图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: SC189ASKTRT
  • 制造商: SEMTECH
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

SC189ASKTRT产品简介:

ICGOO电子元器件商城为您提供SC189ASKTRT由SEMTECH设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 SC189ASKTRT价格参考。SEMTECHSC189ASKTRT封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 固定 降压 开关稳压器 IC 正 1V 1 输出 1.5A SC-74A,SOT-753。您可以下载SC189ASKTRT参考资料、Datasheet数据手册功能说明书,资料中有SC189ASKTRT 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)

描述

IC REG BUCK SYNC 1V 1.5A SOT23-5

产品分类

PMIC - 稳压器 - DC DC 开关稳压器

品牌

Semtech

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

SC189ASKTRT

PWM类型

电压模式

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

-

供应商器件封装

SOT-23-5

其它名称

SC189ASKDKR

包装

Digi-Reel®

同步整流器

安装类型

表面贴装

封装/外壳

SC-74A,SOT-753

工作温度

-40°C ~ 85°C

标准包装

1

电压-输入

2.9 V ~ 5.5 V

电压-输出

1V

电流-输出

1.5A

类型

降压(降压)

输出数

1

输出类型

固定

频率-开关

2.5MHz

推荐商品

型号:XC9251A085QR-G

品牌:Torex Semiconductor Ltd

产品名称:集成电路(IC)

获取报价

型号:MAX1044ESA

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:TPS54239DDAR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LM5000-3MTC/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LM2675M-12/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TL2575HV-05IN

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:BD9E301EFJ-LBE2

品牌:Rohm Semiconductor

产品名称:集成电路(IC)

获取报价

型号:LT3990EDD#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
SC189ASKTRT 相关产品

LTC3615EFE-1#TRPBF

品牌:Linear Technology/Analog Devices

价格:

LT8300HS5#TRPBF

品牌:Linear Technology/Analog Devices

价格:

LM22676MR-5.0/NOPB

品牌:Texas Instruments

价格:¥15.70-¥29.17

LM2577T-ADJ/LF03

品牌:Texas Instruments

价格:¥23.75-¥44.11

LTC3417AIFE-1#TRPBF

品牌:Linear Technology/Analog Devices

价格:

LTC3532EDD#PBF

品牌:Linear Technology/Analog Devices

价格:

RT8270GS

品牌:Richtek USA Inc.

价格:

TPS5430QDDARQ1

品牌:Texas Instruments

价格:

PDF Datasheet 数据手册内容提取

SC189 2.5MHz, 1.5A Synchronous Step Down Regulator POWER MANAGEMENT Features Description  V Range: 2.9 – 5.5V The SC189 is a high efficiency, synchronous step-down IN  V Options: 1.0 - 3.3V regulator providing up to 1.5A output current in either OUT an ultra-small 2mm x 2mm, low profile package or a low  Up to 1.5A Output Current cost SOT23-5 package. The device requires only three  Ultra-Small Footprint, <1mm Height Solution external filter components for a complete step down regulator solution. The input voltage range is 2.9 to 5.5V  2.5MHz Switching Frequency with either factory programmed outputs from 1.0 to 3.3V  Efficiency Up to 93% or adjustable output via an external resistor divider.  Low Output Noise Across Load Range The converter operates at fixed 2.5MHz switching  Excellent Transient Response frequency allowing small L/C filtering components. The voltage mode architecture is compatible with chip  Start Up into Pre-Bias Output inductors and capacitors for minimum PCB footprint and  100% Duty-Cycle Low Dropout Operation lowest overall system cost. Total footprint of 25mm2 can be achieved - making the SC189 the ideal solution for  <1µA Shutdown Current high density systems. Solution height of <1mm is also  Internal Soft Start possible.  Input Under-Voltage Lockout Up to 93% efficiency is achieved with low R internal  Output Over-Voltage, Current Limit Protection switches. PWM constant frequency operatDiSo(OnN ) ensures  Over-Temperature Protection low output ripple across the load range. 100% duty-cycle provides 360mV dropout voltage at 1.5A which extends  Adjustable Output Voltage the minimum input voltage for 2.5V and 3.3V outputs.  Available in SOT23-5 package and 2mm x 2mm x Excellent transient response is achieved with no external compensation components. 0.6mm thermally enhanced MLPD-UT6 package  -40 to +85°C Temperature Range The SC189 provides input under-voltage, output over- voltage, output short circuit and over-temperature  Fully WEEE and RoHS Compliant protection to safeguard the device and system under fault conditions. The regulator provides integrated soft-start to minimize inrush currents. Standby quiescient current is Applications less than 1µA.  Bluetooth Radios The SC189 is available in SOT23-5 and a thermally  DSC and PMPs enhanced 2mm x 2mm x 0.6mm MLPD-UT6 package.  GPS Devices  xDSL Systems  POL Regulators  Portable HDD  Wireless LAN Typical Application Circuit Total PCB Area ~25mm2 SC189C L L 1µH Chip V VIN LX V IN OUT 2.9V to 5.5V 1.20V/1.5A C 10µIFN EN VOUT COUT 22µF C SC189 OUT C GND 0805 06I0N3 Actual Size August 27, 2010 1 www.semtech.com

SC189 Pin Configuration Ordering Information Device Package & Description SC189xULTRT(2)(3)(4) 2mm x 2mm x 0.6mm MLPD-UT6 NC 1 6 VOUT TOP VIEW SC189xSKTRT2)(3)(4) SOT23-5 EN 2 5 GND Evaluation Board for MLPD-UT6 VIN 3 T 4 LX SC189xEVB(5) - Standard Size (i.e., Wire Wound Inductor) 2mm x 2mm x 0.6mm MLPD-UT6 Evaluation Board for MLPD-UT6 SC189xEVB-1(5) - Small Size θ = 60°C/W(1) JA (i.e., Chip Inductor) Evaluation Board for SOT23-5 SC189xEVB-2(5) - Standard Size VIN 1 5 LX (i.e., Wire Wound Inductor) GND 2 TOP VIEW Evaluation Board for SOT23-5 SC189xEVB-3(5) - Small Size (i.e., Chip Inductor) EN 3 4 VOUT Notes: (1) Measured in free convection, mounted on 10mm x 10mm, 2 layer SOT23-5 FR4 PCB shown in figure 7 ( for MLPD-UT6 package) and figure 8 ( θ = 90°C/W(1) for SOT23-5 package) with copper of 1oz for each layer. JA (2) Available in tape and reel only. A reel contains 3,000 devices. (3) Available in lead-free package only. Device is WEEE and RoHS Marking Information compliant. (4) “x” is the code of the output voltage. See Table 1 for the code. For example, the device number for VOUT= 1.20V is SC189CULTRT. (5) “x” is the code of the output voltage. See Table 1 for the code. For example, the EVB for MLPD-UT6 package with VOUT= 1.20V is FLx SC189CEVB (Standard Size) or SC189CEVB-1 (Small Size). Table 1: Available Output Voltages Code Code VOUT(1) Marking for 2mm x 2mm MLPD-UT 6 Lead Package: for MLPD-UT6 for SOT23-5 x = Code of the output voltage (Example: C for VOUT=1.20V) A A 1.00 oyw = Pin 1 and Datecode (Reference Package Marking Design Guidelines, Appendix A) B B 1.10 C C 1.20 Top Mark Bottom Mark E Not Available 1.28 F Not Available 1.30 H H 1.50 189x L L 1.80 N Not Available 2.00 T Y 2.50 Not Available V 2.70 Marking for SOT23, 5 Lead Package: Z Z 3.30 x = Code of the output voltage (Example: C for VOUT=1.20V) Notes: yyww = Datecode (Example: 0852) (1) Contact factory for unavaliable output voltage options. © 2009 Semtech Corp. 2 www.semtech.com

