ICGOO在线商城 > 集成电路(IC) > 接口 - 驱动器,接收器,收发器 > SN65LBC184DR
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
SN65LBC184DR产品简介:
ICGOO电子元器件商城为您提供SN65LBC184DR由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 SN65LBC184DR价格参考¥5.89-¥5.89。Texas InstrumentsSN65LBC184DR封装/规格:接口 - 驱动器,接收器,收发器, 1/1 Transceiver Half RS422, RS485 8-SOIC。您可以下载SN65LBC184DR参考资料、Datasheet数据手册功能说明书,资料中有SN65LBC184DR 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC DIFF TRANSCEIVER W/TVS 8-SOICRS-485接口IC Trans Volt Spprssn Diff Transceiver |
产品分类 | |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 接口 IC,RS-485接口IC,Texas Instruments SN65LBC184DR- |
数据手册 | |
产品型号 | SN65LBC184DR |
产品种类 | RS-485接口IC |
供应商器件封装 | 8-SOIC |
关闭 | Yes |
其它名称 | 296-26355-6 |
制造商产品页 | http://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&orderablePartNumber=SN65LBC184DR |
功能 | Transceiver |
包装 | Digi-Reel® |
协议 | RS485 |
单位重量 | 72.600 mg |
双工 | 半 |
商标 | Texas Instruments |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | 8-SOIC(0.154",3.90mm 宽) |
封装/箱体 | SOIC-8 |
工作温度 | -40°C ~ 85°C |
工作温度范围 | - 40 C to + 85 C |
工作电源电压 | 5 V |
工厂包装数量 | 2500 |
接收器滞后 | 70mV |
接收机数量 | 1 Receiver |
数据速率 | 250kbps |
最大工作温度 | + 85 C |
最小工作温度 | - 40 C |
标准包装 | 1 |
激励器数量 | 1 Driver |
电压-电源 | 4.75 V ~ 5.25 V |
电源电流 | 25 mA |
类型 | 收发器 |
系列 | SN65LBC184 |
驱动器/接收器数 | 1/1 |
Product Sample & Technical Tools & Support & Folder Buy Documents Software Community SN65LBC184,SN75LBC184 SLLS236I–OCTOBER1996–REVISEDJUNE2015 SNx5LBC184 Differential Transceiver With Transient Voltage Suppression 1 Features 3 Description • IntegratedTransientVoltageSuppression The SN75LBC184 and SN65LBC184 devices are 1 differentialdatalinetransceiversinthetrade-standard • ESDProtectionforBusTerminalsExceeds: footprint of the SN75176 with built-in protection ±30kVIEC61000-4-2,ContactDischarge against high-energy noise transients. This feature ±15kVIEC61000-4-2,Air-GapDischarge provides a substantial increase in reliability for better ±15kVEIA/JEDECHumanBodyModel immunity to noise transients coupled to the data • CircuitDamageProtectionof400-WPeak cable over most existing devices. Use of these (Typical)PerIEC61000-4-5 circuits provides a reliable low-cost direct-coupled (with no isolation transformer) data line interface • ControlledDriverOutput-VoltageSlewRates withoutrequiringanyexternalcomponents. AllowLongerCableStubLengths The SN75LBC184 and SN65LBC184 can withstand • 250-kbpsinElectricallyNoisyEnvironments overvoltage transients of 400-W peak (typical). The • Open-CircuitFail-SafeReceiverDesign conventional combination wave called out in IEC • 1/4UnitLoadAllowsfor128DevicesConnected 61000-4-5 simulates the overvoltage transient and onBus models a unidirectional surge caused by overvoltages fromswitchingandsecondarylightningtransients. • ThermalShutdownProtection • Power-UpandPower-DownGlitchProtection DeviceInformation(1) • EachTransceiverMeetsorExceedsthe PARTNUMBER PACKAGE BODYSIZE(NOM) RequirementsofTIA/EIA-485(RS-485)and SN65LBC184, SOIC(8) 4.90mm×3.91mm ISO/IEC8482:1993(E)Standards SN75LBC184 PDIP(8) 9.81mm×6.35mm • LowDisabledSupplyCurrent300μAMaximum (1) For all available packages, see the orderable addendum at • PinCompatibleWithSN75176 theendofthedatasheet. 2 Applications • IndustrialNetworks • UtilityMeters • MotorControl LogicSymbol NOTE: ThissymbolisinaccordancewithANSI/IEEEStd91-1984andIECPublication617-12. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
