ICGOO在线商城 > 集成电路(IC) > 嵌入式 - 微控制器 > STM8L151F3U6TR
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
STM8L151F3U6TR产品简介:
ICGOO电子元器件商城为您提供STM8L151F3U6TR由STMicroelectronics设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 STM8L151F3U6TR价格参考。STMicroelectronicsSTM8L151F3U6TR封装/规格:嵌入式 - 微控制器, STM8 STM8L EnergyLite Microcontroller IC 8-Bit 16MHz 8KB (8K x 8) FLASH 20-UFQFPN (3x3)。您可以下载STM8L151F3U6TR参考资料、Datasheet数据手册功能说明书,资料中有STM8L151F3U6TR 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
A/D位大小 | 12 bit |
产品目录 | 集成电路 (IC)半导体 |
描述 | MCU 8BIT 8KB FLASH 20-UFQFPN8位微控制器 -MCU 8-bit Ultralow MCU 20 pin 8kb Flash |
EEPROM容量 | 256 x 8 |
产品分类 | |
I/O数 | 18 |
品牌 | STMicroelectronics |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 嵌入式处理器和控制器,微控制器 - MCU,8位微控制器 -MCU,STMicroelectronics STM8L151F3U6TRSTM8L EnergyLite |
数据手册 | |
产品型号 | STM8L151F3U6TR |
RAM容量 | 1K x 8 |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30015http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30339 |
产品种类 | 8位微控制器 -MCU |
供应商器件封装 | 20-UFQFPN (3x3) |
其它名称 | 497-14041-6 |
其它有关文件 | http://www.st.com/web/catalog/mmc/FM141/SC1244/SS1336/LN1570/PF251471?referrer=70071840http://www.st.com/web/catalog/mmc/FM141/SC1544/SS1375/LN1576/PF251471?referrer=70071840 |
包装 | Digi-Reel® |
可用A/D通道 | 10 |
可编程输入/输出端数量 | 18 |
商标 | STMicroelectronics |
处理器系列 | STM8L |
外设 | 欠压检测/复位,DMA,IR,POR,PWM,WDT |
安装风格 | SMD/SMT |
定时器数量 | 3 Timer |
封装 | Reel |
封装/外壳 | 20-UFQFN |
封装/箱体 | QFN-20 |
工作温度 | -40°C ~ 85°C |
工作电源电压 | 3.6 V |
工厂包装数量 | 3000 |
振荡器类型 | 内部 |
接口类型 | I2C, SPI, UART |
数据RAM大小 | 1 kB |
数据Ram类型 | RAM |
数据ROM大小 | 256 B |
数据Rom类型 | EEPROM |
数据总线宽度 | 8 bit |
数据转换器 | A/D 10x12b |
最大工作温度 | + 85 C |
最大时钟频率 | 16 MHz |
最小工作温度 | - 40 C |
标准包装 | 1 |
核心 | STM8 |
核心处理器 | STM8 |
核心尺寸 | 8-位 |
片上ADC | Yes |
片上DAC | Without DAC |
特色产品 | http://www.digikey.com/product-highlights/cn/zh/segger-microcontroller-systems-flasher-tools/3226 |
电压-电源(Vcc/Vdd) | 1.8 V ~ 3.6 V |
电源电压-最大 | 3.6 V |
电源电压-最小 | 1.8 V |
程序存储器大小 | 8 kB |
程序存储器类型 | Flash |
程序存储容量 | 8KB(8K x 8) |
系列 | STM8L151F3 |
输入/输出端数量 | 18 I/O |
连接性 | I²C, IrDA, SPI, UART/USART |
速度 | 16MHz |
STM8L151C2/K2/G2/F2 STM8L151C3/K3/G3/F3 8-bit ultra-low-power MCU, up to 8 KB Flash, up to 256 bytes dat a EEPROM, RTC, timers, USART, I2C, SPI, ADC, comparators Datasheet - production data Features • Operating conditions – Operating power supply: 1.65 to 3.6 V LQFP48 (7x7mm) (without BOR), 1.8 to 3.6 V (with BOR) TSSOP20 (6.4x4 .4mm) – Temperature range: -40 to 85 or 125 °C • Low power features – 5 low-power modes: Wait, Low power run, Low-power wait, Active-halt with RTC, Halt UFQFPN32 (5x5mm) – Ultra-low leakage per I/0: 50 nA UFQFPN28 (4x4mm) UFQFPN20 (3x3mm) – Fast wakeup from Halt: 5 µs • DMA • Advanced STM8 core – 4 channels supporting ADC, SPI, I2C, USART, timers – Harvard architecture and 3-stage pipeline – 1 channel for memory-to-memory – Max freq: 16 MHz, 16 CISC MIPS peak – Up to 40 external interrupt sources • 12-bit ADC up to 1 Msps/28 channels • Reset and supply management – Temp. sensor and internal ref. voltage – Low-power, ultra safe BOR reset with 5 • 2 ultra-low-power comparators selectable thresholds – 1 with fixed threshold and 1 rail to rail – Ultra-low power POR/PDR – Wakeup capability – Programmable voltage detector (PVD) • Timers • Clock management – Two 16-bit timers with 2 channels (IC, OC, – 32 kHz and 1-16 MHz crystal oscillators PWM), quadrature encoder (TIM2, TIM3) – Internal 16 MHz factory-trimmed RC – One 8-bit timer with 7-bit prescaler (TIM4) – Internal 38 kHz low consumption RC – 1 Window and 1 independent watchdog – Clock security system – Beeper timer with 1, 2 or 4 kHz frequencies • Low power RTC • Communication interfaces – BCD calendar with alarm interrupt – One synchronous serial interface (SPI) – Digital calibration with +/- 0.5 ppm accuracy – Fast I2C 400 kHz – LSE security system – One USART – Auto-wakeup from Halt w/ periodic interrupt • Up to 41 I/Os, all mappable on interrupt vectors • Memories • Up to 20 capacitive sensing channels – Up to 8 Kbyte of Flash program memory supporting touchkey, proximity touch, linear plus 256 byte of data EEPROM with ECC touch, and rotary touch sensors – Flexible write/read protection modes • Development support – 1 Kbyte of RAM – Fast on-chip programming and non- intrusive debugging with SWIM – Bootloader using USART • 96-bit unique ID July 2018 DS7204 Rev 11 1/123 This is information on a product in full production. www.st.com
Contents STM8L151x2, STM8L151x3 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Ultra-low-power continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Advanced STM8 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 Low power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.6 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.7 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.8 Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.9 Ultra-low-power comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.10 System configuration controller and routing interface . . . . . . . . . . . . . . . 21 3.11 Touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.12 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.12.1 16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.12.2 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.13 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.13.1 Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.13.2 Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.14 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.15 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.15.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Contents 3.15.2 I²C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.15.3 USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.16 Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1 System configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.1 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 8 Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 9 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 9.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 9.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 9.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 9.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 58 9.3.3 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9.3.4 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 9.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 9.3.6 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 9.3.7 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 9.3.8 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 9.3.9 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 9.3.10 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 DS7204 Rev 11 3/123 4
Contents STM8L151x2, STM8L151x3 9.3.11 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 9.3.12 12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 9.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 10.1 ECOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 10.2 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 10.3 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 10.4 UFQFPN28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 10.5 UFQFPN20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 10.6 TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 10.7 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 11 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 List of tables List of tables Table 1. Low-density STM8L151x2/3 low power device features and peripheral counts. . . . . . . . . 12 Table 2. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 3. Legend/abbreviation for table 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 4. Low-density STM8L151x2/3 pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 5. Flash and RAM boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 6. Factory conversion registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 7. I/O port hardware register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 8. General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 9. CPU/SWIM/debug module/interrupt controller registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 10. Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 11. Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 12. Option byte description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Table 13. Unique ID registers (96 bits). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 14. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 15. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 16. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 17. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 18. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 19. Total current consumption in Run mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 20. Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 21. Total current consumption and timing in Low power run mode at VDD = 1.65 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 22. Total current consumption in Low power wait mode at VDD = 1.65 V to 3.6 V . . . . . . . . . 67 Table 23. Total current consumption and timing in Active-halt mode at VDD = 1.65 V to 3.6 V. . . . . 69 Table 24. Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. . 69 Table 25. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V . . . . . . . . . . . 70 Table 26. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Table 27. Current consumption under external reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Table 28. HSE external clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Table 29. LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Table 30. HSE oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 31. LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Table 32. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Table 33. LSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Table 34. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Table 35. Flash program and data EEPROM memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Table 36. I/O current injection susceptibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Table 37. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Table 38. Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Table 39. Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Table 40. Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 83 Table 41. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 42. SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Table 43. I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Table 44. Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Table 45. TS characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 46. Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 47. Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 DS7204 Rev 11 5/123 6
List of tables STM8L151x2, STM8L151x3 Table 48. ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Table 49. ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Table 50. ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Table 51. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Table 52. R max for f = 16 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 AIN ADC Table 53. EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Table 54. EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Table 55. ESD absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Table 56. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Table 57. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table 58. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Table 59. UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table 60. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Table 61. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Table 62. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Table 63. Low-density STM8L151x2/3 ordering information scheme. . . . . . . . . . . . . . . . . . . . . . . . 119 Table 64. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 List of figures List of figures Figure 1. Low-density STM8L151x2/3 device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 2. Low-density STM8L151x2/3 clock tree diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 3. STM8L151Cx LQFP48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 4. STM8L151Kx UFQFPN32 package pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 5. STM8L151Gx UFQFPN28 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 6. STM8L151Fx UFQFPN20 package pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 7. STM8L151Fx TSSOP20 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 8. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 9. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Figure 10. Pin input voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Figure 11. POR/BOR thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 12. Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 13. Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure 14. Typ. IDD(LPR) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 15. Typ. IDD(LPW) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Figure 16. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Figure 17. LSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Figure 18. Typical HSI frequency vs V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 DD Figure 19. Typical LSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Figure 20. Typical VIL and VIH vs VDD (high sink I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Figure 21. Typical VIL and VIH vs VDD (true open drain I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Figure 22. Typical pull-up resistance R vs V with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 PU DD Figure 23. Typical pull-up current I vs V with VIN=VSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 pu DD Figure 24. Typ. VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Figure 25. Typ. VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Figure 26. Typ. VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Figure 27. Typ. VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Figure 28. Typ. VDD - VOH @ VDD = 3.0 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Figure 29. Typ. VDD - VOH @ VDD = 1.8 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Figure 30. Typical NRST pull-up resistance R vs V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 PU DD Figure 31. Typical NRST pull-up current I vs V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 pu DD Figure 32. Recommended NRST pin configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Figure 33. SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Figure 34. SPI1 timing diagram - slave mode and CPHA=1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Figure 35. SPI1 timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Figure 36. Typical application with I2C bus and timing diagram 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Figure 37. ADC1 accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Figure 38. Typical connection diagram using the ADC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Figure 39. Power supply and reference decoupling (V not connected to V ). . . . . . . . . . . . . . 99 REF+ DDA Figure 40. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . 99 Figure 41. Max. dynamic current consumption on V supply pin during ADC REF+ conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Figure 42. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 103 Figure 43. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Figure 44. LQFP48 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Figure 45. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 DS7204 Rev 11 7/123 8
List of figures STM8L151x2, STM8L151x3 Figure 46. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Figure 47. UFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Figure 48. UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Figure 49. UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Figure 50. UFQFPN28 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Figure 51. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Figure 52. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Figure 53. UFQFPN20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Figure 54. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Figure 55. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Figure 56. TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Introduction 1 Introduction This document describes the features, pinout, mechanical data and ordering information for the low-density STM8L151x2/3 devices: STM8L151x2 and STM8L151x3 microcontrollers with a Flash memory density of up to 8 Kbyte. For further details on the STMicroelectronics ultra-low-power family please refer to Section 2.2: Ultra-low-power continuum on page 13. For detailed information on device operation and registers, refer to the reference manual (RM0031). For information on to the Flash program memory and data EEPROM, refer to the programming manual (PM0054). For information on the debug module and SWIM (single wire interface module), refer to the STM8 SWIM communication protocol and debug module user manual (UM0470). For information on the STM8 core, refer to the STM8 CPU programming manual (PM0044). Low-density devices provide the following benefits: • Integrated system – Up to 8 Kbyte of low-density embedded Flash program memory – 256 byte of data EEPROM – 1 Kbyte of RAM – Internal high-speed and low-power low speed RC. – Embedded reset • Ultra-low-power consumption – 1 µA in Active-halt mode – Clock gated system and optimized power management – Capability to execute from RAM for Low power wait mode and Low power run mode • Advanced features – Up to 16 MIPS at 16 MHz CPU clock frequency – Direct memory access (DMA) for memory-to-memory or peripheral-to-memory access. • Short development cycles – Application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals. – Wide choice of development tools DS7204 Rev 11 9/123 49