SC189 Absolute Maximum Ratings Recommended Operating Conditions VIN Supply Voltage ……………………………… -0.3 to 6.0V VIN Supply Voltage ……………………………… 2.9 to 5.5V LX Voltage ………….. -1 to V +1V, -3V (20ns Max), 6V Max Maximum Output Current(3) …………………………… 1.5A IN VOUT Voltage ……………………………… -0.3 to V +0.3V IN Thermal Information EN Voltage …………………………………. -0.3 to V +0.3V IN Thermal Resistance, Junction to Ambient(1) Peak IR Reflow temperature …………………………. 260°C MLPD-UT6 Package ……………………………… 60°C/W ESD Protection Level(2) …………………………………. 3kV SOT23-5 Package ……………………………… 90°C/W Operating Junction Temperature …………… -40 to +125˚C Maximum Junction Temperature …………………… +150°C Storage Temperature Range ………………… -65 to +150 °C Exceeding the absolute maximum ratings may result in permanent damage to the device and/or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not recommended. NOTES: (1) Measured in free convection, mounted on 10mm x 10mm, 2 layer FR4 PCB shown in figure 7 ( for MLPD-UT6 package) and figure 8 ( for SOT23- 5 package) with copper of 1oz for each layer. (2) Tested according to JEDEC standard JESD22-A114-B. (3) For SOT23-5 package, the limit of the maximum power dissiption shown in figure 2 may reduce the maximum output current. Electrical Characteristics Unless specified: V = 5.0V, C =10µF, C =10µF; L=2.2µH; -40°C<T<+85 °C; T =125°C; Unless otherwise noted typical values are T=+25 °C. IN IN OUT A J(MAX) A Parameter Symbol Conditions Min Typ Max Units Rising V 2.60 2.70 2.80 V IN Under-Voltage Lockout UVLO Hysteresis 250 mV Output Voltage Tolerance(1) ΔV V =3.6V to 5.0V; No Load -2.5 +2.5 % OUT IN Current Limit I Peak inductor current 2.0 A LIMIT VIN Supply Current I EN= VIN, No Load 7.5 mA Q VIN Shutdown Current I EN= GND 1 10 µA SHDN I = 100mA, for MLPD-UT6 0.13 LX High Side Switch Resistance R DSON_P I = -100mA, for SOT23-5 0.15 LX Ω I = -100mA, for MLPD-UT6 0.10 LX Low Side Switch Resistance R DSON_N I = -100mA, for SOT23-5 0.125 LX V =5.5V; L=0V; EN=GND 1 10 IN X LX Leakage Current I µA LK(LX) V =5.5V; L=5.0V; EN=GND -10 -1 IN X Line Regulation ΔV V = 3.6 – 5.0V; I =0A ±1.0 % LINE-REG IN OUT Load Regulation(2) ΔV V = 5.0V; I =10mA – 1.5A ±1.0 % LOAD-REG IN OUT Oscillator Frequency F 2.0 2.5 3.0 MHz OSC Soft-Start Time(2) T 100 µs SS EN Input High Current I EN=VIN -2.0 2.0 µA EN_HI © 2009 Semtech Corp. 3 www.semtech.com

SC189 Electrical Characteristics (continued) Unless specified: V = 5.0V, C =10µF, C =10µF; L=2.2µH; -40°C<T<+85 °C; T =125°C; Unless otherwise noted typical values are T=+25 °C. IN IN OUT A J(MAX) A Parameter Symbol Conditions Min Typ Max Units EN Input Low Current I EN=GND -2.0 2.0 µA EN_LO EN Input High Threshold V 1.2 V EN_HI EN Input Low Threshold V 0.4 V EN_LO VOUT Over Voltage Protection(2) V 115 % OVP Thermal Shutdown Temperature (2) T Junction Temperature +160 °C SD Thermal Shutdown Hysteresis (2) T Junction Temperature 10 °C SD_HYS Notes: (1) The “Output Voltage Tolerance” includes output voltage accuracy, voltage drift over temperature and the line regulation. (2) Guaranteed by design. © 2009 Semtech Corp. 4 www.semtech.com

SC189 Typical Characteristics Circuit Conditions: C = 10uF/6.3V; C = 10uF/6.3V for L=2.2uH; C = 22uF/6.3V for L=1uH. IN OUT OUT Unless otherwise noted, L= 2.2uH (TOKO: 1071AS-2R2M) and SC189 in MLPD-UT6 package. Efficiency vs. LoaEdf fCicuiernrceynt (VOUT=1.5V) Efficiency vs. LoaEdf fCicuiernrcey nt (VOUT=3.3V) 100% 100% V = 4.0V IN 95% 95% V = 5.0V IN 90% 90% Efficiency (%) 788505%%% Efficiency (%) 788505%%% VIN= 5.0V V = 3.3V IN 70% 70% 65% VTAO=U2T=5 °1C.50V 65% VTAO=U2T=5 °3C.30V 60% 60% 0.0 0.3 0.6 0.9 1.2 1.5 0.0 0.3 0.6 0.9 1.2 1.5 Output Current (A) Output Current (A) Efficiency vs. Load CurErfeficnietn (cVy =5.0V, V =1.0V) Efficiency vs. Load CurErfeficnietn (cVy =5.0V, V =3.3V) IN OUT IN OUT 100% 100% L=1071AS-2R2N (50m_typ) L=1071AS-2R2N (50m_typ) 95% 95% L=1071AS-1R0N (33m_typ) 90% 90% L=MDT2520-CR1R0M (60m_typ) %) 85% %) 85% y ( y ( L=1071AS-1R0N (33m_typ) nc 80% nc 80% e e Effici 75% Effici 75% L=MDT2520-CR1R0M (60m_typ) 70% V = 5.0V 70% V = 5.0V IN IN V = 1.0V V = 3.3V 65% OUT 65% OUT TA=25°C L=LQM2HPN1R0MG0 (55m_typ) TA=25°C L=LQM2HP1R0MG0 (55m_typ) 60% 60% 0.0 0.3 0.6 0.9 1.2 1.5 0.0 0.3 0.6 0.9 1.2 1.5 Output Current (A) Output Current (A) Total Loss vs. LoadL Cosusrersent (V =1.5V) Total Loss vs. LoadL Cosusrerse nt (V =3.3V) OUT OUT 800 800 VOUT= 1.50V VOUT= 3.30V TA=25°C TA=25°C 600 VIN= 3.3V 600 W) W) oss (m 400 oss (m 400 VIN= 5.0V L L 200 200 V = 5.0V IN V = 4.0V IN 0 0 0.0 0.3 0.6 0.9 1.2 1.5 0.0 0.3 0.6 0.9 1.2 1.5 Output Current (A) Output Current (A) © 2009 Semtech Corp. 5 www.semtech.com