SN65LBC184,SN75LBC184 SLLS236I–OCTOBER1996–REVISEDJUNE2015 www.ti.com Table of Contents 1 Features.................................................................. 1 8.1 Overview.................................................................12 2 Applications........................................................... 1 8.2 FunctionalBlockDiagram.......................................12 3 Description............................................................. 1 8.3 FeatureDescription.................................................12 8.4 DeviceFunctionalModes........................................13 4 RevisionHistory..................................................... 2 9 ApplicationandImplementation........................ 15 5 PinConfigurationandFunctions......................... 3 9.1 ApplicationInformation............................................15 6 Specifications......................................................... 3 9.2 TypicalApplication .................................................15 6.1 AbsoluteMaximumRatings......................................3 10 PowerSupplyRecommendations..................... 19 6.2 ESDRatings..............................................................3 11 Layout................................................................... 19 6.3 RecommendedOperatingConditions.......................4 6.4 ThermalInformation..................................................4 11.1 LayoutGuidelines.................................................19 6.5 ElectricalCharacteristics:Driver...............................5 11.2 LayoutExample....................................................19 6.6 ElectricalCharacteristics:Receiver..........................5 12 DeviceandDocumentationSupport................. 20 6.7 DriverSwitchingCharacteristics...............................6 12.1 RelatedLinks........................................................20 6.8 ReceiverSwitchingCharacteristics...........................6 12.2 CommunityResources..........................................20 6.9 DissipationRatings...................................................6 12.3 Trademarks...........................................................20 6.10 TypicalCharacteristics............................................7 12.4 ElectrostaticDischargeCaution............................20 7 ParameterMeasurementInformation..................8 12.5 Glossary................................................................20 8 DetailedDescription............................................ 12 13 Mechanical,Packaging,andOrderable Information........................................................... 20 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionH(February2009)toRevisionI Page • AddedPinConfigurationandFunctionssection,ESDRatingstable,FeatureDescriptionsection,DeviceFunctional Modes,ApplicationandImplementationsection,PowerSupplyRecommendationssection,Layoutsection,Device andDocumentationSupportsection,andMechanical,Packaging,andOrderableInformationsection .............................. 1 2 SubmitDocumentationFeedback Copyright©1996–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 www.ti.com SLLS236I–OCTOBER1996–REVISEDJUNE2015 5 Pin Configuration and Functions DPackage,PPackage 8-PinSOIC,8-PinPDIP TopView PinFunctions PIN I/O DESCRIPTION NAME NO. A 6 Businput/output Driveroutputorreceiverinput(complementarytoB) B 7 Businput/output Driveroutputorreceiverinput(complementarytoA) D 4 Digitalinput Driverdatainput DE 3 Digitalinput Active-HIGHdriverenable GND 5 Referencepotential Localdeviceground R 1 Digitaloutput Receiverdataoutput RE 2 Digitalinput Active-LOWreceiverenable V 8 Supply 4.75-Vto5.25-Vsupply CC 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted) (1) MIN MAX UNIT V Supplyvoltage(2) –0.5 7 V CC Continuousvoltagerangeatanybusterminal –15 15 V Datainput/outputvoltage –0.3 7 V I Receiveroutputcurrent –20 20 mA O Continuoustotalpowerdissipation(3) InternallyLimited T Storagetemperature 160 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,andfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommendedOperating Conditionsisnotimplied.