Introduction STM8L151x2, STM8L151x3 STM8L ultra-low-power microcontrollers can operate either from 1.8 to 3.6 V (down to 1.65 V at power-down) or from 1.65 to 3.6 V. They are available in the -40 to +85 °C and -40 to +125 °C temperature ranges. These features make the STM8L ultra-low-power microcontroller families suitable for a wide range of applications: • Medical and hand-held equipment • Application control and user interface • PC peripherals, gaming, GPS and sport equipment • Alarm systems, wired and wireless sensors • Metering The devices are offered in five different packages from 20 to 48 pins. Different sets of peripherals are included depending on the device. Refer to Section 3 for an overview of the complete range of peripherals proposed in this family. All STM8L ultra-low-power products are based on the same architecture with the same memory mapping and a coherent pinout. Figure 1 shows the block diagram of the STM8L low-density family. 10/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Description 2 Description The low-density STM8L151x2/3 ultra-low-power devices feature an enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations. The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive in-application debugging and ultrafast Flash programming. All low-density STM8L151x2/3 microcontrollers feature embedded data EEPROM and low- power low-voltage single-supply program Flash memory. The devices incorporate an extensive range of enhanced I/Os and peripherals, a 12-bit ADC, two comparators, a real-time clock, two 16-bit timers, one 8-bit timer, as well as standard communication interfaces such as an SPI, an I2C interface, and one USART. The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools. DS7204 Rev 11 11/123 49
Description STM8L151x2, STM8L151x3 2.1 Device overview Table 1 . Low-density STM8L151x2/3 low power device features and peripheral counts STM8L151K3/ STM8L151K2/ Features STM8L151F3 STM8L151G3 STM8L151F2 STM8L151G2 STM8L151C3 STM8L151C2 Flash (Kbyte) 8 4 Data EEPROM 256 (byte) RAM (Kbyte) 1 1 Basic (8-bit) Timers General 2 purpose (16-bit) SPI 1 Commun -ication I2C 1 interfaces USART 1 GPIOs 18 (1) 26 (1) 30(2)/41(1)(2) 18 (1) 26 (1) 30(2)/41(1)(2) 12-bit synchronized 1 1 1 1 1 1 ADC (number of (10) (18) (23/28)(3) (10) (18) (23/28)(3) channels) Comparators 2 (COMP1/COMP2) RTC, window watchdog, independent watchdog, Others 16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external oscillator CPU frequency 16 MHz 1.8 to 3.6 V (down to 1.65 V at power-down) with BOR Operating voltage 1.65 to 3.6 V without BOR Operating − 40 to +85 °C / − 40 to +125 °C temperature TSSOP20 UFQFPN32 TSSOP20 UFQFPN32 Packages UFQFPN28 UFQFPN28 UFQFPN20 LQFP48 UFQFPN20 LQFP48 1. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1). 2. 26 GPIOs in the STM8L151K3 and 40 GPIOs in the STM8L151C3. 3. 22 channels in the STM8L151K3 and 28 channels in the STM8L151C3. 12/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Description 2.2 Ultra-low-power continuum The ultra-low-power low-density STM8L151x2/3 devices are fully pin-to-pin, software and feature compatible. Besides the full compatibility within the family, the devices are part of STMicroelectronics microcontrollers ultra-low-power strategy which also includes STM8L101xx and STM8L15xxx. The STM8L and STM32L families allow a continuum of performance, peripherals, system architecture, and features. They are all based on STMicroelectronics 0.13 µm ultra-low leakage process. Note: The STM8L151xx and STM8L152xx are pin-to-pin compatible with STM8L101xx devices. Performance All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM® Cortex®-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios. This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs. Shared peripherals STM8L151xx/152xx and STM8L15xxx share identical peripherals which ensure a very easy migration from one family to another: • Analog peripherals: ADC1 and comparators COMP1/COMP2 • Digital peripherals: RTC and some communication interfaces Common system strategy To offer flexibility and optimize performance, the STM8L151xx/152xx and STM8L15xxx devices use a common architecture: • Same power supply range from 1.8 to 3.6 V, down to 1.65 V at power down • Architecture optimized to reach ultra-low consumption both in low power modes and Run mode • Fast startup strategy from low power modes • Flexible system clock • Ultra-safe reset: same reset strategy for both STM8L15x and STM32L15xxx including power-on reset, power-down reset, brownout reset and programmable voltage detector. Features ST ultra-low-power continuum also lies in feature compatibility: • More than 10 packages with pin count from 20 to 100 pins and size down to 3 x 3 mm • Memory density ranging from 4 to 128 Kbyte DS7204 Rev 11 13/123 49
Functional overview STM8L151x2, STM8L151x3 3 Functional overview Figure 1. Low-density STM8L151x2/3 device block diagram OSC_IN, @VDD OSC_OUT 1-16 MHz oscillator Clock VDD18 Po wer VDD= 1.65 V 16 MHz internal RC controller VSS to 3.6 V OSC32_IN, and CSS VOLT. REG. OSC32_OUT 32 kHz oscillator Clocks to core and 38 kHz internal RC peripherals RESET NRST Interrupt controller STM8 Core POR/PDR SWIM Debug module BOR (SWIM) PVD PVD_IN 2 channels 16-bit Timer 2 (2) up to 2 channels 16-bit Timer 3 (2) 8-Kbyte Programmemory 8-bit Timer 4(2) es 256-byte s u Data EEPROM b a IR_TIM Infrared interface at 1-Kbyte RAM d DMA1 (4 channels) nd a SCL, SSDMAB, I²C1 rol Port A PA[7:0] SPSI1P_IM1_OSSCI,K S, PSIP1I_1M_NISSOS, SPI1 s, cont PPoorrtt CB PPBC[[77::00]] s e USART1_RX, USART1_TX, ddr Port D PD[7:0] USART1_CK USART1 A Port E PE[7:0] VDDA, VSSA @VDDA/VSSA Port F PF0 ADC1_INx V 12-bit ADC1 VDDREF Beeper BEEP SSREF Temp sensor RTC ALARM, CALIB, Internal reference IWDG VREFINT out voltage (38 kHz clock) COMP1_INP COMP 1 WWDG COMP2_INP COMP2_INM COMP 2 MS18275V2 1. Legend: ADC: Analog-to-digital converter BOR: Brownout reset DMA: Direct memory access I²C: Inter-integrated circuit multi master interface IWDG: Independent watchdog POR/PDR: Power on reset / power down reset RTC: Real-time clock SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous asynchronous receiver transmitter WWDG: Window watchdog 2. There is no TIM1 on STM8L151x2, STM8L151x3 devices. 14/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Functional overview 3.1 Low-power modes The low-density STM8L151x2/3 devices support five low power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: • Wait mode: The CPU clock is stopped, but selected peripherals keep running. An internal or external interrupt or a Reset can be used to exit the microcontroller from Wait mode (WFE or WFI mode). Wait consumption: refer to Table 20. • Low power run mode: The CPU and the selected peripherals are running. Execution is done from RAM with a low speed oscillator (LSI or LSE). Flash and data EEPROM are stopped and the voltage regulator is configured in ultra-low-power mode. The microcontroller enters Low power run mode by software and can exit from this mode by software or by a reset. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Low power run mode consumption: refer to Table 21. • Low power wait mode: This mode is entered when executing a Wait for event in Low power run mode. It is similar to Low power run mode except that the CPU clock is stopped. The wakeup from this mode is triggered by a Reset or by an internal or external event (peripheral event generated by the timers, serial interfaces, DMA controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an event, the system goes back to Low power run mode. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Low power wait mode consumption: refer to Table 22. • Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup can be triggered by RTC interrupts, external interrupts or reset. Active-halt consumption: refer to Table 23 and Table 24. • Halt mode: CPU and peripheral clocks are stopped, the device remains powered on. The RAM content is preserved. The wakeup is triggered by an external interrupt or reset. A few peripherals have also a wakeup from Halt capability. Switching off the internal reference voltage reduces power consumption. Through software configuration it is also possible to wake up the device without waiting for the internal reference voltage wakeup time to have a fast wakeup time of 5 µs. Halt consumption: refer to Table 25. 3.2 Central processing unit STM8 3.2.1 Advanced STM8 Core The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline. It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions. DS7204 Rev 11 15/123 49
Functional overview STM8L151x2, STM8L151x3 Architecture and registers • Harvard architecture • 3-stage pipeline • 32-bit wide program memory bus - single cycle fetching most instructions • X and Y 16-bit index registers - enabling indexed addressing modes with or without offset and read-modify-write type data manipulations • 8-bit accumulator • 24-bit program counter - 16 Mbyte linear memory space • 16-bit stack pointer - access to a 64 Kbyte level stack • 8-bit condition code register - 7 condition flags for the result of the last instruction Addressing • 20 addressing modes • Indexed indirect addressing mode for lookup tables located anywhere in the address space • Stack pointer relative addressing mode for local variables and parameter passing Instruction set • 80 instructions with 2-byte average instruction size • Standard data movement and logic/arithmetic functions • 8-bit by 8-bit multiplication • 16-bit by 8-bit and 16-bit by 16-bit division • Bit manipulation • Data transfer between stack and accumulator (push/pop) with direct stack access • Data transfer using the X and Y registers or direct memory-to-memory transfers 3.2.2 Interrupt controller The low-density STM8L151x2/3 feature a nested vectored interrupt controller: • Nested interrupts with 3 software priority levels • 32 interrupt vectors with hardware priority • Up to 40 external interrupt sources on 11 vectors • Trap and reset interrupts 16/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Functional overview 3.3 Reset and supply management 3.3.1 Power supply scheme The device requires a 1.65 V to 3.6 V operating supply voltage (V ). The external power DD supply pins must be connected as follows: • V ; V = 1.8 to 3.6 V, down to 1.65 V at power down: external power supply for SS1 DD1 I/Os and for the internal regulator. Provided externally through V pins, the DD1 corresponding ground pin is V . SS1 • V V = 1.8 to 3.6 V, down to 1.65 V at power down: external power supplies for SSA; DDA analog peripherals (minimum voltage to be applied to V is 1.8 V when the ADC1 is DDA used). V and V must be connected to V and V , respectively. DDA SSA DD1 SS1 • V ; V = 1.8 to 3.6 V, down to 1.65 V at power down: external power supplies for SS2 DD2 I/Os. V and V must be connected to V and V , respectively. DD2 SS2 DD1 SS1 • V ; V (for ADC1): external reference voltage for ADC1. Must be provided REF+ REF- externally through V and V pin. REF+ REF- 3.3.2 Power supply supervisor The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently (in which case, the V min value at power down is 1.65 V). DD Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains under reset when V is below a specified threshold, V or V , without the need DD POR/PDR BOR for any external reset circuit. The device features an embedded programmable voltage detector (PVD) that monitors the V /V power supply and compares it to the V threshold. This PVD offers 7 different DD DDA PVD levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V /V drops below the V threshold and/or when DD DDA PVD V /V is higher than the V threshold. The interrupt service routine can then generate DD DDA PVD a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.3.3 Voltage regulator The low-density STM8L151x2/3 embeds an internal voltage regulator for generating the 1.8 V power supply for the core and peripherals. This regulator has two different modes: • Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event (WFE) modes. • Low power voltage regulator mode (LPVR) for Halt, Active-halt, Low power run and Low power wait modes. When entering Halt or Active-halt modes, the system automatically switches from the MVR to the LPVR in order to reduce current consumption. DS7204 Rev 11 17/123 49
Functional overview STM8L151x2, STM8L151x3 3.4 Clock management The clock controller distributes the system clock (SYSCLK) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness. Features • Clock prescaler: to get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler • Safe clock switching: Clock sources can be changed safely on the fly in run mode through a configuration register. • Clock management: To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. • System clock sources: 4 different clock sources can be used to drive the system clock: – 1-16 MHz High speed external crystal (HSE) – 16 MHz High speed internal RC oscillator (HSI) – 32.768 kHz Low speed external crystal (LSE) – 38 kHz Low speed internal RC (LSI) • RTC clock sources: the above four sources can be chosen to clock the RTC whatever the system clock. • Startup clock: After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. • Clock security system (CSS): This feature can be enabled by software. If a HSE clock failure occurs, the system clock is automatically switched to HSI. • Configurable main clock output (CCO): This outputs an external clock for use by the application. 18/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Functional overview Figure 2. Low-density STM8L151x2/3 clock tree diagram SWIM[3:0] SYSCLK to core and OSC_OUT HSE OSC HSE memory OSC_IN 1-16 MHz HSI SYSCLK prescaler HSI RC LSI /1;2;4;8;16;32;64 PCLK to 1-16 MHz LSE Peripheral peripherals Clock enable (13 bits) LSE to BEEPCLK BEEP CLKBEEPSEL[1:0] LSI RC LSI to 38 kHz IWDGCLK IWDG RTCSEL[3:0] to RTC LSE OSC prescaler RTC OSC32_OUT /1;2;4;8;16;32;64 RTCCLK 32.768 kHz OSC32_IN Configurable HSI clock output CCO LSI CCO HSE prescaler LSE /1;2;4;8;16;32;64 CCOSEL[3:0] MS18281V2 3.5 Low power real-time clock The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter. Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day months are made automatically. It provides a programmable alarm and programmable periodic interrupts with wakeup from Halt capability. • Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is from min. 122 µs to max. 3.9 s. With a different resolution, the wakeup time can reach 36 hours • Periodic alarms based on the calendar can also be generated from every second to every year DS7204 Rev 11 19/123 49
Functional overview STM8L151x2, STM8L151x3 3.6 Memories The low-density STM8L151x2/3 devices have the following main features: • Up to 1 Kbyte of RAM • The non-volatile memory is divided into three arrays: – Up to 8 Kbyte of low-density embedded Flash program memory – 256 byte of data EEPROM – Option bytes. The EEPROM embeds the error correction code (ECC) feature. The option byte protects part of the Flash program memory from write and readout piracy. 3.7 DMA A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and peripherals-from/to-memory transfer capability. The 4 channels are shared between the following IPs with DMA capability: ADC1, I2C1, SPI1, USART1, the three Timers. 3.8 Analog-to-digital converter • 12-bit analog-to-digital converter (ADC1) with 25 channels (including 1 fast channel), temperature sensor and internal reference voltage • Conversion time down to 1 µs with f = 16 MHz SYSCLK • Programmable resolution • Programmable sampling time • Single and continuous mode of conversion • Scan capability: automatic conversion performed on a selected group of analog inputs • Analog watchdog • Triggered by timer Note: ADC1 can be served by DMA1. 3.9 Ultra-low-power comparators The low-density STM8L151x2/3 embed two comparators (COMP1 and COMP2) sharing the same current bias and voltage reference. The voltage reference can be internal or external (coming from an I/O). • One comparator with fixed threshold (COMP1). • One comparator rail to rail with fast or slow mode (COMP2). The threshold can be one of the following: – External I/O – Internal reference voltage or internal reference voltage sub multiple (1/4, 1/2, 3/4) The two comparators can be used together to offer a window function. They can wake up from Halt mode. 20/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Functional overview 3.10 System configuration controller and routing interface The system configuration controller provides the capability to remap some alternate functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped. The highly flexible routing interface controls the routing of internal analog signals to ADC1, COMP1, COMP2, and the internal reference voltage V . It also provides a set of REFINT registers for efficiently managing the charge transfer acquisition sequence (Section 3.11: Touch sensing). 3.11 Touch sensing Low-density STM8L151x2/3 devices provide a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (example, glass, plastic). The capacitive variation introduced by a finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. In low-density STM8L15xxx devices, the acquisition sequence is managed either by software or by hardware and it involves analog I/O groups, the routing interface, and timers.Reliable touch sensing solutions can be quickly and easily implemented using the free STM8 Touch Sensing Library. 3.12 Timers Low-density STM8L151x2/3devices contain two 16-bit general purpose timers (TIM2 and TIM3) and one 8-bit basic timer (TIM4). All the timers can be served by DMA1. Table 2 compares the features of the advanced control, general-purpose and basic timers. Table 2. Timer feature comparison DMA1 Counter Counter Capture/compare Complementary Timer Prescaler factor request resolution type channels outputs generation TIM2 Any power of 2 16-bit up/down 2 TIM3 from 1 to 128 Yes None Any power of 2 TIM4 8-bit up 0 from 1 to 32768 DS7204 Rev 11 21/123 49
