allowable power dissipation limit. DS21350C-page 10  2003 Microchip Technology Inc.

TC1054/TC1055/TC1186 6.0 PACKAGING INFORMATION 6.1 Package Marking Information 5-Pin SOT-23A 5 4 1 2 3 4 1 2 3 1&2 represents part number code + temperature range and voltage TC1054 TC1055 TC1186 (V) Code Code Code 1.8 CY DY PY 2.5 C1 D1 P1 2.7 C2 D2 P2 2.8 CZ DZ PZ 2.85 C8 D8 P8 3.0 C3 D3 P3 3.3 C4 D4 P5 3.6 C9 D9 P9 4.0 C0 D0 P0 5.0 C6 D6 P7 3 represents year and quarter code 4 represents lot ID number  2003 Microchip Technology Inc. DS21350C-page 11

TC1054/TC1055/TC1186 5-Lead Plastic Small Outline Transistor (OT) (SOT23) E E1 p B p1 D n 1 α c A A2 φ A1 β L Units INCHES* MILLIMETERS Dimension Limits MIN NOM MAX MIN NOM MAX Number of Pins n 5 5 Pitch p .038 0.95 Outside lead pitch (basic) p1 .075 1.90 Overall Height A .035 .046 .057 0.90 1.18 1.45 Molded Package Thickness A2 .035 .043 .051 0.90 1.10 1.30 Standoff § A1 .000 .003 .006 0.00 0.08 0.15 Overall Width E .102 .110 .118 2.60 2.80 3.00 Molded Package Width E1 .059 .064 .069 1.50 1.63 1.75 Overall Length D .110 .116 .122 2.80 2.95 3.10 Foot Length L .014 .018 .022 0.35 0.45 0.55 Foot Angle φ 0 5 10 0 5 10 Lead Thickness c .004 .006 .008 0.09 0.15 0.20 Lead Width B .014 .017 .020 0.35 0.43 0.50 Mold Draft Angle Top α 0 5 10 0 5 10 Mold Draft Angle Bottom β 0 5 10 0 5 10 * Controlling Parameter § Significant Characteristic Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: MO-178 Drawing No. C04-091 DS21350C-page 12  2003 Microchip Technology Inc.

TC1054/TC1055/TC1186 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. X /XX Examples: Device Temperature Package a) TC1054-1.8VCT713: 50mA LDO, 1.8V Range b) TC1054-2.8VCT713: 50mA LDO, 2.8V c) TC1054-3.3VCT713: 50mA LDO, 3.3V d) TC1054-5.0VCT713: 50mA LDO, 5.0V Device: TC1054: 50mA LDO with Shutdown & /Error output TC1055: 100mA LDO with Shutdown & /Error output TC1186: 150mA LDO with Shutdown & /Error output a) TC1055-2.5VCT713: 100mA LDO, 2.5V b) TC1055-2.85VCT713: 100mA LDO, 2.85V Temperature Range: V = -40°C to +125°C c) TC1055-3.6VCT713: 100mA LDO, 3.6V d) TC1055-5.0VCT713: 100mA LDO, 5.0V Package: CT713 = 5L SOT-23A, Tape and Reel a) TC1186-2.7VCT713: 150mA LDO, 2.7V b) TC1186-2.85VCT713: 150mA LDO, 2.85V c) TC1186-4.0VCT713: 150mA LDO, 4.0V d) TC1186-5.0VCT713: 150mA LDO, 5.0V Sales and Support Data Sheets Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom- mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following: 1. Your local Microchip sales office 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277 3. The Microchip Worldwide Site (www.microchip.com) Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. Customer Notification System Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  2003 Microchip Technology Inc. DS21350C-page13

TC1054/TC1055/TC1186 NOTES: DS21350C-page 14  2003 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device Trademarks applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to The Microchip name and logo, the Microchip logo, KEELOQ, ensure that your application meets with your specifications. No MPLAB, PIC, PICmicro, PICSTART, PRO MATE and representation or warranty is given and no liability is assumed PowerSmart are registered trademarks of Microchip Technology by Microchip Technology Incorporated with respect to the Incorporated in the U.S.A. and other countries. accuracy or use of such information, or infringement of patents FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL or other intellectual property rights arising from such use or and The Embedded Control Solutions Company are registered otherwise. Use of Microchip’s products as critical components in trademarks of Microchip Technology Incorporated in the U.S.A. life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, Accuron, Application Maestro, dsPIC, dsPICDEM, implicitly or otherwise, under any intellectual property rights. dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company’s quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.  2003 Microchip Technology Inc. DS21350C - page 15

M WORLDWIDE SALES AND SERVICE AMERICAS ASIA/PACIFIC Japan Corporate Office Australia Microchip Technology Japan K.K. Benex S-1 6F 2355 West Chandler Blvd. Microchip Technology Australia Pty Ltd 3-18-20, Shinyokohama Chandler, AZ 85224-6199 Marketing Support Division Kohoku-Ku, Yokohama-shi Tel: 480-792-7200 Fax: 480-792-7277 Suite 22, 41 Rawson Street Kanagawa, 222-0033, Japan Technical Support: 480-792-7627 Epping 2121, NSW Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Web Address: http://www.microchip.com Australia Korea Atlanta Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Microchip Technology Korea 3780 Mansell Road, Suite 130 168-1, Youngbo Bldg. 3 Floor Alpharetta, GA 30022 Microchip Technology Consulting (Shanghai) Samsung-Dong, Kangnam-Ku Tel: 770-640-0034 Fax: 770-640-0307 Co., Ltd., Beijing Liaison Office Seoul, Korea 135-882 Unit 915 Boston Tel: 82-2-554-7200 Fax: 82-2-558-5934 Bei Hai Wan Tai Bldg. 2 Lan Drive, Suite 120 No. 6 Chaoyangmen Beidajie Singapore Westford, MA 01886 Beijing, 100027, No. China Microchip Technology Singapore Pte Ltd. Tel: 978-692-3848 Fax: 978-692-3821 Tel: 86-10-85282100 Fax: 86-10-85282104 200 Middle Road Chicago China - Chengdu #07-02 Prime Centre Singapore, 188980 333 Pierce Road, Suite 180 Microchip Technology Consulting (Shanghai) Tel: 65-6334-8870 Fax: 65-6334-8850 Itasca, IL 60143 Co., Ltd., Chengdu Liaison Office Tel: 630-285-0071 Fax: 630-285-0075 Rm. 2401-2402, 24th Floor, Taiwan Microchip Technology (Barbados) Inc., Dallas Ming Xing Financial Tower No. 88 TIDU Street Taiwan Branch 4570 Westgrove Drive, Suite 160 Chengdu 610016, China 11F-3, No. 207 Addison, TX 75001 Tung Hua North Road Tel: 972-818-7423 Fax: 972-818-2924 Tel: 86-28-86766200 Fax: 86-28-86766599 Taipei, 105, Taiwan China - Fuzhou Detroit Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 Microchip Technology Consulting (Shanghai) Tri-Atria Office Building Co., Ltd., Fuzhou Liaison Office EUROPE 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Unit 28F, World Trade Plaza Austria No. 71 Wusi Road Tel: 248-538-2250 Fax: 248-538-2260 Fuzhou 350001, China Microchip Technology Austria GmbH Kokomo Tel: 86-591-7503506 Fax: 86-591-7503521 Durisolstrasse 2 A-4600 Wels 2767 S. Albright Road China - Hong Kong SAR Kokomo, Indiana 46902 Austria Microchip Technology Hongkong Ltd. Tel: 43-7242-2244-399 Tel: 765-864-8360 Fax: 765-864-8387 Unit 901-6, Tower 2, Metroplaza Fax: 43-7242-2244-393 Los Angeles 223 Hing Fong Road Denmark 18201 Von Karman, Suite 1090 Kwai Fong, N.T., Hong Kong Microchip Technology Nordic ApS Irvine, CA 92612 Tel: 852-2401-1200 Fax: 852-2401-3431 Regus Business Centre Tel: 949-263-1888 Fax: 949-263-1338 China - Shanghai Lautrup hoj 1-3 Phoenix Microchip Technology Consulting (Shanghai) Ballerup DK-2750 Denmark 2355 West Chandler Blvd. Co., Ltd. Tel: 45 4420 9895 Fax: 45 4420 9910 Chandler, AZ 85224-6199 Room 701, Bldg. B France Far East International Plaza Tel: 480-792-7966 Fax: 480-792-4338 Microchip Technology SARL No. 317 Xian Xia Road Parc d’Activite du Moulin de Massy San Jose Shanghai, 200051 43 Rue du Saule Trapu Microchip Technology Inc. Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 Batiment A - ler Etage 2107 North First Street, Suite 590 China - Shenzhen 91300 Massy, France San Jose, CA 95131 Microchip Technology Consulting (Shanghai) Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Tel: 408-436-7950 Fax: 408-436-7955 Co., Ltd., Shenzhen Liaison Office Germany Toronto Rm. 1812, 18/F, Building A, United Plaza Microchip Technology GmbH 6285 Northam Drive, Suite 108 No. 5022 Binhe Road, Futian District Steinheilstrasse 10 Mississauga, Ontario L4V 1X5, Canada Shenzhen 518033, China D-85737 Ismaning, Germany Tel: 905-673-0699 Fax: 905-673-6509 Tel: 86-755-82901380 Fax: 86-755-82966626 Tel: 49-89-627-144-0 China - Qingdao Fax: 49-89-627-144-44 Rm. B505A, Fullhope Plaza, Italy No. 12 Hong Kong Central Rd. Microchip Technology SRL Qingdao 266071, China Via Quasimodo, 12 Tel: 86-532-5027355 Fax: 86-532-5027205 20025 Legnano (MI) India Milan, Italy Microchip Technology Inc. Tel: 39-0331-742611 Fax: 39-0331-466781 India Liaison Office United Kingdom Marketing Support Division Microchip Ltd. Divyasree Chambers 505 Eskdale Road 1 Floor, Wing A (A3/A4) Winnersh Triangle No. 11, O’Shaugnessey Road Wokingham Bangalore, 560 025, India Berkshire, England RG41 5TU Tel: 91-80-2290061 Fax: 91-80-2290062 Tel: 44 118 921 5869 Fax: 44-118 921-5820 03/25/03 DS21350C-page 16  2003 Microchip Technology Inc.

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: M icrochip: TC1055-4.0VCT713 TC1054-4.0VCT713 TC1186-2.85VCT713 TC1054-2.5VCT713 TC1054-2.7VCT713 TC1054- 2.6VCT713 TC1055-2.8VCT713 TC1186-4.0VCT713 TC1186-5.0VCT713 TC1186-2.8VCT713 TC1055-5.0VCT713 TC1186-2.7VCT713 TC1186-2.5VCT713 TC1186-2.6VCT713 TC1054-5.0VCT713 TC105503ECTTR TC1054- 1.8VCT713 TC1055-2.85VCT713 TC1186-1.8VCT713 TC1186-3.0VCT713 TC1186-3.6VCT713 TC1186-3.3VCT713 TC1054-3.3VCT713 TC1054-3.6VCT713 TC1055-2.5VCT713 TC1055-2.7VCT713 TC1055-2.6VCT713 TC1055- 1.8VCT713 TC1054-2.85VCT713 TC1055-3.0VCT713 TC1055-3.6VCT713 TC1055-3.3VCT713