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) Allvoltagevalues,exceptdifferentialinput/outputbusvoltage,arewithrespecttonetworkgroundterminal. (3) Thedrivershutsdownatajunctiontemperatureofapproximately160°C.Tooperatebelowthistemperature,seetheDissipation Ratings. 6.2 ESD Ratings VALUE UNIT Humanbodymodel(HBM),perANSI/ESDA/JEDEC A,B,GND ±15000 JS-001(1) Allpins ±3000 Electrostatic Contactdischarge(IEC61000-4-2) A,B,GND(2) ±30000 V V (ESD) discharge Airdischarge(IEC61000-4-2) A,B,GND(3) ±15000 Allpins(Class3A) ±8000 Allpins(Class3B) ±200 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) GNDandbuspinESDprotectionisbeyondreadilyavailabletestequipmentcapabilitiesforIEC61000-4-2,EIA/JEDECtestmethod A114-AandMIL-STD-883Cmethod3015.Ratingslistedarelimitsoftestequipment;deviceperformanceexceedstheselimits. Copyright©1996–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 SLLS236I–OCTOBER1996–REVISEDJUNE2015 www.ti.com 6.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN(1) TYP MAX UNIT V Supplyvoltage 4.75 5 5.25 V CC V orV Voltageatanybusterminal(separatelyorcommonmode) –7 12 V I IC V High-levelinputvoltage D,DE,andRE 2 V IH V Low-levelinputvoltage D,DE,andRE 0.8 V IL |V | Differentialinputvoltage 12 V ID Driver –60 I High-leveloutputcurrent mA OH Receiver –8 Driver 60 I Low-leveloutputcurrent mA OL Receiver 4 SN75LBC184 0 70 T Operatingfree-airtemperature °C A SN65LBC184 –40 85 (1) Thealgebraicconvention,inwhichtheless-positive(more-negative)limitisdesignatedminimum,isusedinthisdatasheet. 6.4 Thermal Information SNx5LBC184 THERMALMETRIC(1) P[PDIP] D[SOIC] UNIT 8PINS R Junction-to-ambientthermalresistance 108.7 172.4 °C/W θJA R Junction-to-case(top)thermalresistance 34.8 42.5 °C/W θJC(top) R Junction-to-boardthermalresistance 23.6 41.4 °C/W θJB ψ Junction-to-topcharacterizationparameter 12 4.6 °C/W JT ψ Junction-to-boardcharacterizationparameter 23.5 40.7 °C/W JB R Junction-to-case(bottom)thermalresistance N/A N/A °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report,SPRA953. 4 SubmitDocumentationFeedback Copyright©1996–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 www.ti.com SLLS236I–OCTOBER1996–REVISEDJUNE2015 6.5 Electrical Characteristics: Driver overrecommendedoperatingconditions(unlessotherwisenoted) PARAMETER ALTERNATE TESTCONDITIONS MIN TYP(1) MAX UNIT SYMBOLS DE=RE=5V NoLoad 12 25 mA ICC Supplycurrent NA DE=0V NoLoad 175 300 μA RE=5V High-levelinputcurrent I NA V =2.4V 50 μA IH (D,DE,RE) I Low-levelinputcurrent I NA V =0.4V –50 μA IL (D,DE,RE) I V =–7V –250 –120 O Short-circuitoutput IOS currentOS(2) NA VO=VCC 250 mA V =12V 250 O High-impedanceoutput I NA SeeReceiverI mA OZ current I V Outputvoltage V ,V I =0 0 V V O oa ob O CC Peak-to-peakchangein common-modeoutput V NA SeeFigure9andFigure10 0.8 V OC(PP) voltageduringstate transitions Common-modeoutput V |V | SeeFigure8 1 3 V OC voltage os Magnitudeofchange, |ΔV | common-modesteady- |V –V | SeeFigure10 0.1 V OC(SS) os os stateoutputvoltage Magnitudeof I =0 1.5 6 V O |V | differentialoutput V OD o voltage|VA–VB| RL=54Ω,SeeFigure8 1.5 V Changeindifferential Δ|V | voltagemagnitude ||V|–|V|| R =54Ω 0.1 V OD t t L betweenlogicstates (1) AlltypicalvaluesaremeasuredwithT =25°CandV =5V. A CC (2) Thisparameterismeasuredwithonlyoneoutputbeingdrivenatatime. 