Functional overview STM8L151x2, STM8L151x3 3.12.1 16-bit general purpose timers • 16-bit autoreload (AR) up/down-counter • 7-bit prescaler adjustable to fixed power of 2 ratios (1…128) • 2 individually configurable capture/compare channels • PWM mode • Interrupt capability on various events (capture, compare, overflow, break, trigger) • Synchronization with other timers or external signals (external clock, reset, trigger and enable) 3.12.2 8-bit basic timer The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable prescaler. It can be used for timebase generation with interrupt generation on timer overflow. 3.13 Watchdog timers The watchdog system is based on two independent timers providing maximum security to the applications. 3.13.1 Window watchdog timer The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence. 3.13.2 Independent watchdog timer The independent watchdog peripheral (IWDG) can be used to resolve processor malfunctions due to hardware or software failures. It is clocked by the internal LSI RC clock source, and thus stays active even in case of a CPU clock failure. 3.14 Beeper The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz. 22/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Functional overview 3.15 Communication interfaces 3.15.1 SPI The serial peripheral interface (SPI1) provides half/ full duplex synchronous serial communication with external devices. • Maximum speed: 8 Mbit/s (f /2) both for master and slave SYSCLK • Full duplex synchronous transfers • Simplex synchronous transfers on 2 lines with a possible bidirectional data line • Master or slave operation - selectable by hardware or software • Hardware CRC calculation • Slave/master selection input pin Note: SPI1 can be served by the DMA1 Controller. 3.15.2 I²C The I2C bus interface (I2C1) provides multi-master capability, and controls all I²C bus- specific sequencing, protocol, arbitration and timing. • Master, slave and multi-master capability • Standard mode up to 100 kHz and fast speed modes up to 400 kHz. • 7-bit and 10-bit addressing modes. • SMBus 2.0 and PMBus support • Hardware CRC calculation Note: I2C1 can be served by the DMA1 Controller. 3.15.3 USART The USART interface (USART1) allows full duplex, asynchronous communications with external devices requiring an industry standard NRZ asynchronous serial data format. It offers a very wide range of baud rates. • 1 Mbit/s full duplex SCI • SPI1 emulation • High precision baud rate generator • SmartCard emulation • IrDA SIR encoder decoder • Single wire half duplex mode Note: USART1 can be served by the DMA1 Controller. 3.16 Infrared (IR) interface The low-density STM8L151x2/3 devices contain an infrared interface which can be used with an IR LED for remote control functions. Two timer output compare channels are used to generate the infrared remote control signals. DS7204 Rev 11 23/123 49
Functional overview STM8L151x2, STM8L151x3 3.17 Development support Development tools Development tools for the STM8 microcontrollers include: • The STice emulation system offering tracing and code profiling • The STVD high-level language debugger including C compiler, assembler and integrated development environment • The STVP Flash programming software The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools. Single wire data interface (SWIM) and debug module The debug module with its single wire data interface (SWIM) permits non-intrusive real-time in-circuit debugging and fast memory programming. The single-wire interface is used for direct access to the debugging module and memory programming. The interface can be activated in all device operation modes. The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, CPU operation can also be monitored in real- time by means of shadow registers. Bootloader The low-density STM8L151x2/3 ultra-low-power devices feature a built-in bootloader (see UM0560: STM8 bootloader user manual). The bootloader is used to download application software into the device memories, including RAM, program and data memory, using standard serial interfaces. It is a complementary solution to programming via the SWIM debugging interface. 24/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Pinout and pin description 4 Pinout and pin description Figure 3. STM8L151Cx LQFP48 package pinout E7E6C7C6C5C4C3C2SSIODDIOC1C0 PPPPPPPPVVPP 48 47 46 45 44 43 42 41 40 39 38 37 PA0 1 36 PD7 NRST/PA1 2 35 PD6 PA2 3 34 PD5 PA3 4 33 PD4 PA4 5 32 PF0 PA5 6 31 PB7 PA6 7 30 PB6 VSS1/ VSSA/VVPRAE7F- 89 2298 PPBB45 VDD 10 27 PB3 V DDA 11 26 PB2 REF+ 12 25 PB1 13 14 15 16 17 18 19 20 21 22 23 24 NCPE0PE1PE2PE3PE4PE5PD0PD1PD2PD3PB0 MSv60427 Figure 4. STM8L151Kx UFQFPN32 package pinout 0 6543210 ACCCCCCC PPPPPPPP 32 31302928272625 NRST/PA1 1 24 PD7 PA2 2 23 PD6 PA3 3 22 PD5 PA4 4 21 PD4 PA5 5 20 PB7 PA6 6 19 PB6 VVDSDS11 789 10111213 1415161178 PPBB54 01230123 DDDDBBBB PPPPPPPP MS18277V1 DS7204 Rev 11 25/123 49
Pinout and pin description STM8L151x2, STM8L151x3 Figure 5. STM8L151Gx UFQFPN28 package pinout A0 C6 C5 C4 C3 C2 C1 P P P P P P P 28 27 26 25 24 23 22 NRST/PA1 1 21 PC0 PA2 2 20 PD4 PA3 3 19 PB7 PA4 4 18 PB6 PA5 5 17 PB5 VSS1/VSSA/VREF- 6 16 PB4 VDD1/VDDA/VREF+ 7 15 PB3 8 9 10 11 12 13 14 0 1 2 3 0 1 2 D D D D B B B P P P P P P P ai18250b Figure 6. STM8L151Fx UFQFPN20 package pinout 0 6541 A CCCC P PPPP 20 19 18 17 16 NRST / PA1 1 15 PC0 PA2 2 14 PB7 PA3 3 13 PB6 VSS/VSSA/VREF- 4 12 PB5 VDD/VDDA/VREF+ 5 11 PB4 6 7 8 9 10 00 1 23 DB B BB PP P PP MS18279V1 Figure 7. STM8L151Fx TSSOP20 package pinout PC5 1 20 PC4 PC6 2 19 PC1 PA0 3 18 PC0 NRST / PA1 4 17 PB7 PA2 5 16 PB6 PA3 6 15 PB5 VSS/VSSA/VREF- 7 14 PB4 VDD/VDDA/VREF+ 8 13 PB3 PD0 9 12 PB2 PB0 10 11 PB1 MS18280V1 26/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Pinout and pin description Table 3. Legend/abbreviation for table 4 Type I= input, O = output, S = power supply Output HS = high sink/source (20 mA) Level FT Five-volt tolerant Port and control Input float = floating, wpu = weak pull-up configuration Output T = true open drain, OD = open drain, PP = push pull Bold X (pin state after reset release). Reset state Unless otherwise specified, the pin state is the same during the reset phase (i.e. “under reset”) and after internal reset release (i.e. at reset state). Table 4. Low-density STM8L151x2/3 pin description Pin number Input Output n LQFP48 UFQFPN32 UFQFPN28 UFQFPN20 TSSOP20 Pin name Type I/O level floating wpu xt. interrupt h sink/source OD PP Main functio(after reset) Defafuulnt catlitoenrnate E g Hi 2 1 1 1 4 NRST/PA1(1) I/O - - X - HS - X Reset PA1 PA2/OSC_IN/ HSE oscillator input / 3 2 2 2 5 [USART_TX](2)/ I/O - X X X HS X X Port A2 [USART transmit] / [SPI [SPI_MISO] (2) master in- slave out] / PA3/OSC_OUT/[USA HSE oscillator output / 4 3 3 3 6 RT_RX](2)/[SPI_MOSI I/O - X X X HS X X Port A3 [USART receive]/ [SPI ](2) master out/slave in]/ Timer 2 - break input / PA4/TIM2_BKIN/ [Timer 2 - external [TIM2_ETR](2) 5 4 4 - - I/O - X X X HS X X Port A4 trigger] /ADC1 input 2/ ADC1_IN2/ Comparator1 positive COMP1_INP input Timer 3 - break input / PA5/TIM3_BKIN/ [Timer 3 - external [TIM3_ETR](2)/ 6 5 5 - - I/O - X X X HS X X Port A5 trigger] /ADC1input 1/ ADC1_IN1/ Comparator1 positive COMP1_INP input ADC1- trigger PA6/ADC1_TRIG/ /ADC1input 0/ 7 6 - - - ADC1_IN0/ I/O - X X X HS X X Port A6 Comparator1 positive COMP1_INP input 8 - - - - PA7 I/O - X X X HS X X Port A7 - Timer 2 - channel 1 / PB0(3)/TIM2_CH1/ ADC1_IN18/ 24 13 12 7 10 ADC1_IN18/ I/O - X X X HS X X Port B0 Comparator1 positive COMP1_INP input DS7204 Rev 11 27/123 49
Pinout and pin description STM8L151x2, STM8L151x3 Table 4. Low-density STM8L151x2/3 pin description (continued) Pin number Input Output n LQFP48 UFQFPN32 UFQFPN28 UFQFPN20 TSSOP20 Pin name Type I/O level floating wpu xt. interrupt h sink/source OD PP Main functio(after reset) Defafuulnt catlitoenrnate E g Hi Timer 3 - channel1/ PB1/TIM3_CH1/ ADC1_IN17/ 25 14 13 8 11 ADC1_IN17/ I/O - X X X HS X X Port B1 Comparator1 positive COMP1_INP input Timer 2 - channel2 PB2/ TIM2_CH2/ ADC1_IN16/ 26 15 14 9 12 ADC1_IN16/ I/O - X X X HS X X Port B2 Comparator1 positive COMP1_INP input Timer 2 - external PB3/TIM2_ETR/ trigger / ADC1_IN15 / ADC1_IN15/RTC_AL 27 16 15 10 13 I/O - X X X HS X X Port B3 RTC_ALARM ARM(4)/ (4)/Comparator1 COMP1_INP positive input SPI master/slave select PB4(3)/SPI1_NSS/ / ADC1_IN14/ 28 17 16 11 14 ADC1_IN14/ I/O - X X X HS X X Port B4 Comparator1 positive COMP1_INP input [SPI clock] / PB5/SPI_SCK/ ADC1_IN13/ 29 18 17 12 15 /ADC1_IN13/ I/O - X X X HS X X Port B5 Comparator 1 positive COMP1_INP input SPI master out/ PB6/SPI1_MOSI/ slave in / ADC1_IN12/ 30 19 18 13 16 ADC1_IN12/ I/O - X X X HS X X Port B6 Comparator1 positive COMP1_INP input SPI1 master in-slave PB7/SPI1_MISO/ out/ ADC1_IN11/ 31 20 19 14 17 ADC1_IN11/ I/O - X X X HS X X Port B7 Comparator1 positive COMP1_INP input 37 25 21 15 18 PC0/I2C_SDA I/O FT X X T(5) Port C0 I2C data 38 26 22 16 19 PC1/I2C_SCL I/O FT X X T(5) Port C1 I2C clock USART receive / PC2/USART_RX/ADC ADC1_IN6/ 41 27 23 - - 1_IN6/ I/O - X X X HS X X Port C2 Comparator1 positive COMP1_INP input USART transmit / PC3/USART_TX/ ADC1_IN5/ ADC1_IN5/ 42 28 24 - - I/O - X X X HS X X Port C3 Comparator1 positive COMP1_INP/ input/Comparator 2 COMP2_INM negative input 28/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Pinout and pin description Table 4. Low-density STM8L151x2/3 pin description (continued) Pin number Input Output n LQFP48 UFQFPN32 UFQFPN28 UFQFPN20 TSSOP20 Pin name Type I/O level floating wpu xt. interrupt h sink/source OD PP Main functio(after reset) Defafuulnt catlitoenrnate E g Hi USART synchronous PC4/USART_CK]/ clock / I2C1_SMB / I2C_SMB/CCO/ Configurable clock 43 29 25 17 20 ADC1_IN4/ I/O - X X X HS X X Port C4 output / ADC1_IN4/ COMP1_INP/ Comparator1 positive COMP2_INM input/Comparator 2 negative input LSE oscillator input / PC5/OSC32_IN [SPI master/slave /[SPI1_NSS](2)/ 44 30 26 18 1 I/O - X X X HS X X Port C5 select] / [USART [USART_TX](2)/ transmit]/ TIM2_CH1(6) Timer 2 -channel 1(6) PC6/OSC32_OUT/ LSE oscillator output / [SPI_SCK](2)/ [SPI clock] / [USART 45 31 27 19 2 I/O - X X X HS X X Port C6 [USART_RX](2)/ receive]/ TIM2_CH2(6) Timer 2 -channel 2(6) ADC1_IN3/ PC7/ADC1_IN3/ Comparator1 positive 46 - - - - COMP1_INP/ I/O - X X X HS X X Port C7 input/Comparator 2 COMP2_INM negative input Timer 3 - channel 2 / PD0/TIM3_CH2/ [ADC1_Trigger] / [ADC1_TRIG](2)/ ADC1_IN22/ 20 9 8 6 9 ADC1_IN22/ I/O - X X X HS X X Port D0 Comparator1 positive COMP1_INP/ input/Comparator 2 COMP2_INP positive input Timer 3 - external PD1/TIM3_ETR/ trigger / ADC1_IN21/ ADC1_IN21/ 21 10 9 - - I/O - X X X HS X X Port D1 Comparator1 positive COMP1_INP/ input/Comparator 2 COMP2_INP positive input ADC1_IN20/ PD2/ADC1_IN20/ 22 11 10 - - I/O - X X X HS X X Port D2 Comparator1 positive COMP1_INP input ADC1_IN19/ PD3/ADC1_IN19/ RTC calibration(7)/ 23 12 11 - - RTC_CALIB(7)/ I/O - X X X HS X X Port D3 Comparator1 positive COMP1_INP input ADC1_IN10/ PD4/ADC1_IN10/ 33 21 20 - - I/O - X X X HS X X Port D4 Comparator1 positive COMP1_INP input DS7204 Rev 11 29/123 49
Pinout and pin description STM8L151x2, STM8L151x3 Table 4. Low-density STM8L151x2/3 pin description (continued) Pin number Input Output n LQFP48 UFQFPN32 UFQFPN28 UFQFPN20 TSSOP20 Pin name Type I/O level floating wpu xt. interrupt h sink/source OD PP Main functio(after reset) Defafuulnt catlitoenrnate E g Hi ADC1_IN9/ PD5/ ADC1_IN9/ 34 22 - - - I/O - X X X HS X X Port D5 Comparator1 positive COMP1_INP input ADC1_IN8 / RTC PD6/ADC1_IN8/ calibration/ 35 23 - - - RTC_CALIB/ I/O - X X X HS X X Port D6 Comparator1 positive COMP1_INP input PD7 /ADC1_IN7/ ADC1_IN7/RTC alarm/ 36 24 - - - RTC_ALARM/ I/O - X X X HS X X Port D7 Comparator1 positive COMP1_INP input 14 - - - - PE0 I/O - X X X HS X X Port E0 - 15 - - - - PE1 I/O - X X X HS X X Port E1 - 16 - - - - PE2 I/O - X X X HS X X Port E2 - 17 - - - - PE3/ADC1_IN26 I/O - X X X HS X X Port E3 ADC1_IN26 18 - - - - PE4/ADC1_IN27 I/O - X X X HS X X Port E4 ADC1_IN27 ADC1_IN23/ PE5/ADC1_IN23/ Comparator 1 positive 19 - - - - COMP1_INP/ I/O - X X X HS X X Port E5 input/Comparator 2 COMP2_INP positive input 47 - - - - PE6/PVD_IN I/O - X X X HS X X Port E6 PVD_IN 48 - - - - PE7/ADC1_IN25 I/O - X X X HS X X Port E7 ADC1_IN25 32 - - - - PF0/ADC1_IN24 I/O - X X X HS X X Port F0 ADC1_IN24 10 - - - - V S - - - - - - - Digital supply voltage DD Digital supply voltage / - 8 7 5 8 V /V / V S - - - - - - - DD DDA REF+ ADC1 positive voltage reference Ground voltage / ADC1 negative 9 7 6 4 7 V / V / V S - - - - - - - voltage reference / Analog ground SS REF- SSA voltage 11 - - - - V S - - - - - - - Analog supply voltage DDA ADC1 positive voltage 12 - - - - V S - - - - - - - REF+ reference 13 - - - - Reserved - - - - - - - - Pin not connected 30/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Pinout and pin description Table 4. Low-density STM8L151x2/3 pin description (continued) Pin number Input Output n LQFP48 UFQFPN32 UFQFPN28 UFQFPN20 TSSOP20 Pin name Type I/O level floating wpu xt. interrupt h sink/source OD PP Main functio(after reset) Defafuulnt catlitoenrnate E g Hi [USART1 synchronous PA0(8)/[USART_CK](2) clock](2) / SWIM input / HS 1 32 28 20 3 I/O X X X X X Port A0 and output / SWIM/BEEP/IR_TIM (9) Beep output / Infrared (9) Timer output 40 - - - - V S - - - - - - - I/O ground voltage SSIO 39 - - - - V S - - - - - - - I/O supply voltage DDIO 1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section Configuring NRST/PA1 pin as general purpose output in the STM8L15xxx and STM8L16xxx reference manual (RM0031). 2. [ ] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function). 3. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release. 4. 20-pin and 28-pin packages only. 5. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer and protection diode to V are not DD implemented). 6. 20-pin packages only. 7. 28-pin packages only 8. The PA0 pin is in input pull-up during the reset phase and after reset release. 9. High Sink LED driver capability available on PA0. Note: The slope control of all GPIO pins, except true open drain pins, can be programmed. By default, the slope control is limited to 2 MHz. 4.1 System configuration options As shown in Table 4: Low-density STM8L151x2/3 pin description, some alternate functions can be remapped on different I/O ports by programming one of the two remapping registers described in the “Routing interface (RI) and system configuration controller” section in the STM8L15xxx and STM8L16xxx reference manual (RM0031). DS7204 Rev 11 31/123 49
Memory and register map STM8L151x2, STM8L151x3 5 Memory and register map 5.1 Memory mapping The memory map is shown in Figure 8. Figure 8. Memory map 0x00 5000 0x00 0000 GPIO ports RAM (U p to 1Kby te) 0x00 501E Reserved 0x00 5050 including Flash 0x00 03FF Stack (512bytes) 0x00 5055 Reserved 0x00 0400 0x00 5070 Reserved DMA1 0x00 1FFF 0x00 509D SYSCFG 0x00 1000 0x00 50A0 ITC-EXT1 Data EEPROM 0x00 50A6 (256 Bytes) WFE 0x00 10FF 0x00 50AA 0x00 1100 ITC-EXT1 0x00 50A9 Reserved Reserved 0x00 50B0 RST 0x00 47FF 0x00 50B2 0x00 4800 PWR Option bytes 0x00 50B4 Reserved 0x00 487F 0x00 50C0 0x00 4880 CLK 0x00 50D1 Reserved Reserved 0x00 50D3 0x00 4909 WWDG 0x00 4910 VREFINT_Factory_CONV 0x00 50D5 0x00 4911 0x00 50E0 Reserved 0x00 4912 TS_Fact ory_CONV_V90 IWDG 0x00 50E3 0x00 4925 Reserved 0x00 50F0 Reserved 0x00 4926 Unique ID BEEP 0x00 4931 0x00 50F4 Reserved 0x00 4932 0x00 5040 0x00 4FFF Reserved 0x00 5191 RTC 0x00 5000 Reserved 0x00 5200 GPIO and peripheral registers 0x00 5208 SPI1 0x00 5457 Reserved 0x00 5458 0x00 5210 I2C1 0x00 521F Reserved Reserved 0x00 5FFF 0x00 5230 0x00 6000 0x00 523B USART1 Boot ROM Reserved 0x00 5250 0x00 67FF (2 Kbytes) 0x00 5267 TIM2 0x00 6800 Reserved 0x00 5280 Reserved TIM3 0x00 5297 0x00 7EFF Reserved 0x00 7F00 0x00 52E0 TIM4 CPU/SWIM/Debug/ITC 0x00 52EA Registers 0x00 52FF Reserved IRTIM 0x00 7FFF 0x00 5317 0x00 8000 Reserved Reset and interrupt vectors 0x00 5340 0x00 80FF 0x00 53C8 ADC1 0x00 8100 Reserved 0x00 5430 Low density RI 0x00 5440 Flash progr am memory COMP1/COMP2 0x00 5445 (up to 8 Kbytes) Reserved 0x00 9FFF 0x00 5450 RI 0x00 5457 MS18274V2 1. Table 5 lists the boundary addresses for each memory size. The top of the stack is at the RAM end address. 2. The VREFINT_Factory_CONV byte represents the LSB of the V 12-bit ADC1 conversion result. The REFINT 32/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Memory and register map MSB have a fixed value: 0x6. 3. The TS_Factory_CONV_V90 byte represents the LSB of the V 12-bit ADC1 conversion result. The MSB 90 have a fixed value: 0x3. 4. Refer to Table 8 for an overview of hardware register mapping, to Table 7 for details on I/O port hardware registers, and to Table 9 for information on CPU/SWIM/debug module controller registers. Table 5. Flash and RAM boundary addresses Memory area Size Start address End address RAM 1 Kbyte 0x00 0000 0x00 03FF 8 Kbyte 0x00 8000 0x00 9FFF Flash program memory 4 Kbyte 0x00 8000 0x00 8FFF 5.2 Register map Table 6. Factory conversion registers Reset Address Block Register label Register name status VREFINT_Factory_ Value of the internal reference voltage 0x00 4910 - 0xXX CONV measured during the factory phase Value of the temperature sensor output TS_Factory_CONV_ 0x00 4911 - voltage measured during the factory 0xXX V90 phase Table 7. I/O port hardware register map Reset Address Block Register label Register name status 0x00 5000 PA_ODR Port A data output latch register 0x00 0x00 5001 PA_IDR Port A input pin value register 0xXX 0x00 5002 Port A PA_DDR Port A data direction register 0x00 0x00 5003 PA_CR1 Port A control register 1 0x01 0x00 5004 PA_CR2 Port A control register 2 0x00 0x00 5005 PB_ODR Port B data output latch register 0x00 0x00 5006 PB_IDR Port B input pin value register 0xXX 0x00 5007 Port B PB_DDR Port B data direction register 0x00 0x00 5008 PB_CR1 Port B control register 1 0x00 0x00 5009 PB_CR2 Port B control register 2 0x00 DS7204 Rev 11 33/123 49
Memory and register map STM8L151x2, STM8L151x3 Table 7. I/O port hardware register map (continued) Reset Address Block Register label Register name status 0x00 500A PC_ODR Port C data output latch register 0x00 0x00 500B PC_IDR Port C input pin value register 0xXX 0x00 500C Port C PC_DDR Port C data direction register 0x00 0x00 500D PC_CR1 Port C control register 1 0x00 0x00 500E PC_CR2 Port C control register 2 0x00 0x00 500F PD_ODR Port D data output latch register 0x00 0x00 5010 PD_IDR Port D input pin value register 0xXX 0x00 5011 Port D PD_DDR Port D data direction register 0x00 0x00 5012 PD_CR1 Port D control register 1 0x00 0x00 5013 PD_CR2 Port D control register 2 0x00 0x00 5014 PE_ODR Port E data output latch register 0x00 0x00 5015 PE_IDR Port E input pin value register 0xXX 0x00 5016 Port E PE_DDR Port E data direction register 0x00 0x00 5017 PE_CR1 Port E control register 1 0x00 0x00 5018 PE_CR2 Port E control register 2 0x00 0x00 5019 PF_ODR Port F data output latch register 0x00 0x00 501A PF_IDR Port F input pin value register 0xXX 0x00 501B Port F PF_DDR Port F data direction register 0x00 0x00 501C PF_CR1 Port F control register 1 0x00 0x00 501D PF_CR2 Port F control register 2 0x00 Table 8. General hardware register map Address Block Register label Register name Reset status 0x00 502E to Reserved area (44 byte) 0x00 5049 0x00 5050 FLASH_CR1 Flash control register 1 0x00 0x00 5051 FLASH_CR2 Flash control register 2 0x00 Flash program memory unprotection key 0x00 5052 FLASH _PUKR 0x00 register Flash Flash data EEPROM unprotection key 0x00 5053 FLASH _DUKR 0x00 register Flash in-application programming status 0x00 5054 FLASH _IAPSR 0x00 register 34/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Memory and register map Table 8. General hardware register map (continued) Address Block Register label Register name Reset status 0x00 5055 to Reserved area (27 byte) 0x00 506F 0x00 5070 DMA1_GCSR DMA1 global configuration & status register 0xFC 0x00 5071 DMA1_GIR1 DMA1 global interrupt register 1 0x00 0x00 5072 to Reserved area (3 byte) 0x00 5074 0x00 5075 DMA1_C0CR DMA1 channel 0 configuration register 0x00 0x00 5076 DMA1_C0SPR DMA1 channel 0 status & priority register 0x00 DMA1 number of data to transfer register 0x00 5077 DMA1_C0NDTR 0x00 (channel 0) DMA1 peripheral address high register 0x00 5078 DMA1_C0PARH 0x52 (channel 0) DMA1 peripheral address low register 0x00 5079 DMA1_C0PARL 0x00 (channel 0) 0x00 507A Reserved area (1 byte) DMA1 DMA1 memory 0 address high register 0x00 507B DMA1_C0M0ARH 0x00 (channel 0) DMA1 memory 0 address low register 0x00 507C DMA1_C0M0ARL 0x00 (channel 0) 0x00 507D to Reserved area (2 byte) 0x00 507E 0x00 507F DMA1_C1CR DMA1 channel 1 configuration register 0x00 0x00 5080 DMA1_C1SPR DMA1 channel 1 status & priority register 0x00 DMA1 number of data to transfer register 0x00 5081 DMA1_C1NDTR 0x00 (channel 1) DMA1 peripheral address high register 0x00 5082 DMA1_C1PARH 0x52 (channel 1) DMA1 peripheral address low register 0x00 5083 DMA1_C1PARL 0x00 (channel 1) DS7204 Rev 11 35/123 49