SC189 Typical Characteristics (continued) Circuit Conditions: C = 10uF/6.3V; C = 10uF/6.3V for L=2.2uH; C = 22uF/6.3V for L=1uH. IN OUT OUT Unless otherwise noted, L= 2.2uH (TOKO: 1071AS-2R2M) and SC189 in MLPD-UT6 package. Efficiency vs. Load CurErfeficnietn (cVy =1.5V, SOT23-5) Efficiency vs. Load CurErfeficnietn (cVy =3.3V, SOT23-5) OUT OUT 100% 100% V = 4.0V IN 95% 95% V = 5.0V IN 90% 90% %) 85% %) 85% V = 5.0V Efficiency ( 7850%% Efficiency ( 7850%% IN V = 3.3V IN 70% 70% 65% VTAO=U2T=5 °1C.50V 65% VTAO=U2T=5 °3C.30V 60% 60% 0.0 0.3 0.6 0.9 1.2 1.5 0.0 0.3 0.6 0.9 1.2 1.5 Output Current (A) Output Current (A) Efficiency vs. LoaEdff icCieunrcrye nt (SOT23-5) Efficiency vs. LoaEdff icCieunrcrye nt (SOT23-5) 100% 100% V = 5.0V L=1071AS-2R2 (50m_typ) L=1071AS-2R2N (50m_typ) 95% IN 95% V = 1.0V OUT T =25°C 90% A 90% L=1071AS-1R0 (33m_typ) %) 85% %) 85% Efficiency ( 7850%% Efficiency ( 7850%% L=ML=D1T027512A0S-C-1RR10RN0 M(3 3(6m0m_ty_pty)p) 70% 70% V = 5.0V L=LQM2HPN1R0MG0 (55m_typ) IN V = 3.3V 65% 65% OUT L=MDT2520-CR1R0 (60m_typ) TA=25°C L=LQM2HP1R0MG0 (55m_typ) 60% 60% 0.0 0.3 0.6 0.9 1.2 1.5 0.0 0.3 0.6 0.9 1.2 1.5 Output Current (A) Output Current (A) Total Loss vs. Load CurrLeonsste (sV =1.5V, SOT23-5) Total Loss vs. Load CurrLeonsste (sV =3.3V, SOT23-5) OUT OUT 800 800 VOUT= 1.50V VOUT= 3.30V TA=25°C TA=25°C 600 VIN= 3.3V 600 W) W) ss (m 400 ss (m 400 VIN= 5.0V o o L L 200 200 V = 5.0V IN V = 4.0V IN 0 0 0.0 0.3 0.6 0.9 1.2 1.5 0.0 0.3 0.6 0.9 1.2 1.5 Output Current (A) Output Current (A) © 2009 Semtech Corp. 6 www.semtech.com

SC189 Typical Characteristics (continued) Circuit Conditions: C = 10uF/6.3V; C = 10uF/6.3V for L=2.2uH; C = 22uF/6.3V for L=1uH. IN OUT OUT Unless otherwise noted, L= 2.2uH (TOKO: 1071AS-2R2M) and SC189 in MLPD-UT6 package. R R VDSaOriNa (tPio &n N )v Vsa. rIiantpioun to vVeor Lltinaege RRDSO NV a(Pr i&a Nti) oVnar ivatsio. nT eOmverp Teermapteurarteure DS(ON) DS(ON) 30% 20% V = 5.0V 25% 15% IN I = ±100mA LX P-Channel 20% 10% 15% 5% n n o o ati 10% ati 0% N-Channel ari ari V V 5% -5% 0% -10% -5% ITLX== 2±51°0C0mA N-Channel -15% P-Channel A -10% -20% 2.5 3.0 3.5 4.0 4.5 5.0 5.5 -40 -15 10 35 60 85 Input Voltage (V) Ambient Temperature (°C) SwitchSiwnitgch Finrge Fqrueqeunenccyy vVasr.i aIntiopnu otv eVr oLilnteage SwitchingS wFirtcehqinuge Fnrecqyue vnscy. TVearmiatpioenrature 5% 1.0% 4% 0.8% V = 3.3V 3% OUT 0.6% 2% 0.4% 1% 0.2% n n o o ati 0% ati 0.0% ari ari V -1% V -0.2% -2% V = 1.5V -0.4% OUT -3% IOUT= 0A -0.6% VIN= 5.0V -4% TA= 25°C -0.8% IOUT= 0A -5% -1.0% 2.5 3.0 3.5 4.0 4.5 5.0 5.5 -40 -15 10 35 60 85 Input Voltage (V) Ambient Temperature (°C) LLiinnee R Regeuglautiolant oioven Line Line RLeinge uRelagutilaotinon v osv.e Tr eTmemppeerraatutruere 1.0% 1.0% 0.8% 0.8% 0.6% 0.6% 0.4% VOUT= 1.5V 0.4% n 0.2% n 0.2% o o ulati 0.0% ulati 0.0% g g e e R -0.2% R -0.2% -0.4% -0.4% V = 3.3V OUT -0.6% -0.6% IOUT= 0A VOUT= 1.5V -0.8% TA= 25°C -0.8% IOUT= 0A -1.0% -1.0% 2.5 3.0 3.5 4.0 4.5 5.0 5.5 -40 -15 10 35 60 85 Input Voltage (V) Ambient Temperature (°C) © 2009 Semtech Corp. 7 www.semtech.com