6.6 Electrical Characteristics: Receiver overrecommendedoperationconditions(unlessotherwisenoted) PARAMETER TESTCONDITIONS MIN TYP(1) MAX UNIT DE=RE=0V,NoLoad 3.9 mA I Supplycurrent(totalpackage) CC RE=5V,DE=0V,NoLoad 300 μA V =12V 250 I V =12V,V =0 250 I CC I Inputcurrent Otherinput=0V μA I V =–7V –200 I V =–7V,V =0 –200 I CC I High-impedance-stateoutputcurrent V =0.4Vto2.4V ±100 μA OZ O V Inputhysteresisvoltage 70 mV hys V Positive-goinginputthresholdvoltage 200 V IT+ V Negative-goinginputthresholdvoltage –200 mV IT– V High-leveloutputvoltage I =–8mA,SeeFigure11 2.8 V OH OH V Low-leveloutputvoltage I =4mA,SeeFigure11 0.4 V OL OL (1) AlltypicalvaluesareatV =5V,T =25°C. CC A Copyright©1996–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 SLLS236I–OCTOBER1996–REVISEDJUNE2015 www.ti.com 6.7 Driver Switching Characteristics overrecommendedoperatingconditions(unlessotherwisenoted) PARAMETER TESTCONDITIONS MIN TYP MAX UNIT t Differentialoutputdelaytime,low-to-high-leveloutput 1.3 μs d(DH) t Differentialoutputdelaytime,high-to-low-leveloutput 1.3 μs d(DL) t Propagationdelaytime,low-to-high-leveloutput 0.5 1.3 μs PLH R =54Ω t Propagationdelaytime,high-to-low-leveloutput L SeeFigure9 0.5 1.3 μs PHL C =50pF L t Pulseskew(|t –t |) 75 150 ns sk(p) d(DH) d(DL) t Risetime,single-ended 0.25 1.2 μs r t Falltime,single-ended 0.25 1.2 μs f t Outputenabletimetohighlevel R =110Ω SeeFigure6 3.5 μs PZH L t Outputenabletimetolowlevel R =110Ω SeeFigure7 3.5 μs PZL L t Outputdisabletimefromhighlevel R =110Ω SeeFigure6 2 μs PHZ L t Outputdisabletimefromlowlevel R =110Ω SeeFigure7 2 μs PLZ L 6.8 Receiver Switching Characteristics overrecommendedoperatingconditions(unlessotherwisenoted) PARAMETER TESTCONDITIONS MIN TYP MAX UNIT t Propagationdelaytime,low-to-high-leveloutput 150 ns PLH C =50pF,SeeFigure11 L t Propagationdelaytime,high-to-low-leveloutput 150 ns PHL t Pulseskew(|t –t |) 50 ns sk(p) PHL PLH t Risetime,single-ended 20 ns r SeeFigure11 t Falltime,single-ended 20 ns f t Outputenabletimetohighlevel 100 ns PZH t Outputenabletimetolowlevel 100 ns PZL SeeFigure12 t Outputdisabletimefromhighlevel 100 ns PHZ t Outputdisabletimefromlowlevel 100 ns PLZ 6.9 Dissipation Ratings PACKAGE T ≤25°C DERATINGFACTOR T =70°C T =85°C A A A POWERRATING ABOVET =25°C POWERRATING POWERRATING A D 725mW 5.8mW/°C 464mW 377mW P 1150mW 9.2mW/°C 736mW 598mW 6 SubmitDocumentationFeedback Copyright©1996–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 www.ti.com SLLS236I–OCTOBER1996–REVISEDJUNE2015 6.10 Typical Characteristics Figure1.DriverDifferentialOutputVoltagevsFree-Air Figure2.DriverPropagationDelayTimevsFree-Air Temperature Temperature Figure3.DriverTransitionTimevsFree-AirTemperature Figure4.DifferentialOutputVoltagevsOutputCurrent Figure5.ReceiverInputCurrentvsInputVoltage Copyright©1996–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 SLLS236I–OCTOBER1996–REVISEDJUNE2015 www.ti.com 7 Parameter Measurement Information A. Theinputpulseissuppliedbyageneratorhavingthefollowingcharacteristics:PRR=1.25kHz,50%dutycycle,t ≤ r 10ns,t ≤10ns,Z =50Ω. f O B. C includesprobeandjigcapacitance. L Figure6. Drivert andt TestCircuitandVoltageWaveforms PZH PHZ A. Theinputpulseissuppliedbyageneratorhavingthefollowingcharacteristics:PRR=1.25kHz,50%dutycycle,t ≤ r 10ns,t ≤10ns,Z =50Ω. f O B. C