Memory and register map STM8L151x2, STM8L151x3 Table 8. General hardware register map (continued) Address Block Register label Register name Reset status 0x00 5084 Reserved area (1 byte) DMA1 memory 0 address high register 0x00 5085 DMA1_C1M0ARH 0x00 (channel 1) DMA1 memory 0 address low register 0x00 5086 DMA1_C1M0ARL 0x00 (channel 1) 0x00 5087 Reserved area (2 byte) 0x00 5088 0x00 5089 DMA1_C2CR DMA1 channel 2 configuration register 0x00 0x00 508A DMA1_C2SPR DMA1 channel 2 status & priority register 0x00 DMA1 number of data to transfer register 0x00 508B DMA1_C2NDTR 0x00 (channel 2) DMA1 peripheral address high register 0x00 508C DMA1_C2PARH 0x52 (channel 2) DMA1 peripheral address low register 0x00 508D DMA1_C2PARL 0x00 (channel 2) 0x00 508E Reserved area (1 byte) DMA1 memory 0 address high register 0x00 508F DMA1_C2M0ARH 0x00 (channel 2) DMA1 memory 0 address low register 0x00 5090 DMA1 DMA1_C2M0ARL 0x00 (channel 2) 0x00 5091 Reserved area (2 byte) 0x00 5092 0x00 5093 DMA1_C3CR DMA1 channel 3 configuration register 0x00 0x00 5094 DMA1_C3SPR DMA1 channel 3 status & priority register 0x00 DMA1 number of data to transfer register 0x00 5095 DMA1_C3NDTR 0x00 (channel 3) DMA1_C3PARH_ DMA1 peripheral address high register 0x00 5096 0x40 C3M1ARH (channel 3) DMA1_C3PARL_ DMA1 peripheral address low register 0x00 5097 0x00 C3M1ARL (channel 3) DMA channel 3 memory 0 extended 0x00 5098 DMA_C3M0EAR 0x00 address register DMA1 memory 0 address high register 0x00 5099 DMA1_C3M0ARH 0x00 (channel 3) DMA1 memory 0 address low register 0x00 509A DMA1_C3M0ARL 0x00 (channel 3) 0x00 509B to Reserved area (3 byte) 0x00 509C 36/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Memory and register map Table 8. General hardware register map (continued) Address Block Register label Register name Reset status 0x00 509D SYSCFG_RMPCR3 Remapping register 3 0x00 0x0C 0x00 509E SYSCFG SYSCFG_RMPCR1 Remapping register 1 0x2C(1) 0x00 509F SYSCFG_RMPCR2 Remapping register 2 0x00 0x00 50A0 EXTI_CR1 External interrupt control register 1 0x00 0x00 50A1 EXTI_CR2 External interrupt control register 2 0x00 0x00 50A2 EXTI_CR3 External interrupt control register 3 0x00 ITC - EXTI 0x00 50A3 EXTI_SR1 External interrupt status register 1 0x00 0x00 50A4 EXTI_SR2 External interrupt status register 2 0x00 0x00 50A5 EXTI_CONF1 External interrupt port select register 1 0x00 0x00 50A6 WFE_CR1 WFE control register 1 0x00 0x00 50A7 WFE_CR2 WFE control register 2 0x00 WFE 0x00 50A8 WFE_CR3 WFE control register 3 0x00 0x00 50A9 WFE_CR4 WFE control register 4 0x00 0x00 50AA EXTI_CR4 External interrupt control register 4 0x00 ITC - EXTI 0x00 50AB EXTI_CONF2 External interrupt port select register 2 0x00 0x00 50A9 to Reserved area (7 byte) 0x00 50AF 0x00 50B0 RST_CR Reset control register 0x00 RST 0x00 50B1 RST_SR Reset status register 0x01 0x00 50B2 PWR_CSR1 Power control and status register 1 0x00 PWR 0x00 50B3 PWR_CSR2 Power control and status register 2 0x00 0x00 50B4 to Reserved area (12 byte) 0x00 50BF DS7204 Rev 11 37/123 49
Memory and register map STM8L151x2, STM8L151x3 Table 8. General hardware register map (continued) Address Block Register label Register name Reset status 0x00 50C0 CLK_CKDIVR CLK clock master divider register 0x03 0x00 50C1 CLK_CRTCR CLK clock RTC register 0x00(2) 0x00 50C2 CLK_ICKCR CLK internal clock control register 0x11 0x00 50C3 CLK_PCKENR1 CLK peripheral clock gating register 1 0x00 0x00 50C4 CLK_PCKENR2 CLK peripheral clock gating register 2 0x00 0x00 50C5 CLK_CCOR CLK configurable clock control register 0x00 0x00 50C6 CLK_ECKCR CLK external clock control register 0x00 0x00 50C7 CLK_SCSR CLK system clock status register 0x01 0x00 50C8 CLK CLK_SWR CLK system clock switch register 0x01 0x00 50C9 CLK_SWCR CLK clock switch control register 0xX0 0x00 50CA CLK_CSSR CLK clock security system register 0x00 0x00 50CB CLK_CBEEPR CLK clock BEEP register 0x00 0x00 50CC CLK_HSICALR CLK HSI calibration register 0xXX 0x00 50CD CLK_HSITRIMR CLK HSI clock calibration trimming register 0x00 0x00 50CE CLK_HSIUNLCKR CLK HSI unlock register 0x00 0x00 50CF CLK_REGCSR CLK main regulator control status register 0bxx11 100X 0x00 50D0 CLK_PCKENR3 CLK peripheral clock gating register 3 0x00 0x00 50D1 to Reserved area (2 byte) 0x00 50D2 0x00 50D3 WWDG_CR WWDG control register 0x7F WWDG 0x00 50D4 WWDG_WR WWDR window register 0x7F 0x00 50D5 to Reserved area (11 byte) 00 50DF 0x00 50E0 IWDG_KR IWDG key register 0x01 0x00 50E1 IWDG IWDG_PR IWDG prescaler register 0x00 0x00 50E2 IWDG_RLR IWDG reload register 0xFF 0x00 50E3 to Reserved area (13 byte) 0x00 50EF 0x00 50F0 BEEP_CSR1 BEEP control/status register 1 0x00 0x00 50F1 BEEP Reserved area (2 byte) 0x00 50F2 0x00 50F3 BEEP_CSR2 BEEP control/status register 2 0x1F 0x00 50F4 to Reserved area (76 byte) 0x00 513F 38/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Memory and register map Table 8. General hardware register map (continued) Address Block Register label Register name Reset status 0x00 5140 RTC_TR1 RTC time register 1 0x00 0x00 5141 RTC_TR2 RTC time register 2 0x00 0x00 5142 RTC_TR3 RTC time register 3 0x00 0x00 5143 Reserved area (1 byte) 0x00 5144 RTC_DR1 RTC date register 1 0x01 0x00 5145 RTC_DR2 RTC date register 2 0x21 0x00 5146 RTC_DR3 RTC date register 3 0x00 0x00 5147 Reserved area (1 byte) 0x00 5148 RTC_CR1 RTC control register 1 0x00(2) 0x00 5149 RTC_CR2 RTC control register 2 0x00(2) 0x00 514A RTC_CR3 RTC control register 3 0x00(2) 0x00 514B Reserved area (1 byte) 0x00 514C RTC_ISR1 RTC initialization and status register 1 0x01 0x00 514D RTC_ISR2 RTC initialization and Status register 2 0x00 0x00 514E Reserved area (2 byte) 0x00 514F 0x00 5150 RTC_SPRERH RTC synchronous prescaler register high 0x00(2) RTC 0x00 5151 RTC_SPRERL RTC synchronous prescaler register low 0xFF(2) 0x00 5152 RTC_APRER RTC asynchronous prescaler register 0x7F(2) 0x00 5153 Reserved area (1 byte) 0x00 5154 RTC_WUTRH RTC wakeup timer register high 0xFF(2) 0x00 5155 RTC_WUTRL RTC wakeup timer register low 0xFF(2) 0x00 5156 Reserved area (1 byte) 0x00 5157 RTC_SSRL RTC subsecond register low 0x00 0x00 5158 RTC_SSRH RTC subsecond register high 0x00 0x00 5159 RTC_WPR RTC write protection register 0x00 0x00 5158 RTC_SSRH RTC subsecond register high 0x00 0x00 5159 RTC_WPR RTC write protection register 0x00 0x00 515A RTC_SHIFTRH RTC shift register high 0x00 0x00 515B RTC_SHIFTRL RTC shift register low 0x00 0x00 515C RTC_ALRMAR1 RTC alarm A register 1 0x00(2) 0x00 515D RTC_ALRMAR2 RTC alarm A register 2 0x00(2) 0x00 515E RTC_ALRMAR3 RTC alarm A register 3 0x00(2) 0x00 515F RTC_ALRMAR4 RTC alarm A register 4 0x00(2) DS7204 Rev 11 39/123 49
Memory and register map STM8L151x2, STM8L151x3 Table 8. General hardware register map (continued) Address Block Register label Register name Reset status 0x00 5160 to Reserved area (4 byte) 0x00 5163 0x00 5164 RTC_ALRMASSRH RTC alarm A subsecond register high 0x00(2) 0x00 5165 RTC_ALRMASSRL RTC alarm A subsecond register low 0x00(2) RTC_ALRMASSMS 0x00 5166 RTC alarm A masking register 0x00(2) KR 0x00 5167 to RTC Reserved area (3 byte) 0x00 5169 0x00 516A RTC_CALRH RTC calibration register high 0x00(2) 0x00 516B RTC_CALRL RTC calibration register low 0x00(2) 0x00 516C to Reserved area (36 byte) 0x00 518F RTC CSS on LSE control and status 0x00 5190 CSSLSE_CSR 0x00(2) register 0x00 5191 to Reserved area (111 byte) 0x00 51FF 0x00 5200 SPI1_CR1 SPI1 control register 1 0x00 0x00 5201 SPI1_CR2 SPI1 control register 2 0x00 0x00 5202 SPI1_ICR SPI1 interrupt control register 0x00 0x00 5203 SPI1_SR SPI1 status register 0x02 SPI1 0x00 5204 SPI1_DR SPI1 data register 0x00 0x00 5205 SPI1_CRCPR SPI1 CRC polynomial register 0x07 0x00 5206 SPI1_RXCRCR SPI1 Rx CRC register 0x00 0x00 5207 SPI1_TXCRCR SPI1 Tx CRC register 0x00 0x00 5208 to Reserved area (8 byte) 0x00 520F 40/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Memory and register map Table 8. General hardware register map (continued) Address Block Register label Register name Reset status 0x00 5210 I2C1_CR1 I2C1 control register 1 0x00 0x00 5211 I2C1_CR2 I2C1 control register 2 0x00 0x00 5212 I2C1_FREQR I2C1 frequency register 0x00 0x00 5213 I2C1_OARL I2C1 own address register low 0x00 0x00 5214 I2C1_OARH I2C1 own address register high 0x00 0x00 5215 I2C1_OAR2 I2C1 own address register for dual mode 0x00 0x00 5216 I2C1_DR I2C1 data register 0x00 0x00 5217 I2C1 I2C1_SR1 I2C1 status register 1 0x00 0x00 5218 I2C1_SR2 I2C1 status register 2 0x00 0x00 5219 I2C1_SR3 I2C1 status register 3 0x0X 0x00 521A I2C1_ITR I2C1 interrupt control register 0x00 0x00 521B I2C1_CCRL I2C1 clock control register low 0x00 0x00 521C I2C1_CCRH I2C1 clock control register high 0x00 0x00 521D I2C1_TRISER I2C1 TRISE register 0x02 0x00 521E I2C1_PECR I2C1 packet error checking register 0x00 0x00 521F to Reserved area (17 byte) 0x00 522F 0x00 5230 USART1_SR USART1 status register 0xC0 0x00 5231 USART1_DR USART1 data register 0xXX 0x00 5232 USART1_BRR1 USART1 baud rate register 1 0x00 0x00 5233 USART1_BRR2 USART1 baud rate register 2 0x00 0x00 5234 USART1_CR1 USART1 control register 1 0x00 0x00 5235 USART1 USART1_CR2 USART1 control register 2 0x00 0x00 5236 USART1_CR3 USART1 control register 3 0x00 0x00 5237 USART1_CR4 USART1 control register 4 0x00 0x00 5238 USART1_CR5 USART1 control register 5 0x00 0x00 5239 USART1_GTR USART1 guard time register 0x00 0x00 523A USART1_PSCR USART1 prescaler register 0x00 0x00 523B to Reserved area (21 byte) 0x00 524F DS7204 Rev 11 41/123 49
Memory and register map STM8L151x2, STM8L151x3 Table 8. General hardware register map (continued) Address Block Register label Register name Reset status 0x00 5250 TIM2_CR1 TIM2 control register 1 0x00 0x00 5251 TIM2_CR2 TIM2 control register 2 0x00 0x00 5252 TIM2_SMCR TIM2 Slave mode control register 0x00 0x00 5253 TIM2_ETR TIM2 external trigger register 0x00 0x00 5254 TIM2_DER TIM2 DMA1 request enable register 0x00 0x00 5255 TIM2_IER TIM2 interrupt enable register 0x00 0x00 5256 TIM2_SR1 TIM2 status register 1 0x00 0x00 5257 TIM2_SR2 TIM2 status register 2 0x00 0x00 5258 TIM2_EGR TIM2 event generation register 0x00 0x00 5259 TIM2_CCMR1 TIM2 capture/compare mode register 1 0x00 0x00 525A TIM2_CCMR2 TIM2 capture/compare mode register 2 0x00 0x00 525B TIM2 TIM2_CCER1 TIM2 capture/compare enable register 1 0x00 0x00 525C TIM2_CNTRH TIM2 counter high 0x00 0x00 525D TIM2_CNTRL TIM2 counter low 0x00 0x00 525E TIM2_PSCR TIM2 prescaler register 0x00 0x00 525F TIM2_ARRH TIM2 auto-reload register high 0xFF 0x00 5260 TIM2_ARRL TIM2 auto-reload register low 0xFF 0x00 5261 TIM2_CCR1H TIM2 capture/compare register 1 high 0x00 0x00 5262 TIM2_CCR1L TIM2 capture/compare register 1 low 0x00 0x00 5263 TIM2_CCR2H TIM2 capture/compare register 2 high 0x00 0x00 5264 TIM2_CCR2L TIM2 capture/compare register 2 low 0x00 0x00 5265 TIM2_BKR TIM2 break register 0x00 0x00 5266 TIM2_OISR TIM2 output idle state register 0x00 0x00 5267 to Reserved area (25 byte) 0x00 527F 42/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Memory and register map Table 8. General hardware register map (continued) Address Block Register label Register name Reset status 0x00 5280 TIM3_CR1 TIM3 control register 1 0x00 0x00 5281 TIM3_CR2 TIM3 control register 2 0x00 0x00 5282 TIM3_SMCR TIM3 Slave mode control register 0x00 0x00 5283 TIM3_ETR TIM3 external trigger register 0x00 0x00 5284 TIM3_DER TIM3 DMA1 request enable register 0x00 0x00 5285 TIM3_IER TIM3 interrupt enable register 0x00 0x00 5286 TIM3_SR1 TIM3 status register 1 0x00 0x00 5287 TIM3_SR2 TIM3 status register 2 0x00 0x00 5288 TIM3_EGR TIM3 event generation register 0x00 0x00 5289 TIM3_CCMR1 TIM3 Capture/Compare mode register 1 0x00 0x00 528A TIM3_CCMR2 TIM3 Capture/Compare mode register 2 0x00 0x00 528B TIM3 TIM3_CCER1 TIM3 Capture/Compare enable register 1 0x00 0x00 528C TIM3_CNTRH TIM3 counter high 0x00 0x00 528D TIM3_CNTRL TIM3 counter low 0x00 0x00 528E TIM3_PSCR TIM3 prescaler register 0x00 0x00 528F TIM3_ARRH TIM3 Auto-reload register high 0xFF 0x00 5290 TIM3_ARRL TIM3 Auto-reload register low 0xFF 0x00 5291 TIM3_CCR1H TIM3 Capture/Compare register 1 high 0x00 0x00 5292 TIM3_CCR1L TIM3 Capture/Compare register 1 low 0x00 0x00 5293 TIM3_CCR2H TIM3 Capture/Compare register 2 high 0x00 0x00 5294 TIM3_CCR2L TIM3 Capture/Compare register 2 low 0x00 0x00 5295 TIM3_BKR TIM3 break register 0x00 0x00 5296 TIM3_OISR TIM3 output idle state register 0x00 0x00 5297 to Reserved area (72 byte) 0x00 52DF DS7204 Rev 11 43/123 49
Memory and register map STM8L151x2, STM8L151x3 Table 8. General hardware register map (continued) Address Block Register label Register name Reset status 0x00 52E0 TIM4_CR1 TIM4 control register 1 0x00 0x00 52E1 TIM4_CR2 TIM4 control register 2 0x00 0x00 52E2 TIM4_SMCR TIM4 Slave mode control register 0x00 0x00 52E3 TIM4_DER TIM4 DMA1 request enable register 0x00 0x00 52E4 TIM4_IER TIM4 Interrupt enable register 0x00 TIM4 0x00 52E5 TIM4_SR1 TIM4 status register 1 0x00 0x00 52E6 TIM4_EGR TIM4 Event generation register 0x00 0x00 52E7 TIM4_CNTR TIM4 counter 0x00 0x00 52E8 TIM4_PSCR TIM4 prescaler register 0x00 0x00 52E9 TIM4_ARR TIM4 Auto-reload register 0x00 0x00 52EA to Reserved area (21 byte) 0x00 52FE 0x00 52FF IRTIM IR_CR Infrared control register 0x00 0x00 5317 to Reserved area (41 byte) 0x00 533F 0x00 5340 ADC1_CR1 ADC1 configuration register 1 0x00 0x00 5341 ADC1_CR2 ADC1 configuration register 2 0x00 0x00 5342 ADC1_CR3 ADC1 configuration register 3 0x1F 0x00 5343 ADC1_SR ADC1 status register 0x00 0x00 5344 ADC1_DRH ADC1 data register high 0x00 0x00 5345 ADC1_DRL ADC1 data register low 0x00 0x00 5346 ADC1_HTRH ADC1 high threshold register high 0x0F 0x00 5347 ADC1_HTRL ADC1 high threshold register low 0xFF 0x00 5348 ADC1_LTRH ADC1 low threshold register high 0x00 ADC1 0x00 5349 ADC1_LTRL ADC1 low threshold register low 0x00 0x00 534A ADC1_SQR1 ADC1 channel sequence 1 register 0x00 0x00 534B ADC1_SQR2 ADC1 channel sequence 2 register 0x00 0x00 534C ADC1_SQR3 ADC1 channel sequence 3 register 0x00 0x00 534D ADC1_SQR4 ADC1 channel sequence 4 register 0x00 0x00 534E ADC1_TRIGR1 ADC1 trigger disable 1 0x00 0x00 534F ADC1_TRIGR2 ADC1 trigger disable 2 0x00 0x00 5350 ADC1_TRIGR3 ADC1 trigger disable 3 0x00 0x00 5351 ADC1_TRIGR4 ADC1 trigger disable 4 0x00 44/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Memory and register map Table 8. General hardware register map (continued) Address Block Register label Register name Reset status 0x00 53C8 to Reserved area (104 byte) 0x00 542F 0x00 5430 Reserved area (1 byte) 0x00 0x00 5431 RI_ICR1 RI timer input capture routing register 1 0x00 0x00 5432 RI_ICR2 RI timer input capture routing register 2 0x00 0x00 5433 RI_IOIR1 RI I/O input register 1 0xXX 0x00 5434 RI_IOIR2 RI I/O input register 2 0xXX 0x00 5435 RI_IOIR3 RI I/O input register 3 0xXX 0x00 5436 RI_IOCMR1 RI I/O control mode register 1 0x00 0x00 5437 RI_IOCMR2 RI I/O control mode register 2 0x00 RI 0x00 5438 RI_IOCMR3 RI I/O control mode register 3 0x00 0x00 5439 RI_IOSR1 RI I/O switch register 1 0x00 0x00 543A RI_IOSR2 RI I/O switch register 2 0x00 0x00 543B RI_IOSR3 RI I/O switch register 3 0x00 0x00 543C RI_IOGCR RI I/O group control register 0xFF 0x00 543D RI_ASCR1 RI analog switch register 1 0x00 0x00 543E RI_ASCR2 RI analog switch register 2 0x00 0x00 543F RI_RCR RI resistor control register 0x00 0x00 5440 COMP_CSR1 Comparator control and status register 1 0x00 0x00 5441 COMP_CSR2 Comparator control and status register 2 0x00 COMP1/ 0x00 5442 COMP_CSR3 Comparator control and status register 3 0x00 COMP2 0x00 5443 COMP_CSR4 Comparator control and status register 4 0x00 0x00 5444 COMP_CSR5 Comparator control and status register 5 0x00 0x00 5445 to Reserved area (11 byte) 0x00 544F 0x00 5450 RI_CR RI I/O control register 0x00 0x00 5451 RI_MASKR1 RI I/O mask register 1 0x00 0x00 5452 RI_MASKR2 RI I/O mask register 2 0x00 0x00 5453 RI_MASKR3 RI I/O mask register 3 0x00 RI 0x00 5454 RI_MASKR4 RI I/O mask register 4 0x00 0x00 5455 RI_IOIR4 RI I/O input register 4 0xXX 0x00 5456 RI_IOCMR4 RI I/O control mode register 4 0x00 0x00 5457 RI_IOSR4 RI I/O switch register 4 0x00 1. For device in 20-pin packages 2. These registers are not impacted by a system reset. They are reset at power-on. DS7204 Rev 11 45/123 49