SC189 Typical Characteristics (continued) Circuit Conditions: C = 10uF/6.3V; C = 10uF/6.3V for L=2.2uH; C = 22uF/6.3V for L=1uH. IN OUT OUT Unless otherwise noted, L= 2.2uH (TOKO: 1071AS-2R2M) and SC189 in MLPD-UT6 package. Load RegLuolaadt Rioegnu l(aVtion =1.5V) Load ReguLolaadti Roeng u(lVation=3.3V) OUT OUT 1.0% 1.0% 0.8% VOUT= 1.50V 0.8% VOUT= 3.30V TA=25°C TA=25°C 0.6% 0.6% 0.4% 0.4% V = 4.0V ation 0.2% VIN= 3.3V ation 0.2% IN ul ul eg 0.0% eg 0.0% R R ad -0.2% ad -0.2% o o L L -0.4% -0.4% -0.6% -0.6% VIN= 5.0V V = 5.0V -0.8% IN -0.8% -1.0% -1.0% 0.0 0.3 0.6 0.9 1.2 1.5 0.0 0.3 0.6 0.9 1.2 1.5 Output Current (A) Output Current (A) UVLOU RViLsOin Rgis iTnhg rTehsrehshoolldd VVaariraitaiotnion UVLOU VHLyOs Htyesrteerseissis V Vaarriiaatitoinon 1.0% 5% 0.8% 4% 0.6% 3% 0.4% 2% 0.2% 1% n n Variatio -00..20%% Variatio -10%% -0.4% -2% -0.6% -3% -0.8% IOUT= 0A -4% IOUT= 0A -1.0% -5% -40 -15 10 35 60 85 -40 -15 10 35 60 85 Ambient Temperature (°C) Ambient Temperature (°C) Dropout Voltage in 100% Duty Cycle Operation Dropout Voltage in 100% Duty Cycle Operation Dropout Voltage of 100% Duty Cycle Operation (MLP) Dropout Voltage of 100% Duty Cycle Operation (SOT23-5) 500 500 Package: SOT23-5 Package: MLPD-UT6 450 450 T = 25°C T = 25°C A A 400 400 L= MDT2520-CR1R0M L= MDT2520-CR1R0M mV) 350 (DCR= 80m_max) mV) 350 (DCR= 80m_max) Dropout Voltage ( 122350500000 Dropout Voltage ( 122350500000 100 L= 1071AS-1R0 100 L= 1071AS-2R2 50 (DCR=40m_max) 50 (DCR=60m_max) 0 0 0.0 0.3 0.6 0.9 1.2 1.5 0.0 0.3 0.6 0.9 1.2 1.5 Output Current (A) Output Current (A) © 2009 Semtech Corp. 8 www.semtech.com

SC189 Typical Waveforms Circuit Conditions: V =1.5V (SC189HULTRT); L= 2.2uH (TOKO: 1071AS-2R2M); C = C = 10uF/6.3V (Murata: GRM21BR60J106K). OUT IN OUT OutpOuutt pVuotl tVaogleta Rgiep Rpilpep (lVe (V=OU1T.=51V.5)V) OutpOuutt pVuotl tVaogleta Rgiep Rpilpep (lVe (V=OU1T.=51V.5)V) OUT OUT V OUT 10mV/div I V LX OUT 500mA/div 10mV/div I LX 500mA/div V V LX LX 2V/div 2V/div VIN=5.0V 500ns/div VIN=5.0V 500ns/div IOUT=0A IOUT=1.5A OutpOuutt pVuotl tVaogleta Rgiep Rpilpep (lVe (V=OU1T.=51V.5)V) OutpOuutt pVuotl tVaogleta Rgiep Rpilpep (lVe (V=OU1T.=51V.5)V) OUT OUT V OUT 10mV/div V OUT 10mV/div I I LX LX 500mA/div 500mA/div 2VV/dLiXv 2VV/dLiXv VIN=3.3V 500ns/div VIN=3.3V 500ns/div IOUT=0A IOUT=1.5A TransientT Rraenspsioennst eR (eVspo=n1s.e5 (VV; O0UAT= t1o.5 0V.5)A) Transient RTerasnpsoinenset R(Vespo=n1s.5eV (;V 0O.U5TA=1 t.o5 V1).0A) OUT OUT V V OUT OUT 100mV/div 100mV/div I I OUT OUT 500mA/div 500mA/div VIN=5.0V 50µs/div VIN=5.0V 50µs/div IOUT=0A to 0.5A IOUT=0.5A to 1A © 2009 Semtech Corp. 9 www.semtech.com

SC189 Typical Waveforms (continued) Circuit Conditions: V =1.5V (SC189HULTRT); L= 2.2uH (TOKO: 1071AS-2R2); C = C = 10uF/6.3V (Murata: GRM21BR60J106K). OUT IN OUT Start Up (V =1.5V) Start Up (V =1.5V) Start Up (Enable)(VOUT =1.5V) Start Up (Enable)(VOUT =1.5V) OUT OUT V V IN IN 2V/div 2V/div V V EN EN 2V/div 2V/div V V OUT OUT 1V/div 1V/div VIN=5.0V 100µs/div VIN=5.0V 100µs/div ROUT=1k ROUT=1 Start USpt a(Prto Uwpe r(V uOpU TV=1).5 (VV), E=N1=.V5IVN) Start USpt a(Prto Uwpe r(V uOpU TV=1).5 (VV), E=N1=.V5IVN) IN OUT IN OUT V V IN IN 2V/div 2V/div V V OUT OUT 500mV/div 500mV/div VIN=5.0V 200µs/div VIN=5.0V 200µs/div ROUT=1k ROUT=1 Start Up into Pre-Biased Output (V =1.5V) Enable Shutdown-Disable Start Up into Pre-Bias Output (EOnUTable) Shutdown (Disable) (V =1.5V) OUT V IN 2V/div V IN 2V/div V EN V 2V/div EN 2V/div V V OUT OUT 500mV/div 500mV/div VIN=5.0V 200µs/div VIN=5.0V 50µs/div ROUT=1k ROUT=1.5 © 2009 Semtech Corp. 10 www.semtech.com

SC189 Typical Waveforms (continued) Circuit Conditions: V =3.3V (SC189ZULTRT); L= 2.2uH (TOKO: 1071AS-2R2); C = C = 10uF/6.3V (Murata: GRM21BR60J106K). OUT IN OUT OutpOuutt pVuotl tVaogleta Rgiep Rpilpep (lVe (V=OU3T.=33V.3)V) OutpOuutt pVuotl tVaogleta Rgiep Rpilpep (lVe (V=OU3T.=33V.3)V) OUT OUT V OUT 10mV/div I V LX OUT 500mA/div 10mV/div I LX 500mA/div V V LX LX 2V/div 2V/div VIN=5.0V 500ns/div VIN=5.0V 500ns/div IOUT=0A IOUT=1.5A TransientT Rraenspsioennst eR (eVspo=n3s.e3 (VV; O0UAT= t3o.3 0V.5)A) Transient RTerasnpsoinenset R(Vespo=n3s.3eV (;V 0O.U5TA=3 t.o3 V1).0A) OUT OUT V V OUT OUT 100mV/div 100mV/div 500mAIO/dUivT 500mAIO/dUivT VIN=5.0V 50µs/div VIN=5.0V 50µs/div IOUT=0A to 0.5A IOUT=0.5A to 1A Start Up (V =3.3V) Start Up (V =3.3V) Start Up (Enable)(VOUT =3.3V) Start Up (Enable)(VOUT =3.3V) OUT OUT V V IN IN 5V/div 5V/div V V EN EN 2V/div 2V/div V V OUT OUT 1V/div 1V/div VIN=5.0V 200µs/div VIN=5.0V 200µs/div ROUT=1k ROUT=2.2 © 2009 Semtech Corp. 11 www.semtech.com

SC189 Typical Waveforms (continued) Circuit Conditions: V =3.3V (SC189ZULTRT); L= 2.2uH (TOKO: 1071AS-2R2); C = C = 10uF/6.3V (Murata: GRM21BR60J106K). OUT IN OUT Start Up (V =3.3V), EN=VIN Start Up (V =3.3V), EN=VIN Start Up (Power uOpU TV ) (V =3.3V) Start Up (Power uOpU TV ) (V =3.3V) IN OUT IN OUT V V IN IN 2V/div 2V/div V V OUT OUT 1V/div 1V/div VIN=5.0V 200µs/div VIN=5.0V 200µs/div ROUT=1k ROUT=2.2 StaSrtt aUrpt Uinpto in Ptroe -PBreia-sBeiads O Ouutptpuut (tV (EOUnTa=b3.l3eV))(Enable) SStatratr Ut Up pin itnot oP rPer-eB-iBasiaesd O Ouuttppuutt ((PVoOwUTe=r3 .U3Vp) V(Po)wer Up) IN V V IN IN 2V/div 2V/div V EN 2V/div V V OUT OUT 1V/div 1V/div VIN=5.0V 200µs/div VIN=5.0V 200µs/div ROUT=1k ROUT=1k Shutdown-Disable (V =3.3V) Shutdown-Disable (V =3.3V) Shutdown (Disable) (V O=U3T.3V) Shutdown (Disable) (V O=U3T.3V) OUT OUT V V IN IN 5V/div 5V/div V V EN EN 2V/div 2V/div V V OUT OUT 2V/div 2V/div VIN=5.0V 500µs/div VIN=5.0V 100µs/div ROUT=33 ROUT=3.3 © 2009 Semtech Corp. 12 www.semtech.com

SC189 Typical Waveforms (continued) Circuit Conditions: V =1.0V (SC189AULTRT); L= 1uH (Murata: LQM2HPN1R0NG0L); C = 10uF/6.3V; C = 22uF/6.3V (Murata: GRM21BR60J226M). OUT IN OUT OutpOuutt pVuotl tVaogleta Rgiep Rpilpep (lVe (V=OU1T.=01V.0)V) OutpOuutt pVuotl tVaogleta Rgiep Rpilpep (lVe (V=OU1T.=01V.0)V) OUT OUT 10mVVO/dUivT 10mVVO/dUivT I I LX LX 500mA/div 1A/div Offset: 0A VLX VLX 2V/div 2V/div VIN=3.3V 500ns/div VIN=3.3V 500ns/div IOUT=0A IOUT=1.5A OutpOuutt pVuotl tVaogleta Rgiep Rpilpep (lVe (V=OU1T.=01V.0)V) OutpOuutt pVuotl tVaogleta Rgiep Rpilpep (lVe (V=OU1T.=01V.0)V) OUT OUT V V OUT OUT 10mV/div 10mV/div I I LX LX 500mA/div 1A/div V V LX LX 2V/div 2V/div VIN=5.0V 500ns/div VIN=5.0V 500ns/div IOUT=0A IOUT=1.5A TranTsriaennsti eRnets Rpeosnpsoen (sVe (V=O1U.T0=V1.)0V) TranTsriaennsti eRnets Rpeosnpsoen (sVe (V=O1U.T0=V1.)0V) OUT OUT V V OUT OUT 20mV/div 20mV/div I I OUT OUT 500mA/div 500mA/div VIN=5.0V 50µs/div VIN=5.0V 50µs/div IOUT=0A to 0.5A IOUT=0.5A to 1A © 2009 Semtech Corp. 13 www.semtech.com

SC189 Pin Descriptions Pin # Pin # Pin Name Pin Function (MPLD-UT6) (SOT23-5) 1 Not Available NC No connection. Enable pin. When connected to logic high or tied to VIN pin, the SC189 is on. When con- nected to logic low, the device enters shutdown and consumes less than 1µA of current. 2 3 EN The enable pin has a 1 MΩ internal pulldown resistor. This resistor is switched in circuit whenever the EN pin is below the enable input high threshold, or when the part is in un- dervoltage lockout. Input power supplies. Powers the internal circuitry and is connected to the source of high- 3 1 VIN side P channel MOSFET. 4 5 LX Switching node - connect an inductor between this pin and the output capacitor. 5 2 GND Ground connection. 6 4 VOUT Output voltage sense pin. Thermal pad for heatsinking purposes. This pad is not connected internally. Connect it to T Not Available Thermal Pad GND plane. © 2009 Semtech Corp. 14 www.semtech.com

SC189 Block Diagram + VIN - Current Amp PPlimlimitCit oAmmpp Ramp + - Internal Generator Oscillator OVP Control VOVP - Logic LX + VOUT Voltage - - Select + + Error Amp PWM Comp 500mV Ref GND EN © 2009 Semtech Corp. 15 www.semtech.com

SC189 Applications Information Detailed Description shown above. For programming the output voltage from The SC189 is a synchronous step-down pulse width other standard voltage, the R , R and C need to be FB1 FB2 FF modulated (PWM) voltage mode DC-DC regulator adjusted to meet the equation shown above. operating at 2.5MHz fixed-frequency. The switching frequency is chosen to minimize the size of the external Maximum Power Dissiption of SOT23-5 Package inductor and capacitors while maintaining high The maximum power dissiption for junction tempera- efficiency. ture of less than 125°C on SOT23-5 package is shown in figure 2. The curve is drawn based on the Θ of JA Operation 90°C/W which is measured in free convection, mounted During normal operation, the internal high- on 10mm x 10mm, 2 layer FR4 PCB shown in figure 8 side PMOS device is activated on each ris- with copper of 1oz for each layer. The maximum power ing edge of the internal oscillator. The voltage dissiption may limit the maximum output current over feedback loop uses an internal feedback resistor divider. temperature. The figure 3 and figure 4 show the typi- The period is set by the on board oscillator when in PWM cal maximum output current for T ≤ 125°C over tem- J mode at average to high loads. The device has an internal perature of V =5.0V and V =3.3V, respectively. If using IN IN low-side synchronous NMOS device and does not require a inductor with higher loss (i.e., chip inductor), due to Schottky diode on the LX pin. The device operates as a buck the higher board temperature, the Θ will be a little bit JA converter in PWM mode with a fixed frequency of 2.5MHz. higher. Output Voltage Selection The SC189 is designed for fixed output voltage. There Protection Features are some options for preset output voltage shown in The SC189 provides the following protection features: • Table 1. If the voltage desired is not shown in the Table Thermal Shutdown • 1, it can be programmed via an external resistor di- Current Limit • vider. There will be typical 1uA current flowing into the Over-Voltage Protection • VOUT pin. The typical schematic of adjustable output Soft-Start Operation voltage option from the part with standard 1.0V, the SC189A, is shown in Figure 1. The C is needed for main- FF Thermal Shutdown tain the performance of the transient response. The The device has a thermal shutdown feature to protect proper value of C can be calculated by the equation FF the SC189 if the junction temperature exceeds 160°C. (V −0.5)2 V During thermal shutdown, the on-chip power devices C [nF]=10× OUT ×( OSTD ) FF R [kΩ]⋅(V −V ) V −0.5 are disabled with the LX output floating. When the die FB1 OUT OSTD OSTD temperature drops by 10°C, the part will initiate a soft ,where the V is the standard voltage shown in Table 1. OSTD start recovery to normal operation. To simplify the design, it is recommended to program the Current Limit dSecshieremda otiuc topfu At dvjouslttaagbele f rVom sftraonmd aSrCd1 18.90AV (aSs tdsh Vown= i1n. 0V) OUT OUT The internal PMOS power device in the switching stage is Figure 1 with a proper C calculated from the equation FF protected by current limit feature. If the output is loaded above the PMOS current limit for 32 consecutive cycles, L VIN VIN LX VOUT the SC189 enters foldback current limit mode and the C REN IN GND RFB1 CFF COUT ocuurtrpeuntt c(Iurrent) ios fl iam fietewd htuon tdhree dcu mrriellniatm limpeitre h. oUlnddinegr Enable EN VOUT CL_HOLD R R =(V −1)×R these conditions the output voltage will be the product SC189A 10FkB2 FB1 OUT FB2 of I and the load resistance. The current limit CL_HOLD holding current (I ) will be decreased when output Figure 1 — Typical schematic for adjustable output CL_HOLD voltage is increased. The load presented must fall below voltage option from standard 1.0V of SC189A Note: (1) R is optional. © 2009 Semt(2e) cRhFEBN2 =C10okrp an.d CFF=10nF for standard design. 16 www.semtech.com

SC189 Applications Information (continued) Maximum Power Dissiption for TJ 125°C 1500 SOT23-5 Package the current limit holding current for the SC189 to exit foldback current limit mode. Figure 5 shows the typical 1200 current limit holding current decreasing rate over differ- W) wer Dissiption (m 690000 einnnodtre mofiuantl ipoteup tes vhraootlritota ngc iewr.c h uTehitne w tShiCteh1 fo8au9u tli tsd icsaa mrpeaamgboelev aeondf d.s Tu whsetila lf iornelidnsbugam acnek Po current limit mode will be disabled during the soft-start. 300 JA= 90°C/W 0 Over-Voltage Protection -40 -25 -10 5 20 35 50 65 80 95 110 125 Ambient Temperature (°C) In the event of a 15% over-voltage on the output, the Figure 2 — Maximum power dissiption of SOT23-5 PWM drive is disabled with LX pin floating. package over temperature Maximum Output Current for TJ 125°C Soft-Start 2.0 1.8 The soft-start mode is activated after VIN reaches its VOUT=1.2V 1.6 UVLO and EN signal is set high to enable the part. An over 1.4 Current (A) 11..02 VOUT=2.5V tsetamrtp eseraqtuueren cseh. uStodfotw-stna retv menotd we ilcl oanlstoro lasc ttihvea tme athxiem suomft Output 00..68 VOUT= 3.3V current during startup thus limiting in-rush current. The PMOS current limit is stepped through four soft start 00..24 VIJNA== 59.00°VC/W levels of approximately 20%, 25%, 40%, & 100%. Each 0.0 step is maintained for 20μs following internal reference -40 -25 -10 5 20 35 50 65 80 95 110 125 Ambient Temperature (°C) start up of 20μs giving the total nominal startup period Figure 3 — Typical maximum output current over of 100μs. During startup, the chip operates in controlling temperature of SOT23-5 package, V = 5.0V Maximum Output Current for TJ 125°C IN the inductor current swings between 0A and current 2.0 limit. If V reaches 90% of the target within the first 2 OUT 1.8 VOUT=1.2V current levels, the chip continues in hysteretic mode till 1.6 the end of the soft-start time period before switching to 1.4 A) Current ( 11..02 PseWcoMn md coudrere. Inf tV liOmUTi td loeevse ln, soot frte satcahrt 9w0i%ll c boyn ttihneu ee ntod loefv ethl 3e Output 00..68 VOUT=2.5V or level 4 till the output voltage reaches 96% and will then transition into PWM mode. After the full soft start time 0.4 VIN= 3.3V 0.2 JA= 90°C/W period, the SC189 will switch into PWM mode operation 0.0 regardless of the V level. -40 -25 -10 5 20 35 50 65 80 95 110 125 OUT Ambient Temperature (°C) Figure 4 — Typical maximum output current over temperature of SOT23-5 package, V = 3.3V The SC189 is capable of starting up into a pre-biased IN Current Limit Holding Current over Vout output. When the output is precharged by another supply 150 rail, the SC189 will not discharge the output during the TA= 25°C mA) 120 soft start interval. Current ( 90 VIN= 5.0V Shut Down Current Limit holding 3600 VIN= 3.6V Wsphohuwetdenro tswhuenp pEmNlyo .p dTihen,e v dionralttewargnineag lg sloweesisstc lthohewas,n at nh1deμ AbS Cafnr1od8m9g a wtphi lvel o riulntnapg uinet will be immediately turned off. 0 1.0 1.5 2.0 2.5 3.0 3.5 Output Voltage (V) Inductor Selection Figure 5 — Current limit holding current decreasing The SC189 converter has internal loop compensation. The rate vs. output voltage © 2009 Semtech Corp. 17 www.semtech.com

SC189 Applications Information (continued) Vout Code (Vout) A(1.0V),B(1.1V),C(1.2V),E(1.28V),F(1.3V),H(1.5V) Inductor Output Capacitor Description Vender Part Number Description Vender Part Number Qty. 2.2uH, 60m(max) 10uF,6.3V Wire Wound TOKO 1071AS-2R2N Murata GRM21BR60J106K 1 X5R,0805 2.8x3.0x1.5(mm) 1.0uH, 40m(max) 22uF,6.3V Wire Wound TOKO 1071AS-1R0N Murata GRM21BR60J226M 1 X5R,0805 2.8x3.0x1.5(mm) 22uF,6.3V 1.0uH, 80m(max) Murata GRM21BR60J226M 1 X5R,0805 Multilayer Chip TOKO MDT2520-CR1R0M 10uF,6.3V 2.5x2.0x1.0(mm) Murata GRM219R60J106K 1 X5R,0805 22uF,6.3V 1.0uH, 69m(max) Murata GRM21BR60J226M 1 X5R,0805 Multilayer Chip Murata LQM2HPN1R0MG0 10uF,4.0V 2.5x2.0x1.0(mm) Murata GRM188R60G106M 2 X5R,0603 Table 2a – Recommended L and output capacitors for Vout=1.0V to 1.5V Vout Code (Vout) L(1.8V),N(2.0V),T(Y)(2.5V),V(2.7V),Z(3.3V) Inductor Output Capacitor Description Vender Part Number Description Vender Part Number Qty. 2.2uH, 60m(max) 10uF,6.3V Wire Wound TOKO 1071AS-2R2N Murata GRM21BR60J106K 1 X5R,0805 2.8x3.0x1.5(mm) 1.0uH, 40m(max) 22uF,6.3V Wire Wound TOKO 1071AS-1R0N Murata GRM21BR60J226M 1 X5R,0805 2.8x3.0x1.5(mm) 22uF,6.3V 1.0uH, 80m(max) Murata GRM21BR60J226M 1 X5R,0805 Multilayer Chip TOKO MDT2520-CR1R0M 10uF,4.0V 2.5x2.0x1.0(mm) Murata GRM188R60G106M 2 X5R,0603 Table 2b – Recommended L and output capacitors for Vout=1.8V to 3.3V © 2009 Semtech Corp. 18 www.semtech.com

SC189 Applications Information (continued) compensation is designed to work with a output filter minimum gap possible to limit the distance that magnetic corner frequency of less than 100kHz over any operating fields can radiate from the inductor. However shielded condition, tolerance and bias effect. The corner frequency inductors typically have a higher DCR and are thus less of output filter can be defined by the equation efficient than a similar sized non-shielded inductor. 1 The SC189 is compatible with small shielded chip inductors f (cid:32) C 2(cid:83) L(cid:152)C for low cost, low profile applications. The inductance roll OUT off characteristic of chip inductor is worse resulting in high ripple current and increased output voltage ripple Values outside this range may lead to instability, at heavy load operation. SC189 has OCP peak inductor malfunction, or out-of-specification performance. current threshold of 2.0A minimum, to support 1.5A DC load current, the inductor ripple current at 1.5A DC load When choosing an inductor, it is important to consider current needs to be less than 1A. the change in inductance with DC bias current. The inductor saturation current is specified as the current at Final inductor selection depends on various design which the inductance drops a specific percentage from considerations such as efficiency, EMI, size, and cost. Table the nominal value. This is approximately 30%. Except for 2a and 2b list the manufacturers of recommended inductor short-circuit or other fault conditions, the peak current and output capacitors. Chip inductors provide smaller must always be less than the saturation current specified footprint and height with lower efficiency and increased by the manufacturer. The peak current is the maximum output voltage ripple. Transient load performance is load current plus one half of the inductor ripple current at equivalent to wire wound inductors. Figure 6 shows the the maximum input voltage. Load and/or line transients typical efficiency curves for different inductors. Efficiency can cause the peak current to exceed his level for short 100% durations. Maintaining the peak current below the L=1071AS-2R2N (50m_typ) 95% inductor saturation specification keeps the inductor ripple 90% current and the output voltage ripple at acceptable levels. %) 85% Manadn usfaatcutruarteiorsn o fctheanr apcrotevriidstei cgsr avpehrss uosf aacptpulaiel idn dinudctuacntcoer Efficiency ( 7850%% L=L1=0M7D1ATS25-12R0-0CNR (13R3m0M _(6ty0pm)_typ) current. The saturation characteristics of the inductor can vary significantly with core temperature. Core and ambient 70% VIN= 5.0V 65% VOUT= 3.3V temperatures should be considered when examining the TA=25°C L=LQM2HP1R0MG0 (55m_typ) 60% core saturation characteristics. 0.0 0.3 0.6 0.9 1.2 1.5 Output Current (A) When the inductance has been determined, the DC Figure 6 — Typical efficiency curves resistance (DCR) must be examined. The efficiency that (V =5.0V, V =3.3V) IN OUT can be achieved is dependent on the DCR of the inductor. The lower values give higher efficiency. The RMS DC C Selection OUT current rating of the inductor is associated with losses in The internal voltage loop compensation in the SC189 limits the copper windings and the resulting temperature rise of the minimum output capacitor value to 10μF if using the the inductor. This is usually specified as the current which inductor of 2.2μH. This is due to its influence on the the produces a 40˚C temperature rise. Most copper windings loop crossover frequency, phase margin, and gain margin. are rated to accommodate this temperature rise above Increasing the output capacitor above this minimum maximum ambient. value will reduce the crossover frequency and provide greater phase margin. A total output capacintance should Magnetic fields associated with the output inductor can not exceed 30uF to avoid any start-up problems. For most interfere with nearby circuitry. This can be minimized by typical applications, it is recommended to use output the use of low noise shielded inductors which use the capacitance of 10uF to 22uF. When choosing output © 2009 Semtech Corp. 19 www.semtech.com

SC189 Applications Information (continued) capacitor’s capacitance, verify the voltage derating effect The input capacitor RMS ripple current varies with the from the capacitor vendors data sheet. input and output voltage. The maximum input capacitor RMS current is found from the equation Capacitors with X7R or X5R ceramic dielectric are recommended for their low ESR and superior temperature V  V  and voltage characteristics. Y5V capacitors should not ICIN(RMS) = VOUT 1− VOUT  be used as their temperature coefficients make them IN IN unsuitable for this application. The input voltage ripple and RMS current ripple are at The output voltage droop due to a load transient is maximum when the input voltage is twice the output determined by the capacitance of the ceramic output voltage or 50% duty cycle. capacitor. The ceramic capacitor supplies the load current initially until the loop responds. Within a few switching The input capacitor provides a low impedance loop for cycles the loop will respond and the inductor current will the edges of pulsed current drawn by the PMOS switch. increase to match the required load. The output voltage Low ESR/ESL X5R ceramic capacitors are recommended droop during the period prior to the loop responding for this function. To minimise stray inductance ,the can be related to the choice of output capacitor by the capacitor should be placed as closely as possible to the relationship. VIN and GND pins of the SC189. 3⋅∆I Value COUT =V L⋅OfAD Manufacturer Value Type VRoalttaegde at DimLxeWnsxiHo ns DROOP OSC Part Nunber (μF) (VDC) 3.3V (mm) (μF) The output capacitor RMS current ripple may be calcu- lated from the equation Murata 2.0x1.25x1.25 10±10% X5R 10 4.42 GRM21BR61A106K (EIA:0805) ( ) Murata 2.0x1.25x1.25 ICOUT(RMS) = 213VOUT ⋅LV⋅INfO(MSCAX⋅V)−INVOUT  GMRuMra2t1a BR71A106K 10±10% X7R 10 4.88 2.0(ExI1A.:2058x015.2)5 10±10% X5R 6.3 4.05 GRM21BR60J106K (EIA:0805) Murata 2.0x1.25x1.25 Table 3 lists the manufacturers of recommended output 10±10% X7R 6.3 4.91 GRM21BR70J106K (EIA:0805) capacitor options. Murata 2.0x1.25x1.25 22±20% X5R 6.3 6.57 GRM21BR60J226M (EIA:0805) C Selection IN The SC189 source input current is a DC supply current Table 3 – Recommended Capacitors with a triangular ripple imposed on it. To prevent large input voltage ripple, a low ESR ceramic capacitor is required. A minimum value of 4.7μF should be used. It is important to consider the DC voltage coefficient charac- teristics when determining the actual required value. To estimate the required input capacitor, determine the acceptable input ripple voltage and calculate the minimum value required for C from the equation IN V  V  OUT 1− OUT  V  V  C = IN IN IN  ∆V  I −ESR⋅ fOSC OUT © 2009 Semtech Corp. 20 www.semtech.com

SC189 Applications Information (continued) PCB Layout Considerations The layout diagram in figure 7 and figure 8 shows a recommended PCB for MLPD-UT6 2x2 and SOT23-5 L VOUT package, respectively. Fundamental layout rules must be followed since the layout is critical for achieving the performance specified in the Electrical Characteristics COUT CIN table. Poor layout can degrade the performance of the DC- U1 DC converter and can contribute to EMI problems, ground GND bounce, and resistive voltage losses. Poor regulation and VIN GND instability can result. EN (a) Top layer for MLPD-UT6 2x2 package The following guidelines are recommended when developing a PCB layout: 1. The input capacitor, C should be placed as close to the IN GND VIN and GND pins as possible. This capacitor provides a low impedance loop for the pulsed currents present at the buck converter’s input. Use short wide traces to connect as closely to the IC as possible. This will GND minimize EMI and input voltage ripple by localizing the high frequency current pulses. (b) Bottom layer for MLPD 2x2 package 2. Keep the LX pin traces as short as possible to minimize pickup of high frequency switching edges to other Figure 7 — Recommended PCB Top & Bottom Layer parts of the circuit. C and L should be connected as Layout for MLPD-UT6 2x2 Package OUT close as possible between the LX and GND pins, with a direct return to the GND pin from C . OUT 3. Route the output voltage feedback/sense path away from inductor and LX node to minimize noise and magnetic interference. L VOUT 4. Use a ground plane referenced to the SC189 GND pin. Use several vias to connect to the component side ground to further reduce noise and interference on CIN COUT sensitive circuit nodes. U1 5. If possible, minimize the resistance from the VOUT and VIN GND GND pins to the load. This will reduce the voltage drop (a) Top layer for SOT23-5 package on the ground plane and improve the load regulation. And it will also improve the overall efficiency by reducing the copper losses on the output and ground planes. GND EN (b) Bottom layer for SOT23-5 package Figure 8 — Recommended PCB Top & Bottom Layer Layout for SOT23-5 Package © 2009 Semtech Corp. 21 www.semtech.com

SC189 Outline Drawing – 2x2 MLPD-UT6 DIMENSIONS A D B INCHES MILLIMETERS DIM MIN NOMMAX MIN NOMMAX A .018 - .024 0.45 - 0.60 A1 .000 - .002 0.00 - 0.05 A2 (.006) (0.1524) E PIN 1 b .007 .010 .012 0.18 0.25 0.30 INDICATOR D .075 .079 .083 1.90 2.00 2.10 (LASER MARK) D1 .061 .067 .071 1.55 1.70 1.80 E .075 .079 .083 1.90 2.00 2.10 E1 .026 .031 .035 0.65 0.80 0.90 A2 e .020 BSC 0.50 BSC L .010 .014 .018 0.25 0.35 0.45 A SEATING N 6 6 aaa C PLANE aaa .003 0.08 bbb .004 0.10 C A1 D1 1 2 LxN E1 N bxN bbb C A B e NOTES: 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES). 2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS TERMINALS. Land Pattern – 2x2 MLPD-UT6 H R DIMENSIONS DIM INCHES MILLIMETERS C (.077) (1.95) (C) K G Z G .047 1.20 H .067 1.70 K .031 0.80 P .020 0.50 Y R .006 0.15 X .012 0.30 Y .030 0.75 P Z .106 2.70 X NOTES: 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES). 2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET. 3. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD SHALL BE CONNECTED TO A SYSTEM GROUND PLANE. FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR FUNCTIONAL PERFORMANCE OF THE DEVICE. © 2009 Semtech Corp. 22 www.semtech.com

SC189 Outline Drawing – SOT23-5 Land Pattern – SOT23-5 X DIMENSIONS DIM MILLIMETERS C (2.50) (C) G Z G 1.40 P 0.95 Y X 0.60 Y 1.10 P Z 3.60 NOTES: 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES). 2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET. © 2009 Semtech Corp. 23 www.semtech.com

SC189 © Semtech 2010 All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range. SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH AP- PLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, em- ployees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise. Contact Information Semtech Corporation Power Management Products Division 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111 Fax: (805) 498-3804 www.semtech.com © 2009 Semtech Corp. 24 www.semtech.com

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: S emtech: SC189ASKTRT SC189ZSKTRT SC189CULTRT SC189AULTRT SC189FULTRT SC189BULTRT SC189HSKTRT SC189ZULTRT SC189EULTRT SC189LULTRT SC189LSKTRT SC189BSKTRT SC189VSKTRT SC189CSKTRT SC189TULTRT SC189NULTRT SC189HULTRT SC189YSKTRT