includesprobeandjigcapacitance. L Figure7. Drivert andt TestCircuitandVoltageWaveforms PZL PLZ A. Resistancevaluesareinohmsandare1%tolerance. B. C includesprobeandjigcapacitance. L Figure8. DriverTestCircuit,Voltage,andCurrentDefinitions 8 SubmitDocumentationFeedback Copyright©1996–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 www.ti.com SLLS236I–OCTOBER1996–REVISEDJUNE2015 Parameter Measurement Information (continued) Figure9. DriverTiming,Voltage,andCurrentWaveforms Copyright©1996–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 SLLS236I–OCTOBER1996–REVISEDJUNE2015 www.ti.com Parameter Measurement Information (continued) A. Resistancevaluesareinohmsandare1%tolerance. B. C includesprobeandjigcapacitance(±10%). L Figure10. DriverV TestCircuitandWaveforms OC(PP) A. Thisvalueincludesprobeandjigcapacitance(±10%). Figure11. Receivert andt TestCircuitandVoltageWaveforms PLH PHL 10 SubmitDocumentationFeedback Copyright©1996–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 www.ti.com SLLS236I–OCTOBER1996–REVISEDJUNE2015 Parameter Measurement Information (continued) A. Thisvalueincludesprobeandjigcapacitance(±10%). Figure12. Receivert ,t ,t ,andt TestCircuitandVoltageWaveforms PZL PLZ PZH PHZ Copyright©1996–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 SLLS236I–OCTOBER1996–REVISEDJUNE2015 www.ti.com 8 Detailed Description 8.1 Overview The SNx5LBC184 device is a 5-V, half-duplex, RS-485 transceiver with integrated transient voltage suppressors that prevent circuit damage in the presence of high-energy transients of up to 400-W peak power. This transceiver has an active-HIGH driver enable and active-LOW receiver enable. The differential driver is suitable fordatatransmissionupto250kbps. 8.2 Functional Block Diagram V CC R /RE A B DE D GND Figure13. FunctionalLogicDiagram 8.3 Feature Description IntegratedtransientvoltagesuppressorsprotectthetransceiveragainstElectrostaticDischarges(ESD)according toIEC61000-4-2ofupto±30kVandsurgetransientsaccordingtoIEC61000-4-5ofupto400-Wpeak. The differential driver incorporates slew-rate controlled outputs sufficient to transmit data up to 250 kbps. Slew- rate control allows for longer unterminated cable runs and longer stub lengths from the main cable trunk than with faster voltage transitions. A unique receiver design provides a high level failsafe output when the inputs are leftfloating. TheSN65LBC184ischaracterizedfrom –40°Cto85°CandtheSN75LBC184ischaracterizedfrom0°Cto70°C. 12 SubmitDocumentationFeedback Copyright©1996–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 www.ti.com SLLS236I–OCTOBER1996–REVISEDJUNE2015 8.4 Device Functional Modes When the driver enable pin (DE) is logic high, the differential outputs A and B follow the logic states at data input D. A logic high at D causes A to turn high and B to turn low. In this case, the differential output voltage defined as V = V – V is positive. When D is low, the output states reverse, B turns high, A becomes low, and V is OD A B OD negative. WhenDEislow,bothoutputsturnhigh-impedance.Inthiscondition,thelogicstateatDisirrelevant. Table1.DriverFunctions(1) INPUT ENABLE OUTPUTS FUNCTION D DE A B H H H L Activelydrive busHigh L H L H Activelydrive busLow X L Z Z Driverdisabled (1) H=highlevel,L=lowlevel,?