Memory and register map STM8L151x2, STM8L151x3 Table 9. CPU/SWIM/debug module/interrupt controller registers Reset Address Block Register Label Register Name Status 0x00 7F00 A Accumulator 0x00 0x00 7F01 PCE Program counter extended 0x00 0x00 7F02 PCH Program counter high 0x00 0x00 7F03 PCL Program counter low 0x00 0x00 7F04 XH X index register high 0x00 0x00 7F05 CPU(1) XL X index register low 0x00 0x00 7F06 YH Y index register high 0x00 0x00 7F07 YL Y index register low 0x00 0x00 7F08 SPH Stack pointer high 0x03 0x00 7F09 SPL Stack pointer low 0xFF 0x00 7F0A CCR Condition code register 0x28 0x00 7F0B to Reserved area (85 byte) 0x00 7F5F CPU 0x00 7F60 CFG_GCR Global configuration register 0x00 0x00 7F70 ITC_SPR1 Interrupt Software priority register 1 0xFF 0x00 7F71 ITC_SPR2 Interrupt Software priority register 2 0xFF 0x00 7F72 ITC_SPR3 Interrupt Software priority register 3 0xFF 0x00 7F73 ITC_SPR4 Interrupt Software priority register 4 0xFF ITC-SPR 0x00 7F74 ITC_SPR5 Interrupt Software priority register 5 0xFF 0x00 7F75 ITC_SPR6 Interrupt Software priority register 6 0xFF 0x00 7F76 ITC_SPR7 Interrupt Software priority register 7 0xFF 0x00 7F77 ITC_SPR8 Interrupt Software priority register 8 0xFF 0x00 7F78 to Reserved area (2 byte) 0x00 7F79 0x00 7F80 SWIM SWIM_CSR SWIM control status register 0x00 0x00 7F81 to Reserved area (15 byte) 0x00 7F8F 46/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Memory and register map Table 9. CPU/SWIM/debug module/interrupt controller registers (continued) Reset Address Block Register Label Register Name Status 0x00 7F90 DM_BK1RE DM breakpoint 1 register extended byte 0xFF 0x00 7F91 DM_BK1RH DM breakpoint 1 register high byte 0xFF 0x00 7F92 DM_BK1RL DM breakpoint 1 register low byte 0xFF 0x00 7F93 DM_BK2RE DM breakpoint 2 register extended byte 0xFF 0x00 7F94 DM_BK2RH DM breakpoint 2 register high byte 0xFF 0x00 7F95 DM DM_BK2RL DM breakpoint 2 register low byte 0xFF 0x00 7F96 DM_CR1 DM Debug module control register 1 0x00 0x00 7F97 DM_CR2 DM Debug module control register 2 0x00 0x00 7F98 DM_CSR1 DM Debug module control/status register 1 0x10 0x00 7F99 DM_CSR2 DM Debug module control/status register 2 0x00 0x00 7F9A DM_ENFCTR DM enable function register 0xFF 0x00 7F9B to Reserved area (5 byte) 0x00 7F9F 1. Accessible by debug module only DS7204 Rev 11 47/123 49
Interrupt vector mapping STM8L151x2, STM8L151x3 6 Interrupt vector mapping Table 10. Interrupt mapping Wakeup Wakeup Wakeup Wakeup IRQ Source from from Wait from Wait Vector Description from Halt No. block Active-halt (WFI (WFE address mode mode mode) mode)(1) - RESET Reset Yes Yes Yes Yes 0x00 8000 - TRAP Software interrupt - - - - 0x00 8004 0 TLI(2) External top level interrupt - - - - 0x00 8008 FLASH end of programing/ 1 FLASH write attempted to - - Yes Yes 0x00 800C protected page interrupt DMA1 channels 0/1 half 2 DMA1 0/1 transaction/transaction - - Yes Yes 0x00 8010 complete interrupt DMA1 channels 2/3 half 3 DMA1 2/3 transaction/transaction - - Yes Yes 0x00 8014 complete interrupt RTC alarm A/ 4 RTC wakeup/tamper 1/ Yes Yes Yes Yes 0x00 8018 tamper 2/tamper 3 EXTIE/ External interrupt port E 5 Yes Yes Yes Yes 0x00 801C PVD PVD interrupt 6 EXTIB External interrupt port B Yes Yes Yes Yes 0x00 8020 7 EXTID External interrupt port D Yes Yes Yes Yes 0x00 8024 8 EXTI0 External interrupt 0 Yes Yes Yes Yes 0x00 8028 9 EXTI1 External interrupt 1 Yes Yes Yes Yes 0x00 802C 10 EXTI2 External interrupt 2 Yes Yes Yes Yes 0x00 8030 11 EXTI3 External interrupt 3 Yes Yes Yes Yes 0x00 8034 12 EXTI4 External interrupt 4 Yes Yes Yes Yes 0x00 8038 13 EXTI5 External interrupt 5 Yes Yes Yes Yes 0x00 803C 14 EXTI6 External interrupt 6 Yes Yes Yes Yes 0x00 8040 15 EXTI7 External interrupt 7 Yes Yes Yes Yes 0x00 8044 16 Reserved 0x00 8048 CLK system clock switch/ 17 CLK CSS interrupt - - Yes Yes 0x00 804C COMP1 interrupt COMP1/ COMP2 interrupt 18 COMP2/ ACD1 end of conversion/ Yes Yes Yes Yes 0x00 8050 ADC1 analog watchdog/ overrun interrupt 48/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Interrupt vector mapping Table 10. Interrupt mapping (continued) Wakeup Wakeup Wakeup Wakeup IRQ Source from from Wait from Wait Vector Description from Halt No. block Active-halt (WFI (WFE address mode mode mode) mode)(1) TIM2 update/overflow/ 19 TIM2 - - Yes Yes 0x00 8054 trigger/break interrupt TIM2 capture/ 20 TIM2 - - Yes Yes 0x00 8058 compare interrupt TIM3 update/overflow/ 21 TIM3 - - Yes Yes 0x00 805C trigger/break interrupt TIM3 capture/ 22 TIM3 - - Yes Yes 0x00 8060 compare interrupt 23 RI RI trigger interrupt - - Yes - 0x00 8064 24 Reserved 0x00 8068 TIM4 update/overflow/ 25 TIM4 - - Yes Yes 0x00 806C trigger interrupt SPI1 TX buffer empty/ 26 SPI1 RX buffer not empty/ Yes Yes Yes Yes 0x00 8070 error/wakeup interrupt USART1 transmit data register empty/ 27 USART1 - - Yes Yes 0x00 8074 transmission complete interrupt USART1 received data ready/overrun error/ 28 USART1 - - Yes Yes 0x00 8078 idle line detected/parity error/global error interrupt 29 I2C1 I2C1 interrupt(3) Yes Yes Yes Yes 0x00 807C 1. The Low power wait mode is entered when executing a WFE instruction in Low power run mode. In WFE mode, the interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode. When the interrupt is configured as a wakeup event, the CPU wakes up and resumes processing. 2. The TLI interrupt is the logic OR between TIM2 overflow interrupt, and TIM4 overflow interrupts. 3. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address. DS7204 Rev 11 49/123 49
Option bytes STM8L151x2, STM8L151x3 7 Option bytes Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated memory block. All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM address. See Table 11 for details on option byte addresses. The option bytes can also be modified ‘on the fly’ by the application in IAP mode, except for the ROP and UBC values which can only be taken into account when they are modified in ICP mode (with the SWIM). Refer to the STM8L15x Flash programming manual (PM0054) and STM8 SWIM and Debug Manual (UM0470) for information on SWIM programming procedures. Table 11. Option byte addresses Option Option bits Factory Addr. Option name byte default No. 7 6 5 4 3 2 1 0 setting Read-out 0x00 4800 protection OPT0 ROP[7:0] 0xAA (ROP) UBC (User 0x00 4802 OPT1 UBC[7:0] 0x00 Boot code size) 0x00 4807 Reserved 0x00 Independent OPT3 WWDG WWDG IWDG IWDG 0x00 4808 watchdog Reserved 0x00 [3:0] _HALT _HW _HALT _HW option Number of stabilization 0x00 4809 clock cycles for OPT4 Reserved LSECNT[1:0] HSECNT[1:0] 0x00 HSE and LSE oscillators Brownout reset OPT5 BOR_ 0x00 480A Reserved BOR_TH 0x01 (BOR) [3:0] ON 0x00 480B Bootloader 0x00 OPTBL option bytes OPTBL[15:0] 0x00 480C (OPTBL) [15:0] 0x00 50/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Option bytes Table 12. Option byte description Option byte Option description No. ROP[7:0] Memory readout protection (ROP) OPT0 0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in the STM8L15x and STM8L16x reference manual (RM0031). UBC[7:0] Size of the user boot code area 0x00: UBC is not protected. 0x01: Page 0 is write protected. 0x02: Page 0 and 1 reserved for the UBC and write protected. It covers only the interrupt vectors. OPT1 0x03: Page 0 to 2 reserved for UBC and write protected. 0x7F to 0xFF - All 128 pages reserved for UBC and write protected. The protection of the memory area not protected by the UBC is enabled through the MASS keys. Refer to User boot code section in the STM8L15x and STM8L16x reference manual (RM0031). OPT2 Reserved IWDG_HW: Independent watchdog 0: Independent watchdog activated by software 1: Independent watchdog activated by hardware IWDG_HALT: Independent window watchdog off on Halt/Active-halt 0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode OPT3 WWDG_HW: Window watchdog 0: Window watchdog activated by software 1: Window watchdog activated by hardware WWDG_HALT: Window window watchdog reset on Halt/Active-halt 0: Window watchdog stopped in Halt mode 1: Window watchdog generates a reset when MCU enters Halt mode HSECNT: Number of HSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles OPT4 LSECNT: Number of LSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles Refer to Table 31: LSE oscillator characteristics on page 74. DS7204 Rev 11 51/123 52
Option bytes STM8L151x2, STM8L151x3 Table 12. Option byte description (continued) Option byte Option description No. BOR_ON: 0: Brownout reset off OPT5 1: Brownout reset on BOR_TH[3:1]: Brownout reset thresholds. Refer to Table 22 for details on the thresholds according to the value of BOR_TH bits. OPTBL[15:0]: This option is checked by the boot ROM code after reset. Depending on OPTBL content of addresses 00 480B, 00 480C and 0x8000 (reset vector) the CPU jumps to the bootloader or to the reset vector. Refer to the UM0560 bootloader user manual for more details. 52/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Unique ID 8 Unique ID STM8 devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user. The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm. The unique device identifier is ideally suited: • For use as serial numbers • For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory. • To activate secure boot processes Table 13. Unique ID registers (96 bits) Unique ID bits Content Address description 7 6 5 4 3 2 1 0 0x4926 X co-ordinate on U_ID[7:0] 0x4927 the wafer U_ID[15:8] 0x4928 Y co-ordinate on U_ID[23:16] the wafer 0x4929 U_ID[31:24] 0x492A Wafer number U_ID[39:32] 0x492B U_ID[47:40] 0x492C U_ID[55:48] 0x492D U_ID[63:56] 0x492E Lot number U_ID[71:64] 0x492F U_ID[79:72] 0x4930 U_ID[87:80] 0x4931 U_ID[95:88] DS7204 Rev 11 53/123 53
Electrical parameters STM8L151x2, STM8L151x3 9 Electrical parameters 9.1 Parameter conditions Unless otherwise specified, all voltages are referred to V . SS 9.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by A A A the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics is indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 9.1.2 Typical values Unless otherwise specified, typical data is based on T = 25 °C, V = 3 V. It is given only as A DD design guidelines and is not tested. Typical ADC1 accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2Σ). 9.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 9.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 9. Figure 9. Pin loading conditions STM8AL PIN 50 pF MSv37774V1 54/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters 9.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 10. Figure 10. Pin input voltage STM8S PIN V IN MSv37775V1 9.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 14: Voltage characteristics, Table 15: Current characteristics, and Table 16: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are available on demand. Table 14. Voltage characteristics Symbol Ratings Min Max Unit External supply voltage (including V , V - V DD - 0.3 4.0 V DD SS V , and V )(1) DDA DDIO Input voltage on true open-drain pins V - 0.3 V + 4.0 V (2) (PC0 and PC1) SS DD V IN Input voltage on any other pin V - 0.3 4.0 SS see Absolute maximum V Electrostatic discharge voltage ratings (electrical sensitivity) - ESD on page 102 1. All power (V , V , V ) and ground (V , V , V ) pins must always be connected to the DD DDA DDIO SS SSA SSIO external power supply. 2. V maximum must always be respected. Refer to Table 15. for maximum allowed injected current values. IN DS7204 Rev 11 55/123 102
Electrical parameters STM8L151x2, STM8L151x3 Table 15. Current characteristics Symbol Ratings Max. Unit I Total current into V power line (source) 80 VDD DD I Total current out of V ground line (sink) 80 VSS SS Output current sunk by IR_TIM pin (with high sink LED driver 80 mA capability) I IO Output current sunk by any other I/O and control pin 25 Output current sourced by any I/Os and control pin - 25 Injected current on true open-drain pins (PC0 and PC1)(1) - 5 / +0 IINJ(PIN) Injected current on 3.6 V tolerant pins (1) - 5 / +0 mA Injected current on any other pin (1) - 5 / +5 ΣIINJ(PIN) Total injected current (sum of all I/O and control pins) (2) ± 25 mA 1. A positive injection is induced by V >V while a negative injection is induced by V <V . I must IN DD IN SS INJ(PIN) never be exceeded. Refer to Table 14. for maximum allowed input voltage values. 2. When several inputs are submitted to a current injection, the maximum ΣI is the absolute sum of the INJ(PIN) positive and negative injected currents (instantaneous values). Table 16. Thermal characteristics Symbol Ratings Value Unit T Storage temperature range -65 to +150 STG ° C T Maximum junction temperature 150 J 56/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters 9.3 Operating conditions Subject to general operating conditions for V and T . DD A 9.3.1 General operating conditions Table 17. General operating conditions Symbol Parameter Conditions Min. Max. Unit System clock f (1) 1.65 V ≤ V < 3.6 V 0 16 MHz SYSCLK frequency DD Standard operating V - 1.65(2) 3.6 V DD voltage ADC1 not V Analog operating used Must be at the same 1.65(2) 3.6 V DDA voltage potential as V DD ADC1 used 1.8 3.6 V LQFP48 - 288 Power dissipation at UFQFPN32 - 288 T = 85 °C for suffix 3 A UFQFPN28 - 250 and suffix 6 devices UFQFPN20 - 196 TSSOP20 - 181 P (3) mW D LQFP48 - 77 UFQFPN32 - 185 Power dissipation at T = 125 °C for suffix 3 UFQFPN28 - 62 A devices UFQFPN20 - 49 TSSOP20 - 45 1.65 V ≤ V < 3.6 V (6 suffix version) -40 85 DD T Temperature range A 1.65 V ≤ V < 3.6 V (3 suffix version) -40 125 DD -40 °C ≤ TA < 85 °C -40 105(4) °C Junction temperature (6 suffix version) T J range -40 °C ≤ T < 125 °C A -40 130(4) (3 suffix version) 1. f = f SYSCLK CPU 2. 1.8 V at power-up, 1.65 V at power-down if BOR is disabled Θ Θ 3. To calculate P (T ), use the formula P =(T -T )/ with T in this table and in “Thermal characteristics” Dmax A Dmax Jmax A JA Jmax JA table. 4. T max is given by the test limit. Above this value, the product behavior is not guaranteed. J DS7204 Rev 11 57/123 102
Electrical parameters STM8L151x2, STM8L151x3 9.3.2 Embedded reset and power control block characteristics Table 18. Embedded reset and power control block characteristics Symbol Parameter Conditions Min Typ Max Unit BOR detector VDD rise time rate enabled 0(1) - ∞ (1) t µs/V VDD BOR detector VDD fall time rate enabled 20(1) - ∞ (1) tTEMP Reset release delay VDD rising - 3(1) - ms V Power-down reset threshold Falling edge 1.30(2) 1.50 1.65 V PDR Brown-out reset threshold 0 Falling edge 1.66 1.70 1.74 V BOR0 (BOR_TH[2:0]=000) Rising edge 1.69 1.75 1.81 Brown-out reset threshold 1 Falling edge 1.89 1.93 1.97 V BOR1 (BOR_TH[2:0]=001) Rising edge 1.98 2.03 2.07 Brown-out reset threshold 2 Falling edge 2.25 2.30 2.35 V V BOR2 (BOR_TH[2:0]=010) Rising edge 2.35 2.40 2.44 Brown-out reset threshold 3 Falling edge 2.50 2.55 2.60 V BOR3 (BOR_TH[2:0]=011) Rising edge 2.59 2.65 2.70 Brown-out reset threshold 4 Falling edge 2.74 2.79 2.85 V BOR4 (BOR_TH[2:0]=100) Rising edge 2.83 2.89 2.95 Falling edge 1.82 1.85 1.88 V PVD threshold 0 PVD0 Rising edge 1.89 1.94 1.97 Falling edge 2.04 2.05 2.08 V PVD threshold 1 PVD1 Rising edge 2.12 2.14 2.17 Falling edge 2.21 2.24 2.28 V PVD threshold 2 PVD2 Rising edge 2.31 2.33 2.37 Falling edge 2.41 2.44 2.48 V PVD threshold 3 V PVD3 Rising edge 2.51 2.53 2.57 Falling edge 2.61 2.64 2.69 V PVD threshold 4 PVD4 Rising edge 2.71 2.74 2.79 Falling edge 2.79 2.83 2.88 V PVD threshold 5 PVD5 Rising edge 2.90 2.94 2.99 Falling edge 3.01 3.04 3.09 V PVD threshold 6 PVD6 Rising edge 3.12 3.15 3.20 1. Guaranteed by design. 2. Guaranteed by characterization results. 58/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters Figure 11. POR/BOR thresholds VDD VDD 3.6 V Operatingpower supply VDD BOR threshold_0 BOR threshold 1.8 V VBOR0 without BOR = battery life extension e as VPDR e reset rele Safe reset Reset PDR threshold af S Internal NRST with with without BOR BOR BOR Time BOR always active BOR activated by user at power up for power-down detection ai17033b 9.3.3 Supply current characteristics Total current consumption The MCU is placed under the following conditions: l All I/O pins in input mode with a static value at V or V (no load) DD SS l All peripherals are disabled except if explicitly mentioned. In the following table, data is based on characterization results, unless otherwise specified. Subject to general operating conditions for V and T . DD A DS7204 Rev 11 59/123 102
Electrical parameters STM8L151x2, STM8L151x3 Table 19. Total current consumption in Run mode Max Para Symbol Conditions(1) Typ Unit meter 55 °C 85 °C 105°C(2) 125 °C(2) fCPU = 125 kHz 0.39 0.47 0.49 0.52 0.55 fCPU = 1 MHz 0.48 0.56 0.58 0.61 0.65 HSI RC osc. (16 MHz)(4) fCPU = 4 MHz 0.75 0.84 0.86 0.91 0.99 fCPU = 8 MHz 1.10 1.20 1.25 1.31 1.40 All fCPU = 16 MHz 1.85 1.93 2.12(6) 2.29(6) 2.36(6) peripherals OFF, fCPU = 125 kHz 0.05 0.06 0.09 0.11 0.12 Supply code IDD(RUN) cinu rrurenn t executed HSE external fCPU = 1 MHz 0.18 0.19 0.20 0.22 0.23 mA mode(3) from RAM, clock fCPU = 4 MHz 0.55 0.62 0.64 0.71 0.77 VDD from (f =f )(5) 1.65 V to CPU HSE fCPU = 8 MHz 0.99 1.20 1.21 1.22 1.24 3.6 V fCPU = 16 MHz 1.90 2.22 2.23(6) 2.24(6) 2.28(6) LSI RC osc. (typ. 38 kHz) fCPU = fLSI 0.040 0.045 0.046 0.048 0.050 LSE external clock fCPU = fLSE 0.035 0.040 0.048(6) 0.050 0.062 (32.768 kHz) fCPU = 125 kHz 0.43 0.55 0.56 0.58 0.62 fCPU = 1 MHz 0.60 0.77 0.80 0.82 0.87 HSI RC osc.(7) fCPU = 4 MHz 1.11 1.34 1.37 1.39 1.43 fCPU = 8 MHz 1.90 2.20 2.23 2.31 2.40 All fCPU = 16 MHz 3.8 4.60 4.75 4.87 4.88 peripherals fCPU = 125 kHz 0.30 0.36 0.39 0.44 0.47 Supply OFF, code current executed HSE external fCPU = 1 MHz 0.40 0.50 0.52 0.55 0.56 IDD(RUN) in Run from Flash, clock mA mode VDD from (fCPU=fHSE) fCPU = 4 MHz 1.15 1.31 1.40 1.45 1.48 1.65 V to (5) fCPU = 8 MHz 2.17 2.33 2.44 2.56 2.77 3.6 V fCPU = 16 MHz 4.0 4.46 4.52 4.59 4.77 LSI RC osc. fCPU = fLSI 0.110 0.123 0.130 0.140 0.150 LSE ext. clock (32.768 fCPU = fLSE 0.100 0.101 0.104 0.119 0.122 kHz)(8) 1. All peripherals OFF, V from 1.65 V to 3.6 V, HSI internal RC osc., f =f DD CPU SYSCLK 2. For devices with suffix 3 3. CPU executing typical data processing 60/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters 4. The run from RAM consumption can be approximated with the linear formula: I (run_from_RAM) = Freq * 90 µA/MHz + 380 µA DD 5. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (I ) must be added. Refer to Table 30. DD HSE 6. Tested in production. 7. The run from Flash consumption can be approximated with the linear formula: I (run_from_Flash) = Freq * 195 µA/MHz + 440 µA DD 8. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I ) must be added. Refer to Table 31. DD LSE Figure 12. Typ. I vs. V , f = 16 MHz DD(RUN) DD CPU 3.00 -40°C 2.75 25°C 85°C A] 2.50 m SI [ H N) 2.25 U R D( D 2.00 I 1.75 1.50 1.8 2.1 2.6 3.1 3.6 V [V] DD ai18213b 1. Typical current consumption measured with code executed from RAM DS7204 Rev 11 61/123 102
Electrical parameters STM8L151x2, STM8L151x3 In the following table, data is based on characterization results, unless otherwise specified. Table 20. Total current consumption in Wait mode Max Symbol Parameter Conditions(1) Typ Unit 105 °C 125 °C 55°C 85 °C (2) (2) fCPU = 125 kHz 0.33 0.39 0.41 0.43 0.45 fCPU = 1 MHz 0.35 0.41 0.44 0.45 0.48 HSI fCPU = 4 MHz 0.42 0.51 0.52 0.54 0.58 fCPU = 8 MHz 0.52 0.57 0.58 0.59 0.62 0.82 0.85 CPU not fCPU = 16 MHz 0.68 0.76 0.79 (5) (5) clocked, all peripherals fCPU = 125 kHz 0.032 0.056 0.068 0.072 0.093 OFF, Supply code executed HSE external fCPU = 1 MHz 0.078 0.121 0.144 0.163 0.197 IDD(Wait) cWuarrite mnto idne fwroitmh FRlaAsMh i n c(flock =f ) fCPU = 4 MHz 0.218 0.26 0.30 0.36 0.40 mA CPU HSE I mode(3), (4) fCPU = 8 MHz 0.40 0.52 0.57 0.62 0.66 DDQ VDD from 1.09 1.16 1.65 V to 3.6 V fCPU = 16 MHz 0.760 1.01 1.05 (5) (5) LSI fCPU = fLSI 0.035 0.044 0.046 0.049 0.054 LSE(6) external clock fCPU = fLSE 0.032 0.036 0.038 0.044 0.051 (32.768 kHz) 62/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters Table 20. Total current consumption in Wait mode (continued) Max Symbol Parameter Conditions(1) Typ Unit 105 °C 125 °C 55°C 85 °C (2) (2) fCPU = 125 kHz 0.38 0.48 0.49 0.50 0.56 fCPU = 1 MHz 0.41 0.49 0.51 0.53 0.59 HSI fCPU = 4 MHz 0.50 0.57 0.58 0.62 0.66 fCPU = 8 MHz 0.60 0.66 0.68 0.72 0.74 CPU not fCPU = 16 MHz 0.79 0.84 0.86 0.87 0.90 Supply callol pckeeridp,h erals HSE(4) fCPU = 125 kHz 0.06 0.08 0.09 0.10 0.12 current in OFF, fCPU = 1 MHz 0.10 0.17 0.18 0.19 0.22 I external mA DD(Wait) Wmoadite cfroodme Felxaeschu, ted c(flock =HSE) fCPU = 4 MHz 0.24 0.36 0.39 0.41 0.44 VDD from CPU fCPU = 8 MHz 0.50 0.58 0.61 0.62 0.64 1.65 V to 3.6 V fCPU = 16 MHz 1.00 1.08 1.14 1.16 1.18 LSI fCPU = fLSI 0.055 0.058 0.065 0.073 0.080 LSE(6) external clock fCPU = fLSE 0.051 0.056 0.060 0.065 0.073 (32.768 kHz) 1. All peripherals OFF, V from 1.65 V to 3.6 V, HSI internal RC osc., f = f DD CPU SYSCLK 2. For temperature range 3. 3. Flash is configured in I mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register. DDQ 4. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (I ) must be added. Refer to Table 30. DD HSE 5. Tested in production. 6. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I ) must be added. Refer to Table 31. DD HSE DS7204 Rev 11 63/123 102
Electrical parameters STM8L151x2, STM8L151x3 Figure 13. Typ. I vs. V , f = 16 MHz 1) DD(Wait) DD CPU 1000 950 900 A] 850 μ [ SI 800 H T) AI 750 W D( 700 -40°C D I 650 25°C 85°C 600 550 500 1.8 2.1 2.6 3.1 3.6 V [V] DD ai18214b 1. Typical current consumption measured with code executed from Flash memory. 64/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters In the following table, data is based on characterization results, unless otherwise specified. Table 21. Total current consumption and timing in Low power run mode at V = 1.65 V to 3.6 V DD Symbol Parameter Conditions(1)(2) Typ Max Unit T = -40 °C A 5.1 5.4 to 25 °C T = 55 °C 5.7 6 A all peripherals OFF T = 85 °C 6.8 7.5 A T = 105 °C 9.2 10.4 A LSI RC osc. TA = 125 °C 13.4 16.6 (at 38 kHz) T = -40 °C A 5.4 5.7 to 25 °C T = 55 °C 6.0 6.3 A with TIM2 active(3) T = 85 °C 7.2 7.8 A T = 105 °C 9.4 10.7 A IDD(LPR) Spouwppelry r ucunr mreondt ein Low TTA == 1-4205 °°CC 13.8 17 μA A 5.25 5.6 to 25 °C T = 55 °C 5.67 6.1 A all peripherals OFF T = 85 °C 5.85 6.3 A T = 105 °C 7.11 7.6 A LSE (4) external T = 125 °C 9.84 12 A clock T = -40 °C (32.768 kHz) A 5.59 6 to 25 °C T = 55 °C 6.10 6.4 A with TIM2 active (3) T = 85 °C 6.30 7 A T = 105 °C 7.55 8.4 A T = 125 °C 10.1 15 A 1. No floating I/Os 2. T > 85 °C is valid only for devices with suffix 3 temperature range. A 3. Timer 2 clock enabled and counter running 4. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I ) must be added. Refer to Table 31 DD LSE DS7204 Rev 11 65/123 102
Electrical parameters STM8L151x2, STM8L151x3 Figure 14. Typ. I vs. V (LSI clock source) DD(LPR) DD 18 16 14 -40° C 25° C 12 A] 85° C μ [SI 10 L R) P 8 L D( D I 6 4 2 0 1.8 2.1 2.6 3.1 3.6 VDD [V] ai18216b 66/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters In the following table, data is based on characterization results, unless otherwise specified. T a ble 22. Total current consumption in Low power wait mode at V = 1.65 V to 3.6 V DD Symbol Parameter Conditions(1)(2) Typ Max Unit TA = -40 °C to 25 °C 3 3.3 T = 55 °C 3.3 3.6 A all peripherals OFF T = 85 °C 4.4 5 A T = 105 °C 6.7 8 A LSI RC osc. TA = 125 °C 11 14 (at 38 kHz) TA = -40 °C to 25 °C 3.4 3.7 T = 55 °C 3.7 4 A with TIM2 active(3) T = 85 °C 4.8 5.4 A T = 105 °C 7 8.3 A Supply current in T = 125 °C 11.3 14.5 IDD(LPW) Low power wait A μA mode TA = -40 °C to 25 °C 2.35 2.7 T = 55 °C 2.42 2.82 A all peripherals OFF T = 85 °C 3.10 3.71 A T = 105 °C 4.36 5.7 A LSE external T = 125 °C 7.20 11 clock(4) A (32.768 kHz) TA = -40 °C to 25 °C 2.46 2.75 T = 55 °C 2.50 2.81 A with TIM2 active (3) T = 85 °C 3.16 3.82 A T = 105 °C 4.51 5.9 A T = 125 °C 7.28 11 A 1. No floating I/Os. 2. T > 85 °C is valid only for devices with suffix 3 temperature range. A 3. Timer 2 clock enabled and counter is running. 4. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I ) must be added. Refer to Table 31. DD LSE DS7204 Rev 11 67/123 102
Electrical parameters STM8L151x2, STM8L151x3 Figure 15. Typ. I vs. V (LSI clock source) DD(LPW) DD 16.00 14.00 -40°C 12.00 25°C A] 10.00 85°C μ [SI W )L 8.00 P L DD( 6.00 I 4.00 2.00 0.00 1.8 2.1 2.6 3.1 3.6 VDD [V] ai18217b 68/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters In the following table, data is based on characterization results, unless otherwise specified. Table 23. T otal current consumption and timing in Active-halt mode at V = 1.65 V to 3.6 V DD Symbol Parameter Conditions (1)(2) Typ Max Unit TA = -40 °C to 25 °C 0.9 2.1 T = 55 °C 1.2 3 A LSI RC (at 38 kHz) T = 85 °C 1.5 3.4 A T = 105 °C 2.6 6.6 A IDD(AH) SAuctpivpely-h caultr rmenotd ien TTAA == -14205 °°CC to 25 °C 05..51 11.22 μA T = 55 °C 0.62 1.4 A LSE external clock (32.768 T = 85 °C 0.88 2.1 kHz) (3) A T = 105 °C 2.1 4.85 A T = 125 °C 4.8 11 A Supply current during wakeup time from IDD(WUFAH) Active-halt mode - - 2.4 - mA (using HSI) Wakeup time from t (4)(5) Active-halt mode to - - 4.7 7 μs WU_HSI(AH) Run mode (using HSI) Wakeup time from tWU_LSI(AH)(4) Active-halt mode to - - 150 - μs (5) Run mode (using LSI) 1. No floating I/O, unless otherwise specified. 2. T > 85 °C is valid only for devices with suffix 3 temperature range. A 3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I ) must be added. Refer to Table 31 DD LSE 4. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after t . WU 5. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register. Table 24. Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal Symbol Parameter Condition(1) Typ Unit LSE 1.15 V = 1.8 V DD LSE/32(3) 1.05 Supply current in Active-halt LSE 1.30 I (2) V = 3 V µA DD(AH) mode DD LSE/32(3) 1.20 LSE 1.45 V = 3.6 V DD LSE/32(3) 1.35 1. No floating I/O, unless otherwise specified. 2. Based on measurements on bench with 32.768 kHz external crystal oscillator. 3. RTC clock is LSE divided by 32. DS7204 Rev 11 69/123 102
Electrical parameters STM8L151x2, STM8L151x3 In the following table, data is based on characterization results, unless otherwise specified. Table 25. Total current consumption and timing in Halt mode at V = 1.65 to 3.6 V DD Symbol Parameter Condition(1)(2) Typ Max Unit TA = -40 °C to 25 °C 350 1400(3) T = 55 °C 580 2000 A Supply current in Halt mode nA IDD(Halt) (Ultra-low-power ULP bit =1 in TA = 85 °C 1160 2800(3) the PWR_CSR2 register) TA = 105 °C 2560 6700(3) TA = 125 °C 4.4 13(3) µA Supply current during wakeup IDD(WUHalt) time from Halt mode (using - 2.4 - mA HSI) Wakeup time from Halt to Run t (4)(5) - 4.7 7 µs WU_HSI(Halt) mode (using HSI) Wakeup time from Halt mode t (4)(5) - 150 - µs WU_LSI(Halt) to Run mode (using LSI) 1. T = -40 to 125 °C, no floating I/O, unless otherwise specified. A 2. T > 85 °C is valid only for devices with suffix 3 temperature range. A 3. Tested in production. 4. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register. 5. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after t . WU 70/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters Current consumption of on-chip peripherals Table 26. Peripheral current consumption Typ. Symbol Parameter Unit V = 3.0 V DD IDD(TIM2) TIM2 supply current (1) 8 IDD(TIM3) TIM3 supply current (1) 8 IDD(TIM4) TIM4 timer supply current (1) 3 IDD(USART1) USART1 supply current (2) 6 µA/MHz IDD(SPI1) SPI1 supply current (2) 3 IDD(I2C1) I2C1 supply current (2) 5 IDD(DMA1) DMA1 supply current(2) 3 IDD(WWDG) WWDG supply current(2) 2 IDD(ALL) Peripherals ON(3) 38 µA/MHz IDD(ADC1) ADC1 supply current(4) 1500 µA IDD(COMP1) Comparator 1 supply current(5) 0.160 Slow mode 2 IDD(COMP2) Comparator 2 supply current(5) Fast mode 5 Power voltage detector and brownout Reset unit supply IDD(PVD/BOR) current (6) 2.6 µA IDD(BOR) Brownout Reset unit supply current (6) 2.4 including LSI supply 0.45 current IDD(IDWDG) Independent watchdog supply current excluding LSI 0.05 supply current 1. Data based on a differential I measurement between all peripherals OFF and a timer counter running at 16 MHz. The DD CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production. 2. Data based on a differential I measurement between the on-chip peripheral in reset configuration and not clocked and DD the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling. Not tested in production. 3. Peripherals listed above the I parameter ON: TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG. DD(ALL) 4. Data based on a differential I measurement between ADC1 in reset configuration and continuous ADC1 conversion. DD 5. Data based on a differential I measurement between COMP1 or COMP2 in reset configuration and COMP1 or COMP2 DD enabled with static inputs. Supply current of internal reference voltage excluded. 6. Including supply current of internal reference voltage. DS7204 Rev 11 71/123 102
Electrical parameters STM8L151x2, STM8L151x3 Table 27. Current consumption under external reset Symbol Parameter Conditions Typ Unit V = 1.8 V 48 DD Supply current under All pins are externally IDD(RST) external reset (1) tied to VDD VDD = 3 V 76 µA V = 3.6 V 91 DD 1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset. 9.3.4 Clock and timing characteristics HSE external clock (HSEBYP = 1 in CLK_ECKCR) Subject to general operating conditions for V and T . DD A Table 28. HSE external clock characteristics Symbol Parameter Conditions Min Typ Max Unit External clock source fHSE_ext frequency(1) 1 - 16 MHz OSC_IN input pin high level VHSEH voltage - 0.7 x VDD - VDD V OSC_IN input pin low level VHSEL voltage VSS - 0.3 x VDD OSC_IN input Cin(HSE) capacitance(1) - - 2.6 - pF OSC_IN input leakage ILEAK_HSE current VSS < VIN < VDD - - ±1 µA 1. Guaranteed by design. LSE external clock (LSEBYP=1 in CLK_ECKCR) Subject to general operating conditions for V and T . DD A Table 29. LSE external clock characteristics Symbol Parameter Min Typ Max Unit fLSE_ext External clock source frequency(1) - 32.768 - kHz V (2) OSC32_IN input pin high level voltage 0.7 x V - V LSEH DD DD V V (2) OSC32_IN input pin low level voltage V - 0.3 x V LSEL SS DD Cin(LSE) OSC32_IN input capacitance(1) - 0.6 - pF ILEAK_LSE OSC32_IN input leakage current - - ±1 µA 1. Guaranteed by design. 2. Guaranteed by characterization results. 72/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters HSE crystal/ceramic resonator oscillator The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...). Table 30. HSE oscillator characteristics Symbol Parameter Conditions Min Typ Max Unit High speed external oscillator f - 1 - 16 MHz HSE frequency R Feedback resistor - - 200 - kΩ F C(1) Recommended load capacitance (2) - - 20 - pF C = 20 pF, 2.5 (startup) - - f = 16 MHz 0.7 (stabilized)(3) OSC I HSE oscillator power consumption mA DD(HSE) C = 10 pF, 2.5 (startup) - - f =16 MHz 0.46 (stabilized)(3) OSC g Oscillator transconductance - 3.5(3) - - mA/V m t (4) Startup time V is stabilized - 1 - ms SU(HSE) DD 1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD. 2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small R value. m Refer to crystal manufacturer for more details 3. Guaranteed by design. 4. t is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This SU(HSE) value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. Figure 16. HSE oscillator circuit diagram Rm fHSE to core C Lm O RF Cm CL1 OSCIN gm Resonator Consumption control Resonator OSCOUT CL2 STM8 MS36490V3 DS7204 Rev 11 73/123 102
Electrical parameters STM8L151x2, STM8L151x3 HSE oscillator critical g formula m g = (2× Π× f )2× R (2Co+C)2 mcrit HSE m Rm: Motional resistance (see crystal specification), Lm: Motional inductance (see crystal specification), Cm: Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification), CL1=CL2=C: Grounded external capacitance gm >> gmcrit LSE crystal/ceramic resonator oscillator The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...). Table 31. LSE oscillator characteristics Symbol Parameter Conditions Min Typ Max Unit Low speed external oscillator f - - 32.768 - kHz LSE frequency R Feedback resistor ΔV = 200 mV - 1.2 - MΩ F C(1) Recommended load capacitance (2) - - 8 - pF - - - 1.4(3) µA V = 1.8 V - 450 - DD I LSE oscillator power consumption DD(LSE) V = 3 V - 600 - nA DD V = 3.6 V - 750 - DD g Oscillator transconductance - 3(3) - - µA/V m t (4) Startup time V is stabilized - 1 - s SU(LSE) DD 1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD. 2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small R value. Refer to crystal manufacturer for more details. m 3. Guaranteed by design. 4. t is the startup time measured from the moment it is enabled (by software) to a stabilized SU(LSE) 32.768 kHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. 74/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters Figure 17. LSE oscillator circuit diagram Rm fLSE C Lm O RF Cm CL1 OSCIN gm Resonator Consumption control Resonator OSCOUT CL2 STM8 MSv37776V1 Internal clock sources Subject to general operating conditions for V , and T . DD A High speed internal RC oscillator (HSI) In the following table, data is based on characterization results, not tested in production, unless otherwise specified. Table 32. HSI oscillator characteristics Symbol Parameter Conditions(1)(2) Min Typ Max Unit f Frequency V = 3.0 V - 16 - MHz HSI DD V = 3.0 V, T = 25 °C -1 (3) - 1(3) % DD A V = 3.0 V, 0 °C ≤ T ≤ 55 °C -1.5 - 1.5 % DD A Accuracy of HSI VDD = 3.0 V, -10 °C ≤ TA ≤ 70 °C -2 - 2 % ACCHSI oscillator (factory VDD = 3.0 V, -10 °C ≤ TA ≤ 85 °C -2.5 - 2 % calibrated) V = 3.0 V, -10 °C ≤ T ≤ 125 °C -4.5 - 2 % DD A 1.65 V ≤ V ≤ 3.6 V, DD -4.5 - 3 % -40 °C ≤ T ≤ 125 °C A HSI user trimming Trimming code ≠ multiple of 16 - 0.4 0.7 % TRIM step(4) Trimming code = multiple of 16 - ± 1.5 % HSI oscillator setup t - - 3.7 6(5) µs su(HSI) time (wakeup time) HSI oscillator power I - - 100 140(5) µA DD(HSI) consumption 1. V = 3.0 V, T = -40 to 125 °C unless otherwise specified. DD A 2. T > 85 °C is valid only for devices with suffix 3 temperature range. A 3. Tested in production. 4. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 “STM8L15x internal RC oscillator calibration” application note for more details. 5. Guaranteed by design. DS7204 Rev 11 75/123 102
Electrical parameters STM8L151x2, STM8L151x3 Figure 18. Typical HSI frequency vs V DD 18.0 17.5 17.0 z] 16.5 H M y [ 16.0 c n e 15.5 u q SI fre 15.0 -40°C H 14.5 25°C 14.0 85°C 13.5 13.0 1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3 3.15 3.3 3.45 3.6 VDD [V] ai18218c Low speed internal RC oscillator (LSI) In the following table, data is based on characterization results, not tested in production. Table 33. LSI oscillator characteristics Symbol Parameter (1) Conditions(1) Min Typ Max Unit f Frequency - 26 38 56 kHz LSI t LSI oscillator wakeup time - - - 200(2) µs su(LSI) LSI oscillator frequency I 0 °C ≤ T ≤ 85 °C -12 - 11 % DD(LSI) drift(3) A 1. V = 1.65 V to 3.6 V, T = -40 to 125 °C unless otherwise specified. DD A 2. Guaranteed by design. 3. This is a deviation for an individual part, once the initial frequency has been measured. 76/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters Figure 19. Typical LSI frequency vs. V DD 45 43 41 z] H 39 k y [ c 37 n e u q 35 e SI fr 33 -40°C L 31 25°C 85°C 29 27 25 1.8 2.1 2.6 3.1 3.6 VDD [V] ai18219b DS7204 Rev 11 77/123 102
Electrical parameters STM8L151x2, STM8L151x3 9.3.5 Memory characteristics TA = -40 to 125 °C unless otherwise specified. Table 34. RAM and hardware registers Symbol Parameter Conditions Min Typ Max Unit V Data retention mode (1) Halt mode (or Reset) 1.65 - - V RM 1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in Halt mode). Guaranteed by characterization results. Flash memory Table 35. Flash program and data EEPROM memory Max Symbol Parameter Conditions Min Typ Unit (1) Operating voltage V f = 16 MHz 1.65 - 3.6 V DD (all modes, read/write/erase) SYSCLK Programming time for 1 or 64 bytes (block) - - 6 - ms erase/write cycles (on programmed byte) t prog Programming time for 1 to 64 bytes (block) - - 3 - ms write cycles (on erased byte) T =+25 °C, V = 3.0 V - 0.7 - A DD I Programming/ erasing consumption mA prog T =+25 °C, V = 1.8 V - 0.7 - A DD Data retention (program memory) after 10000 erase/write cycles at T = –40 to +85 °C T = +85 °C 30(1) - - A RET (3 and 6 suffix) Data retention (program memory) after 10000 erase/write cycles at T = –40 to +125 °C T = +125 °C 5(1) - - A RET (3 suffix) t (2) years RET Data retention (data memory) after 300000 erase/write cycles at T = –40 to +85 °C T = +85 °C 30(1) - - A RET (3 and 6 suffix) Data retention (data memory) after 300000 erase/write cycles at T = –40 to +125 °C T = +125 °C 5(1) - - A RET (3 suffix) Erase/write cycles (program memory) T = –40 to +85 °C 10(1) - - A (3 and 6 suffix), T = –40 to +105 °C NRW (3) Erase/write cycles (data memory) A (3 suffix) or 300(1) - - kcycles T = –40 to +125 °C (4) A (3 suffix) 1. Guaranteed by characterization results. 2. Conforming to JEDEC JESD22a117 3. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte. 4. Data based on characterization performed on the whole data memory. 78/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters 9.3.6 I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below V or SS above V (for standard pins) should be avoided during normal product operation. DD However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC1 error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, etc.). The test results are given in the following table. Table 36. I/O current injection susceptibility Functional susceptibility Symbol Description Unit Negative Positive injection injection Injected current on true open-drain pins (PC0 and -5 +0 PC1) I Injected current on all five-volt tolerant pins -5 +0 mA INJ Injected current on all 3.6 V tolerant pins -5 +0 Injected current on any other pin -5 +5 9.3.7 I/O port pin characteristics General characteristics Subject to general operating conditions for V and T unless otherwise specified. All DD A unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor. DS7204 Rev 11 79/123 102
Electrical parameters STM8L151x2, STM8L151x3 Table 37. I/O static characteristics Symbol Parameter Conditions(1) Min Typ Max Unit Input voltage on true open-drain VIL Input low level voltage(2) pins (PC0 and PC1) VSS-0.3 - 0.3 x VDD V Input voltage on any other pin VSS-0.3 - 0.3 x VDD Input voltage on true open-drain pins (PC0 and PC1) - 5.2 with V < 2 V DD 0.70 x V DD VIH Input high level voltage (2) Input voltage on true open-drain V pins (PC0 and PC1) - 5.5 with V ≥ 2 V DD Input voltage on any other pin 0.70 x VDD - VDD+0.3 Schmitt trigger voltage I/Os - 200 - Vhys hysteresis (3) True open drain I/Os - 200 - mV VSS≤ VIN≤ VDD - - 50 (5) High sink I/Os VSS≤ VIN≤ VDD - - 200(5) I Input leakage current (4) True open drain I/Os nA lkg VSS≤ VIN≤ VDD PA0 with high sink LED driver - - 200(5) capability Weak pull-up equivalent RPU resistor(2)(6) VIN=VSS 30 45 60 kΩ CIO I/O pin capacitance - - 5 - pF 1. V = 3.0 V, T = -40 to 125 °C unless otherwise specified. DD A 2. Guaranteed by characterization results. 3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested. 4. The max. value may be exceeded if negative current is injected on adjacent pins. 5. Not tested in production. 6. R pull-up equivalent resistor based on a resistive transistor (corresponding I current characteristics described in PU PU Figure 23). 80/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters Figure 20. Typical V and V vs V (high sink I/Os) IL IH DD 3 -40°C 2.5 25°C 85°C V] 2 [H VI d 1.5 n a L VI 1 0.5 0 1.8 2.1 2.6 3.1 3.6 VDD [V] ai18220c Figure 21. Typical V and V vs V (true open drain I/Os) IL IH DD 3 -40°C 2.5 25°C 85°C 2 V] [H d VI 1.5 n a L VI 1 0.5 0 1.8 2.1 2.6 3.1 3.6 VDD [V] ai18221b DS7204 Rev 11 81/123 102
Electrical parameters STM8L151x2, STM8L151x3 Figure 22. Typical pull-up resistance R vs V with V =V PU DD IN SS 60 -40°C 55 25°C 85°C Ω] 50 k e [ c n sta 45 si e up r 40 ull- P 35 30 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VDD [V] ai18222b Figure 23. Typical pull-up current I vs V with V =V pu DD IN SS 120 -40°C 25°C 100 85°C A] 80 μ nt [ e urr 60 c p u ull- 40 P 20 0 1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3 3.15 3.3 3.45 3.6 VDD [V] ai18223b 82/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters Output driving current Subject to general operating conditions for V and T unless otherwise specified. DD A Table 38. Output driving current (high sink ports) I/O Symbol Parameter Conditions Min Max Unit Type I = +2 mA, IO - 0.45 V V = 3.0 V DD I = +2 mA, V (1) Output low level voltage for an I/O pin IO - 0.45 V OL V = 1.8 V DD I = +10 mA, IO k - 0.7 V sin VDD = 3.0 V High IVIO = =-2 3 m.0A V, VDD-0.45 - V DD I = -1 mA, VOH (2) Output high level voltage for an I/O pin VIO = 1.8 V VDD-0.45 - V DD I = -10 mA, IO V -0.7 - V V = 3.0 V DD DD 1. The I current sunk must always respect the absolute maximum rating specified in Table 15 and the sum IO of I (I/O ports and control pins) must not exceed I . IO VSS 2. The I current sourced must always respect the absolute maximum rating specified in Table 15 and the IO sum of I (I/O ports and control pins) must not exceed I . IO VDD Table 39. Output driving current (true open drain ports) I/O Symbol Parameter Conditions Min Max Unit Type I = +3 mA, ain VIO = 3.0 V - 0.45 pen dr VOL (1) Output low level voltage for an I/O pin IIOD D= +1 mA, - 0.45 V O V = 1.8 V DD 1. The I current sunk must always respect the absolute maximum rating specified in Table 15 and the sum IO of I (I/O ports and control pins) must not exceed I . IO VSS Table 40. Output driving current (PA0 with high sink LED driver capability) I/O Symbol Parameter Conditions Min Max Unit Type I = +20 mA, R V (1) Output low level voltage for an I/O pin IO - 0.45 V I OL VDD = 2.0 V 1. The I current sunk must always respect the absolute maximum rating specified in Table 15 and the sum IO of I (I/O ports and control pins) must not exceed I . IO VSS DS7204 Rev 11 83/123 102
Electrical parameters STM8L151x2, STM8L151x3 Figure 24. Typ. V @ V = 3.0 V (high sink Figure 25. Typ. V @ V = 1.8 V (high sink OL DD OL DD ports) ports) 1 0.7 0.75 -2450°°CC 0.6 -40°C 25°C 90°C 0.5 90°C V[V]OL 0.5 130°C V[V]OL 00..34 130°C 0.25 0.2 0.1 0 0 2 4 6 8 10 12 14 16 18 20 0 IOL [mA] 0 1 2 3 4 5 6 7 8 IOL [mA] ai18226 ai18227 Figure 26. Typ. V @ V = 3.0 V (true open Figure 27. Typ. V @ V = 1.8 V (true open OL DD OL DD drain ports) drain ports) 0.5 0.5 -40°C 0.4 25°C 0.4 -40°C 90°C 25°C V[V]OL 0.3 130°C V[V]OL 0.3 9103°0C°C 0.2 0.2 0.1 0.1 0 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 IOL [mA] IOL [mA] ai18228 ai18229 Figure 28. Typ. V V @ V = 3.0 V (high Figure 29. Typ. V V @ V = 1.8 V (high DD - OH DD DD - OH DD sink ports) sink ports) 2 1.75 0.5 -40°C -40°C 25°C 1.5 25°C 0.4 90°C - V[V]VOH DD01..72551 9103°0C°C V - V[V]OH DD00..23 130°C 0.5 0.25 0.1 0 0 2 4 6 8 10 12 14 16 18 20 0 IOH [mA] 0 1 2 3 4 5 6 7 IOH [mA] ai12830 ai18231 84/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters NRST pin Subject to general operating conditions for V and T unless otherwise specified. DD A Table 41. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit VIL(NRST) NRST input low level voltage (1) - VSS - 0.8 VIH(NRST) NRST input high level voltage (1) - 1.4 - VDD I = 2 mA OL V - - for 2.7 V ≤ V ≤ 3.6 V DD VOL(NRST) NRST output low level voltage (1) 0.4 I = 1.5 mA OL - - for V < 2.7 V DD 10%V DD VHYST NRST input hysteresis(3) - (2) - - mV NRST pull-up equivalent resistor RPU(NRST) - 30 45 60 kΩ (1) VF(NRST) NRST input filtered pulse (3) - - - 50 ns VNF(NRST) NRST input not filtered pulse (3) - 300 - - 1. Guaranteed by characterization results. 2. 200 mV min. 3. Guaranteed by design. Figure 30. Typical NRST pull-up resistance R vs V PU DD 60 -40°C 55 25°C Ω] 85°C k e [ 50 c n a sist 45 e p r u ull- 40 P 35 30 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 V [V] DD ai18224b DS7204 Rev 11 85/123 102
Electrical parameters STM8L151x2, STM8L151x3 Figure 31. Typical NRST pull-up current I vs V pu DD 120 -40°C 100 25°C 85°C A] 80 μ nt [ urre 60 c p u ull- 40 P 20 0 1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3 3.15 3.3 3.45 3.6 VDD [V] ai18225b The reset network shown in Figure 32 protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the V max. level specified IL(NRST) in Table 41. Otherwise the reset is not taken into account internally. For power consumption sensitive applications, the external reset capacitor value can be reduced to limit the charge/discharge current. If the NRST signal is used to reset the external circuitry, attention must be paid to the charge/discharge time of the external capacitor to fulfill the external devices reset timing conditions. The minimum recommended capacity is 10 nF. Figure 32. Recommended NRST pin configuration VDD R PU External reset NRST Filter Internal reset circuit STM8 (Optional) 0.1 uF MS34928V1 86/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters 9.3.8 Communication interfaces SPI1 - Serial peripheral interface Unless otherwise specified, the parameters given in Table 42 are derived from tests performed under ambient temperature, f frequency and V supply voltage SYSCLK DD conditions summarized in Section 9.3.1. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 42. SPI1 characteristics Symbol Parameter Conditions(1) Min Max Unit f Master mode 0 8 SCK SPI1 clock frequency 1/tc(SCK) Slave mode 0 8 MHz t SPI1 clock rise and fall r(SCK) Capacitive load: C = 30 pF - 30 t time f(SCK) t (2) NSS setup time Slave mode 4 x 1/f - su(NSS) SYSCLK t (2) NSS hold time Slave mode 80 - h(NSS) t (2) Master mode, w(SCKH) SCK high and low time 105 145 t (2) f = 8 MHz, f = 4 MHz w(SCKL) MASTER SCK t (2) Master mode 30 - su(MI) Data input setup time tsu(SI)(2) Slave mode 3 - t (2) Master mode 15 - h(MI) Data input hold time ns th(SI)(2) Slave mode 0 - t (2)(3) Data output access time Slave mode - 3x 1/f a(SO) SYSCLK t (2)(4) Data output disable time Slave mode 30 - dis(SO) t (2) Data output valid time Slave mode (after enable edge) - 60 v(SO) Master mode (after enable t (2) Data output valid time - 20 v(MO) edge) t (2) Slave mode (after enable edge) 15 - h(SO) Data output hold time Master mode (after enable t (2) 1 - h(MO) edge) 1. Parameters are given by selecting 10 MHz I/O output frequency. 2. Values based on design simulation and/or characterization results. 3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data. 4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z. DS7204 Rev 11 87/123 102
Electrical parameters STM8L151x2, STM8L151x3 Figure 33. SPI1 timing diagram - slave mode and CPHA=0 Figure 34. SPI1 timing diagram - slave mode and CPHA=1(1) 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 88/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters Figure 35. SPI1 timing diagram - master mode(1) High NSS input tc(SCK) ut CPHA=0 p ut CPOL=0 O K CPHA=0 C CPOL=1 S ut CPHA=1 p ut CPOL=0 O K CPHA=1 C CPOL=1 S tsu(MI) ttww((SSCCKKHL)) ttrf((SSCCKK)) MISO MSBIN BIT6 IN LSB IN INPUT th(MI) MOSI MSB OUT BIT1 OUT LSB OUT OUTPUT tv(MO) th(MO) ai14136V2 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. DS7204 Rev 11 89/123 102
Electrical parameters STM8L151x2, STM8L151x3 I2C - Inter IC control interface Subject to general operating conditions for V , f , and T unless otherwise specified. DD SYSCLK A The STM8L I2C interface (I2C1) meets the requirements of the Standard I2C communication protocol described in the following table with the restriction mentioned below: Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 43. I2C characteristics Standard mode Fast mode I2C(1) I2C Symbol Parameter Unit Min(2) Max (2) Min (2) Max (2) tw(SCLL) SCL clock low time 4.7 - 1.3 - μs tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - th(SDA) SDA data hold time 0 - 0 900 t r(SDA) ns SDA and SCL rise time - 1000 - 300 t r(SCL) t f(SDA) SDA and SCL fall time - 300 - 300 t f(SCL) th(STA) START condition hold time 4.0 - 0.6 - μs Repeated START condition setup tsu(STA) time 4.7 - 0.6 - tsu(STO) STOP condition setup time 4.0 - 0.6 - μs STOP to START condition time (bus tw(STO:STA) free) 4.7 - 1.3 - μs Cb Capacitive load for each bus line - 400 - 400 pF 1. f must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz). SYSCLK 2. Data based on standard I2C protocol requirement, not tested in production. Note: For speeds around 200 kHz, the achieved speed can have a± 5% tolerance For other speed ranges, the achieved speed can have a± 2% tolerance The above variations depend on the accuracy of the external components used. 90/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters Figure 36. Typical application with I2C bus and timing diagram 1) VDD VDD 4.7kΩ 4.7kΩ 100Ω SDA I2C BUS 100Ω SCL STM8L Repeated start Start tsu(STA) tw(STO:STA) SDA Start tf(SDA) tr(SDA) tsu(SDA) th(SDA) Stop SCL th(STA)tw(SCLH) tw(SCLL) tr(SCL) tf(SCL) tsu(STO) MS32620V2 1. Measurement points are done at CMOS levels: 0.3 x V and 0.7 x V DD DD DS7204 Rev 11 91/123 102
Electrical parameters STM8L151x2, STM8L151x3 9.3.9 Embedded reference voltage In the following table, data is based on characterization results, not tested in production, unless otherwise specified. Table 44. Reference voltage characteristics Symbol Parameter Conditions Min Typ Max. Unit Internal reference voltage I - - 1.4 - µA REFINT consumption ADC1 sampling time when T (1)(2) reading the internal reference - - 5 10 µs S_VREFINT voltage Internal reference voltage buffer I (2) - - 13.5 25 µA BUF consumption (used for ADC1) V Reference voltage output - 1.202(3) 1.224 1.242(3) V REFINT out Internal reference voltage low I (2) power buffer consumption (used - - 730 1200 nA LPBUF for comparators or output) I (2) Buffer output current(4) - - - 1 µA REFOUT C Reference voltage output load - - - 50 pF REFOUT Internal reference voltage startup t - - 2 3 ms VREFINT time Internal reference voltage buffer t (2) - - - 10 µs BUFEN startup time once enabled (1) Accuracy of V stored in the ACC REFINT - - - ± 5 mV VREFINT VREFINT_Factory_CONV byte(5) Stability of V over REFINT -40 °C ≤ T ≤ 125 °C - 20 50 ppm/°C temperature A STAB VREFINT Stability of V over REFINT 0 °C ≤ T ≤ 50 °C - - 20 ppm/°C temperature A Stability of V after 1000 STAB REFINT - - - TBD ppm VREFINT hours 1. Defined when ADC1 output reaches its final value ±1/2LSB 2. Guaranteed by design. 3. Tested in production at V = 3 V ±10 mV. DD 4. To guaranty less than 1% VREFOUT deviation. 5. Measured at V = 3 V ±10 mV. This value takes into account V accuracy and ADC1 conversion accuracy. DD DD 92/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters 9.3.10 Temperature sensor In the following table, data is based on characterization results, not tested in production, unless otherwise specified. Table 45. TS characteristics Symbol Parameter Min Typ Max. Unit V (1) Sensor reference voltage at 90°C ±5 °C, 0.580 0.597 0.614 V 90 T V linearity with temperature - ±1 ±2 °C L SENSOR Avg_slope (2) Average slope 1.59 1.62 1.65 mV/°C I (2) Consumption - 3.4 6 µA DD(TEMP) T (2)(3) Temperature sensor startup time - - 10 µs START ADC1 sampling time when reading the T (2) 10 - - µs S_TEMP temperature sensor 1. Tested in production at V = 3 V ±10 mV. The 8 LSB of the V ADC1 conversion result are stored in the DD 90 TS_Factory_CONV_V90 byte. 2. Guaranteed by design. 3. Defined for ADC1 output reaching its final value ±1/2LSB. 9.3.11 Comparator characteristics In the following table, data is guaranteed by design, not tested in production, unless otherwise specified. Table 46. Comparator 1 characteristics Symbol Parameter Min Typ Max(1) Unit VDDA Analog supply voltage 1.65 - 3.6 V T Temperature range -40 - 125 °C A R R value 300 400 500 400K 400K kΩ R R value 7.5 10 12.5 10K 10K VIN Comparator 1 input voltage range 0.6 - VDDA V VREFINT Internal reference voltage(2) 1.202 1.224 1.242 tSTART Comparator startup time - 7 10 µs t Propagation delay(3) - 3 10 d V Comparator offset error - ±3 ±10 mV offset I Current consumption(4) - 160 260 nA COMP1 1. Guaranteed by characterization results. 2. Tested in production at V = 3 V ±10 mV. DD 3. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non- inverting input set to the reference. 4. Comparator consumption only. Internal reference voltage not included. DS7204 Rev 11 93/123 102
Electrical parameters STM8L151x2, STM8L151x3 In the following table, data is guaranteed by design, not tested in production. Table 47. Comparator 2 characteristics Symbol Parameter Conditions Min Typ Max(1) Unit VDDA Analog supply voltage - 1.65 - 3.6 V T Temperature range - -40 - 125 °C A VIN Comparator 2 input voltage range - 0 - VDDA V Fast mode - 15 20 tSTART Comparator startup time Slow mode - 20 25 Propagation delay in slow 1.65 V ≤ VDDA ≤ 2.7 V - 1.8 3.5 t µs d slow mode(2) 2.7 V ≤ V ≤ 3.6 V - 2.5 6 DDA 1.65 V ≤ V ≤ 2.7 V - 0.8 2 t Propagation delay in fast mode(2) DDA d fast 2.7 V ≤ V ≤ 3.6 V - 1.2 4 DDA V Comparator offset error - - ±4 ±20 mV offset Fast mode - 3.5 5 I Current consumption(3) µA COMP2 Slow mode - 0.5 2 1. Guaranteed by characterization results. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non- inverting input set to the reference. 3. Comparator consumption only. Internal reference voltage not included. 94/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters 9.3.12 12-bit ADC1 characteristics In the following table, data is guaranteed by design, not tested in production. Table 48. ADC1 characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Analog supply voltage - 1.8 - 3.6 V Reference supply 2.4 V ≤ VDDA≤ 3.6 V 2.4 - VDDA V V REF+ voltage 1.8 V ≤ VDDA≤ 2.4 V VDDA V VREF- Lower reference voltage - VSSA V Current on the VDDA IVDDA input pin - - 1000 1450 µA 700 - - µA Current on the VREF+ (peak)(1) IVREF+ input pin 400 450 - - µA (average)(1) Conversion voltage VAIN range - 0(2) - VREF+ V T Temperature range - -40 - 125 °C A External resistance on on PF0 fast channel - - RAIN VAIN on all other channels - - 50(3) kΩ Internal sample and hold on PF0 fast channel - - CADC1 capacitor 16 pF on all other channels - - 2.4 V≤ V ≤ 3.6 V DDA 0.320 - 16 MHz ADC1 sampling clock without zooming f ADC1 frequency 1.8 V≤ V ≤ 2.4 V DDA 0.320 - 8 MHz with zooming V on PF0 fast AIN - - 1(4)(5) MHz channel fCONV 12-bit conversion rate V on all other AIN - - 760(4)(5) kHz channels External trigger fTRIG frequency - - - tconv 1/fADC1 tLAT External trigger latency - - - 3.5 1/fSYSCLK DS7204 Rev 11 95/123 102
Electrical parameters STM8L151x2, STM8L151x3 Table 48. ADC1 characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit V on PF0 fast AIN channel 0.43(4)(5) - - µs V < 2.4 V DDA V on PF0 fast AIN channel 0.22(4)(5) - - µs tS Sampling time 2.4 V ≤ V ≤ 3.6 V DDA V on slow channels AIN 0.86(4)(5) - - µs V < 2.4 V DDA V on slow channels AIN 0.41(4)(5) - - µs 2.4 V ≤ V ≤ 3.6 V DDA - 12 + t 1/f S ADC1 tconv 12-bit conversion time 16 MHz 1(4) µs Wakeup time from OFF tWKUP state - - - 3 µs T = +25 °C - - 1(7) s A Time before a new t (6) T = +70 °C - - 20(7) ms IDLE conversion A T = +125 °C - - 2(7) ms A Internal reference refer to t - - - ms VREFINT voltage startup time Table 44 1. The current consumption through V is composed of two parameters: REF - one constant (max 300 µA) - one variable (max 400 µA), only during sampling time + 2 first conversion pulses. So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at 1Msps 2. V or V must be tied to ground. REF- DDA 3. Guaranteed by design. 4. Minimum sampling and conversion time is reached for maximum Rext = 0.5 kΩ. 5. Value obtained for continuous conversion on fast channel. 6. The time between 2 conversions, or between ADC1 ON and the first conversion must be lower than t IDLE. 7. The t maximum value is ∞ on the “Z” revision code of the device. IDLE 96/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters In the following three tables, data is guaranteed by characterization result, not tested in production. Table 49. ADC1 accuracy with V = 3.3 V to 2.5 V DDA Symbol Parameter Conditions Typ Max Unit f = 16 MHz 1 1.6 ADC1 DNL Differential non linearity f = 8 MHz 1 1.6 ADC1 f = 4 MHz 1 1.5 ADC1 f = 16 MHz 1.2 2 ADC1 INL Integral non linearity f = 8 MHz 1.2 1.8 LSB ADC1 f = 4 MHz 1.2 1.7 ADC1 f = 16 MHz 2.2 3.0 ADC1 TUE Total unadjusted error f = 8 MHz 1.8 2.5 ADC1 f = 4 MHz 1.8 2.3 ADC1 f = 16 MHz 1.5 2 ADC1 Offset Offset error f = 8 MHz 1 1.5 ADC1 f = 4 MHz 0.7 1.2 ADC1 LSB f = 16 MHz ADC1 Gain Gain error f = 8 MHz 1 1.5 ADC1 f = 4 MHz ADC1 Table 50. ADC1 accuracy with V = 2.4 V to 3.6 V DDA Symbol Parameter Typ Max Unit DNL Differential non linearity 1 2 LSB INL Integral non linearity 1.7 3 LSB TUE Total unadjusted error 2 4 LSB Offset Offset error 1 2 LSB Gain Gain error 1.5 3 LSB Table 51. ADC1 accuracy with V = V + = 1.8 V to 2.4 V DDA REF Symbol Parameter Typ Max Unit DNL Differential non linearity 1 2 LSB INL Integral non linearity 2 3 LSB TUE Total unadjusted error 3 5 LSB Offset Offset error 2 3 LSB Gain Gain error 2 3 LSB DS7204 Rev 11 97/123 102
Electrical parameters STM8L151x2, STM8L151x3 Figure 37. ADC1 accuracy characteristics V V [1LSB = REF+(or D D A depending on package)] IDEAL 4096 4096 EG (1) Example of an actual transfer curve 4095 (2) The ideal transfer curve 4094 (3) End point correlation line 4093 (2) ET=Total Unadjusted Error: maximum deviation 7 ET (3) bEeOt=wOefefsne tth Ee rarocrt:u dael avinadti othne b iedtewael etrna nthsefe frir csut ravcetsu.al (1) transition and the first ideal one. 6 EG=Gain Error: deviation between the last ideal 5 transition and the last actual one. 4 EO EL EbeDt=wDeieffne raecnttuiaall Lsitneepasr iatyn dE rtrhoer :i dmeaaxl imonuem. deviation 3 ED EbeLt=wIneteeng raanl yL iancetauraitl yt raEnrrsoitri:o nm aanxdim tuhme ednedv iaptoioinnt 2 correlation line. 1 1LSBIDEAL 0 1 2 3 4 5 6 7 4093409440954096 VSSA VDDA ai14395b Figure 38. Typical connection diagram using the ADC1 STM8 VDD Sample and hold ADC VT converter 0.6V RAIN(1) AINx RADC 12-bit converter VT VAIN Cparasitic (2) 0.6V CADC(1) IL±50nA ai17090f 1. Refer to Table 48 for the values of R and C . AIN ADC1 2. C represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the parasitic pad capacitance (roughly 7 pF). A high C value will downgrade conversion accuracy. To remedy parasitic this, f should be reduced. ADC1 General PCB design guidelines Power supply decoupling should be performed as shown in Figure 39 or Figure 40, depending on whether V is connected to V or not. Good quality ceramic 10 nF REF+ DDA capacitors should be used. They should be placed as close as possible to the chip. 98/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters Figure 39. Power supply and reference decoupling (V not connected to V ) REF+ DDA STM8L External VREF+ reference 1 μF // 10 nF VDDA Supply 1 μF // 10 nF VSSA/VREF- ai17031c Figure 40. Power supply and reference decoupling (V connected to V ) REF+ DDA STM8L VREF+/VDDA Supply 1 μF // 10 nF VREF-/VSSA ai17032d DS7204 Rev 11 99/123 102
Electrical parameters STM8L151x2, STM8L151x3 Figure 41. Max. dynamic current consumption on V supply pin during ADC REF+ conversion Sampling (n cycles) Conversion (12 cycles) ADC clock Iref+ 700μA 300μA MS18181V2 Table 52. R max for f = 16 MHz AIN ADC R max (kohm) AIN t t S S Slow channels Fast channels (cycles) (µs) 2.4 V < V < 3.6 V 1.8 V < V < 2.4 V 2.4 V < V < 3.3 V 1.8 V < V < 2.4 V DDA DDA DDA DDA 4 0.25 Not allowed Not allowed 0.7 Not allowed 9 0.5625 0.8 Not allowed 2.0 1.0 16 1 2.0 0.8 4.0 3.0 24 1.5 3.0 1.8 6.0 4.5 48 3 6.8 4.0 15.0 10.0 96 6 15.0 10.0 30.0 20.0 192 12 32.0 25.0 50.0 40.0 384 24 50.0 50.0 50.0 50.0 9.3.13 EMC characteristics Susceptibility tests are performed on a sample basis during product characterization. Functional EMS (electromagnetic susceptibility) Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs). • ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000 standard. • FTB: A burst of fast transient voltage (positive and negative) is applied to V and V DD SS through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000 standard. 100/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Electrical parameters A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Table 53. EMS data Level/ Symbol Parameter Conditions Class Voltage limits to be applied on VDD = 3.3 V, TA = +25 °C, VFESD any I/O pin to induce a functional fCPU= 16 MHz, 2B disturbance conforms to IEC 61000 Ftoa bset t raapnpsliieedn tt hvoroltuagghe 1b0u0rs pt Flim oints VDD = 3.3 V, TA = +25 °C, Using HSI 4A VEFTB V and V pins to induce a fCPU = 16 MHz, DD SS conforms to IEC 61000 Using HSE 2B functional disturbance Electromagnetic interference (EMI) Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin. Table 54. EMI data (1) Max vs. Monitored Symbol Parameter Conditions Unit frequency band 16 MHz V = 3.6 V, 0.1 MHz to 30 MHz -3 DD TA = +25 °C, 30 MHz to 130 MHz 9 dBμV SEMI Peak level LQFP48 conforming to 130 MHz to 1 GHz 4 IEC61967-2 SAE EMI Level 2 - 1. Not tested in production. DS7204 Rev 11 101/123 102
Electrical parameters STM8L151x2, STM8L151x3 Absolute maximum ratings (electrical sensitivity) Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: human body model and charge device model. This test conforms to the JESD22-A114A/A115A standard. Table 55. ESD absolute maximum ratings Maximum Symbol Ratings Conditions Unit value (1) Electrostatic discharge voltage VESD(HBM) (human body model) 2000 T = +25 °C V Electrostatic discharge voltage A VESD(CDM) (charge device model) 500 1. Guaranteed by characterization results. Static latch-up • LU: 3 complementary static tests are required on 6 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181. Table 56. Electrical sensitivities Symbol Parameter Class LU Static latch-up class II 102/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Package information 10 Package information 10.1 ECOPACK In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 10.2 LQFP48 package information Figure 42. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline SEATING PLANE C 2 AA 1 A c 0.25 mm GAUGE PLANE ccc C D K 1 L A D1 L1 D3 36 25 37 24 b E3 E1 E 48 13 PIN 1 IDENTIFICATION 1 12 e 5B_ME_V2 1. Drawing is not to scale. DS7204 Rev 11 103/123 119
Package information STM8L151x2, STM8L151x3 Table 57. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data millimeters inches(1) Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 104/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Package information Figure 43. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint 0.50 1.20 0.30 36 25 37 24 0.20 7.30 9.70 5.80 7.30 48 13 1 12 1.20 5.80 9.70 ai14911d 1. Dimensions are expressed in millimeters. Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. Figure 44. LQFP48 marking example (package top view) Product (1) 8L151 identification C3T6 Date code Standard ST logo Y WW Revision code Pin 1 identifier R MS37777V1 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet DS7204 Rev 11 105/123 119
Package information STM8L151x2, STM8L151x3 qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. 10.3 UFQFPN32 package information Figure 45. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package outline D A ddd C e A1 A2 C SEATING PLANE D1 b e E2 b E1 E 1 L 32 D2 L PIN 1 Identifier A0B8_ME_V2 1. Drawing is not to scale. 106/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Package information Table 58. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package mechanical data millimeters inches(1) Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 A3 - 0.152 - - 0.0060 - b 0.180 0.230 0.280 0.0071 0.0091 0.0110 D 4.900 5.000 5.100 0.1929 0.1969 0.2008 D1 3.400 3.500 3.600 0.1339 0.1378 0.1417 D2 3.400 3.500 3.600 0.1339 0.1378 0.1417 E 4.900 5.000 5.100 0.1929 0.1969 0.2008 E1 3.400 3.500 3.600 0.1339 0.1378 0.1417 E2 3.400 3.500 3.600 0.1339 0.1378 0.1417 e - 0.500 - - 0.0197 - L 0.300 0.400 0.500 0.0118 0.0157 0.0197 ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 46. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package recommended footprint 5.30 3.80 0.60 32 25 1 24 3.45 5.30 3.80 3.45 0.50 0.30 8 17 9 16 0.75 3.80 A0B8_FP_V2 1. Dimensions are expressed in millimeters. DS7204 Rev 11 107/123 119
Package information STM8L151x2, STM8L151x3 Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. Figure 47. UFQFPN32 marking example (package top view) Product (1) identification L151K33 Date code Y WW Standard ST logo Revision code R Dot (pin 1) MS37778V1 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. 108/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Package information 10.4 UFQFPN28 package information Figure 48. UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline D Detail Y E D D1 E1 Detail Z A0B0_ME_V5 1. Drawing is not to scale. Table 59. UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data(1) millimeters inches Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 - 0.000 0.050 - 0.0000 0.0020 D 3.900 4.000 4.100 0.1535 0.1575 0.1614 D1 2.900 3.000 3.100 0.1142 0.1181 0.1220 E 3.900 4.000 4.100 0.1535 0.1575 0.1614 E1 2.900 3.000 3.100 0.1142 0.1181 0.1220 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 L1 0.250 0.350 0.450 0.0098 0.0138 0.0177 T - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - DS7204 Rev 11 109/123 119
Package information STM8L151x2, STM8L151x3 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 49. UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint (cid:19)(cid:14)(cid:19)(cid:16) (cid:16)(cid:14)(cid:21)(cid:16) (cid:19)(cid:14)(cid:18)(cid:16) (cid:20)(cid:14)(cid:19)(cid:16) (cid:19)(cid:14)(cid:19)(cid:16) (cid:19)(cid:14)(cid:18)(cid:16) (cid:16)(cid:14)(cid:19)(cid:16) (cid:16)(cid:14)(cid:21)(cid:21) (cid:16)(cid:14)(cid:21)(cid:16) (cid:16)(cid:14)(cid:21)(cid:16) (cid:33)(cid:16)(cid:34)(cid:16)(cid:63)(cid:38)(cid:48)(cid:63)(cid:54)(cid:18) 1. Dimensions are expressed in millimeters. 110/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. Figure 50. UFQFPN28 marking example (package top view) Product (1) identification 151G36 Date code Revision code Y WW R Dot (pin 1) MS37780V1 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. DS7204 Rev 11 111/123 119
Package information STM8L151x2, STM8L151x3 10.5 UFQFPN20 package information Figure 51. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline D Pin 1 E TOP VIEW L1 D ddd L3 D1 e 10 L2 A3 5 e b E1 E 1 15 20 16 L5 A1 A BOTTOM VIEW SIDE VIEW A0A5_ME_V4 1. Drawing is not to scale. 112/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Package information Table 60. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data millimeters inches(1) Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 A3 - 0.152 - - 0.060 - D 2.900 3.000 3.100 0.1142 0.1181 0.1220 D1 - 2.000 - - 0.0790 - E 2.900 3.000 3.100 0.1142 0.1181 0.1220 E1 - 2.000 - - 0.0790 - L1 0.500 0.550 0.600 0.0197 0.0217 0.0236 L2 0.300 0.350 0.400 0.0118 0.0138 0.0157 L3 - 0.200 - - 0.0079 - L5 - 0.150 - - 0.0059 - b 0.180 0.250 0.300 0.0071 0.0098 0.0118 e - 0.500 - - 0.0197 - ddd - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 52. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint A0A5_FP_V2 1. Dimensions are expressed in millimeters. DS7204 Rev 11 113/123 119
Package information STM8L151x2, STM8L151x3 Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. Figure 53. UFQFPN20 marking example (package top view) Product (1) identification L526 Date code Revision code Y WW R Dot (pin 1) MS37779V1 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. 114/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Package information 10.6 TSSOP20 package information Figure 54. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package outline D 20 11 c E1 E SEATING 0.25 mm PLANE GAUGE PLANE C 1 10 PIN 1 IDENTIFICATION k aaa C A1 L A A2 L1 b e YA_ME_V3 1. Drawing is not to scale. Table 61. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package mechanical data millimeters inches(1) Symbol Min. Typ. Max. Min. Typ. Max. A - - 1.200 - - 0.0472 A1 0.050 - 0.150 0.0020 - 0.0059 A2 0.800 1.000 1.050 0.0315 0.0394 0.0413 b 0.190 - 0.300 0.0075 - 0.0118 c 0.090 - 0.200 0.0035 - 0.0079 D 6.400 6.500 6.600 0.2520 0.2559 0.2598 E 6.200 6.400 6.600 0.2441 0.2520 0.2598 E1 4.300 4.400 4.500 0.1693 0.1732 0.1772 e - 0.650 - - 0.0256 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - DS7204 Rev 11 115/123 119
Package information STM8L151x2, STM8L151x3 Table 61. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package mechanical data (continued) millimeters inches(1) Symbol Min. Typ. Max. Min. Typ. Max. k 0° - 8° 0° - 8° aaa - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to four decimal digits. Figure 55. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package footprint 0.25 6.25 20 11 1.35 0.25 7.10 4.40 1.35 1 10 0.40 0.65 YA_FP_V1 1. Dimensions are expressed in millimeters. 116/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. Figure 56. TSSOP20 marking example (package top view) Standard ST logo Product (1) identification 8L151F3P3 Pin 1 identifier Date code Revision code Y WW R MS37781V1 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. DS7204 Rev 11 117/123 119
Package information STM8L151x2, STM8L151x3 10.7 Thermal characteristics The maximum chip junction temperature (T ) must never exceed the values given in Jmax Table 17: General operating conditions on page 57. The maximum chip-junction temperature, T , in degree Celsius, may be calculated using Jmax the following equation: T = T + (P x Θ ) Jmax Amax Dmax JA Where: • T is the maximum ambient temperature in °C Amax • Θ is the package junction-to-ambient thermal resistance in °C/W JA • P is the sum of P and P (P = P + P ) Dmax INTmax I/Omax Dmax INTmax I/Omax • P is the product of I andV , expressed in Watts. This is the maximum chip INTmax DD DD internal power. • P represents the maximum power dissipation on output pins I/Omax Where: P =Σ (V *I ) + Σ((V -V )*I ), I/Omax OL OL DD OH OH taking into account the actual V /I andV /I of the I/Os at low and high level in OL OL OH OH the application. Table 62. Thermal characteristics(1) Symbol Parameter Value Unit Thermal resistance junction-ambient Θ 65 °C/W JA LQFP 48- 7 x 7 mm Thermal resistance junction-ambient Θ 38 °C/W JA UFQFPN 32 - 5 x 5 mm Thermal resistance junction-ambient Θ 80 °C/W JA UFQFPN28 - 4 x 4 mm Thermal resistance junction-ambient Θ 102 °C/W JA UFQFPN20 - 3 x 3 mm Thermal resistance junction-ambient Θ 110 °C/W JA TSSOP20 1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment. 118/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Part numbering 11 Part numbering For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office. Table 63. Low-density STM8L151x2/3 ordering information scheme Example: STM8 L 151 K 3 U 3 TR Device family STM8 = 8-bit microcontroller Product type L = Low power Sub-family 151 = ultra-low power Pin count C = 48 pins K = 32 pins G = 28 pins F = 20 pins Program memory size 3 = 8 Kbyte of Flash memory 2 = 4 Kbyte of Flash memory Package U = UFQFPN T = LQFP P = TSSOP Temperature range 3 = –40 to 125 °C 6 = –40 to 85 °C Packing No character = tray or tube TR = tape and reel DS7204 Rev 11 119/123 119
Revision history STM8L151x2, STM8L151x3 12 Revision history Table 64. Document revision history Date Revision Changes 08-Jun-2011 1 Initial release Modified Figure: Memory map. Modified OPT1 description in Table: Option byte addresses. Modified t in Table: Flash program and data prog EEPROM memory. Modified Figure: Recommended NRST pin 02-Sep-2011 2 configuration. Modified L2 in Figure: UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline. Replaced PM0051 with PM0054 and UM0320 with UM0470. Added part number STM8L151C2. Updated the captions of Figure 3 and Figure 4. Table: Low-density STM8L151x2/3 pin description: updated OD column of NRST/PA1 pin. Figure: UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra 09-Feb-2012 3 thin fine pitch quad flat package outline: removed the line over A1. Figure Recommended UFQFPN28 footprint (dimensions in mm): updated title. Table: TSSOP20 - 20-pin thin shrink small outline package mechanical data: updated title. Added “I/O level” in Table: Legend/abbreviation for table 4 and Table: Low-density STM8L151x2/3 pin description. Updated Figure: UFQFPN20 - 20-lead ultra thin fine 06-Jul-2012 4 pitch quad flat package outline (3x3). Updated Figure: SPI1 timing diagram - master mode. Updated Table: Voltage characteristics and Table: I/O static characteristics. Updated Table: UFQFPN20 - 20-lead ultra thin fine pitch quad flat package (3x3) package mechanical data, added notes on Table: TSSOP20 - 20-pin thin shrink small outline package mechanical data. 11-Apr-2014 5 Changed reset value of SYSCFG_RMPCR1 register on Table: General hardware register map. Updated Table: Low-density STM8L151x2/3 pin description and Table: Embedded reset and power control block characteristics. 120/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 Revision history Table 64. Document revision history (continued) Date Revision Changes Updated Section: UFQFPN20 package information. Replaced “ultralow power” occurrences with “ultra-low- 18-Dec-2014 6 power”, and “Low density” with “low-density” where applicable. Added: – Figure 44: LQFP48 marking example (package top view), – Figure 47: UFQFPN32 marking example (package top view), – Figure 50: UFQFPN28 marking example (package top view), – Figure 53: UFQFPN20 marking example (package top 08-Apr-2015 7 view), – Figure 56: TSSOP20 marking example (package top view). Updated: – Table 63: Low-density STM8L151x2/3 ordering information scheme. Moved Section 10.7: Thermal characteristics to Section 10: Package information. In Table 4: Low-density STM8L151x2/3 pin description row corresponding to pin names PD6/ADC1_IN8 / 01-Oct-2016 8 RTC_CALIB/COMP1_INP, inserted pin number 35 in LQFP48 column. Updated: – Figure 51: UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline – Table 60: UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data – Table 45: TS characteristics – Section 9.2: Absolute maximum ratings – Updated all document’s footnotes from “Data 12-May-2017 9 guaranteed by design, not tested in production” (or similar) to “Guaranteed by design” and “Data based on characterization results, not tested in production.” (or similar) to “Guaranteed by design.” – Section : Device marking on page 105 – Section : Device marking on page 108 – Section : Device marking on page 111 – Section : Device marking on page 114 – Section : Device marking on page 117 DS7204 Rev 11 121/123 122
Revision history STM8L151x2, STM8L151x3 Table 64. Document revision history (continued) Date Revision Changes Updated – Table 18: Embedded reset and power control block characteristics 16-Mar-2018 10 – Figure 16: HSE oscillator circuit diagram – Figure 40: Power supply and reference decoupling (VREF+ connected to VDDA) Updated: 20-Jul-2018 11 – Figure 3: STM8L151Cx LQFP48 package pinout – Table 4: Low-density STM8L151x2/3 pin description 122/123 DS7204 Rev 11
STM8L151x2, STM8L151x3 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2018 STMicroelectronics – All rights reserved DS7204 Rev 11 123/123 123
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: S TMicroelectronics: STM8L151F3P6 STM8L151G3U6 STM8L151C2T6 STM8L151C3T3 STM8L151F2P6 STM8L151F2U6TR STM8L151F3P3 STM8L151F3U6TR STM8L151G2U6 STM8L151G3U6TR STM8L151C3T6 STM8L151F3P6TR STM8L151G3U3 STM8L151K2U6 STM8L151K3U6 STM8L151K3U3 STM8L151F2P6TR STM8L151F3U6DTR STM8L151F3U6 STM8L151K3U3TR