=indeterminate,X=irrelevant, Z=highimpedance(off) When the receiver enable pin, RE, is logic low, the receiver is enabled. When the differential input voltage defined as V = V – V is positive and higher than the positive input threshold, V , the receiver output (R) ID A B IT+ turns high. When V is negative and lower than the negative input threshold, V , the receiver output turns low. ID IT– IfV isbetweenV andV ,theoutputisindeterminate. ID IT+ IT– When RE is logic high, the receiver output is high-impedance and the magnitude and polarity of V are ID irrelevant.Whenthetransceiverisdisconnectedfromthebus,thereceiverprovidesafailsafehighoutput. Table2.ReceiverFunctions(1) DIFFERENTIAL ENABLE OUTPUT INPUT FUNCTION V =V –V RE R ID A B V >V L H Receivevalidbus ID IT+ High V <V <V L ? Indeterminatebus IT– ID IT+ state V <V L L ReceivevalidbusLow ID IT– X H Z Receiverdisabled OPEN L H ReceiverfailsafeHigh (1) H=highlevel,L=lowlevel,?=indeterminate,X=irrelevant,Z= highimpedance(off) Copyright©1996–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 SLLS236I–OCTOBER1996–REVISEDJUNE2015 www.ti.com Figure14. SchematicofInputsandOutputs 14 SubmitDocumentationFeedback Copyright©1996–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 www.ti.com SLLS236I–OCTOBER1996–REVISEDJUNE2015 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 9.1 Application Information The SN65LBC184 and SN75LBC184 devices are half-duplex, RS-485 transceivers commonly used for asynchronous data transmissions. The driver and receiver enable pins allow for the configuration of different operatingmodes. R R R R R R RE A RE A RE A DE B DE B DE B D D D D D D a) Independent driver and b) Combined enable signals for c) Receiver always on receiver enable signals use as directional control pin Figure15. Half-DuplexTransceiverConfigurations a. Using independent enable lines provides the most flexible control as it allows for the driver and the receiver to be turned on and off individually. While this configuration requires two control lines, it allows for selective listeningintothebustraffic,whetherthedriveristransmittingdataornot. b. Combining the enable signals simplifies the interface to the controller by forming a single direction-control signal. In this configuration, the transceiver operates as a driver when the direction-control line is high, and asareceiverwhenthedirection-controllineislow. c. Only one line is required when connecting the receiver-enable input to ground and controlling only the driver- enable input. In this configuration, a node not only receives the data from the bus, but also the data it sends andcanverifythatthecorrectdatahavebeentransmitted. 9.2 Typical Application An RS-485 bus consists of multiple transceivers connected in parallel to a bus cable. To eliminate line reflections, each cable end is terminated with a termination resistor, R , whose value matches the characteristic T impedance, Z , of the cable. This method, known as parallel termination, allows for higher data rates over a 0 longercablelength. Copyright©1996–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 SLLS236I–OCTOBER1996–REVISEDJUNE2015 www.ti.com Typical Application (continued) R R R R A A RE RE B RT RT B DE DE D D D D A B A B R R D D R RE DE D R RE DE D Figure16. TypicalRS-485NetworkWithHalf-DuplexTransceivers 9.2.1 DesignRequirements RS-485 is a robust electrical standard suitable for long-distance networking that may be used in a wide range of applicationswithvaryingrequirements,suchasdistance,datarate,andnumberofnodes. 9.2.1.1 DataRateandBusLength There is an inverse relationship between data rate and bus length, meaning the higher the data rate, the shorter the cable length; and conversely, the lower the data rate, the longer the cable may be without introducing data errors. While most RS-485 systems use data rates between 10 kbps and 100 kbps, some applications require data rates up to 250 kbps at distances of 4000 feet and longer. Longer distances are possible by allowing for smallsignaljitterofupto5or10%. 10000 5%, 10%, and 20% Jitter h (ft) 1000 gt Conservative n e Characteristics L e bl 100 a C 10 100 1k 10k 100k 1M 10M 100M Data Rate(bps) Figure17. CableLengthvsDataRateCharacteristic 16 SubmitDocumentationFeedback Copyright©1996–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 www.ti.com SLLS236I–OCTOBER1996–REVISEDJUNE2015 Typical Application (continued) 9.2.1.2 StubLength When connecting a node to the bus, the distance between the transceiver inputs and the cable trunk, known as the stub, should be as short as possible. Stubs present a nonterminated piece of bus line which can introduce reflections as the length of the stub increases. As a general guideline, the electrical length, or round-trip delay, of a stub should be less than one-tenth of the rise time of the driver, thus giving a maximum physical stub length as showninEquation1. L ≤0.1×t ×v×c (STUB) r where • t isthe10/90risetimeofthedriver r • visthesignalvelocityofthecableortraceasafactorofc • cisthespeedoflight(3×108m/s) (1) PerEquation1,cable-stublengthswhenusingtheSN65LBC184drivermustbenotgreaterthan5.85meters(19 feet)forasignalvelocityof78%andminimumdriveroutputriseorfalltimeof250ns. 9.2.1.3 BusLoading The RS-485 standard specifies that a compliant driver must be able to driver 32 unit loads (UL), where 1 unit load represents a load impedance of approximately 12 kΩ. Because the SN65LBC184 is a 1/4 UL transceiver, it ispossibletoconnectupto128receiverstothebus. 9.2.2 DetailedDesignProcedure 9.2.2.1 SN65LBC184TestDescription The SN65LBC184 is tested against the IEC 61000-4-5 recommended transient identified as the combination wave. The combination wave provides a 1.2-/50-μs open-circuit voltage waveform and a 8-/20-μs short-circuit currentwaveformshowninFigure18.Thetestingisperformedwithacombination/hybridpulsegeneratorwithan effective output impedance of 2 Ω. The setup for the overvoltage stress is shown in Figure 19 with all testing performedwithpowerappliedtotheSN65LBC184circuit. 1.0 1.0 0.8 0.8 0.6 0.6 V(t) / VP 0.4 I(t) / IP 0.4 0.2 0.2 0.0 0.0 0 20 40 60 80 100 0 10 20 30 40 50 Time - µs Time - µs Figure18. Open-CircuitVoltageandShort-CircuitCurrentWaveforms The SN65LBC184 is tested and evaluated for both maximum (single pulse) as well as life test (multiple pulse) capabilities. The SN65LBC184 is evaluated against transients of both positive and negative polarity and all testing is performed with the worst-case transient polarity. Transient pulses are applied to the bus pins (A and B) acrossgroundasshowninFigure19. Copyright©1996–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 SLLS236I–OCTOBER1996–REVISEDJUNE2015 www.ti.com Typical Application (continued) KeyTech HIGH 41.9Ω IP A/B 1.2/50–8/20 Combination Pulse Generator 3Ω V SN75LBC184 P LOW GND 2ΩInternal Impedance Impedance Matching And Wave Shaping Figure19. OvervoltageStressTestCircuit 9.2.3 ApplicationCurve An example waveform as seen by the SN65LBC184 is shown in Figure 20. The bottom trace is current, the middle trace shows the clamping voltage of the device and the top trace is power as calculated from the voltage and current waveforms. This example shows a peak clamping voltage of 33.6 V and peak current of 16 A, thus yieldinganabsorbedpeakpowerof538W. Figure20. TypicalSurgeWaveformMeasuredatPins5and7 18 SubmitDocumentationFeedback Copyright©1996–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 www.ti.com SLLS236I–OCTOBER1996–REVISEDJUNE2015 10 Power Supply Recommendations Toassurereliableoperationatalldataratesandsupplyvoltages,eachsupplyshouldbebufferedwitha100-nF ceramiccapacitorlocatedasclosetothesupplypinsaspossible.TheTPS76350isalinearvoltageregulator suitableforthe5-Vsupply. 11 Layout 11.1 Layout Guidelines Because ESD transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high-frequency layouttechniquesmustbeappliedduringPCBdesign. • Use V and ground planes to provide low inductance. High frequency currents follow the path of least CC inductanceandnotthepathofleastimpedance. • Apply 100-nF to 220-nF bypass capacitors as close as possible to the V pins of transceiver, UART, or CC controllerICsontheboard. • Use at least two vias for V and ground connections of bypass capacitors to minimize effective via- CC inductance. • Use 1-kΩ to 10-kΩ pullup or pulldown resistors for enable lines to limit noise currents in these lines during transientevents. 11.2 Layout Example 3 Via to ground R Via to VCC C 2 4 R MCU P M J 4 R LBC184 3 Figure21. LayoutSchematic Copyright©1996–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:SN65LBC184 SN75LBC184
SN65LBC184,SN75LBC184 SLLS236I–OCTOBER1996–REVISEDJUNE2015 www.ti.com 12 Device and Documentation Support 12.1 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table3.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY SN65LBC184 Clickhere Clickhere Clickhere Clickhere Clickhere SN75LBC184 Clickhere Clickhere Clickhere Clickhere Clickhere 12.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 12.3 Trademarks E2EisatrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 12.4 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 12.5 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 20 SubmitDocumentationFeedback Copyright©1996–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65LBC184 SN75LBC184
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) SN65LBC184D ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 6LB184 & no Sb/Br) SN65LBC184DG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 6LB184 & no Sb/Br) SN65LBC184DR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 6LB184 & no Sb/Br) SN65LBC184DRG4 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM -40 to 85 6LB184 & no Sb/Br) SN65LBC184P ACTIVE PDIP P 8 50 Pb-Free NIPDAU N / A for Pkg Type -40 to 85 65LBC184 (RoHS) SN75LBC184D ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM 0 to 70 7LB184 & no Sb/Br) SN75LBC184DG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-1-260C-UNLIM 0 to 70 7LB184 & no Sb/Br) SN75LBC184DR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM 0 to 70 7LB184 & no Sb/Br) SN75LBC184DRG4 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-1-260C-UNLIM 0 to 70 7LB184 & no Sb/Br) SN75LBC184P ACTIVE PDIP P 8 50 Green (RoHS NIPDAU N / A for Pkg Type 0 to 70 75LBC184 & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 13-Oct-2014 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) SN65LBC184DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 SN75LBC184DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 13-Oct-2014 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) SN65LBC184DR SOIC D 8 2500 340.5 338.1 20.6 SN75LBC184DR SOIC D 8 2500 340.5 338.1 20.6 PackMaterials-Page2
PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com
EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com
None
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated