图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: PIC32MX675F512H-80I/PT
  • 制造商: Microchip
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

PIC32MX675F512H-80I/PT产品简介:

ICGOO电子元器件商城为您提供PIC32MX675F512H-80I/PT由Microchip设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 PIC32MX675F512H-80I/PT价格参考。MicrochipPIC32MX675F512H-80I/PT封装/规格:嵌入式 - 微控制器, MIPS32® M4K™ 微控制器 IC PIC® 32MX 32-位 80MHz 512KB(512K x 8) 闪存 64-TQFP(10x10)。您可以下载PIC32MX675F512H-80I/PT参考资料、Datasheet数据手册功能说明书,资料中有PIC32MX675F512H-80I/PT 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
A/D位大小

10 bit

产品目录

集成电路 (IC)半导体

描述

IC MCU 32BIT 512KB FLASH 64TQFP32位微控制器 - MCU 512KB Flash 64KB USB ENET

EEPROM容量

-

产品分类

嵌入式 - 微控制器

I/O数

53

品牌

Microchip Technology

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

嵌入式处理器和控制器,微控制器 - MCU,32位微控制器 - MCU,Microchip Technology PIC32MX675F512H-80I/PTPIC® 32MX

数据手册

http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en532867点击此处下载产品Datasheethttp://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en545780http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en545749

产品型号

PIC32MX675F512H-80I/PT

PCN组件/产地

http://www.microchip.com/mymicrochip/NotificationDetails.aspx?id=5780&print=viewhttp://www.microchip.com/mymicrochip/NotificationDetails.aspx?id=5939&print=viewhttp://www.microchip.com/mymicrochip/NotificationDetails.aspx?id=5968&print=viewhttp://www.microchip.com/mymicrochip/NotificationDetails.aspx?pcn=IIRA-22KPRZ871&print=view

RAM容量

64K x 8

产品目录页面

点击此处下载产品Datasheet

产品种类

32位微控制器 - MCU

供应商器件封装

64-TQFP(10x10)

其它名称

PIC32MX675F512H80IPT

包装

托盘

可用A/D通道

16

可编程输入/输出端数量

51

商标

Microchip Technology

处理器系列

PIC32

外设

欠压检测/复位,DMA,POR,PWM,WDT

安装风格

SMD/SMT

定时器数量

5 Timer

封装

Tray

封装/外壳

64-TQFP

封装/箱体

TQFP-64

工作温度

-40°C ~ 85°C

工作电源电压

2.3 V to 3.6 V

工厂包装数量

160

振荡器类型

内部

接口类型

CAN, I2C, SPI, UART, USB

数据RAM大小

64 kB

数据Ram类型

SRAM

数据总线宽度

32 bit

数据转换器

A/D 16x10b

最大工作温度

+ 85 C

最大时钟频率

80 MHz

最小工作温度

- 40 C

标准包装

160

核心

MIPS32 M4K

核心处理器

MIPS32® M4K™

核心尺寸

32-位

片上ADC

Yes

片上DAC

Without DAC

特色产品

http://www.digikey.com/cn/zh/ph/Microchip/pic32mx567.htmlhttp://www.digikey.com/cn/zh/ph/microchip/PIC32Family.html

电压-电源(Vcc/Vdd)

2.3 V ~ 3.6 V

程序存储器大小

512 kB

程序存储器类型

闪存

程序存储容量

512KB(512K x 8)

系列

PIC

输入/输出端数量

51 I/O

连接性

以太网, I²C, SPI, UART/USART, USB OTG

速度

80MHz

配用

/product-detail/zh/DKSB1000C/876-1000-ND/2074101

推荐商品

型号:C8051F545-IQR

品牌:Silicon Labs

产品名称:集成电路(IC)

获取报价

型号:DSPIC33FJ256GP510A-E/PT

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:MSP430F135IRTDT

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:PIC32MX250F128BT-50I/ML

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:R5F21368CNFP#30

品牌:Renesas Electronics America

产品名称:集成电路(IC)

获取报价

型号:N79E855AWG

品牌:Nuvoton Technology Corporation of America

产品名称:集成电路(IC)

获取报价

型号:SPC5634MF2MLQ80

品牌:NXP USA Inc.

产品名称:集成电路(IC)

获取报价

型号:S912XET256J2CAL

品牌:NXP USA Inc.

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
PIC32MX675F512H-80I/PT 相关产品

MSP430F5131IRSBR

品牌:Texas Instruments

价格:

PIC16F785-I/SS

品牌:Microchip Technology

价格:¥15.89-¥15.89

ATTINY261-20MUR

品牌:Microchip Technology

价格:

S5LS20216ASPGEQQ1

品牌:Texas Instruments

价格:¥274.96-¥337.51

DS80C390-FCR

品牌:Maxim Integrated

价格:

PIC16F631T-E/SS

品牌:Microchip Technology

价格:

PIC16F726-E/ML

品牌:Microchip Technology

价格:

PIC18F45J11-I/PT

品牌:Microchip Technology

价格:

PDF Datasheet 数据手册内容提取

PIC32MX5XX/6XX/7XX 32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Graphics Interface, USB, CAN, and Ethernet Operating Conditions Timers/Output Compare/Input Capture • 2.3V to 3.6V, -40ºC to +105ºC, DC to 80 MHz • Five General Purpose Timers: Core: 80 MHz/105 DMIPS MIPS32® M4K® - Five 16-bit and up to two 32-bit Timers/Counters • Five Output Compare (OC) modules • MIPS16e® mode for up to 40% smaller code size • Five Input Capture (IC) modules • Code-efficient (C and Assembly) architecture • Real-Time Clock and Calendar (RTCC) module • Single-cycle (MAC) 32x16 and two-cycle 32x32 multiply Communication Interfaces Clock Management • USB 2.0-compliant Full-Speed OTG controller • 0.9% internal oscillator (on some variants) • 10/100 Mbps Ethernet MAC with MII and RMII interface • Programmable PLLs and oscillator clock sources • CAN module: • Fail-Safe Clock Monitor (FSCM) - 2.0B Active with DeviceNet™ addressing support • Independent Watchdog Timer • Six UART modules (20 Mbps): • Fast wake-up and start-up - Supports LIN 2.1 protocols and IrDA® support Power Management • Up to four 4-wire SPI modules (25 Mbps) • Up to five I2C modules (up to 1 Mbaud) with SMBus • Low-power management modes (Sleep and Idle) support • Integrated Power-on Reset, Brown-out Reset • Parallel Master Port (PMP) • 0.5 mA/MHz dynamic current (typical) • 41 µA IPD current (typical) Direct Memory Access (DMA) Graphics Features • Up to eight channels of hardware DMA with automatic data size detection • External graphics interface with up to 34 Parallel Master • 32-bit Programmable Cyclic Redundancy Check (CRC) Port (PMP) pins: • Six additional channels dedicated to USB, Ethernet and - Interface to external graphics controller CAN modules - Capable of driving LCD directly with DMA and internal or external memory Input/Output Analog Features • 15 mA or 10 mA source/sink for standard VOH/VOL and up to 22 mA for non-standard VOH1 • ADC Module: • 5V-tolerant pins - 10-bit 1 Msps rate with one Sample and Hold (S&H) • Selectable open drain and pull-ups - 16 analog inputs • External interrupts - Can operate during Sleep mode Qualification and Class B Support • Flexible and independent ADC trigger sources • Comparators: • AEC-Q100 REVH (Grade 2 -40ºC to +105ºC) - Two dual-input Comparator modules • Class B Safety Library, IEC 60730 - Programmable references with 32 voltage points Debugger Development Support • In-circuit and in-application programming • 4-wire MIPS® Enhanced JTAG interface • Unlimited program and six complex data breakpoints • IEEE 1149.2-compatible (JTAG) boundary scan Packages Type QFN TQFP TFBGA VTLA Pin Count 64 64 100 100 121 124 I/O Pins (up to) 51 51 83 83 83 83 Contact/Lead Pitch 0.50 0.50 0.40 0.50 0.80 0.50 Dimensions 9x9x0.9 10x10x1 12x12x1 14x14x1 10x10x1.1 9x9x0.9 Note: All dimensions are in millimeters (mm) unless specified.  2009-2016 Microchip Technology Inc. DS60001156J-page 1

PIC32MX5XX/6XX/7XX TABLE 1: PIC32MX5XX USB AND CAN FEATURES USB and CAN s) e d) el Device Pins ogram Memory (KB) Data Memory (KB) USB CAN ers/Capture/Compar DMA Channels grammable/Dedicate (2,3)UART (3)SPI 2(3)IC 1 Msps ADC (Chann Comparators PMP/PSP JTAG Trace (4)Packages Pr Tim (Pro 0-bit 1 PT, PIC32MX534F064H 64 64 + 12(1) 16 1 1 5/5/5 4/4 6 3 4 16 2 Yes Yes No MR PT, PIC32MX564F064H 64 64 + 12(1) 32 1 1 5/5/5 4/4 6 3 4 16 2 Yes Yes No MR PT, PIC32MX564F128H 64 128 + 12(1) 32 1 1 5/5/5 4/4 6 3 4 16 2 Yes Yes No MR PT, PIC32MX575F256H 64 256 + 12(1) 64 1 1 5/5/5 8/4 6 3 4 16 2 Yes Yes No MR PT, PIC32MX575F512H 64 512 + 12(1) 64 1 1 5/5/5 8/4 6 3 4 16 2 Yes Yes No MR PT, PIC32MX534F064L 100 64 + 12(1) 16 1 1 5/5/5 4/4 6 4 5 16 2 Yes Yes Yes PF, BG PT, PIC32MX564F064L 100 64 + 12(1) 32 1 1 5/5/5 4/4 6 4 5 16 2 Yes Yes Yes PF, BG PT, PIC32MX564F128L 100 128 + 12(1) 32 1 1 5/5/5 4/4 6 4 5 16 2 Yes Yes Yes PF, BG PT, PIC32MX575F256L 100 256 + 12(1) 64 1 1 5/5/5 8/4 6 4 5 16 2 Yes Yes Yes PF, BG PT, PIC32MX575F512L 100 512 + 12(1) 64 1 1 5/5/5 8/4 6 4 5 16 2 Yes Yes Yes PF, BG Legend: PF, PT = TQFP MR = QFN BG = TFBGA TL = VTLA(5) Note 1: This device features 12 KB boot Flash memory. 2: CTS and RTS pins may not be available for all UART modules. Refer to the “Device Pin Tables” section for more information. 3: Some pins between the UART, SPI and I2C modules may be shared. Refer to the “Device Pin Tables” section for more information. 4: Refer to 34.0“Packaging Information” for more information. 5: 100-pin devices in the VTLA package are available upon request. Please contact your local Microchip Sales Office for details. DS60001156J-page 2  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 2: PIC32MX6XX USB AND ETHERNET FEATURES USB and Ethernet s) e d) el Device Pins ogram Memory (KB) Data Memory (KB) USB Ethernet ers/Capture/Compar DMA Channels grammable/Dedicate (2,3)UART (3)SPI 2(3)IC 1 Msps ADC (Chann Comparators PMP/PSP JTAG Trace (4)Packages Pr Tim (Pro 0-bit 1 PT, PIC32MX664F064H 64 64 + 12(1) 32 1 1 5/5/5 4/4 6 3 4 16 2 Yes Yes No MR PT, PIC32MX664F128H 64 128 + 12(1) 32 1 1 5/5/5 4/4 6 3 4 16 2 Yes Yes No MR PT, PIC32MX675F256H 64 256 + 12(1) 64 1 1 5/5/5 8/4 6 3 4 16 2 Yes Yes No MR PT, PIC32MX675F512H 64 512 + 12(1) 64 1 1 5/5/5 8/4 6 3 4 16 2 Yes Yes No MR PT, PIC32MX695F512H 64 512 + 12(1) 128 1 1 5/5/5 8/4 6 3 4 16 2 Yes Yes No MR PT, PF, PIC32MX664F064L 100 64 + 12(1) 32 1 1 5/5/5 4/4 6 4 5 16 2 Yes Yes Yes BG PT, PF, PIC32MX664F128L 100 128 + 12(1) 32 1 1 5/5/5 4/4 6 4 5 16 2 Yes Yes Yes BG PT, PF, PIC32MX675F256L 100 256 + 12(1) 64 1 1 5/5/5 8/4 6 4 5 16 2 Yes Yes Yes BG PT, PF, PIC32MX675F512L 100 512 + 12(1) 64 1 1 5/5/5 8/4 6 4 5 16 2 Yes Yes Yes BG, TL PT, PF, PIC32MX695F512L 100 512 + 12(1) 128 1 1 5/5/5 8/4 6 4 5 16 2 Yes Yes Yes BG, TL Legend: PF, PT = TQFP MR = QFN BG = TFBGA TL = VTLA(5) Note 1: This device features 12 KB boot Flash memory. 2: CTS and RTS pins may not be available for all UART modules. Refer to the “Device Pin Tables” section for more information. 3: Some pins between the UART, SPI and I2C modules may be shared. Refer to the “Device Pin Tables” section for more information. 4: Refer to 34.0“Packaging Information” for more information. 5: 100-pin devices other than those listed here are available in the VTLA package upon request. Please contact your local Microchip Sales Office for details.  2009-2016 Microchip Technology Inc. DS60001156J-page 3

PIC32MX5XX/6XX/7XX TABLE 3: PIC32MX7XX USB, ETHERNET, AND CAN FEATURES USB, Ethernet, and CAN s) e d) el Device Pins ogram Memory (KB) Data Memory (KB) USB Ethernet CAN ers/Capture/Compar DMA Channels grammable/Dedicate (2,3)UART (3)SPI 2(3)IC 1 Msps ADC (Chann Comparators PMP/PSP JTAG Trace (4)Packages Pr Tim (Pro 0-bit 1 PT, PIC32MX764F128H 64 128 + 12(1) 32 1 1 1 5/5/5 4/8 6 3 4 16 2 Yes Yes No MR PT, PIC32MX775F256H 64 256 + 12(1) 64 1 1 2 5/5/5 8/8 6 3 4 16 2 Yes Yes No MR PT, PIC32MX775F512H 64 512 + 12(1) 64 1 1 2 5/5/5 8/8 6 3 4 16 2 Yes Yes No MR PT, PIC32MX795F512H 64 512 + 12(1) 128 1 1 2 5/5/5 8/8 6 3 4 16 2 Yes Yes No MR PT, PF, PIC32MX764F128L 100 128 + 12(1) 32 1 1 1 5/5/5 4/6 6 4 5 16 2 Yes Yes Yes BG PT, PF, PIC32MX775F256L 100 256 + 12(1) 64 1 1 2 5/5/5 8/8 6 4 5 16 2 Yes Yes Yes BG PT, PF, PIC32MX775F512L 100 512 + 12(1) 64 1 1 2 5/5/5 8/8 6 4 5 16 2 Yes Yes Yes BG PT, PF, PIC32MX795F512L 100 512 + 12(1) 128 1 1 2 5/5/5 8/8 6 4 5 16 2 Yes Yes Yes BG, TL Legend: PF, PT = TQFP MR = QFN BG = TFBGA TL = VTLA(5) Note 1: This device features 12 KB boot Flash memory. 2: CTS and RTS pins may not be available for all UART modules. Refer to the “Device Pin Tables” section for more information. 3: Some pins between the UART, SPI and I2C modules may be shared. Refer to the “Device Pin Tables” section for more information. 4: Refer to Section34.0 “Packaging Information” for more information. 5: 100-pin devices other than those listed here are available in the VTLA package upon request. Please contact your local Microchip Sales Office for details. DS60001156J-page 4  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX Device Pin Tables TABLE 4: PIN NAMES FOR 64-PIN USB AND CAN DEVICES 64-PIN QFN(2) AND TQFP (TOP VIEW) PIC32MX534F064H PIC32MX564F064H PIC32MX564F128H PIC32MX575F256H PIC32MX575F512H 64 1 QFN(2) 64 1 TQFP Pin # Full Pin Name Pin # Full Pin Name 1 PMD5/RE5 33 USBID/RF3 2 PMD6/RE6 34 VBUS 3 PMD7/RE7 35 VUSB3V3 4 SCK2/U6TX/U3RTS/PMA5/CN8/RG6 36 D-/RG3 5 SDA4/SDI2/U3RX/PMA4/CN9/RG7 37 D+/RG2 6 SCL4/SDO2/U3TX/PMA3/CN10/RG8 38 VDD 7 MCLR 39 OSC1/CLKI/RC12 8 SS2/U6RX/U3CTS/PMA2/CN11/RG9 40 OSC2/CLKO/RC15 9 VSS 41 Vss 10 VDD 42 RTCC/IC1/INT1/RD8 11 AN5/C1IN+/VBUSON/CN7/RB5 43 SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9 12 AN4/C1IN-/CN6/RB4 44 SCL1/IC3/PMCS2/PMA15/INT3/RD10 13 AN3/C2IN+/CN5/RB3 45 IC4/PMCS1/PMA14/INT4/RD11 14 AN2/C2IN-/CN4/RB2 46 OC1/INT0/RD0 15 PGEC1/AN1/VREF-/CVREF-/CN3/RB1 47 SOSCI/CN1/RC13 16 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 48 SOSCO/T1CK/CN0/RC14 17 PGEC2/AN6/OCFA/RB6 49 SCK3/U4TX/U1RTS/OC2/RD1 18 PGED2/AN7/RB7 50 SDA3/SDI3/U1RX/OC3/RD2 19 AVDD 51 SCL3/SDO3/U1TX/OC4/RD3 20 AVSS 52 OC5/IC5/PMWR/CN13/RD4 21 AN8/SS4/U5RX/U2CTS/C1OUT/RB8 53 PMRD/CN14/RD5 22 AN9/C2OUT/PMA7/RB9 54 CN15/RD6 23 TMS/AN10/CVREFOUT/PMA13/RB10 55 CN16/RD7 24 TDO/AN11/PMA12/RB11 56 VCAP 25 VSS 57 VDD 26 VDD 58 C1RX/RF0 27 TCK/AN12/PMA11/RB12 59 C1TX/RF1 28 TDI/AN13/PMA10/RB13 60 PMD0/RE0 29 AN14/SCK4/U5TX/U2RTS/PMALH/PMA1/RB14 61 PMD1/RE1 30 AN15/OCFB/PMALL/PMA0/CN12/RB15 62 PMD2/RE2 31 AC1TX/SDA5/SDI4/U2RX/PMA9/CN17/RF4 63 PMD3/RE3 32 AC1RX/SCL5/SDO4/U2TX/PMA8/CN18/RF5 64 PMD4/RE4 Note 1: Shaded pins are 5V tolerant. 2: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  2009-2016 Microchip Technology Inc. DS60001156J-page 5

PIC32MX5XX/6XX/7XX TABLE 5: PIN NAMES FOR 64-PIN USB AND ETHERNET DEVICES 64-PIN QFN(2) AND TQFP (TOP VIEW) PIC32MX664F064H PIC32MX664F128H PIC32MX675F256H PIC32MX675F512H PIC32MX695F512H 64 1 QFN(2) 64 1 TQFP Pin # Full Pin Name Pin # Full Pin Name 1 ETXEN/PMD5/RE5 33 USBID/RF3 2 ETXD0/PMD6/RE6 34 VBUS 3 ETXD1/PMD7/RE7 35 VUSB3V3 4 SCK2/U6TX/U3RTS/PMA5/CN8/RG6 36 D-/RG3 5 SDA4/SDI2/U3RX/PMA4/CN9/RG7 37 D+/RG2 6 SCL4/SDO2/U3TX/PMA3/CN10/RG8 38 VDD 7 MCLR 39 OSC1/CLKI/RC12 8 SS2/U6RX/U3CTS/PMA2/CN11/RG9 40 OSC2/CLKO/RC15 9 VSS 41 Vss 10 VDD 42 RTCC/AERXD1/ETXD3/IC1/INT1/RD8 11 AN5/C1IN+/VBUSON/CN7/RB5 43 AERXD0/ETXD2/SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9 12 AN4/C1IN-/CN6/RB4 44 ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10 13 AN3/C2IN+/CN5/RB3 45 ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11 14 AN2/C2IN-/CN4/RB2 46 OC1/INT0/RD0 15 PGEC1/AN1/VREF-/CVREF-/CN3/RB1 47 SOSCI/CN1/RC13 16 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 48 SOSCO/T1CK/CN0/RC14 17 PGEC2/AN6/OCFA/RB6 49 EMDIO/AEMDIO/SCK3/U4TX/U1RTS/OC2/RD1 18 PGED2/AN7/RB7 50 SDA3/SDI3/U1RX/OC3/RD2 19 AVDD 51 SCL3/SDO3/U1TX/OC4/RD3 20 AVSS 52 OC5/IC5/PMWR/CN13/RD4 21 AN8/SS4/U5RX/U2CTS/C1OUT/RB8 53 PMRD/CN14/RD5 22 AN9/C2OUT/PMA7/RB9 54 AETXEN/ETXERR/CN15/RD6 23 TMS/AN10/CVREFOUT/PMA13/RB10 55 ETXCLK/AERXERR/CN16/RD7 24 TDO/AN11/PMA12/RB11 56 VCAP 25 VSS 57 VDD 26 VDD 58 AETXD1/ERXD3/RF0 27 TCK/AN12/PMA11/RB12 59 AETXD0/ERXD2/RF1 28 TDI/AN13/PMA10/RB13 60 ERXD1/PMD0/RE0 29 AN14/SCK4/U5TX/U2RTSU2RTS/PMALH/PMA1/RB14 61 ERXD0/PMD1/RE1 30 AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15 62 ERXDV/ECRSDV/PMD2/RE2 31 SDA5/SDI4/U2RX/PMA9/CN17/RF4 63 ERXCLK/EREFCLK/PMD3/RE3 32 SCL5/SDO4/U2TX/PMA8/CN18/RF5 64 ERXERR/PMD4/RE4 Note 1: Shaded pins are 5V tolerant. 2: The metal plane at the bottom of the QFN device is not connected to any pins and is recommended to be connected to VSS externally. DS60001156J-page 6  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 6: PIN NAMES FOR 64-PIN USB, ETHERNET, AND CAN DEVICES 64-PIN QFN(3) AND TQFP (TOP VIEW) PIC32MX764F128H PIC32MX775F256H PIC32MX775F512H PIC32MX795F512H 64 1 QFN(3) 64 1 TQFP Pin # Full Pin Name Pin # Full Pin Name 1 ETXEN/PMD5/RE5 33 USBID/RF3 2 ETXD0/PMD6/RE6 34 VBUS 3 ETXD1/PMD7/RE7 35 VUSB3V3 4 SCK2/U6TX/U3RTS/PMA5/CN8/RG6 36 D-/RG3 5 SDA4/SDI2/U3RX/PMA4/CN9/RG7 37 D+/RG2 6 SCL4/SDO2/U3TX/PMA3/CN10/RG8 38 VDD 7 MCLR 39 OSC1/CLKI/RC12 8 SS2/U6RX/U3CTS/PMA2/CN11/RG9 40 OSC2/CLKO/RC15 9 VSS 41 Vss 10 VDD 42 RTCC/AERXD1/ETXD3/IC1/INT1/RD8 11 AN5/C1IN+/VBUSON/CN7/RB5 43 AERXD0/ETXD2/SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9 12 AN4/C1IN-/CN6/RB4 44 ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10 13 AN3/C2IN+/CN5/RB3 45 ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11 14 AN2/C2IN-/CN4/RB2 46 OC1/INT0/RD0 15 PGEC1/AN1/VREF-/CVREF-/CN3/RB1 47 SOSCI/CN1/RC13 16 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 48 SOSCO/T1CK/CN0/RC14 17 PGEC2/AN6/OCFA/RB6 49 EMDIO/AEMDIO/SCK3/U4TX/U1RTS/OC2/RD1 18 PGED2/AN7/RB7 50 SDA3/SDI3/U1RX/OC3/RD2 19 AVDD 51 SCL3/SDO3/U1TX/OC4/RD3 20 AVSS 52 OC5/IC5/PMWR/CN13/RD4 21 AN8/C2TX(2)/SS4/U5RX/U2CTS/C1OUT/RB8 53 PMRD/CN14/RD5 22 AN9/C2OUT/PMA7/RB9 54 AETXEN/ETXERR/CN15/RD6 23 TMS/AN10/CVREFOUT/PMA13/RB10 55 ETXCLK/AERXERR/CN16/RD7 24 TDO/AN11/PMA12/RB11 56 VCAP 25 VSS 57 VDD 26 VDD 58 C1RX/AETXD1/ERXD3/RF0 27 TCK/AN12/PMA11/RB12 59 C1TX/AETXD0/ERXD2/RF1 28 TDI/AN13/PMA10/RB13 60 ERXD1/PMD0/RE0 29 AN14/C2RX(2)/SCK4/U5TX/U2RTS/PMALH/PMA1/RB14 61 ERXD0/PMD1/RE1 30 AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15 62 ERXDV/ECRSDV/PMD2/RE2 31 AC1TX/SDA5/SDI4/U2RX/PMA9/CN17/RF4 63 ERXCLK/EREFCLKPMD3/RE3 32 AC1RX/SCL5/SDO4/U2TX/PMA8/CN18/RF5 64 ERXERR/PMD4/RE4 Note 1: Shaded pins are 5V tolerant. 2: This pin is not available on PIC32MX765F128H devices. 3: The metal plane at the bottom of the QFN device is not connected to any pins and is recommended to be connected to VSS externally.  2009-2016 Microchip Technology Inc. DS60001156J-page 7

PIC32MX5XX/6XX/7XX TABLE 7: PIN NAMES FOR 100-PIN USB AND CAN DEVICES 100-PIN TQFP (TOP VIEW) PIC32MX534F064L PIC32MX564F064L PIC32MX564F128L PIC32MX575F512L PIC32MX575F256L 100 1 Pin # Full Pin Name Pin # Full Pin Name 1 RG15 36 VSS 2 VDD 37 VDD 3 PMD5/RE5 38 TCK/RA1 4 PMD6/RE6 39 AC1TX/SCK4/U5TX/U2RTS/RF13 5 PMD7/RE7 40 AC1RX/SS4/U5RX/U2CTS/RF12 6 T2CK/RC1 41 AN12/PMA11/RB12 7 T3CK/RC2 42 AN13/PMA10/RB13 8 T4CK/RC3 43 AN14/PMALH/PMA1/RB14 9 T5CK/SDI1/RC4 44 AN15/OCFB/PMALL/PMA0/CN12/RB15 10 SCK2/U6TX/U3RTS/PMA5/CN8/RG6 45 VSS 11 SDA4/SDI2/U3RX/PMA4/CN9/RG7 46 VDD 12 SCL4/SDO2/U3TX/PMA3/CN10/RG8 47 SS3/U4RX/U1CTS/CN20/RD14 13 MCLR 48 SCK3/U4TX/U1RTS/CN21/RD15 14 SS2/U6RX/U3CTS/PMA2/CN11/RG9 49 SDA5/SDI4/U2RX/PMA9/CN17/RF4 15 VSS 50 SCL5/SDO4/U2TX/PMA8/CN18/RF5 16 VDD 51 USBID/RF3 17 TMS/RA0 52 SDA3/SDI3/U1RX/RF2 18 INT1/RE8 53 SCL3/SDO3/U1TX/RF8 19 INT2/RE9 54 VBUS 20 AN5/C1IN+/VBUSON/CN7/RB5 55 VUSB3V3 21 AN4/C1IN-/CN6/RB4 56 D-/RG3 22 AN3/C2IN+/CN5/RB3 57 D+/RG2 23 AN2/C2IN-/CN4/RB2 58 SCL2/RA2 24 PGEC1/AN1/CN3/RB1 59 SDA2/RA3 25 PGED1/AN0/CN2/RB0 60 TDI/RA4 26 PGEC2/AN6/OCFA/RB6 61 TDO/RA5 27 PGED2/AN7/RB7 62 VDD 28 VREF-/CVREF-/PMA7/RA9 63 OSC1/CLKI/RC12 29 VREF+/CVREF+/PMA6/RA10 64 OSC2/CLKO/RC15 30 AVDD 65 VSS 31 AVSS 66 SCL1/INT3/RA14 32 AN8/C1OUT/RB8 67 SDA1/INT4/RA15 33 AN9/C2OUT/RB9 68 RTCC/IC1/RD8 34 AN10/CVREFOUT/PMA13/RB10 69 SS1/IC2/RD9 35 AN11/PMA12/RB11 70 SCK1/IC3/PMCS2/PMA15/RD10 Note 1: Shaded pins are 5V tolerant. DS60001156J-page 8  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 7: PIN NAMES FOR 100-PIN USB AND CAN DEVICES (CONTINUED) 100-PIN TQFP (TOP VIEW) PIC32MX534F064L PIC32MX564F064L PIC32MX564F128L PIC32MX575F512L PIC32MX575F256L 100 1 Pin # Full Pin Name Pin # Full Pin Name 71 IC4/PMCS1/PMA14/RD11 86 VDD 72 SDO1/OC1/INT0/RD0 87 C1RX/PMD11/RF0 73 SOSCI/CN1/RC13 88 C1TX/PMD10/RF1 74 SOSCO/T1CK/CN0/RC14 89 PMD9/RG1 75 VSS 90 PMD8/RG0 76 OC2/RD1 91 TRCLK/RA6 77 OC3/RD2 92 TRD3/RA7 78 OC4/RD3 93 PMD0/RE0 79 IC5/PMD12/RD12 94 PMD1/RE1 80 PMD13/CN19/RD13 95 TRD2/RG14 81 OC5/PMWR/CN13/RD4 96 TRD1/RG12 82 PMRD/CN14/RD5 97 TRD0/RG13 83 PMD14/CN15/RD6 98 PMD2/RE2 84 PMD15/CN16/RD7 99 PMD3/RE3 85 VCAP 100 PMD4/RE4 Note 1: Shaded pins are 5V tolerant.  2009-2016 Microchip Technology Inc. DS60001156J-page 9

PIC32MX5XX/6XX/7XX TABLE 8: PIN NAMES FOR 100-PIN USB AND ETHERNET DEVICES 100-PIN TQFP (TOP VIEW) PIC32MX664F064L PIC32MX664F128L PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L 100 1 Pin # Full Pin Name Pin # Full Pin Name 1 AERXERR/RG15 36 VSS 2 VDD 37 VDD 3 PMD5/RE5 38 TCK/RA1 4 PMD6/RE6 39 SCK4/U5TX/U2RTS/RF13 5 PMD7/RE7 40 SS4/U5RX/U2CTS/RF12 6 T2CK/RC1 41 AN12/ERXD0/AECRS/PMA11/RB12 7 T3CK/RC2 42 AN13/ERXD1/AECOL/PMA10/RB13 8 T4CK/RC3 43 AN14/ERXD2/AETXD3/PMALH/PMA1/RB14 9 T5CK/SDI1/RC4 44 AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15 10 ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6 45 VSS 11 ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7 46 VDD 12 ERXDV/AERXDV/ECRSDV/AECRSDV/SCL4/SDO2/U3TX/PMA3/CN10/RG8 47 AETXD0/SS3/U4RX/U1CTS/CN20/RD14 13 MCLR 48 AETXD1/SCK3/U4TX/U1RTS/CN21/RD15 14 ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/RG9 49 SDA5/SDI4/U2RX/PMA9/CN17/RF4 15 VSS 50 SCL5/SDO4/U2TX/PMA8/CN18/RF5 16 VDD 51 USBID/RF3 17 TMS/RA0 52 SDA3/SDI3/U1RX/RF2 18 AERXD0/INT1/RE8 53 SCL3/SDO3/U1TX/RF8 19 AERXD1/INT2/RE9 54 VBUS 20 AN5/C1IN+/VBUSON/CN7/RB5 55 VUSB3V3 21 AN4/C1IN-/CN6/RB4 56 D-/RG3 22 AN3/C2IN+/CN5/RB3 57 D+/RG2 23 AN2/C2IN-/CN4/RB2 58 SCL2/RA2 24 PGEC1/AN1/CN3/RB1 59 SDA2/RA3 25 PGED1/AN0/CN2/RB0 60 TDI/RA4 26 PGEC2/AN6/OCFA/RB6 61 TDO/RA5 27 PGED2/AN7/RB7 62 VDD 28 VREF-/CVREF-/AERXD2/PMA7/RA9 63 OSC1/CLKI/RC12 29 VREF+/CVREF+/AERXD3/PMA6/RA10 64 OSC2/CLKO/RC15 30 AVDD 65 VSS 31 AVSS 66 AETXCLK/SCL1/INT3/RA14 32 AN8/C1OUT/RB8 67 AETXEN/SDA1/INT4/RA15 33 AN9/C2OUT/RB9 68 RTCC/EMDIO/AEMDIO/IC1/RD8 34 AN10/CVREFOUT/PMA13/RB10 69 SS1/IC2/RD9 35 AN11/ERXERR/AETXERR/PMA12/RB11 70 SCK1/IC3/PMCS2/PMA15/RD10 Note 1: Shaded pins are 5V tolerant. DS60001156J-page 10  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 8: PIN NAMES FOR 100-PIN USB AND ETHERNET DEVICES (CONTINUED) 100-PIN TQFP (TOP VIEW) PIC32MX664F064L PIC32MX664F128L PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L 100 1 Pin # Full Pin Name Pin # Full Pin Name 71 EMDC/AEMDC/IC4/PMCS1/PMA14/RD11 86 VDD 72 SDO1/OC1/INT0/RD0 87 ETXD1/PMD11/RF0 73 SOSCI/CN1/RC13 88 ETXD0/PMD10/RF1 74 SOSCO/T1CK/CN0/RC14 89 ETXERR/PMD9/RG1 75 VSS 90 PMD8/RG0 76 OC2/RD1 91 TRCLK/RA6 77 OC3/RD2 92 TRD3/RA7 78 OC4/RD3 93 PMD0/RE0 79 ETXD2/IC5/PMD12/RD12 94 PMD1/RE1 80 ETXD3/PMD13/CN19/RD13 95 TRD2/RG14 81 OC5/PMWR/CN13/RD4 96 TRD1/RG12 82 PMRD/CN14/RD5 97 TRD0/RG13 83 ETXEN/PMD14/CN15/RD6 98 PMD2/RE2 84 ETXCLK/PMD15/CN16/RD7 99 PMD3/RE3 85 VCAP/VDDCORE 100 PMD4/RE4 Note 1: Shaded pins are 5V tolerant.  2009-2016 Microchip Technology Inc. DS60001156J-page 11

PIC32MX5XX/6XX/7XX TABLE 9: PIN NAMES FOR 100-PIN USB, ETHERNET, AND CAN DEVICES 100-PIN TQFP (TOP VIEW) PIC32MX764F128L PIC32MX775F256L PIC32MX775F512L PIC32MX795F512L 100 1 Pin # Full Pin Name Pin # Full Pin Name 1 AERXERR/RG15 36 VSS 2 VDD 37 VDD 3 PMD5/RE5 38 TCK/RA1 4 PMD6/RE6 39 AC1TX/SCK4/U5TX/U2RTS/RF13 5 PMD7/RE7 40 AC1RX/SS4/U5RX/U2CTS/RF12 6 T2CK/RC1 41 AN12/ERXD0/AECRS/PMA11/RB12 7 T3CK/AC2TX(1)/RC2 42 AN13/ERXD1/AECOL/PMA10/RB13 8 T4CK/AC2RX(1)/RC3 43 AN14/ERXD2/AETXD3/PMALH/PMA1/RB14 9 T5CK/SDI1/RC4 44 AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15 10 ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6 45 VSS 11 ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7 46 VDD 12 ERXDV/AERXDV/ECRSDV/AECRSDV/SCL4/SDO2/U3TX/PMA3/CN10/RG8 47 AETXD0/SS3/U4RX/U1CTS/CN20/RD14 13 MCLR 48 AETXD1/SCK3/U4TX/U1RTS/CN21/RD15 14 ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/RG9 49 SDA5/SDI4/U2RX/PMA9/CN17/RF4 15 VSS 50 SCL5/SDO4/U2TX/PMA8/CN18/RF5 16 VDD 51 USBID/RF3 17 TMS/RA0 52 SDA3/SDI3/U1RX/RF2 18 AERXD0/INT1/RE8 53 SCL3/SDO3/U1TX/RF8 19 AERXD1/INT2/RE9 54 VBUS 20 AN5/C1IN+/VBUSON/CN7/RB5 55 VUSB3V3 21 AN4/C1IN-/CN6/RB4 56 D-/RG3 22 AN3/C2IN+/CN5/RB3 57 D+/RG2 23 AN2/C2IN-/CN4/RB2 58 SCL2/RA2 24 PGEC1/AN1/CN3/RB1 59 SDA2/RA3 25 PGED1/AN0/CN2/RB0 60 TDI/RA4 26 PGEC2/AN6/OCFA/RB6 61 TDO/RA5 27 PGED2/AN7/RB7 62 VDD 28 VREF-/CVREF-/AERXD2/PMA7/RA9 63 OSC1/CLKI/RC12 29 VREF+/CVREF+/AERXD3/PMA6/RA10 64 OSC2/CLKO/RC15 30 AVDD 65 VSS 31 AVSS 66 AETXCLK/SCL1/INT3/RA14 32 AN8/C1OUT/RB8 67 AETXEN/SDA1/INT4/RA15 33 AN9/C2OUT/RB9 68 RTCC/EMDIO/AEMDIO/IC1/RD8 34 AN10/CVREFOUT/PMA13/RB10 69 SS1/IC2/RD9 35 AN11/ERXERR/AETXERR/PMA12/RB11 70 SCK1/IC3/PMCS2/PMA15/RD10 Note 1: This pin is not available on PIC32MX764F128L devices. 2: Shaded pins are 5V tolerant. DS60001156J-page 12  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 9: PIN NAMES FOR 100-PIN USB, ETHERNET, AND CAN DEVICES (CONTINUED) 100-PIN TQFP (TOP VIEW) PIC32MX764F128L PIC32MX775F256L PIC32MX775F512L PIC32MX795F512L 100 1 Pin # Full Pin Name Pin # Full Pin Name 71 EMDC/AEMDC/IC4/PMCS1/PMA14/RD11 86 VDD 72 SDO1/OC1/INT0/RD0 87 C1RX/ETXD1/PMD11/RF0 73 SOSCI/CN1/RC13 88 C1TX/ETXD0/PMD10/RF1 74 SOSCO/T1CK/CN0/RC14 89 C2TX(1)/ETXERR/PMD9/RG1 75 VSS 90 C2RX(1)/PMD8/RG0 76 OC2/RD1 91 TRCLK/RA6 77 OC3/RD2 92 TRD3/RA7 78 OC4/RD3 93 PMD0/RE0 79 ETXD2/IC5/PMD12/RD12 94 PMD1/RE1 80 ETXD3/PMD13/CN19/RD13 95 TRD2/RG14 81 OC5/PMWR/CN13/RD4 96 TRD1/RG12 82 PMRD/CN14/RD5 97 TRD0/RG13 83 ETXEN/PMD14/CN15/RD6 98 PMD2/RE2 84 ETXCLK/PMD15/CN16/RD7 99 PMD3/RE3 85 VCAP/VDDCORE 100 PMD4/RE4 Note 1: This pin is not available on PIC32MX764F128L devices. 2: Shaded pins are 5V tolerant.  2009-2016 Microchip Technology Inc. DS60001156J-page 13

PIC32MX5XX/6XX/7XX TABLE 10: PIN NAMESFOR USB AND CAN DEVICES 121-PIN TFBGA (BOTTOM VIEW) L11 PIC32MX534F064L L1 PIC32MX564F064L A11 PIC32MX564F128L PIC32MX575F256L PIC32MX575F512L A1 Note: The TFBGA package skips from row “H” to row “J” and has no “I” row. Pin # Full Pin Name Pin # Full Pin Name A1 PMD4/RE4 E2 T4CK/RC3 A2 PMD3/RE3 E3 SCK2/U6TXU6TX/U3RTS/PMA5/CN8/RG6 A3 TRD0/RG13 E4 T3CK/RC2 A4 PMD0/RE0 E5 VDD A5 PMD8/RG0 E6 PMD9/RG1 A6 C1TX/PMD10/RF1 E7 VSS A7 VDD E8 SDA1/INT4/RA15 A8 VSS E9 RTCC/IC1/RD8 A9 IC5/PMD12/RD12 E10 SS1/IC2/RD9 A10 OC3/RD2 E11 SCL1/INT3/RA14 A11 OC2/RD1 F1 MCLR B1 No Connect (NC) F2 SCL4/SDO2/U3TX/PMA3/CN10/RG8 B2 RG15 F3 SS2/U6RX/U3CTS/PMA2/CN11/RG9 B3 PMD2/RE2 F4 SDA4/SDI2/U3RX/PMA4/CN9/RG7 B4 PMD1/RE1 F5 VSS B5 TRD3/RA7 F6 No Connect (NC) B6 C1RX/PMD11/RF0 F7 No Connect (NC) B7 VCAP F8 VDD B8 PMRD/CN14/RD5 F9 OSC1/CLKI/RC12 B9 OC4/RD3 F10 VSS B10 VSS F11 OSC2/CLKO/RC15 B11 SOSCO/T1CK/CN0/RC14 G1 INT1/RE8 C1 PMD6/RE6 G2 INT2/RE9 C2 VDD G3 TMS/RA0 C3 TRD1/RG12 G4 No Connect (NC) C4 TRD2/RG14 G5 VDD C5 TRCLK/RA6 G6 VSS C6 No Connect (NC) G7 VSS C7 PMD15/CN16/RD7 G8 No Connect (NC) C8 OC5/PMWR/CN13/RD4 G9 TDO/RA5 C9 VDD G10 SDA2/RA3 C10 SOSCI/CN1/RC13 G11 TDI/RA4 C11 IC4/PMCS1/PMA14/RD11 H1 AN5/C1IN+/VBUSON/CN7/RB5 D1 T2CK/RC1 H2 AN4/C1IN-/CN6/RB4 D2 PMD7/RE7 H3 VSS D3 PMD5/RE5 H4 VDD D4 VSS H5 No Connect (NC) D5 VSS H6 VDD D6 No Connect (NC) H7 No Connect (NC) D7 PMD14/CN15/RD6 H8 VBUS D8 PMD13/CN19/RD13 H9 VUSB3V3 D9 SDO1/OC1/INT0/RD0 H10 D+/RG2 D10 No Connect (NC) H11 SCL2/RA2 D11 SCK1/IC3/PMCS2/PMA15/RD10 J1 AN3/C2IN+/CN5/RB3 E1 T5CK/SDI1/RC4 J2 AN2/C2IN-/CN4/RB2 Note 1: Shaded pins are 5V tolerant. DS60001156J-page 14  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 10: PIN NAMES (CONTINUED)FOR USB AND CAN DEVICES 121-PIN TFBGA (BOTTOM VIEW) L11 PIC32MX534F064L L1 PIC32MX564F064L A11 PIC32MX564F128L PIC32MX575F256L PIC32MX575F512L A1 Note: The TFBGA package skips from row “H” to row “J” and has no “I” row. Pin # Full Pin Name Pin # Full Pin Name J3 PGED2/AN7/RB7 K8 VDD J4 AVDD K9 SCK3/U4TX/U1RTS/CN21/RD15 J5 AN11/PMA12/RB11 K10 USBID/RF3 J6 TCK/RA1 K11 SDA3/SDI3/U1RX/RF2 J7 AN12/PMA11/RB12 L1 PGEC2/AN6/OCFA/RB6 J8 No Connect (NC) L2 VREF-/CVREF-/PMA7/RA9 J9 No Connect (NC) L3 AVSS J10 SCL3/SDO3/U1TX/RF8 L4 AN9/C2OUT/RB9 J11 D-/RG3 L5 AN10/CVREFOUT/PMA13/RB10 K1 PGEC1/AN1/CN3/RB1 L6 AC1TX/SCK4/U5TX/U2RTS/RF13 K2 PGED1/AN0/CN2/RB0 L7 AN13/PMA10/RB13 K3 VREF+/CVREF+/PMA6/RA10 L8 AN15/OCFB/PMALL/PMA0/CN12/RB15 K4 AN8/C1OUT/RB8 L9 SS3/U4RX/U1CTS/CN20/RD14 K5 No Connect (NC) L10 SDA5/SDI4/U2RX/PMA9/CN17/RF4 K6 AC1RX/SS4/U5RX/U2CTS/RF12 L11 SCL5/SDO4/U2TX/PMA8/CN18/RF5 K7 AN14/PMALH/PMA1/RB14 Note 1: Shaded pins are 5V tolerant.  2009-2016 Microchip Technology Inc. DS60001156J-page 15

PIC32MX5XX/6XX/7XX TABLE 11: PIN NAMES FOR USB AND ETHERNET DEVICES 121-PIN TFBGA (BOTTOM VIEW) L11 PIC32MX664F064L L1 PIC32MX664F128L A11 PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L A1 Note: The TFBGA package skips from row “H” to row “J” and has no “I” row. Pin # Full Pin Name Pin # Full Pin Name A1 PMD4/RE4 E2 T4CK/RC3 A2 PMD3/RE3 E3 ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6 A3 TRD0/RG13 E4 T3CK/RC2 A4 PMD0/RE0 E5 VDD A5 PMD8/RG0 E6 ETXERR/PMD9/RG1 A6 ETXD0/PMD10/RF1 E7 VSS A7 VDD E8 AETXEN/SDA1/INT4/RA15 A8 VSS E9 RTCC/EMDIO/AEMDIO/IC1/RD8 A9 ETXD2/IC5/PMD12/RD12 E10 SS1/IC2/RD9 A10 OC3/RD2 E11 AETXCLK/SCL1/INT3/RA14 A11 OC2/RD1 F1 MCLR B1 No Connect (NC) F2 ERXDV/AERXDV/ECRSDV/AECRSDV//SCL4/SDO2/U3TX/PMA3/CN10/RG8 B2 AERXERR/RG15 F3 ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/RG9 B3 PMD2/RE2 F4 ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7 B4 PMD1/RE1 F5 VSS B5 TRD3/RA7 F6 No Connect (NC) B6 ETXD1/PMD11/RF0 F7 No Connect (NC) B7 VCAP F8 VDD B8 PMRD/CN14/RD5 F9 OSC1/CLKI/RC12 B9 OC4/RD3 F10 VSS B10 VSS F11 OSC2/CLKO/RC15 B11 SOSCO/T1CK/CN0/RC14 G1 AERXD0/INT1/RE8 C1 PMD6/RE6 G2 AERXD1/INT2/RE9 C2 VDD G3 TMS/RA0 C3 TRD1/RG12 G4 No Connect (NC) C4 TRD2/RG14 G5 VDD C5 TRCLK/RA6 G6 VSS C6 No Connect (NC) G7 VSS C7 ETXCLK/PMD15/CN16/RD7 G8 No Connect (NC) C8 OC5/PMWR/CN13/RD4 G9 TDO/RA5 C9 VDD G10 SDA2/RA3 C10 SOSCI/CN1/RC13 G11 TDI/RA4 C11 EMDC/AEMDC/IC4/PMCS1/PMA14/RD11 H1 AN5/C1IN+/VBUSON/CN7/RB5 D1 T2CK/RC1 H2 AN4/C1IN-/CN6/RB4 D2 PMD7/RE7 H3 VSS D3 PMD5/RE5 H4 VDD D4 VSS H5 No Connect (NC) D5 VSS H6 VDD D6 No Connect (NC) H7 No Connect (NC) D7 ETXEN/PMD14/CN15/RD6 H8 VBUS D8 ETXD3/PMD13/CN19/RD13 H9 VUSB3V3 D9 SDO1/OC1/INT0/RD0 H10 D+/RG2 D10 No Connect (NC) H11 SCL2/RA2 D11 SCK1/IC3/PMCS2/PMA15/RD10 J1 AN3/C2IN+/CN5/RB3 E1 T5CK/SDI1/RC4 J2 AN2/C2IN-/CN4/RB2 Note 1: Shaded pins are 5V tolerant. DS60001156J-page 16  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 11: PIN NAMES FOR USB AND ETHERNET DEVICES (CONTINUED) 121-PIN TFBGA (BOTTOM VIEW) L11 PIC32MX664F064L L1 PIC32MX664F128L A11 PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L A1 Note: The TFBGA package skips from row “H” to row “J” and has no “I” row. Pin # Full Pin Name Pin # Full Pin Name J3 PGED2/AN7/RB7 K8 VDD J4 AVDD K9 AETXD1/SCK3/U4TX/U1RTS/CN21/RD15 J5 AN11/ERXERR/AETXERR/PMA12/RB11 K10 USBID/RF3 J6 TCK/RA1 K11 SDA3/SDI3/U1RX/RF2 J7 AN12/ERXD0/AECRS/PMA11/RB12 L1 PGEC2/AN6/OCFA/RB6 J8 No Connect (NC) L2 VREF-/CVREF-/AERXD2/PMA7/RA9 J9 No Connect (NC) L3 AVSS J10 SCL3/SDO3/U1TX/RF8 L4 AN9/C2OUT/RB9 J11 D-/RG3 L5 AN10/CVREFOUT/PMA13/RB10 K1 PGEC1/AN1/CN3/RB1 L6 SCK4/U5TX/U2RTS/RF13 K2 PGED1/AN0/CN2/RB0 L7 AN13/ERXD1/AECOL/PMA10/RB13 K3 VREF+/CVREF+/AERXD3/PMA6/RA10 L8 AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15 K4 AN8/C1OUT/RB8 L9 AETXD0/SS3/U4RX/U1CTS/CN20/RD14 K5 No Connect (NC) L10 SDA5/SDI4/U2RX/PMA9/CN17/RF4 K6 SS4/U5RX/U2CTS/RF12 L11 SCL5/SDO4/U2TX/PMA8/CN18/RF5 K7 AN14/ERXD2/AETXD3/PMALH/PMA1/RB14 Note 1: Shaded pins are 5V tolerant.  2009-2016 Microchip Technology Inc. DS60001156J-page 17

PIC32MX5XX/6XX/7XX TABLE 12: PIN NAMES FOR USB, ETHERNET, AND CAN DEVICES 121-PIN TFBGA (BOTTOM VIEW) L11 L1 PIC32MX764F128L A11 PIC32MX775F256L PIC32MX775F512L PIC32MX795F512L Note: The TFBGA package skips from row “H” to row “J” and has no “I” row. A1 Pin # Full Pin Name Pin # Full Pin Name A1 PMD4/RE4 E2 T4CK/AC2RX(1)/RC3 A2 PMD3/RE3 E3 ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6 A3 TRD0/RG13 E4 T3CK/AC2TX(1)/RC2 A4 PMD0/RE0 E5 VDD A5 C2RX(1)/PMD8/RG0 E6 C2TX(1)/ETXERR/PMD9/RG1 A6 C1TX/ETXD0/PMD10/RF1 E7 VSS A7 VDD E8 AETXEN/SDA1/INT4/RA15 A8 VSS E9 RTCC/EMDIO/AEMDIO/IC1/RD8 A9 ETXD2/IC5/PMD12/RD12 E10 SS1/IC2/RD9 A10 OC3/RD2 E11 AETXCLK/SCL1/INT3/RA14 A11 OC2/RD1 F1 MCLR B1 No Connect (NC) F2 ERXDV/AERXDV/ECRSDV/AECRSDV/SCL4/SDO2/U3TX/PMA3/CN10/RG8 B2 AERXERR/RG15 F3 ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/RG9 B3 PMD2/RE2 F4 ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7 B4 PMD1/RE1 F5 VSS B5 TRD3/RA7 F6 No Connect (NC) B6 C1RX/ETXD1/PMD11/RF0 F7 No Connect (NC) B7 VCAP F8 VDD B8 PMRD/CN14/RD5 F9 OSC1/CLKI/RC12 B9 OC4/RD3 F10 VSS B10 VSS F11 OSC2/CLKO/RC15 B11 SOSCO/T1CK/CN0/RC14 G1 AERXD0/INT1/RE8 C1 PMD6/RE6 G2 AERXD1/INT2/RE9 C2 VDD G3 TMS/RA0 C3 TRD1/RG12 G4 No Connect (NC) C4 TRD2/RG14 G5 VDD C5 TRCLK/RA6 G6 VSS C6 No Connect (NC) G7 VSS C7 ETXCLK/PMD15/CN16/RD7 G8 No Connect (NC) C8 OC5/PMWR/CN13/RD4 G9 TDO/RA5 C9 VDD G10 SDA2/RA3 C10 SOSCI/CN1/RC13 G11 TDI/RA4 C11 EMDC/AEMDC/IC4/PMCS1/PMA14/RD11 H1 AN5/C1IN+/VBUSON/CN7/RB5 D1 T2CK/RC1 H2 AN4/C1IN-/CN6/RB4 D2 PMD7/RE7 H3 VSS D3 PMD5/RE5 H4 VDD D4 VSS H5 No Connect (NC) D5 VSS H6 VDD D6 No Connect (NC) H7 No Connect (NC) D7 ETXEN/PMD14/CN15/RD6 H8 VBUS D8 ETXD3/PMD13/CN19/RD13 H9 VUSB3V3 D9 SDO1/OC1/INT0/RD0 H10 D+/RG2 D10 No Connect (NC) H11 SCL2/RA2 D11 SCK1/IC3/PMCS2/PMA15/RD10 J1 AN3/C2IN+/CN5/RB3 E1 T5CK/SDI1/RC4 J2 AN2/C2IN-/CN4/RB2 Note 1: This pin is not available on PIC32MX764F128L devices. 2: Shaded pins are 5V tolerant. DS60001156J-page 18  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 12: PIN NAMES FOR USB, ETHERNET, AND CAN DEVICES (CONTINUED) 121-PIN TFBGA (BOTTOM VIEW) L11 L1 PIC32MX764F128L A11 PIC32MX775F256L PIC32MX775F512L PIC32MX795F512L Note: The TFBGA package skips from row “H” to row “J” and has no “I” row. A1 Pin # Full Pin Name Pin # Full Pin Name J3 PGED2/AN7/RB7 K8 VDD J4 AVDD K9 AETXD1/SCK3/U4TX/U1RTS/CN21/RD15 J5 AN11/ERXERR/AETXERR/PMA12/RB11 K10 USBID/RF3 J6 TCK/RA1 K11 SDA3/SDI3/U1RX/RF2 J7 AN12/ERXD0/AECRS/PMA11/RB12 L1 PGEC2/AN6/OCFA/RB6 J8 No Connect (NC) L2 VREF-/CVREF-/AERXD2/PMA7/RA9 J9 No Connect (NC) L3 AVSS J10 SCL3/SDO3/U1TX/RF8 L4 AN9/C2OUT/RB9 J11 D-/RG3 L5 AN10/CVREFOUT/PMA13/RB10 K1 PGEC1/AN1/CN3/RB1 L6 AC1TX/SCK4/U5TX/U2RTS/RF13 K2 PGED1/AN0/CN2/RB0 L7 AN13/ERXD1/AECOL/PMA10/RB13 K3 VREF+/CVREF+/AERXD3/PMA6/RA10 L8 AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15 K4 AN8/C1OUT/RB8 L9 AETXD0/SS3/U4RX/U1CTS/CN20/RD14 K5 No Connect (NC) L10 SDA5/SDI4/U2RX/PMA9/CN17/RF4 K6 AC1RX/SS4/U5RX/U2CTS/RF12 L11 SCL5/SDO4/U2TX/PMA8/CN18/RF5 K7 AN14/ERXD2/AETXD3/PMALH/PMA1/RB14 Note 1: This pin is not available on PIC32MX764F128L devices. 2: Shaded pins are 5V tolerant.  2009-2016 Microchip Technology Inc. DS60001156J-page 19

PIC32MX5XX/6XX/7XX TABLE 13: PIN NAMES FOR 124-PIN USB, ETHERNET, AND CAN DEVICES 124-PIN VTLA (BOTTOM VIEW)(2,3) A34 A17 B29 B13 Conductive Thermal Pad PIC32MX675F512L B1 B41 PIC32MX695F512L B56 PIC32MX795F512L A51 A1 A68 Polarity Indicator Package Package Full Pin Name Full Pin Name Bump # Bump # A1 No Connect (NC) A38 D-/RG3 A2 AERXERR/RG15 A39 SCL2/RA2 A3 VSS A40 TDI/RA4 A4 PMD6/RE6 A41 VDD A5 T2CK/RC1 A42 OSC2/CLKO/RC15 A6 T4CK/AC2RX(1)/RC3 A43 VSS A7 ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6 A44 AETXEN/SDA1/INT4/RA15 A8 ERXDV/AERXDV/ECRSDV/AECRSDV/SCL4/SDO2/U3TX/PMA3/CN10/RG8 A45 SS1/IC2/RD9 A9 ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/RG9 A46 EMDC/AEMDC/IC4/PMCS1/PMA14/RD11 A10 VDD A47 SOSCI/CN1/RC13 A11 AERXD0/INT1/RE8 A48 VDD A12 AN5/C1IN+/VBUSON/CN7/RB5 A49 No Connect (NC) A13 AN3/C2IN+/CN5/RB3 A50 No Connect (NC) A14 VDD A51 No Connect (NC) A15 PGEC1/AN1/CN3/RB1 A52 OC2/RD1 A16 No Connect (NC) A53 OC4/RD3 A17 No Connect (NC) A54 ETXD3/PMD13/CN19/RD13 A18 No Connect (NC) A55 PMRD/CN14/RD5 A19 No Connect (NC) A56 ETXCLK/PMD15/CN16/RD7 A20 PGEC2/AN6/OCFA/RB6 A57 No Connect (NC) A21 VREF-/CVREF-/AERXD2/PMA7/RA9 A58 No Connect (NC) A22 AVDD A59 VDD A23 AN8/C1OUT/RB8 A60 C1TX/ETXD0/PMD10/RF1 A24 AN10/CVREFOUT/PMA13/RB10 A61 C2RX(1)/PMD8/RG0 A25 VSS A62 TRD3/RA7 A26 TCK/RA1 A63 VSS A27 AC1RX(1)/SS4/U5RX/U2CTS/RF12 A64 PMD1/RE1 A28 AN13/ERXD1/AECOL/PMA10/RB13 A65 TRD1/RG12 A29 AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15 A66 PMD2/RE2 A30 VDD A67 PMD4/RE4 A31 AETXD1/SCK3/U4TX/U1RTS/CN21/RD15 A68 No Connect (NC) A32 SCL5/SDO4/U2TX/PMA8/CN18/RF5 B1 VDD A33 No Connect (NC) B2 PMD5/RE5 A34 No Connect (NC) B3 PMD7/RE7 A35 USBID/RF3 B4 T3CK/AC2TX(1)/RC2 A36 SDA3/SDI3/U1RX/RF2 B5 T5CK/SDI1/RC4 A37 VBUS B6 ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7 B7 MCLR B32 SDA2/RA3 Note 1: This pin is only available on PIC32MX795F512L devices. 2: Shaded package bumps are 5V tolerant. 3: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout. DS60001156J-page 20  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 13: PIN NAMES FOR 124-PIN USB, ETHERNET, AND CAN DEVICES (CONTINUED) 124-PIN VTLA (BOTTOM VIEW)(2,3) A34 A17 B29 B13 Conductive Thermal Pad PIC32MX675F512L B1 B41 PIC32MX695F512L B56 PIC32MX795F512L A51 A1 A68 Polarity Indicator Package Package Full Pin Name Full Pin Name Bump # Bump # B8 VSS B33 TDO/RA5 B9 TMS/RA0 B34 OSC1/CLKI/RC12 B10 AERXD1/INT2/RE9 B35 No Connect (NC) B11 AN4/C1IN-/CN6/RB4 B36 AETXCLK/SCL1/INT3/RA14 B12 VSS B37 RTCC/EMDIO/AEMDIO/IC1/RD8 B13 AN2/C2IN-/CN4/RB2 B38 SCK1/IC3/PMCS2/PMA15/RD10 B14 PGED1/AN0/CN2/RB0 B39 SDO1/OC1/INT0/RD0 B15 No Connect (NC) B40 SOSCO/T1CK/CN0/RC14 B16 PGED2/AN7/RB7 B41 VSS B17 VREF+/CVREF+/AERXD3/PMA6/RA10 B42 OC3/RD2 B18 AVSS B43 ETXD2/IC5/PMD12/RD12 B19 AN9/C2OUT/RB9 B44 OC5/PMWR/CN13/RD4 B20 AN11/ERXERR/AETXERR/PMA12/RB11 B45 ETXEN/PMD14/CN15/RD6 B21 VDD B46 VSS B22 AC1TX/SCK4/U5TX/U2RTS/RF13 B47 No Connect (NC) B23 AN12/ERXD0/AECRS/PMA11/RB12 B48 VCAP B24 AN14/ERXD2/AETXD3/PMALH/PMA1/RB14 B49 C1RX(1)/ETXD1/PMD11/RF0 B25 VSS B50 C2TX(1)/ETXERR/PMD9/RG1 B26 AETXD0/SS3/U4RX/U1CTS/CN20/RD14 B51 TRCLK/RA6 B27 SDA5/SDI4/U2RX/PMA9/CN17/RF4 B52 PMD0/RE0 B28 No Connect (NC) B53 VDD B29 SCL3/SDO3/U1TX/RF8 B54 TRD2/RG14 B30 VUSB3V3 B55 TRD0/RG13 B31 D+/RG2 B56 PMD3/RE3 Note 1: This pin is only available on PIC32MX795F512L devices. 2: Shaded package bumps are 5V tolerant. 3: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.  2009-2016 Microchip Technology Inc. DS60001156J-page 21

PIC32MX5XX/6XX/7XX Table of Contents 1.0 Device Overview........................................................................................................................................................................25 2.0 Guidelines for Getting Started with 32-bit MCUs........................................................................................................................37 3.0 CPU............................................................................................................................................................................................41 4.0 Memory Organization.................................................................................................................................................................47 5.0 Flash Program Memory..............................................................................................................................................................63 6.0 Resets........................................................................................................................................................................................69 7.0 Interrupt Controller.....................................................................................................................................................................73 8.0 Oscillator Configuration..............................................................................................................................................................95 9.0 Prefetch Cache.........................................................................................................................................................................101 10.0 Direct Memory Access (DMA) Controller.................................................................................................................................111 11.0 USB On-The-Go (OTG)............................................................................................................................................................133 12.0 I/O Ports...................................................................................................................................................................................157 13.0 Timer1......................................................................................................................................................................................167 14.0 Timer2/3, Timer4/5...................................................................................................................................................................171 15.0 Watchdog Timer (WDT)...........................................................................................................................................................177 16.0 Input Capture............................................................................................................................................................................181 17.0 Output Compare.......................................................................................................................................................................185 18.0 Serial Peripheral Interface (SPI)...............................................................................................................................................189 19.0 Inter-Integrated Circuit (I2C).....................................................................................................................................................195 20.0 Universal Asynchronous Receiver Transmitter (UART)...........................................................................................................203 21.0 Parallel Master Port (PMP).......................................................................................................................................................211 22.0 Real-Time Clock and Calendar (RTCC)...................................................................................................................................221 23.0 10-bit Analog-to-Digital Converter (ADC).................................................................................................................................231 24.0 Controller Area Network (CAN)................................................................................................................................................241 25.0 Ethernet Controller...................................................................................................................................................................279 26.0 Comparator..............................................................................................................................................................................323 27.0 Comparator Voltage Reference (CVREF)..................................................................................................................................327 28.0 Power-Saving Features ...........................................................................................................................................................331 29.0 Special Features......................................................................................................................................................................333 30.0 Instruction Set..........................................................................................................................................................................345 31.0 Development Support...............................................................................................................................................................347 32.0 Electrical Characteristics..........................................................................................................................................................351 33.0 DC and AC Device Characteristics Graphs..............................................................................................................................399 34.0 Packaging Information..............................................................................................................................................................401 The Microchip Web Site.....................................................................................................................................................................437 Customer Change Notification Service..............................................................................................................................................437 Customer Support..............................................................................................................................................................................437 Product Identification System.............................................................................................................................................................438 DS60001156J-page 22  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our pub- lications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Web site; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our web site at www.microchip.com to receive the most current information on all of our products.  2009-2016 Microchip Technology Inc. DS60001156J-page 23

PIC32MX5XX/6XX/7XX Referenced Sources This device data sheet is based on the following individual chapters of the “PIC32 Family Reference Manual”. These documents should be considered as the general reference for the operation of a particular module or device feature. Note1: To access the documents listed below, browse to the documentation section of the PIC32MX795F512L product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list. In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections. • Section 1. “Introduction” (DS60001127) • Section 2. “CPU” (DS60001113) • Section 4. “Prefetch Cache” (DS60001119) • Section 3. “Memory Organization” (DS60001115) • Section 5. “Flash Program Memory” (DS60001121) • Section 6. “Oscillator Configuration” (DS60001112) • Section 7. “Resets” (DS60001118) • Section 8. “Interrupt Controller” (DS60001108) • Section 9. “Watchdog Timer and Power-up Timer (DS60001114) • Section 10. “Power-Saving Features” (DS60001130) • Section 12. “I/O Ports” (DS60001120) • Section 13. “Parallel Master Port (PMP)” (DS60001128) • Section 14. “Timers” (DS60001105) • Section 15. “Input Capture” (DS60001122) • Section 16. “Output Capture” (DS60001111) • Section 17. “10-bit Analog-to-Digital Converter (ADC)” (DS60001104) • Section 19. “Comparator” (DS60001110) • Section 20. “Comparator Voltage Reference (CVREF)” (DS60001109) • Section 21. “Universal Asynchronous Receiver Transmitter (UART)” (DS60001107) • Section 23. “Serial Peripheral Interface (SPI)” (DS60001106) • Section 24. “Inter-Integrated Circuit (I2C)” (DS60001116) • Section 27. “USB On-The-Go (OTG)” (DS60001126) • Section 29. “Real-Time Clock and Calendar (RTCC)” (DS60001125) • Section 31. “Direct Memory Access (DMA) Controller” (DS60001117) • Section 32. “Configuration” (DS60001124) • Section 33. “Programming and Diagnostics” (DS60001129) • Section 34. “Controller Area Network (CAN)” (DS60001154) • Section 35. “Ethernet Controller” (DS60001155) DS60001156J-page 24  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 1.0 DEVICE OVERVIEW This document contains device-specific information for PIC32MX5XX/6XX/7XX devices. Note: This data sheet summarizes the features Figure1-1 illustrates a general block diagram of the of the PIC32MX5XX/6XX/7XX family of core and peripheral modules in the PIC32MX5XX/6XX/ devices. It is not intended to be a 7XX family of devices. comprehensive reference source. To complement the information in this data Table1-1 lists the functions of the various pins shown sheet, refer to the documents listed in the in the pinout diagrams. Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). FIGURE 1-1: BLOCK DIAGRAM(1,2) VCAP OSC2/CLKO OSC/SOSC OSC1/CLKI Oscillators Power-up VDD, VSS Timer FRC/LPRC MCLR Oscillators Voltage Oscillator Regulator Start-up Timer PLL Power-on Precision Dividers Band Gap Reset Reference PLL-USB Watchdog USBCLK Timer SYSCLK Brown-out Timing Generation PBCLK Reset Peripheral Bus Clocked by SYSCLK CN1-22 PORTA Timer1-5 Priority JTAG Interrupt BSCAN Controller PWM PORTB EJTAG INT USB N1, CAN2 HERNET DMAC ICD 32 y PBCLK OC1-5 MIPS32® M4K® CA ET ed b IC1-5 PORTC CPU Core ck o 32 IS 32 DS 32 32 32 32 32 32 al Bus Cl SPI1-4 PORTD her Bus Matrix erip P 32 32 32 I2C1-5 PORTE 32 Prefetch Peripheral Bridge Module Data RAM PMP PORTF 10-bit ADC 128 UART1-6 er PORTG Progr1a2m8 -Fblait sWh iMdeemory Flashontroll RTCC C Comparators Note 1: Some features are not available on all devices. 2: BOR functionality is provided when the on-board voltage regulator is enabled.  2009-2016 Microchip Technology Inc. DS60001156J-page 25

PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS Pin Number(1) Pin Buffer Pin Name Description 64-Pin 100-Pin 121-Pin 124-pin Type Type QFN/TQFP TQFP TFBGA VTLA AN0 16 25 K2 B14 I Analog Analog input channels AN1 15 24 K1 A15 I Analog AN2 14 23 J2 B13 I Analog AN3 13 22 J1 A13 I Analog AN4 12 21 H2 B11 I Analog AN5 11 20 H1 A12 I Analog AN6 17 26 L1 A20 I Analog AN7 18 27 J3 B16 I Analog AN8 21 32 K4 A23 I Analog AN9 22 33 L4 B19 I Analog AN10 23 34 L5 A24 I Analog AN11 24 35 J5 B20 I Analog AN12 27 41 J7 B23 I Analog AN13 28 42 L7 A28 I Analog AN14 29 43 K7 B24 I Analog AN15 30 44 L8 A29 I Analog ST/ External clock source input. Always CLKI 39 63 F9 B34 I CMOS associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator CLKO 40 64 F11 A42 O — mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function. Oscillator crystal input. ST buffer when ST/ OSC1 39 63 F9 B34 I configured in RC mode; CMOS CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator OSC2 40 64 F11 A42 I/O — mode. Optionally functions as CLKO in RC and EC modes. ST/ 32.768 kHz low-power oscillator crystal SOSCI 47 73 C10 A47 I CMOS input; CMOS otherwise 32.768 kHz low-power oscillator crystal SOSCO 48 74 B11 B40 O — output Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are only provided for reference. See the “Device Pin Tables” section for device pin availability. 2: See 25.0“Ethernet Controller” for more information. DS60001156J-page 26  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Buffer Pin Name Description 64-Pin 100-Pin 121-Pin 124-pin Type Type QFN/TQFP TQFP TFBGA VTLA CN0 48 74 B11 B40 I ST Change notification inputs. Can be CN1 47 73 C10 A47 I ST software programmed for internal weak pull-ups on all inputs. CN2 16 25 K2 B14 I ST CN3 15 24 K1 A15 I ST CN4 14 23 J2 B13 I ST CN5 13 22 J1 A13 I ST CN6 12 21 H2 B11 I ST CN7 11 20 H1 A12 I ST CN8 4 10 E3 A7 I ST CN9 5 11 F4 B6 I ST CN10 6 12 F2 A8 I ST CN11 8 14 F3 A9 I ST CN12 30 44 L8 A29 I ST CN13 52 81 C8 B44 I ST CN14 53 82 B8 A55 I ST CN15 54 83 D7 B45 I ST CN16 55 84 C7 A56 I ST CN17 31 49 L10 B27 I ST CN18 32 50 L11 A32 I ST CN19 — 80 D8 A54 I ST CN20 — 47 L9 B26 I ST CN21 — 48 K9 A31 I ST IC1 42 68 E9 B37 I ST Capture Inputs 1-5 IC2 43 69 E10 A45 I ST IC3 44 70 D11 B38 I ST IC4 45 71 C11 A46 I ST IC5 52 79 A9 A60 I ST OCFA 17 26 L1 A20 I ST Output Compare Fault A Input OC1 46 72 D9 B39 O — Output Compare Output 1 OC2 49 76 A11 A52 O — Output Compare Output 2 OC3 50 77 A10 B42 O — Output Compare Output 3 OC4 51 78 B9 A53 O — Output Compare Output 4 OC5 52 81 C8 B44 O — Output Compare Output 5 OCFB 30 44 L8 A29 I ST Output Compare Fault B Input INT0 46 72 D9 B39 I ST External Interrupt 0 INT1 42 18 G1 A11 I ST External Interrupt 1 INT2 43 19 G2 B10 I ST External Interrupt 2 INT3 44 66 E11 B36 I ST External Interrupt 3 INT4 45 67 E8 A44 I ST External Interrupt 4 Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are only provided for reference. See the “Device Pin Tables” section for device pin availability. 2: See 25.0“Ethernet Controller” for more information.  2009-2016 Microchip Technology Inc. DS60001156J-page 27

PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Buffer Pin Name Description 64-Pin 100-Pin 121-Pin 124-pin Type Type QFN/TQFP TQFP TFBGA VTLA RA0 — 17 G3 B9 I/O ST PORTA is a bidirectional I/O port RA1 — 38 J6 A26 I/O ST RA2 — 58 H11 A39 I/O ST RA3 — 59 G10 B32 I/O ST RA4 — 60 G11 A40 I/O ST RA5 — 61 G9 B33 I/O ST RA6 — 91 C5 B51 I/O ST RA7 — 92 B5 A62 I/O ST RA9 — 28 L2 A21 I/O ST RA10 — 29 K3 B17 I/O ST RA14 — 66 E11 B36 I/O ST RA15 — 67 E8 A44 I/O ST RB0 16 25 K2 B14 I/O ST PORTB is a bidirectional I/O port RB1 15 24 K1 A15 I/O ST RB2 14 23 J2 B13 I/O ST RB3 13 22 J1 A13 I/O ST RB4 12 21 H2 B11 I/O ST RB5 11 20 H1 A12 I/O ST RB6 17 26 L1 A20 I/O ST RB7 18 27 J3 B16 I/O ST RB8 21 32 K4 A23 I/O ST RB9 22 33 L4 B19 I/O ST RB10 23 34 L5 A24 I/O ST RB11 24 35 J5 B20 I/O ST RB12 27 41 J7 B23 I/O ST RB13 28 42 L7 A28 I/O ST RB14 29 43 K7 B24 I/O ST RB15 30 44 L8 A29 I/O ST RC1 — 6 D1 A5 I/O ST PORTC is a bidirectional I/O port RC2 — 7 E4 B4 I/O ST RC3 — 8 E2 A6 I/O ST RC4 — 9 E1 B5 I/O ST RC12 39 63 F9 B34 I/O ST RC13 47 73 C10 A47 I/O ST RC14 48 74 B11 B40 I/O ST RC15 40 64 F11 A42 I/O ST Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are only provided for reference. See the “Device Pin Tables” section for device pin availability. 2: See 25.0“Ethernet Controller” for more information. DS60001156J-page 28  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Buffer Pin Name Description 64-Pin 100-Pin 121-Pin 124-pin Type Type QFN/TQFP TQFP TFBGA VTLA RD0 46 72 D9 B39 I/O ST PORTD is a bidirectional I/O port RD1 49 76 A11 A52 I/O ST RD2 50 77 A10 B42 I/O ST RD3 51 78 B9 A53 I/O ST RD4 52 81 C8 B44 I/O ST RD5 53 82 B8 A55 I/O ST RD6 54 83 D7 B45 I/O ST RD7 55 84 C7 A56 I/O ST RD8 42 68 E9 B37 I/O ST RD9 43 69 E10 A45 I/O ST RD10 44 70 D11 B38 I/O ST RD11 45 71 C11 A46 I/O ST RD12 — 79 A9 B43 I/O ST RD13 — 80 D8 A54 I/O ST RD14 — 47 L9 B26 I/O ST RD15 — 48 K9 A31 I/O ST RE0 60 93 A4 B52 I/O ST PORTE is a bidirectional I/O port RE1 61 94 B4 A64 I/O ST RE2 62 98 B3 A66 I/O ST RE3 63 99 A2 B56 I/O ST RE4 64 100 A1 A67 I/O ST RE5 1 3 D3 B2 I/O ST RE6 2 4 C1 A4 I/O ST RE7 3 5 D2 B3 I/O ST RE8 — 18 G1 A11 I/O ST RE9 — 19 G2 B10 I/O ST RF0 58 87 B6 B49 I/O ST PORTF is a bidirectional I/O port RF1 59 88 A6 A60 I/O ST RF2 — 52 K11 A36 I/O ST RF3 33 51 K10 A35 I/O ST RF4 31 49 L10 B27 I/O ST RF5 32 50 L11 A32 I/O ST RF8 — 53 J10 B29 I/O ST RF12 — 40 K6 A27 I/O ST RF13 — 39 L6 B22 I/O ST Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are only provided for reference. See the “Device Pin Tables” section for device pin availability. 2: See 25.0“Ethernet Controller” for more information.  2009-2016 Microchip Technology Inc. DS60001156J-page 29

PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Buffer Pin Name Description 64-Pin 100-Pin 121-Pin 124-pin Type Type QFN/TQFP TQFP TFBGA VTLA RG0 — 90 A5 A61 I/O ST PORTG is a bidirectional I/O port RG1 — 89 E6 B50 I/O ST RG6 4 10 E3 A7 I/O ST RG7 5 11 F4 B6 I/O ST RG8 6 12 F2 A8 I/O ST RG9 8 14 F3 A9 I/O ST RG12 — 96 C3 A65 I/O ST RG13 — 97 A3 B55 I/O ST RG14 — 95 C4 B54 I/O ST RG15 — 1 B2 A2 I/O ST RG2 37 57 H10 B31 I ST PORTG input pins RG3 36 56 J11 A38 I ST T1CK 48 74 B11 B40 I ST Timer1 external clock input T2CK — 6 D1 A5 I ST Timer2 external clock input T3CK — 7 E4 B4 I ST Timer3 external clock input T4CK — 8 E2 A6 I ST Timer4 external clock input T5CK — 9 E1 B5 I ST Timer5 external clock input U1CTS 43 47 L9 B26 I ST UART1 clear to send U1RTS 49 48 K9 A31 O — UART1 ready to send U1RX 50 52 K11 A36 I ST UART1 receive U1TX 51 53 J10 B29 O — UART1 transmit U3CTS 8 14 F3 A9 I ST UART3 clear to send U3RTS 4 10 E3 A7 O — UART3 ready to send U3RX 5 11 F4 B6 I ST UART3 receive U3TX 6 12 F2 A8 O — UART3 transmit U2CTS 21 40 K6 A27 I ST UART2 clear to send U2RTS 29 39 L6 B22 O — UART2 ready to send U2RX 31 49 L10 B27 I ST UART2 receive U2TX 32 50 L11 A32 O — UART2 transmit U4RX 43 47 L9 B26 I ST UART4 receive U4TX 49 48 K9 A31 O — UART4 transmit U6RX 8 14 F3 A9 I ST UART6 receive U6TX 4 10 E3 A7 O — UART6 transmit U5RX 21 40 K6 A27 I ST UART5 receive U5TX 29 39 L6 B22 O — UART5 transmit Synchronous serial clock input/output SCK1 — 70 D11 B38 I/O ST for SPI1 Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are only provided for reference. See the “Device Pin Tables” section for device pin availability. 2: See 25.0“Ethernet Controller” for more information. DS60001156J-page 30  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Buffer Pin Name Description 64-Pin 100-Pin 121-Pin 124-pin Type Type QFN/TQFP TQFP TFBGA VTLA SDI1 — 9 E1 B5 I ST SPI1 data in SDO1 — 72 D9 B39 O — SPI1 data out SPI1 slave synchronization or frame SS1 — 69 E10 A45 I/O ST pulse I/O Synchronous serial clock input/output SCK3 49 48 K9 A31 I/O ST for SPI3 SDI3 50 52 K11 A36 I ST SPI3 data in SDO3 51 53 J10 B29 O — SPI3 data out SPI3 slave synchronization or frame SS3 43 47 L9 B26 I/O ST pulse I/O Synchronous serial clock input/output SCK2 4 10 E3 A7 I/O ST for SPI2 SDI2 5 11 F4 B6 I ST SPI2 data in SDO2 6 12 F2 A8 O — SPI2 data out SPI2 slave synchronization or frame SS2 8 14 F3 A9 I/O ST pulse I/O Synchronous serial clock input/output SCK4 29 39 L6 B22 I/O ST for SPI4 SDI4 31 49 L10 B27 I ST SPI4 data in SDO4 32 50 L11 A32 O — SPI4 data out SPI4 slave synchronization or frame SS4 21 40 K6 A27 I/O ST pulse I/O Synchronous serial clock input/output SCL1 44 66 E11 B36 I/O ST for I2C1 Synchronous serial data input/output SDA1 43 67 E8 A44 I/O ST for I2C1 Synchronous serial clock input/output SCL3 51 53 J10 B29 I/O ST for I2C3 Synchronous serial data input/output SDA3 50 52 K11 A36 I/O ST for I2C3 Synchronous serial clock input/output SCL2 — 58 H11 A39 I/O ST for I2C2 Synchronous serial data input/output SDA2 — 59 G10 B32 I/O ST for I2C2 Synchronous serial clock input/output SCL4 6 12 F2 A8 I/O ST for I2C4 Synchronous serial data input/output SDA4 5 11 F4 B6 I/O ST for I2C4 Synchronous serial clock input/output SCL5 32 50 L11 A32 I/O ST for I2C5 Synchronous serial data input/output SDA5 31 49 L10 B27 I/O ST for I2C5 Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are only provided for reference. See the “Device Pin Tables” section for device pin availability. 2: See 25.0“Ethernet Controller” for more information.  2009-2016 Microchip Technology Inc. DS60001156J-page 31

PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Buffer Pin Name Description 64-Pin 100-Pin 121-Pin 124-pin Type Type QFN/TQFP TQFP TFBGA VTLA TMS 23 17 G3 B9 I ST JTAG Test mode select pin TCK 27 38 J6 A26 I ST JTAG test clock input pin TDI 28 60 G11 A40 I ST JTAG test data input pin TDO 24 61 G9 B33 O — JTAG test data output pin RTCC 42 68 E9 B37 O — Real-Time Clock alarm output CVREF- 15 28 L2 A21 I Analog Comparator Voltage Reference (low) CVREF+ 16 29 K3 B17 I Analog Comparator Voltage Reference (high) CVREFOUT 23 34 L5 A24 O Analog Comparator Voltage Reference output C1IN- 12 21 H2 B11 I Analog Comparator 1 negative input C1IN+ 11 20 H1 A12 I Analog Comparator 1 positive input C1OUT 21 32 K4 A23 O — Comparator 1 output C2IN- 14 23 J2 B13 I Analog Comparator 2 negative input C2IN+ 13 22 J1 A13 I Analog Comparator 2 positive input C2OUT 22 33 L4 B19 O — Comparator 2 output Parallel Master Port Address bit 0 input PMA0 30 44 L8 A29 I/O TTL/ST (Buffered Slave modes) and output (Master modes) Parallel Master Port Address bit 1 input PMA1 29 43 K7 B24 I/O TTL/ST (Buffered Slave modes) and output (Master modes) PMA2 8 14 F3 A9 O — Parallel Master Port address PMA3 6 12 F2 A8 O — (Demultiplexed Master modes) PMA4 5 11 F4 B6 O — PMA5 4 10 E3 A7 O — PMA6 16 29 K3 B17 O — PMA7 22 28 L2 A21 O — PMA8 32 50 L11 A32 O — PMA9 31 49 L10 B27 O — PMA10 28 42 L7 A28 O — PMA11 27 41 J7 B23 O — PMA12 24 35 J5 B20 O — PMA13 23 34 L5 A24 O — PMA14 45 71 C11 A46 O — PMA15 44 70 D11 B38 O — Parallel Master Port Chip Select 1 PMCS1 45 71 C11 A46 O — strobe Parallel Master Port Chip Select 2 PMCS2 44 70 D11 B38 O — strobe Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are only provided for reference. See the “Device Pin Tables” section for device pin availability. 2: See 25.0“Ethernet Controller” for more information. DS60001156J-page 32  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Buffer Pin Name Description 64-Pin 100-Pin 121-Pin 124-pin Type Type QFN/TQFP TQFP TFBGA VTLA PMD0 60 93 A4 B52 I/O TTL/ST Parallel Master Port data PMD1 61 94 B4 A64 I/O TTL/ST (Demultiplexed Master mode) or address/data (Multiplexed Master PMD2 62 98 B3 A66 I/O TTL/ST modes) PMD3 63 99 A2 B56 I/O TTL/ST PMD4 64 100 A1 A67 I/O TTL/ST PMD5 1 3 D3 B2 I/O TTL/ST PMD6 2 4 C1 A4 I/O TTL/ST PMD7 3 5 D2 B3 I/O TTL/ST PMD8 — 90 A5 A61 I/O TTL/ST PMD9 — 89 E6 B50 I/O TTL/ST PMD10 — 88 A6 A60 I/O TTL/ST PMD11 — 87 B6 B49 I/O TTL/ST PMD12 — 79 A9 B43 I/O TTL/ST PMD13 — 80 D8 A54 I/O TTL/ST PMD14 — 83 D7 B45 I/O TTL/ST PMD15 — 84 C7 A56 I/O TTL/ST Parallel Master Port address latch PMALL 30 44 L8 A29 O — enable low byte (Multiplexed Master modes) Parallel Master Port address latch PMALH 29 43 K7 B24 O — enable high byte (Multiplexed Master modes) PMRD 53 82 B8 A55 O — Parallel Master Port read strobe PMWR 52 81 C8 B44 O — Parallel Master Port write strobe VBUS 34 54 H8 A37 I Analog USB bus power monitor USB internal transceiver supply. If the VUSB3V3 35 55 H9 B30 P — USB module is not used, this pin must be connected to VDD. USB Host and OTG bus power control VBUSON 11 20 H1 A12 O — output D+ 37 57 H10 B31 I/O Analog USB D+ D- 36 56 J11 A38 I/O Analog USB D- USBID 33 51 K10 A35 I ST USB OTG ID detect C1RX 58 87 B6 B49 I ST CAN1 bus receive pin C1TX 59 88 A6 A60 O — CAN1 bus transmit pin AC1RX 32 40 K6 A27 I ST Alternate CAN1 bus receive pin AC1TX 31 39 L6 B22 O — Alternate CAN1 bus transmit pin C2RX 29 90 A5 A61 I ST CAN2 bus receive pin C2TX 21 89 E6 B50 O — CAN2 bus transmit pin AC2RX — 8 E2 A6 1 ST Alternate CAN2 bus receive pin Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are only provided for reference. See the “Device Pin Tables” section for device pin availability. 2: See 25.0“Ethernet Controller” for more information.  2009-2016 Microchip Technology Inc. DS60001156J-page 33

PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Buffer Pin Name Description 64-Pin 100-Pin 121-Pin 124-pin Type Type QFN/TQFP TQFP TFBGA VTLA AC2TX — 7 E4 B4 O — Alternate CAN2 bus transmit pin ERXD0 61 41 J7 B23 I ST Ethernet Receive Data 0(2) ERXD1 60 42 L7 A28 I ST Ethernet Receive Data 1(2) ERXD2 59 43 K7 B24 I ST Ethernet Receive Data 2(2) ERXD3 58 44 L8 A29 I ST Ethernet Receive Data 3(2) ERXERR 64 35 J5 B20 I ST Ethernet receive error input(2) ERXDV 62 12 F2 A8 I ST Ethernet receive data valid(2) ECRSDV 62 12 F2 A8 I ST Ethernet carrier sense data valid(2) ERXCLK 63 14 F3 A9 I ST Ethernet receive clock(2) EREFCLK 63 14 F3 A9 I ST Ethernet reference clock(2) ETXD0 2 88 A6 A60 O — Ethernet Transmit Data 0(2) ETXD1 3 87 B6 B49 O — Ethernet Transmit Data 1(2) ETXD2 43 79 A9 B43 O — Ethernet Transmit Data 2(2) ETXD3 42 80 D8 A54 O — Ethernet Transmit Data 3(2) ETXERR 54 89 E6 B50 O — Ethernet transmit error(2) ETXEN 1 83 D7 B45 O — Ethernet transmit enable(2) ETXCLK 55 84 C7 A56 I ST Ethernet transmit clock(2) ECOL 44 10 E3 A7 I ST Ethernet collision detect(2) ECRS 45 11 F4 B6 I ST Ethernet carrier sense(2) EMDC 30 71 C11 A46 O — Ethernet management data clock(2) EMDIO 49 68 E9 B37 I/O — Ethernet management data(2) AERXD0 43 18 G1 A11 I ST Alternate Ethernet Receive Data 0(2) AERXD1 42 19 G2 B10 I ST Alternate Ethernet Receive Data 1(2) AERXD2 — 28 L2 A21 I ST Alternate Ethernet Receive Data 2(2) AERXD3 — 29 K3 B17 I ST Alternate Ethernet Receive Data 3(2) AERXERR 55 1 B2 A2 I ST Alternate Ethernet receive error input(2) AERXDV — 12 F2 A8 I ST Alternate Ethernet receive data valid(2) Alternate Ethernet carrier sense data AECRSDV 44 12 F2 A8 I ST valid(2) AERXCLK — 14 F3 A9 I ST Alternate Ethernet receive clock(2) AEREFCLK 45 14 F3 A9 I ST Alternate Ethernet reference clock(2) AETXD0 59 47 L9 B26 O — Alternate Ethernet Transmit Data 0(2) AETXD1 58 48 K9 A31 O — Alternate Ethernet Transmit Data 1(2) AETXD2 — 44 L8 A29 O — Alternate Ethernet Transmit Data 2(2) AETXD3 — 43 K7 B24 O — Alternate Ethernet Transmit Data 3(2) AETXERR — 35 J5 B20 O — Alternate Ethernet transmit error(2) AETXEN 54 67 E8 A44 O — Alternate Ethernet transmit enable(2) AETXCLK — 66 E11 B36 I ST Alternate Ethernet transmit clock(2) AECOL — 42 L7 A28 I ST Alternate Ethernet collision detect(2) Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are only provided for reference. See the “Device Pin Tables” section for device pin availability. 2: See 25.0“Ethernet Controller” for more information. DS60001156J-page 34  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Buffer Pin Name Description 64-Pin 100-Pin 121-Pin 124-pin Type Type QFN/TQFP TQFP TFBGA VTLA AECRS — 41 J7 B23 I ST Alternate Ethernet carrier sense(2) Alternate Ethernet Management Data AEMDC 30 71 C11 A46 O — clock(2) AEMDIO 49 68 E9 B37 I/O — Alternate Ethernet Management Data(2) TRCLK — 91 C5 B51 O — Trace clock TRD0 — 97 A3 B55 O — Trace Data bits 0-3 TRD1 — 96 C3 A65 O — TRD2 — 95 C4 B54 O — TRD3 — 92 B5 A62 O — Data I/O pin for Programming/ PGED1 16 25 K2 B14 I/O ST Debugging Communication Channel 1 Clock input pin for Programming/ PGEC1 15 24 K1 A15 I ST Debugging Communication Channel 1 Data I/O pin for Programming/ PGED2 18 27 J3 B16 I/O ST Debugging Communication Channel 2 Clock input pin for Programming/ PGEC2 17 26 L1 A20 I ST Debugging Communication Channel 2 Master Clear (Reset) input. This pin is MCLR 7 13 F1 B7 I/P ST an active-low Reset to the device. Positive supply for analog modules. AVDD 19 30 J4 A22 P P This pin must be connected at all times. AVSS 20 31 L3 B18 P P Ground reference for analog modules A7, C2, A10, A14, Positive supply for peripheral logic and C9, E5, A30, A41, I/O pins 10, 26, 38, 2, 16, 37, VDD K8, F8, A48, A59, P — 57 46, 62, 86 G5, H4, B1, B21, H6 B53 VCAP 56 85 B7 B48 P — Capacitor for Internal Voltage Regulator A8, B10, A3, A25, Ground reference for logic and I/O pins. D4, D5, A43, A63, This pin must be connected at all times. 15, 36, 45, VSS 9, 25, 41 E7, F5, B8, B12, P — 65, 75 F10, G6, B25, B41, G7, H3 B46 VREF+ 16 29 K3 B17 I Analog Analog voltage reference (high) input VREF- 15 28 L2 A21 I Analog Analog voltage reference (low) input Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are only provided for reference. See the “Device Pin Tables” section for device pin availability. 2: See 25.0“Ethernet Controller” for more information.  2009-2016 Microchip Technology Inc. DS60001156J-page 35

PIC32MX5XX/6XX/7XX NOTES: DS60001156J-page 36  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 2.0 GUIDELINES FOR GETTING 2.2 Decoupling Capacitors STARTED WITH 32-BIT MCUS The use of decoupling capacitors on power supply Note: This data sheet summarizes the features pins, such as VDD, VSS, AVDD and AVSS is required. of the PIC32MX5XX/6XX/7XX family of See Figure2-1. devices. It is not intended to be a Consider the following criteria when using decoupling comprehensive reference source. To capacitors: complement the information in this data • Value and type of capacitor: A value of 0.1 µF sheet, refer to the related section of the (100 nF), 10-20V is recommended. The capacitor “PIC32 Family Reference Manual”, which should be a low Equivalent Series Resistance is available from the Microchip website (low-ESR) capacitor and have resonance fre- (www.microchip.com/PIC32). quency in the range of 20MHz and higher. It is 2.1 Basic Connection Requirements further recommended to use ceramic capacitors. • Placement on the printed circuit board: The Getting started with the PIC32MX5XX/6XX/7XX family decoupling capacitors should be placed as close of 32-bit Microcontrollers (MCUs) requires attention to to the pins as possible. It is recommended that a minimal set of device pin connections before pro- the capacitors be placed on the same side of ceeding with development. The following is a list of pin the board as the device. If space is constricted, names, which must always be connected: the capacitor can be placed on another layer on • All VDD and VSS pins (see 2.2“Decoupling the PCB using a via; however, ensure that the Capacitors”) trace length from the pin to the capacitor is • All AVDD and AVSS pins even if the ADC module is within one-quarter inch (6mm) in length. not used (see 2.2“Decoupling Capacitors”) • Handling high frequency noise: If the board is • VCAP pin (see 2.3“Capacitor on Internal Voltage experiencing high frequency noise, upward of Regulator (VCAP)”) tens of MHz, add a second ceramic-type capacitor • MCLR pin (see 2.4“Master Clear (MCLR) Pin”) in parallel to the above described decoupling • PGECx/PGEDx pins used for In-Circuit Serial capacitor. The value of the second capacitor can Programming™ (ICSP™) and debugging purposes be in the range of 0.01µF to 0.001µF. Place this (see 2.5“ICSP Pins”) second capacitor next to the primary decoupling • OSC1 and OSC2 pins when external oscillator capacitor. In high-speed circuit designs, consider source is used (see 2.8“External Oscillator Pins”) implementing a decade pair of capacitances as close to the power and ground pins as possible. The following pin may be required, as well: VREF+/ For example, 0.1 µF in parallel with 0.001 µF. VREF- pins used when external voltage reference for • Maximizing performance: On the board layout ADC module is implemented. from the power supply circuit, run the power and Note: The AVDD and AVSS pins must be return traces to the decoupling capacitors first, connected, regardless of the ADC use and then to the device pins. This ensures that the and the ADC voltage reference source. decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.  2009-2016 Microchip Technology Inc. DS60001156J-page 37

PIC32MX5XX/6XX/7XX FIGURE 2-1: RECOMMENDED 2.4 Master Clear (MCLR) Pin MINIMUM CONNECTION The MCLR pin provides two specific device functions: Tantalum or 0.1 µF VDD ceramic 10 µF Ceramic • Device Reset ESR  3(3) • Device Programming and Debugging R R1 CAP VDD VSS Pulling The MCLR pin low generates a device Reset. MCLR V Figure2-2 illustrates a typical MCLR circuit. During device programming and debugging, the resistance C VUSB3V3(1) and capacitance that can be added to the pin must be considered. Device programmers and debuggers PIC32 VDD drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must VSS VSS not be adversely affected. Therefore, specific values 0.1 µF of R and C will need to be adjusted based on the Ceramic 0.1 µF VDD D S application and PCB requirements. Ceramic VD VS DD SS A A V V For example, as illustrated in Figure2-2, it is Connect(2) recommended that the capacitor C, be isolated from 0.1 µF 0.1 µF the MCLR pin during programming and debugging Ceramic Ceramic operations. L1(2) Place the components illustrated in Figure2-2 within one-quarter inch (6mm) from the MCLR pin. Note 1: If the USB module is not used, this pin must be connected to VDD. FIGURE 2-2: EXAMPLE OF MCLR PIN 2: As an option, instead of a hard-wired connection, an inductor (L1) can be substituted between VDD and CONNECTIONS AVDD to improve ADC noise rejection. The inductor impedance should be less than 3 and the inductor VDD capacity greater than 10 mA. Where: R 10k R1(1) MCLR f = F-----C---N----V-- (i.e., ADC conversion rate/2) 0.1 µF(2) C 1 k 2 PIC32 1 f = ----------------------- 1 2 LC 5 PGECx(3) ™ 4 L = ---2-------f1------C------2 ICSP 236 VVDSSD PGEDx(3) NC 3: Aluminum or electrolytic capacitors should not be used. ESR  3 from -40ºC to 125ºC @ SYSCLK Note 1: 470R11k will limit any current flowing into frequency (i.e., MIPS). MCLR from the external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge 2.2.1 BULK CAPACITORS (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met without The use of a bulk capacitor is recommended to improve interfering with the Debug/Programmer tools. power supply stability. Typical values range from 4.7 µF 2: The capacitor can be sized to prevent unintentional to 47µF. This capacitor should be located as close to Resets from brief glitches or to extend the device the device as possible. Reset period during POR. 3: No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins. 2.3 Capacitor on Internal Voltage Regulator (VCAP) 2.3.1 INTERNAL REGULATOR MODE A low-ESR (1 ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regu- lator output. The VCAP pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to Section32.0 “Electrical Characteristics” for additional information on CEFC specifications. DS60001156J-page 38  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 2.5 ICSP Pins 2.7 Trace The PGECx and PGEDx pins are used for In-Circuit The trace pins can be connected to a hardware-trace- Serial Programming™ (ICSP™) and debugging. It is enabled programmer to provide a compress real time recommended to keep the trace length between the instruction trace. When used for trace the TRD3, ICSP connector and the ICSP pins on the device as TRD2, TRD1, TRD0 and TRCLK pins should be short as possible. If the ICSP connector is expected to dedicated for this use. The trace hardware requires experience an ESD event, a series resistor is a22 series resistor between the trace pins and the recommended, with the value in the range of a few tens trace connector. of Ohms, not to exceed 100 Ohms. 2.8 External Oscillator Pins Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they Many MCUs have options for at least two oscillators: a will interfere with the programmer/debugger communi- high-frequency primary oscillator and a low-frequency cations to the device. If such discrete components are secondary oscillator. Refer to Section8.0 “Oscillator an application requirement, they should be removed Configuration” for details. from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and The oscillator circuit should be placed on the same side timing requirements information in the respective of the board as the device. Also, place the oscillator cir- device Flash programming specification for information cuit close to the respective oscillator pins, not exceed- on capacitive loading limits and pin input voltage high ing one-half inch (12mm) distance between them. The (VIH) and input low (VIL) requirements. load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded Ensure that the “Communication Channel Select” (i.e., copper pour around the oscillator circuit to isolate them PGECx/PGEDx pins) programmed into the device from surrounding circuits. The grounded copper pour matches the physical connections for the ICSP to should be routed directly to the MCU ground. Do not MPLAB® ICD 3 or MPLAB® REAL ICE™. run any signal traces or power traces inside the ground For more information on ICD 3 and REAL ICE connec- pour. Also, if using a two-sided board, avoid any traces tion requirements, refer to the following documents that on the other side of the board where the crystal is are available on the Microchip web site. placed. A suggested layout is illustrated in Figure2-3. • “Using MPLAB® ICD 3” (poster) (DS50001765) • “MPLAB® ICD 3 Design Advisory” (DS50001764) FIGURE 2-3: SUGGESTED OSCILLATOR • “MPLAB® REAL ICE™ In-Circuit Emulator User’s CIRCUIT PLACEMENT Guide” (DS50001616) • “Using MPLAB® REAL ICE™ Emulator” (poster) (DS50001749) 2.6 JTAG Oscillator Secondary The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Guard Trace Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the Guard Ring JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD Main Oscillator event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms. Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete compo- nents are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC character- istics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.  2009-2016 Microchip Technology Inc. DS60001156J-page 39

PIC32MX5XX/6XX/7XX 2.9 Configuration of Analog and 2.11 EMI/EMC/EFT (IEC 61000-4-4 and Digital Pins During ICSP IEC 61000-4-2) Suppression Operations Considerations If MPLAB ICD 3 or REAL ICE is selected as a The use of LDO regulators is preferred to reduce debugger, it automatically initializes all of the Analog- overall system noise and provide a cleaner power to-Digital input pins (ANx) as “digital” pins by setting source. However, when utilizing switching Buck/ all bits in the AD1PCFG register. Boost regulators as the local power source for PIC32 devices, as well as in electrically noisy environ- The bits in this register that correspond to the Analog- ments or test conditions required for IEC 61000-4-4 to-Digital pins that are initialized by MPLAB ICD 3 or and IEC 61000-4-2, users should evaluate the use of REAL ICE, must not be cleared by the user application T-Filters (i.e., L-C-L) on the power pins, as shown in firmware; otherwise, communication errors will result Figure2-4. In addition to a more stable power between the debugger and the device. source, use of this type of T-Filter can greatly reduce If your application needs to use certain ADC pins as susceptibility to EMI sources and events. analog input pins during the debug session, the user application must clear the corresponding bits in the FIGURE 2-4: EMI/EMC/EFT AD1PCFG register during initialization of the ADC SUPPRESSION CIRCUIT module. When MPLAB ICD 3 or REAL ICE is used as a pro- Ferrite Chip SMD DCR = 0.15(cid:525)(max) grammer, the user application firmware must correctly 600 ma ISAT configure the AD1PCFG register. Automatic initializa- 300(cid:525)@ 100 MHz PN#: 1-1624117-3 tion of this register is only done during debugger oper- VDD ation. Failure to correctly configure the register(s) will 0.01 μF Ferrite result in all ADC pins being recognized as analog input Chips pins, resulting in the port value being read as a logic ‘0’, 0.1 μF 0.1 μF which may affect user application functionality. 2.10 Unused I/Os DDSS SSDD VV VV VSS VSS VDD Unused I/O pins should not be allowed to float as VDD inputs. They can be configured as outputs and driven 0.1 μF VSS 0.1 μF to a logic-low state. PIC32 VDD Alternatively, inputs can be reserved by connecting the VSS VSS 0.1 μF pin to VSS through a 1k to 10k resistor and configuring VDD VUSB3V3 0.1 μF the pin as an input. DS VDVS SSDD 0.1 μF AA VV 0.1 μF 0.1 μF Ferrite Chips VDD 0.01 μF DS60001156J-page 40  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 3.0 CPU • MIPS16e® code compression - 16-bit encoding of 32-bit instructions to Note: This data sheet summarizes the features improve code density of the PIC32MX5XX/6XX/7XX family of - Special PC-relative instructions for efficient devices. It is not intended to be a loading of addresses and constants comprehensive reference source. To - SAVE and RESTORE macro instructions for complement the information in this data setting up and tearing down stack frames sheet, refer to Section 2. “CPU” within subroutines (DS60001113) in the “PIC32 Family - Improved support for handling 8-bit and 16-bit Reference Manual”, which is available data types from the Microchip website (www.micro- • Simple Fixed Mapping Translation (FMT) chip.com/PIC32). Resources for the mechanism MIPS32® M4K® Processor Core are • Simple dual bus interface available at http://www.imgtec.com. - Independent 32-bit address and data busses The MIPS32® M4K® Processor core is the heart of the - Transactions can be aborted to improve PIC32MX5XX/6XX/7XX family processor. The CPU interrupt latency fetches instructions, decodes each instruction, fetches • Autonomous multiply/divide unit source operands, executes each instruction and writes - Maximum issue rate of one 32x16 multiply the results of instruction execution to the proper per clock destinations. - Maximum issue rate of one 32x32 multiply every other clock 3.1 Features - Early-in iterative divide. Minimum 11 and • 5-stage pipeline maximum 33 clock latency (dividend (rs) sign • 32-bit address and data paths extension-dependent) • MIPS32 Enhanced Architecture (Release 2) • Power control - Multiply-accumulate and multiply-subtract - Minimum frequency: 0 MHz instructions - Low-Power mode (triggered by WAIT - Targeted multiply instruction instruction) - Zero/One detect instructions - Extensive use of local gated clocks - WAIT instruction • EJTAG debug and instruction trace - Conditional move instructions (MOVN, MOVZ) - Support for single stepping - Vectored interrupts - Virtual instruction and data address/value - Programmable exception vector base - Breakpoints - Atomic interrupt enable/disable - PC tracing with trace compression - GPR shadow registers to minimize latency for interrupt handlers - Bit field manipulation instructions FIGURE 3-1: MIPS32® M4K® PROCESSOR CORE BLOCK DIAGRAM CPU EJTAG MDU TAP Off-chip Debug Interface Execution Core (RF/ALU/Shift) FMT Bus Interface Dual Bus Interface Bus Matrix System Power Co-processor Management  2009-2016 Microchip Technology Inc. DS60001156J-page 41

PIC32MX5XX/6XX/7XX 3.2 Architecture Overview 3.2.2 MULTIPLY/DIVIDE UNIT (MDU) The MIPS32 M4K processor core contains several MIPS32 M4K processor core includes a Multiply/Divide logic blocks working together in parallel, providing an Unit (MDU) that contains a separate pipeline for multi- efficient high-performance computing engine. The ply and divide operations. This pipeline operates in par- following blocks are included with the core: allel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU opera- • Execution Unit tions to be partially masked by system stalls and/or • Multiply/Divide Unit (MDU) other integer unit instructions. • System Control Coprocessor (CP0) The high-performance MDU consists of a 32x16 booth • Fixed Mapping Translation (FMT) recoded multiplier, result/accumulation registers (HI • Dual Internal Bus interfaces and LO), a divide state machine, and the necessary • Power Management multiplexers and control logic. The first number shown • MIPS16e® Support (‘32’ of 32x16) represents the rs operand. The second • Enhanced JTAG (EJTAG) Controller number (‘16’ of 32x16) represents the rt operand. The PIC32 core only checks the value of the latter (rt) 3.2.1 EXECUTION UNIT operand to determine how many times the operation The MIPS32 M4K processor core execution unit imple- must pass through the multiplier. The 16x16 and 32x16 ments a load/store architecture with single-cycle ALU operations pass through the multiplier once. A 32x32 operations (logical, shift, add, subtract) and an autono- operation passes through the multiplier twice. mous multiply/divide unit. The core contains thirty-two The MDU supports execution of one 16x16 or 32x16 32-bit General Purpose Registers (GPRs) used for multiply operation every clock cycle; 32x32 multiply integer operations and address calculation. One addi- operations can be issued every other clock cycle. tional register file shadow set (containing thirty-two reg- Appropriate interlocks are implemented to stall the isters) is added to minimize context switching overhead issuance of back-to-back 32x32 multiply operations. during interrupt/exception processing. The register file The multiply operand size is automatically determined consists of two read ports and one write port and is fully by logic built into the MDU. bypassed to minimize operation latency in the pipeline. Divide operations are implemented with a simple 1 bit The execution unit includes: per clock iterative algorithm. An early-in detection • 32-bit adder used for calculating the data address checks the sign extension of the dividend (rs) operand. • Address unit for calculating the next instruction If rs is 8 bits wide, 23 iterations are skipped. For a 16 bit address wide rs, 15 iterations are skipped and for a 24 bit wide rs, • Logic for branch determination and branch target 7 iterations are skipped. Any attempt to issue a address calculation subsequent MDU instruction while a divide is still active • Load aligner causes an IU pipeline stall until the divide operation is • Bypass multiplexers used to avoid stalls when completed. executing instruction streams where data Table3-1 lists the repeat rate (peak issue rate of cycles producing instructions are followed closely by until the operation can be reissued) and latency (num- consumers of their results ber of cycles until a result is available) for the PIC32 • Leading Zero/One detect unit for implementing core multiply and divide instructions. The approximate the CLZ and CLO instructions latency and repeat rates are listed in terms of pipeline • Arithmetic Logic Unit (ALU) for performing bit-wise clocks. logical operations • Shifter and store aligner TABLE 3-1: MIPS32® M4K® CORE HIGH-PERFORMANCE INTEGER MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES Opcode Operand Size (mul rt) (div rs) Latency Repeat Rate MULT/MULTU, MADD/MADDU, 16 bits 1 1 MSUB/MSUBU 32 bits 2 2 MUL 16 bits 2 1 32 bits 3 2 DIV/DIVU 8 bits 12 11 16 bits 19 18 24 bits 26 25 32 bits 33 32 DS60001156J-page 42  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX The MIPS architecture defines that the result of a 3.2.3 SYSTEM CONTROL multiply or divide operation be placed in the HI and LO COPROCESSOR (CP0) registers. Using the Move-From-HI (MFHI) and Move- In the MIPS architecture, CP0 is responsible for the From-LO (MFLO) instructions, these values can be virtual-to-physical address translation, the exception transferred to the General Purpose Register file. control system, the processor’s diagnostics capability, In addition to the HI/LO targeted operations, the the operating modes (Kernel, User and Debug) and MIPS32 architecture also defines a multiply instruction, whether interrupts are enabled or disabled. Configura- MUL, which places the least significant results in the pri- tion information, such as presence of options like mary register file instead of the HI/LO register pair. By MIPS16e, is also available by accessing the CP0 avoiding the explicit MFLO instruction required when registers, listed in Table3-2. using the LO register, and by supporting multiple desti- nation registers, the throughput of multiply-intensive operations is increased. Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms. TABLE 3-2: COPROCESSOR 0 REGISTERS Register Register Function Number Name 0-6 Reserved Reserved. 7 HWREna Enables access via the RDHWR instruction to selected hardware registers. 8 BadVAddr(1) Reports the address for the most recent address-related exception. 9 Count(1) Processor cycle count. 10 Reserved Reserved. 11 Compare(1) Timer interrupt control. 12 Status(1) Processor status and control. 12 IntCtl(1) Interrupt system status and control. 12 SRSCtl(1) Shadow register set status and control. 12 SRSMap(1) Provides mapping from vectored interrupt to a shadow set. 13 Cause(1) Cause of last general exception. 14 EPC(1) Program counter at last exception. 15 PRId Processor identification and revision. 15 Ebase Exception vector base register. 16 Config Configuration register. 16 Config1 Configuration Register 1. 16 Config2 Configuration Register 2. 16 Config3 Configuration Register 3. 17-22 Reserved Reserved. 23 Debug(2) Debug control and exception status. 24 DEPC(2) Program counter at last debug exception. 25-29 Reserved Reserved. 30 ErrorEPC(1) Program counter at last error. 31 DESAVE(2) Debug handler scratchpad register. Note 1: Registers used in exception processing. 2: Registers used during debug.  2009-2016 Microchip Technology Inc. DS60001156J-page 43

PIC32MX5XX/6XX/7XX Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table3-3 lists the exception types in order of priority. TABLE 3-3: PIC32MX5XX/6XX/7XX FAMILY CORE EXCEPTION TYPES Exception Description Reset Assertion MCLR or a Power-on Reset (POR). DSS EJTAG debug single step. DINT EJTAG debug interrupt. Caused by the assertion of the external EJ_DINT input or by setting the EjtagBrk bit in the ECR register. NMI Assertion of NMI signal. Interrupt Assertion of unmasked hardware or software interrupt signal. DIB EJTAG debug hardware instruction break matched. AdEL Fetch address alignment error. Fetch reference to protected address. IBE Instruction fetch bus error. DBp EJTAG breakpoint (execution of SDBBP instruction). Sys Execution of SYSCALL instruction. Bp Execution of BREAK instruction. RI Execution of a reserved instruction. CpU Execution of a coprocessor instruction for a coprocessor that is not enabled. CEU Execution of a CorExtend instruction when CorExtend is not enabled. Ov Execution of an arithmetic instruction that overflowed. Tr Execution of a trap (when trap condition is true). DDBL/DDBS EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value). AdEL Load address alignment error. Load reference to protected address. AdES Store address alignment error. Store to protected address. DBE Load or store bus error. DDBL EJTAG data hardware breakpoint matched in load data compare. DS60001156J-page 44  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 3.3 Power Management 3.4 EJTAG Debug Support The MIPS32 M4K Processor core offers a number of The MIPS32 M4K Processor core provides for an power management features, including low-power Enhanced JTAG (EJTAG) interface for use in the design, active power management and power-down software debug of application and kernel code. In modes of operation. The core is a static design that addition to standard User mode and Kernel modes of supports slowing or halting the clocks, which reduces operation, the MIPS M4K core provides a Debug mode system power consumption during idle periods. that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is 3.3.1 INSTRUCTION-CONTROLLED taken and continues until a Debug Exception Return POWER MANAGEMENT (DERET) instruction is executed. During this time, the processor executes the debug exception handler rou- The mechanism for invoking Power-Down mode is tine. through execution of the WAIT instruction. For more information on power management, see Section28.0 The EJTAG interface operates through the Test Access “Power-Saving Features”. Port (TAP), a serial communication port used for transferring test data in and out of the MIPS32 M4K 3.3.2 LOCAL CLOCK GATING processor core. In addition to the standard JTAG The majority of the power consumed by the PIC32MX- instructions, special instructions defined in the EJTAG 5XX/6XX/7XX family core is in the clock tree and clock- specification define which registers are selected and ing registers. The PIC32 family uses extensive use of how they are used. local gated clocks to reduce this dynamic power con- sumption.  2009-2016 Microchip Technology Inc. DS60001156J-page 45

PIC32MX5XX/6XX/7XX NOTES: DS60001156J-page 46  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 4.0 MEMORY ORGANIZATION 4.1 Memory Layout PIC32MX5XX/6XX/7XX microcontrollers implement Note: This data sheet summarizes the features two address schemes: virtual and physical. All of the PIC32MX5XX/6XX/7XX family of hardware resources, such as program memory, data devices. It is not intended to be a memory and peripherals, are located at their respective comprehensive reference source. For physical addresses. Virtual addresses are exclusively detailed information, refer to Section 3. used by the CPU to fetch and execute instructions as “Memory Organization” (DS60001115) well as access peripherals. Physical addresses are in the “PIC32 Family Reference Manual”, used by bus master peripherals, such as DMA and the which is available from the Microchip Flash controller, that access memory independently of website (www.microchip.com/PIC32). the CPU. PIC32MX5XX/6XX/7XX microcontrollers provide 4 GB The memory maps for the PIC32MX5XX/6XX/7XX of unified virtual memory address space. All memory devices are illustrated in Figure4-1 through Figure4-6. regions, including program, data memory, SFRs and Table4-1 provides memory map information for the Configuration registers, reside in this address space at Special Function Registers (SFRs). their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, the data memory can be made executable, allowing PIC32MX5XX/6XX/7XX devices to execute from data memory. Key features include: • 32-bit native data width • Separate User (KUSEG) and Kernel (KSEG0/ KSEG1) mode address space • Flexible program Flash memory partitioning • Flexible data RAM partitioning for data and program space • Separate boot Flash memory for protected code • Robust bus exception handling to intercept runaway code • Simple memory mapping with Fixed Mapping Translation (FMT) unit • Cacheable (KSEG0) and non-cacheable (KSEG1) address regions  2009-2016 Microchip Technology Inc. DS60001156J-page 47

PIC32MX5XX/6XX/7XX FIGURE 4-1: MEMORY MAP ON RESET FOR PIC32MX564F064H, PIC32MX564F064L, PIC32MX664F064H AND PIC32MX664F064L DEVICES Virtual Physical Memory Map(1) Memory Map(1) 0xFFFFFFFF 0xFFFFFFFF Reserved 0xBFC03000 0xBFC02FFF Device Configuration 0xBFC02FF0 Registers 0xBFC02FEF Boot Flash 0xBFC00000 Reserved 0xBF900000 0xBF8FFFFF SFRs Reserved 1 0xBF800000 G E S K Reserved 0xBD010000 0xBD00FFFF Program Flash(2) 0xBD000000 Reserved 0xA0008000 0xA0007FFF RAM(2) 0xA0000000 0x1FC03000 Device 0x1FC02FFF Reserved 0x9FC03000 Configuration 0x9FC02FFF Device Registers 0x1FC02FF0 Configuration 0x1FC02FEF Registers 0x9FC02FF0 Boot Flash 0x9FC02FEF 0x1FC00000 Boot Flash Reserved 0x9FC00000 0x1F900000 0x1F8FFFFF Reserved SFRs 0 0x9D010000 G 0x1F800000 E 0x9D00FFFF S K Program Flash(2) Reserved 0x9D000000 0x1D010000 0x1D00FFFF Reserved 0x80008000 Program Flash(2) 0x80007FFF 0x1D000000 RAM(2) Reserved 0x80000000 0x00008000 0x00007FFF Reserved RAM(2) 0x00000000 0x00000000 Note 1: Memory areas are not shown to scale. 2: The size of this memory region is programmable (see Section 3. “Memory Organization” (DS60001115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information). DS60001156J-page 48  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX FIGURE 4-2: MEMORY MAP ON RESET FOR PIC32MX534F064H AND PIC32MX534F064L DEVICES Virtual Physical Memory Map(1) Memory Map(1) 0xFFFFFFFF 0xFFFFFFFF Reserved 0xBFC03000 0xBFC02FFF Device Configuration 0xBFC02FF0 Registers 0xBFC02FEF Boot Flash 0xBFC00000 Reserved 0xBF900000 0xBF8FFFFF SFRs Reserved 1 0xBF800000 G E S K Reserved 0xBD010000 0xBD00FFFF Program Flash(2) 0xBD000000 Reserved 0xA0004000 0xA0003FFF RAM(2) 0xA0000000 0x1FC03000 Device 0x1FC02FFF Reserved 0x9FC03000 Configuration 0x9FC02FFF Device Registers 0x1FC02FF0 Configuration 0x1FC02FEF Registers 0x9FC02FF0 Boot Flash 0x9FC02FEF 0x1FC00000 Boot Flash Reserved 0x9FC00000 0x1F900000 0x1F8FFFFF Reserved SFRs 0 0x9D010000 G 0x1F800000 E 0x9D00FFFF S K Program Flash(2) Reserved 0x9D000000 0x1D010000 0x1D00FFFF Reserved 0x80004000 Program Flash(2) 0x80003FFF 0x1D000000 RAM(2) Reserved 0x80000000 0x00004000 0x00003FFF Reserved RAM(2) 0x00000000 0x00000000 Note 1: Memory areas are not shown to scale. 2: The size of this memory region is programmable (see Section 3. “Memory Organization” (DS60001115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information).  2009-2016 Microchip Technology Inc. DS60001156J-page 49

PIC32MX5XX/6XX/7XX FIGURE 4-3: MEMORY MAP ON RESET FOR PIC32MX564F128H, PIC32MX564F128L, PIC32MX664F128H, PIC32MX664F128L, PIC32MX764F128H AND PIC32MX764F128L DEVICES Virtual Physical Memory Map(1) Memory Map(1) 0xFFFFFFFF 0xFFFFFFFF Reserved 0xBFC03000 0xBFC02FFF Device Configuration 0xBFC02FF0 Registers 0xBFC02FEF Boot Flash 0xBFC00000 Reserved 0xBF900000 0xBF8FFFFF SFRs Reserved 1 0xBF800000 G E S K Reserved 0xBD020000 0xBD01FFFF Program Flash(2) 0xBD000000 Reserved 0xA0008000 0xA0007FFF RAM(2) 0xA0000000 0x1FC03000 Device 0x1FC02FFF Reserved 0x9FC03000 Configuration 0x9FC02FFF Device Registers 0x1FC02FF0 Configuration 0x1FC02FEF Registers 0x9FC02FF0 Boot Flash 0x9FC02FEF 0x1FC00000 Boot Flash Reserved 0x9FC00000 0x1F900000 0x1F8FFFFF Reserved SFRs 0 0x9D020000 G 0x1F800000 E 0x9D01FFFF S K Program Flash(2) Reserved 0x9D000000 0x1D020000 0x1D01FFFF Reserved 0x80008000 Program Flash(2) 0x80007FFF 0x1D000000 RAM(2) Reserved 0x80000000 0x00008000 0x00007FFF Reserved RAM(2) 0x00000000 0x00000000 Note 1: Memory areas are not shown to scale. 2: The size of this memory region is programmable (see Section 3. “Memory Organization” (DS60001115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information). DS60001156J-page 50  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX FIGURE 4-4: MEMORY MAP ON RESET FOR PIC32MX575F256H, PIC32MX575F256L, PIC32MX675F256H, PIC32MX675F256L, PIC32MX775F256H AND PIC32MX775F256L DEVICES Virtual Physical Memory Map(1) Memory Map(1) 0xFFFFFFFF 0xFFFFFFFF Reserved 0xBFC03000 0xBFC02FFF Device Configuration 0xBFC02FF0 Registers 0xBFC02FEF Boot Flash 0xBFC00000 Reserved 0xBF900000 0xBF8FFFFF SFRs Reserved 1 0xBF800000 G E S K Reserved 0xBD040000 0xBD03FFFF Program Flash(2) 0xBD000000 Reserved 0xA0010000 0xA000FFFF RAM(2) 0xA0000000 0x1FC03000 Device 0x1FC02FFF Reserved 0x9FC03000 Configuration 0x9FC02FFF Device Registers 0x1FC02FF0 Configuration 0x1FC02FEF Registers 0x9FC02FF0 Boot Flash 0x9FC02FEF 0x1FC00000 Boot Flash Reserved 0x9FC00000 0x1F900000 0x1F8FFFFF Reserved SFRs 0 0x9D040000 G 0x1F800000 E 0x9D03FFFF S K Program Flash(2) Reserved 0x9D000000 0x1D040000 0x1D03FFFF Reserved 0x80008000 Program Flash(2) 0x8000FFFF 0x1D000000 RAM(2) Reserved 0x80000000 0x00010000 0x0000FFFF Reserved RAM(2) 0x00000000 0x00000000 Note 1: Memory areas are not shown to scale. 2: The size of this memory region is programmable (see Section 3. “Memory Organization” (DS60001115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information).  2009-2016 Microchip Technology Inc. DS60001156J-page 51

PIC32MX5XX/6XX/7XX FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX575F512H, PIC32MX575F512L, PIC32MX675F512H, PIC32MX675F512L, PIC32MX775F512H AND PIC32MX775F512L DEVICES Virtual Physical Memory Map(1) Memory Map(1) 0xFFFFFFFF 0xFFFFFFFF Reserved 0xBFC03000 0xBFC02FFF Device Configuration 0xBFC02FF0 Registers 0xBFC02FEF Boot Flash 0xBFC00000 Reserved 0xBF900000 0xBF8FFFFF SFRs 1 Reserved G 0xBF800000 E S K Reserved 0xBD080000 0xBD07FFFF Program Flash(2) 0xBD000000 Reserved 0xA0010000 0xA000FFFF RAM(2) 0xA0000000 0x1FC03000 Device 0x1FC02FFF Reserved 0x9FC03000 Configuration 0x9FC02FFF Device Registers 0x1FC02FF0 Configuration 0x1FC02FEF Registers 0x9FC02FF0 Boot Flash 0x9FC02FEF 0x1FC00000 Boot Flash Reserved 0x9FC00000 0x1F900000 0x1F8FFFFF Reserved SFRs 0 0x9D080000 G 0x1F800000 E 0x9D07FFFF S K Program Flash(2) Reserved 0x9D000000 0x1D080000 0x1D07FFFF Reserved 0x80010000 Program Flash(2) 0x8000FFFF 0x1D000000 RAM(2) Reserved 0x80000000 0x00010000 0x0000FFFF Reserved RAM(2) 0x00000000 0x00000000 Note 1: Memory areas are not shown to scale. 2: The size of this memory region is programmable (see Section 3. “Memory Organization” (DS60001115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information). DS60001156J-page 52  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX FIGURE 4-6: MEMORY MAP ON RESET FOR PIC32MX695F512H, PIC32MX695F512L, PIC32MX795F512H AND PIC32MX795F512L DEVICES Virtual Physical Memory Map(1) Memory Map(1) 0xFFFFFFFF 0xFFFFFFFF Reserved 0xBFC03000 0xBFC02FFF Device Configuration 0xBFC02FF0 Registers 0xBFC02FEF Boot Flash 0xBFC00000 Reserved 0xBF900000 0xBF8FFFFF SFRs Reserved 1 G 0xBF800000 E S K Reserved 0xBD080000 0xBD07FFFF Program Flash(2) 0xBD000000 Reserved 0xA0020000 0xA001FFFF RAM(2) 0xA0000000 0x1FC03000 Device 0x1FC02FFF Reserved 0x9FC03000 Configuration 0x9FC02FFF Device Registers 0x1FC02FF0 Configuration 0x1FC02FEF Registers 0x9FC02FF0 Boot Flash 0x9FC02FEF 0x1FC00000 Boot Flash Reserved 0x9FC00000 0x1F900000 0x1F8FFFFF Reserved SFRs 0 0x9D080000 G 0x1F800000 E 0x9D07FFFF S K Program Flash(2) Reserved 0x9D000000 0x1D080000 0x1D07FFFF Reserved 0x80020000 Program Flash(2) 0x8001FFFF 0x1D000000 RAM(2) Reserved 0x80000000 0x00020000 0x0001FFFF Reserved RAM(2) 0x00000000 0x00000000 Note 1: Memory areas are not shown to scale. 2: The size of this memory region is programmable (see Section 3. “Memory Organization” (DS60001115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information).  2009-2016 Microchip Technology Inc. DS60001156J-page 53

PIC32MX5XX/6XX/7XX TABLE 4-1: SFR MEMORY MAP Virtual Address Peripheral Offset Base Start Watchdog Timer 0x0000 RTCC 0x0200 Timer1-Timer5 0x0600 Input Capture 1-5 0x2000 Output Compare 1-5 0x3000 I2C1-I2C5 0x5000 SPI1-SPI4 0x5800 UART1-UART6 0x6000 0xBF80 PMP 0x7000 ADC 0x9000 CVREF 0x9800 Comparator 0xA000 Oscillator 0xF000 Device and Revision ID 0xF200 Flash Controller 0xF400 Reset 0xF600 Interrupts 0x1000 Bus Matrix 0x2000 DMA 0x3000 Prefetch 0xBF88 0x4000 USB 0x5040 PORTA-PORTG 0x6000 Ethernet 0x9000 Configuration 0xBFC0 0x2FF0 DS60001156J-page 54  2009-2016 Microchip Technology Inc.

 4.2 Control Registers 2 0 0 Register4-1 through Register4-8 are used for setting the RAM and Flash memory partitions for data and code. 9 -2 01 TABLE 4-2: BUS MATRIX REGISTER MAP 6 Microchip Tec Virtual Address(BF88_#) RegisterName Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 Bits22/6 21/5 20/4 19/3 18/2 17/1 16/0 AllResets h n o 31:16 — — — — — BMXCHEDMA — — — — — BMXERRIXIBMXERRICDBMXERRDMABMXERRDSBMXERRIS001F lo 2000 BMXCON(1) gy 15:0 — — — — — — — — — BMXWSDRM — — — BMXARB<2:0> 0041 Inc. 2010 BMXDKPBA(1) 31:16 — — — — — — — — — — — — — — — — 0000 15:0 BMXDKPBA<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 2020 BMXDUDBA(1) 15:0 BMXDUDBA<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 2030 BMXDUPBA(1) 15:0 BMXDUPBA<15:0> 0000 31:16 xxxx 2040 BMXDRMSZ BMXDRMSZ<31:0> 15:0 xxxx 31:16 — — — — — — — — — — — — BMXPUPBA<19:16> 0000 2050 BMXPUPBA(1) 15:0 BMXPUPBA<15:0> 0000 31:16 xxxx 2060 BMXPFMSZ BMXPFMSZ<31:0> P 15:0 xxxx I 31:16 0000 C 2070 BMXBOOTSZ BMXBOOTSZ<31:0> 15:0 3000 3 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 2 Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. M X 5 X X / D 6 S 60 X 0 01 X 1 56J /7 -pa X g e 5 X 5

PIC32MX5XX/6XX/7XX REGISTER 4-1: BMXCON: BUS MATRIX CONFIGURATION REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 23:16 BMX BMX BMX BMX BMX — — — ERRIXI ERRICD ERRDMA ERRDS ERRIS U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — U-0 R/W-1 U-0 U-0 U-0 R/W-0 R/W-0 R/W-1 7:0 BMX — — — — BMXARB<2:0> WSDRM Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 31-21 Unimplemented: Read as ‘0’ bit 20 BMXERRIXI: Enable Bus Error from IXI bit 1=Enable bus error exceptions for unmapped address accesses initiated from IXI shared bus 0=Disable bus error exceptions for unmapped address accesses initiated from IXI shared bus bit 19 BMXERRICD: Enable Bus Error from ICD Debug Unit bit 1=Enable bus error exceptions for unmapped address accesses initiated from ICD 0=Disable bus error exceptions for unmapped address accesses initiated from ICD bit 18 BMXERRDMA: Bus Error from DMA bit 1=Enable bus error exceptions for unmapped address accesses initiated from DMA 0=Disable bus error exceptions for unmapped address accesses initiated from DMA bit 17 BMXERRDS: Bus Error from CPU Data Access bit (disabled in Debug mode) 1=Enable bus error exceptions for unmapped address accesses initiated from CPU data access 0=Disable bus error exceptions for unmapped address accesses initiated from CPU data access bit 16 BMXERRIS: Bus Error from CPU Instruction Access bit (disabled in Debug mode) 1=Enable bus error exceptions for unmapped address accesses initiated from CPU instruction access 0=Disable bus error exceptions for unmapped address accesses initiated from CPU instruction access bit 15-7 Unimplemented: Read as ‘0’ bit 6 BMXWSDRM: CPU Instruction or Data Access from Data RAM Wait State bit 1=Data RAM accesses from CPU have one wait state for address setup 0=Data RAM accesses from CPU have zero wait states for address setup bit 5-3 Unimplemented: Read as ‘0’ bit 2-0 BMXARB<2:0>: Bus Matrix Arbitration Mode bits 111 = Reserved (using these Configuration modes will produce undefined behavior) • • • 011 = Reserved (using these Configuration modes will produce undefined behavior) 010 = Arbitration Mode 2 001 = Arbitration Mode 1 (default) 000 = Arbitration Mode 0 DS60001156J-page 56  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 4-2: BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-0 15:8 BMXDKPBA<15:8> R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7:0 BMXDKPBA<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-10 BMXDKPBA<15:10>: DRM Kernel Program Base Address bits When non-zero, this value selects the relative base address for kernel program space in RAM bit 9-0 BMXDKPBA<9:0>: DRM Kernel Program Base Address Read-Only bits Value is always ‘0’, which forces 1KB increments Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage. 2: The value in this register must be less than or equal to BMXDRMSZ.  2009-2016 Microchip Technology Inc. DS60001156J-page 57

PIC32MX5XX/6XX/7XX REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-0 15:8 BMXDUDBA<15:8> R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7:0 BMXDUDBA<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA. bit 9-0 BMXDUDBA<9:0>: DRM User Data Base Address Read-Only bits Value is always ‘0’, which forces 1KB increments Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage. 2: The value in this register must be less than or equal to BMXDRMSZ. DS60001156J-page 58  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 4-4: BMXDUPBA: DATA RAM USER PROGRAM BASE ADDRESS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-0 15:8 BMXDUPBA<15:8> R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7:0 BMXDUPBA<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-10 BMXDUPBA<15:10>: DRM User Program Base Address bits When non-zero, the value selects the relative base address for User mode program space in RAM, BMXDUPBA must be greater than BMXDUDBA. bit 9-0 BMXDUPBA<9:0>: DRM User Program Base Address Read-Only bits Value is always ‘0’, which forces 1KB increments Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage. 2: The value in this register must be less than or equal to BMXDRMSZ.  2009-2016 Microchip Technology Inc. DS60001156J-page 59

PIC32MX5XX/6XX/7XX REGISTER 4-5: BMXDRMSZ: DATA RAM SIZE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R R R R R R R R 31:24 BMXDRMSZ<31:24> R R R R R R R R 23:16 BMXDRMSZ<23:16> R R R R R R R R 15:8 BMXDRMSZ<15:8> R R R R R R R R 7:0 BMXDRMSZ<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 BMXDRMSZ<31:0>: Data RAM Memory (DRM) Size bits Static value that indicates the size of the Data RAM in bytes: 0x00004000 = device has 16 KB RAM 0x00008000 = device has 32 KB RAM 0x00010000 = device has 64 KB RAM REGISTER 4-6: BMXPUPBA: PROGRAM FLASH (PFM) USER PROGRAM BASE ADDRESS REGISTER(1,2) Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 — — — — BMXPUPBA<19:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-0 R-0 15:8 BMXPUPBA<15:8> R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7:0 BMXPUPBA<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-20 Unimplemented: Read as ‘0’ bit 19-11 BMXPUPBA<19:11>: Program Flash (PFM) User Program Base Address bits bit 10-0 BMXPUPBA<10:0>: Program Flash (PFM) User Program Base Address Read-Only bits Value is always ‘0’, which forces 2KB increments Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage. 2: The value in this register must be less than or equal to BMXPFMSZ. DS60001156J-page 60  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 4-7: BMXPFMSZ: PROGRAM FLASH (PFM) SIZE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R R R R R R R R 31:24 BMXPFMSZ<31:24> R R R R R R R R 23:16 BMXPFMSZ<23:16> R R R R R R R R 15:8 BMXPFMSZ<15:8> R R R R R R R R 7:0 BMXPFMSZ<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 BMXPFMSZ<31:0>: Program Flash Memory (PFM) Size bits Static value that indicates the size of the PFM in bytes: 0x00010000 = device has 64 KB Flash 0x00020000 = device has 128 KB Flash 0x00040000 = device has 256 KB Flash 0x00080000 = device has 512 KB Flash REGISTER 4-8: BMXBOOTSZ: BOOT FLASH (IFM) SIZE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R R R R R R R R 31:24 BMXBOOTSZ<31:24> R R R R R R R R 23:16 BMXBOOTSZ<23:16> R R R R R R R R 15:8 BMXBOOTSZ<15:8> R R R R R R R R 7:0 BMXBOOTSZ<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 BMXBOOTSZ<31:0>: Boot Flash Memory (BFM) Size bits Static value that indicates the size of the Boot PFM in bytes: 0x00003000 = device has 12KB boot Flash  2009-2016 Microchip Technology Inc. DS60001156J-page 61

PIC32MX5XX/6XX/7XX NOTES: DS60001156J-page 62  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 5.0 FLASH PROGRAM MEMORY PIC32MX5XX/6XX/7XX devices contain an internal Flash program memory for executing user code. There Note: This data sheet summarizes the features are three methods by which the user can program this of the PIC32MX5XX/6XX/7XX family of memory: devices. It is not intended to be a • Run-Time Self-Programming (RTSP) comprehensive reference source. To • EJTAG Programming complement the information in this data • In-Circuit Serial Programming™ (ICSP™) sheet, refer to Section 5. “Flash Program Memory” (DS60001121) in the RTSP is performed by software executing from either “PIC32 Family Reference Manual”, which Flash or RAM memory. Information about RTSP is available from the Microchip web site techniques is available in Section 5. “Flash Program (www.microchip.com/PIC32). Memory” (DS60001121) in the “PIC32 Family Reference Manual”. EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer. ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP. The EJTAG and ICSP methods are described in the “PIC32 Flash Programming Specification” (DS60001145), which can be downloaded from the Microchip web site. Note: For PIC32MX5XX/6XX/7XX devices, the Flash page size is 4 KB and the row size is 512 bytes (1024 IW and 128 IW, respectively).  2009-2016 Microchip Technology Inc. DS60001156J-page 63

D 5.1 Control Registers P S 6 000 TABLE 5-1: FLASH CONTROLLER REGISTER MAP IC 1 156J-page 64 Virtual Address(BF80_#) RegisterName Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32MX F400 NVMCON(1) 31:16 — — — — — — — — — — — — — — — — 0000 5 15:0 WR WREN WRERR LVDERR LVDSTAT — — — — — — — NVMOP<3:0> 0000 X 31:16 0000 F410 NVMKEY 15:0 NVMKEY<31:0> 0000 X F420 NVMADDR(1) 31:16 NVMADDR<31:0> 0000 / 15:0 0000 6 31:16 0000 X F430 NVMDATA NVMDATA<31:0> 15:0 0000 X NVMSRC 31:16 0000 F440 NVMSRCADDR<31:0> ADDR 15:0 0000 / 7 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. X X  2 0 0 9 -2 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0, HC R/W-0 R-0, HS R-0, HS R-0, HSC U-0 U-0 U-0 15:8 WR WREN WRERR(1) LVDERR(1) LVDSTAT(1) — — — U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 — — — — NVMOP<3:0> Legend: U = Unimplemented bit, read as ‘0’ HSC = Set and Cleared by hardware R = Readable bit W = Writable bit HS = Set by hardware HC = Cleared by hardware -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 WR: Write Control bit This bit is writable when WREN = 1 and the unlock sequence is followed. 1 = Initiate a Flash operation. Hardware clears this bit when the operation completes 0 = Flash operation complete or inactive bit 14 WREN: Write Enable bit 1 = Enable writes to WR bit and enables LVD circuit 0 = Disable writes to WR bit and disables LVD circuit Note: This is the only bit in this register that is reset by a device Reset. bit 13 WRERR: Write Error bit(1) This bit is read-only and is automatically set by hardware. 1 = Program or erase sequence did not complete successfully 0 = Program or erase sequence completed normally bit 12 LVDERR: Low-Voltage Detect Error bit (LVD circuit must be enabled)(1) This bit is read-only and is automatically set by hardware. 1 = Low-voltage detected (possible data corruption, if WRERR is set) 0 = Voltage level is acceptable for programming bit 11 LVDSTAT: Low-Voltage Detect Status bit (LVD circuit must be enabled)(1) This bit is read-only and is automatically set, and cleared, by hardware. 1 = Low-voltage event is active 0 = Low-voltage event is not active bit 10-4 Unimplemented: Read as ‘0’ bit 3-0 NVMOP<3:0>: NVM Operation bits These bits are writable when WREN = 0. 1111 =Reserved • • • 0111 = Reserved 0110 =No operation 0101 =Program Flash (PFM) erase operation: erases PFM if all pages are not write-protected 0100 =Page erase operation: erases page selected by NVMADDR if it is not write-protected 0011 =Row program operation: programs row selected by NVMADDR if it is not write-protected 0010 =No operation 0001 =Word program operation: programs word selected by NVMADDR if it is not write-protected 0000 = No operation Note 1: This bit is cleared by setting NVMOP == 0000b, and initiating a Flash operation (i.e., WR).  2009-2016 Microchip Technology Inc. DS60001156J-page 65

PIC32MX5XX/6XX/7XX REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 31:24 NVMKEY<31:24> W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 23:16 NVMKEY<23:16> W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 15:8 NVMKEY<15:8> W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 7:0 NVMKEY<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 NVMKEY<31:0>: Unlock Register bits These bits are write-only, and read as ‘0’ on any read. Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM. REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 NVMADDR<31:24> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 NVMADDR<23:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 NVMADDR<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 NVMADDR<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 NVMADDR<31:0>: Flash Address bits Bulk/Chip/PFM Erase: Address is ignored. Page Erase: Address identifies the page to erase. Row Program: Address identifies the row to program. Word Program: Address identifies the word to program. DS60001156J-page 66  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 5-4: NVMDATA: FLASH PROGRAM DATA REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 NVMDATA<31:24> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 NVMDATA<23:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 NVMDATA<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 NVMDATA<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 NVMDATA<31:0>: Flash Programming Data bits Note: The bits in this register are only reset by a Power-on Reset (POR). REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 NVMSRCADDR<31:24> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 NVMSRCADDR<23:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 NVMSRCADDR<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 NVMSRCADDR<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.  2009-2016 Microchip Technology Inc. DS60001156J-page 67

PIC32MX5XX/6XX/7XX NOTES: DS60001156J-page 68  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 6.0 RESETS • Power-on Reset (POR) • Master Clear Reset pin (MCLR) Note: This data sheet summarizes the features • Software Reset (SWR) of the PIC32MX5XX/6XX/7XX family of • Watchdog Timer Reset (WDTR) devices. It is not intended to be a • Brown-out Reset (BOR) comprehensive reference source. To complement the information in this data • Configuration Mismatch Reset (CMR) sheet, refer to Section 7. “Resets” A simplified block diagram of the Reset module is (DS60001118) in the “PIC32 Family Ref- illustrated in Figure6-1. erence Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources: FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM MCLR MCLR Glitch Filter Sleep or Idle WDTR WDT Voltage Time-out Regulator Enabled POR Power-up Timer SYSRST VDD VDD Rise Detect Brown-out BOR Reset Configuration Mismatch CMR Reset SWR Software Reset  2009-2016 Microchip Technology Inc. DS60001156J-page 69

D 6.1 Control Registers P S 6 00 IC 0 1 TABLE 6-1: RESETS REGISTER MAP 1 5 3 6J-page 70 Virtual Address(BF80_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 (2)All Resets 2MX 5 31:16 — — — — — — — — — — — — — — — — 0000 F600 RCON 15:0 — — — — — — CMR VREGS EXTR SWR — WDTO SLEEP IDLE BOR POR 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 X F610 RSWRST 15:0 — — — — — — — — — — — — — — — SWRST 0000 / Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 6 Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. X 2: Reset values are dependent on the DEVCFGx Configuration bits and the type of Reset. X / 7 X X  2 0 0 9 -2 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 6-1: RCON: RESET CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 R/W-0, HS R/W-0 15:8 — — — — — — CMR VREGS R/W-0, HS R/W-0, HS U-0 R/W-0, HS R/W-0, HS R/W-0, HS R/W-1, HS R/W-1, HS 7:0 EXTR SWR — WDTO SLEEP IDLE BOR(1) POR(1) Legend: HS = Set by hardware R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-10 Unimplemented: Read as ‘0’ bit 9 CMR: Configuration Mismatch Reset Flag bit 1 = Configuration mismatch Reset has occurred 0 = Configuration mismatch Reset has not occurred bit 8 VREGS: Voltage Regulator Standby Enable bit 1 = Regulator is enabled and is on during Sleep mode 0 = Regulator is set to Stand-by Tracking mode bit 7 EXTR: External Reset (MCLR) Pin Flag bit 1 = Master Clear (pin) Reset has occurred 0 = Master Clear (pin) Reset has not occurred bit 6 SWR: Software Reset Flag bit 1 = Software Reset was executed 0 = Software Reset was not executed bit 5 Unimplemented: Read as ‘0’ bit 4 WDTO: Watchdog Timer Time-out Flag bit 1 = WDT Time-out has occurred 0 = WDT Time-out has not occurred bit 3 SLEEP: Wake From Sleep Flag bit 1 = Device was in Sleep mode 0 = Device was not in Sleep mode bit 2 IDLE: Wake From Idle Flag bit 1 = Device was in Idle mode 0 = Device was not in Idle mode bit 1 BOR: Brown-out Reset Flag bit(1) 1 = Brown-out Reset has occurred 0 = Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit(1) 1 = Power-on Reset has occurred 0 = Power-on Reset has not occurred Note 1: User software must clear this bit to view the next detection.  2009-2016 Microchip Technology Inc. DS60001156J-page 71

PIC32MX5XX/6XX/7XX REGISTER 6-2: RSWRST: SOFTWARE RESET REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 W-0, HC 7:0 — — — — — — — SWRST(1) Legend: HC = Cleared by hardware R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-1 Unimplemented: Read as ‘0’ bit 0 SWRST: Software Reset Trigger bit(1) 1 = Enable software Reset event 0 = No effect Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section 6. “Oscillator” (DS60001112) in the “PIC32 Family Reference Manual” for details. DS60001156J-page 72  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 7.0 INTERRUPT CONTROLLER The Interrupt Controller module includes the following features: Note: This data sheet summarizes the features • Up to 96 interrupt sources of the PIC32MX5XX/6XX/7XX family of • Up to 64 interrupt vectors devices. It is not intended to be a comprehensive reference source. To • Single and multi-vector mode operations complement the information in this data • Five external interrupts with edge polarity control sheet, refer to Section 8. “Interrupts” • Interrupt proximity timer (DS60001108) in the “PIC32 Family Ref- • Seven user-selectable priority levels for each vector erence Manual”, which is available from • Four user-selectable sub-priority levels within each the Microchip web site priority (www.microchip.com/PIC32). • Dedicated shadow set for user-selectable priority PIC32MX5XX/6XX/7XX devices generate interrupt level requests in response to interrupt events from peripheral • Software can generate any interrupt modules. The interrupt control module exists externally • User-configurable interrupt vector table location to the CPU logic and prioritizes the interrupt events • User-configurable interrupt vector spacing before presenting them to the CPU. A simplified block diagram of the Interrupt Controller module is illustrated in Figure7-1. FIGURE 7-1: INTERRUPT CONTROLLER MODULE Vector Number Interrupt Requests Interrupt Controller CPU Core Priority Level Shadow Set Number  2009-2016 Microchip Technology Inc. DS60001156J-page 73

PIC32MX5XX/6XX/7XX TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION Interrupt Bit Location IRQ Vector Interrupt Source(1) Number Number Flag Enable Priority Sub-Priority Highest Natural Order Priority CT – Core Timer Interrupt 0 0 IFS0<0> IEC0<0> IPC0<4:2> IPC0<1:0> CS0 – Core Software Interrupt 0 1 1 IFS0<1> IEC0<1> IPC0<12:10> IPC0<9:8> CS1 – Core Software Interrupt 1 2 2 IFS0<2> IEC0<2> IPC0<20:18> IPC0<17:16> INT0 – External Interrupt 0 3 3 IFS0<3> IEC0<3> IPC0<28:26> IPC0<25:24> T1 – Timer1 4 4 IFS0<4> IEC0<4> IPC1<4:2> IPC1<1:0> IC1 – Input Capture 1 5 5 IFS0<5> IEC0<5> IPC1<12:10> IPC1<9:8> OC1 – Output Compare 1 6 6 IFS0<6> IEC0<6> IPC1<20:18> IPC1<17:16> INT1 – External Interrupt 1 7 7 IFS0<7> IEC0<7> IPC1<28:26> IPC1<25:24> T2 – Timer2 8 8 IFS0<8> IEC0<8> IPC2<4:2> IPC2<1:0> IC2 – Input Capture 2 9 9 IFS0<9> IEC0<9> IPC2<12:10> IPC2<9:8> OC2 – Output Compare 2 10 10 IFS0<10> IEC0<10> IPC2<20:18> IPC2<17:16> INT2 – External Interrupt 2 11 11 IFS0<11> IEC0<11> IPC2<28:26> IPC2<25:24> T3 – Timer3 12 12 IFS0<12> IEC0<12> IPC3<4:2> IPC3<1:0> IC3 – Input Capture 3 13 13 IFS0<13> IEC0<13> IPC3<12:10> IPC3<9:8> OC3 – Output Compare 3 14 14 IFS0<14> IEC0<14> IPC3<20:18> IPC3<17:16> INT3 – External Interrupt 3 15 15 IFS0<15> IEC0<15> IPC3<28:26> IPC3<25:24> T4 – Timer4 16 16 IFS0<16> IEC0<16> IPC4<4:2> IPC4<1:0> IC4 – Input Capture 4 17 17 IFS0<17> IEC0<17> IPC4<12:10> IPC4<9:8> OC4 – Output Compare 4 18 18 IFS0<18> IEC0<18> IPC4<20:18> IPC4<17:16> INT4 – External Interrupt 4 19 19 IFS0<19> IEC0<19> IPC4<28:26> IPC4<25:24> T5 – Timer5 20 20 IFS0<20> IEC0<20> IPC5<4:2> IPC5<1:0> IC5 – Input Capture 5 21 21 IFS0<21> IEC0<21> IPC5<12:10> IPC5<9:8> OC5 – Output Compare 5 22 22 IFS0<22> IEC0<22> IPC5<20:18> IPC5<17:16> SPI1E – SPI1 Fault 23 23 IFS0<23> IEC0<23> IPC5<28:26> IPC5<25:24> SPI1RX – SPI1 Receive Done 24 23 IFS0<24> IEC0<24> IPC5<28:26> IPC5<25:24> SPI1TX – SPI1 Transfer Done 25 23 IFS0<25> IEC0<25> IPC5<28:26> IPC5<25:24> U1E – UART1 Error SPI3E – SPI3 Fault 26 24 IFS0<26> IEC0<26> IPC6<4:2> IPC6<1:0> I2C3B – I2C3 Bus Collision Event U1RX – UART1 Receiver SPI3RX – SPI3 Receive Done 27 24 IFS0<27> IEC0<27> IPC6<4:2> IPC6<1:0> I2C3S – I2C3 Slave Event U1TX – UART1 Transmitter SPI3TX – SPI3 Transfer Done 28 24 IFS0<28> IEC0<28> IPC6<4:2> IPC6<1:0> I2C3M – I2C3 Master Event I2C1B – I2C1 Bus Collision Event 29 25 IFS0<29> IEC0<29> IPC6<12:10> IPC6<9:8> I2C1S – I2C1 Slave Event 30 25 IFS0<30> IEC0<30> IPC6<12:10> IPC6<9:8> I2C1M – I2C1 Master Event 31 25 IFS0<31> IEC0<31> IPC6<12:10> IPC6<9:8> CN – Input Change Interrupt 32 26 IFS1<0> IEC1<0> IPC6<20:18> IPC6<17:16> Note 1: Not all interrupt sources are available on all devices. See TABLE 1:“PIC32MX5XX USB and CAN Features”, TABLE 2:“PIC32MX6XX USB and Ethernet Features” and TABLE 3:“PIC32MX7XX USB, Ethernet, and CAN Features” for the list of available peripherals. DS60001156J-page 74  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED) Interrupt Bit Location IRQ Vector Interrupt Source(1) Number Number Flag Enable Priority Sub-Priority AD1 – ADC1 Convert Done 33 27 IFS1<1> IEC1<1> IPC6<28:26> IPC6<25:24> PMP – Parallel Master Port 34 28 IFS1<2> IEC1<2> IPC7<4:2> IPC7<1:0> CMP1 – Comparator Interrupt 35 29 IFS1<3> IEC1<3> IPC7<12:10> IPC7<9:8> CMP2 – Comparator Interrupt 36 30 IFS1<4> IEC1<4> IPC7<20:18> IPC7<17:16> U2E – UART2 Error SPI2E – SPI2 Fault 37 31 IFS1<5> IEC1<5> IPC7<28:26> IPC7<25:24> I2C4B – I2C4 Bus Collision Event U2RX – UART2 Receiver SPI2RX – SPI2 Receive Done 38 31 IFS1<6> IEC1<6> IPC7<28:26> IPC7<25:24> I2C4S – I2C4 Slave Event U2TX – UART2 Transmitter SPI2TX – SPI2 Transfer Done 39 31 IFS1<7> IEC1<7> IPC7<28:26> IPC7<25:24> IC4M – I2C4 Master Event U3E – UART3 Error SPI4E – SPI4 Fault 40 32 IFS1<8> IEC1<8> IPC8<4:2> IPC8<1:0> I2C5B – I2C5 Bus Collision Event U3RX – UART3 Receiver SPI4RX – SPI4 Receive Done 41 32 IFS1<9> IEC1<9> IPC8<4:2> IPC8<1:0> I2C5S – I2C5 Slave Event U3TX – UART3 Transmitter SPI4TX – SPI4 Transfer Done 42 32 IFS1<10> IEC1<10> IPC8<4:2> IPC8<1:0> IC5M – I2C5 Master Event I2C2B – I2C2 Bus Collision Event 43 33 IFS1<11> IEC1<11> IPC8<12:10> IPC8<9:8> I2C2S – I2C2 Slave Event 44 33 IFS1<12> IEC1<12> IPC8<12:10> IPC8<9:8> I2C2M – I2C2 Master Event 45 33 IFS1<13> IEC1<13> IPC8<12:10> IPC8<9:8> FSCM – Fail-Safe Clock Monitor 46 34 IFS1<14> IEC1<14> IPC8<20:18> IPC8<17:16> RTCC – Real-Time Clock and 47 35 IFS1<15> IEC1<15> IPC8<28:26> IPC8<25:24> Calendar DMA0 – DMA Channel 0 48 36 IFS1<16> IEC1<16> IPC9<4:2> IPC9<1:0> DMA1 – DMA Channel 1 49 37 IFS1<17> IEC1<17> IPC9<12:10> IPC9<9:8> DMA2 – DMA Channel 2 50 38 IFS1<18> IEC1<18> IPC9<20:18> IPC9<17:16> DMA3 – DMA Channel 3 51 39 IFS1<19> IEC1<19> IPC9<28:26> IPC9<25:24> DMA4 – DMA Channel 4 52 40 IFS1<20> IEC1<20> IPC10<4:2> IPC10<1:0> DMA5 – DMA Channel 5 53 41 IFS1<21> IEC1<21> IPC10<12:10> IPC10<9:8> DMA6 – DMA Channel 6 54 42 IFS1<22> IEC1<22> IPC10<20:18> IPC10<17:16> DMA7 – DMA Channel 7 55 43 IFS1<23> IEC1<23> IPC10<28:26> IPC10<25:24> FCE – Flash Control Event 56 44 IFS1<24> IEC1<24> IPC11<4:2> IPC11<1:0> USB–USB Interrupt 57 45 IFS1<25> IEC1<25> IPC11<12:10> IPC11<9:8> CAN1 – Control Area Network 1 58 46 IFS1<26> IEC1<26> IPC11<20:18> IPC11<17:16> CAN2 – Control Area Network 2 59 47 IFS1<27> IEC1<27> IPC11<28:26> IPC11<25:24> ETH – Ethernet Interrupt 60 48 IFS1<28> IEC1<28> IPC12<4:2> IPC12<1:0> IC1E – Input Capture 1 Error 61 5 IFS1<29> IEC1<29> IPC1<12:10> IPC1<9:8> IC2E – Input Capture 2 Error 62 9 IFS1<30> IEC1<30> IPC2<12:10> IPC2<9:8> Note 1: Not all interrupt sources are available on all devices. See TABLE 1:“PIC32MX5XX USB and CAN Features”, TABLE 2:“PIC32MX6XX USB and Ethernet Features” and TABLE 3:“PIC32MX7XX USB, Ethernet, and CAN Features” for the list of available peripherals.  2009-2016 Microchip Technology Inc. DS60001156J-page 75

PIC32MX5XX/6XX/7XX TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED) Interrupt Bit Location IRQ Vector Interrupt Source(1) Number Number Flag Enable Priority Sub-Priority IC3E – Input Capture 3 Error 63 13 IFS1<31> IEC1<31> IPC3<12:10> IPC3<9:8> IC4E – Input Capture 4 Error 64 17 IFS2<0> IEC2<0> IPC4<12:10> IPC4<9:8> IC5E – Input Capture 5 Error 65 21 IFS2<1> IEC2<1> IPC5<12:10> IPC5<9:8> PMPE – Parallel Master Port Error 66 28 IFS2<2> IEC2<2> IPC7<4:2> IPC7<1:0> U4E – UART4 Error 67 49 IFS2<3> IEC2<3> IPC12<12:10> IPC12<9:8> U4RX – UART4 Receiver 68 49 IFS2<4> IEC2<4> IPC12<12:10> IPC12<9:8> U4TX – UART4 Transmitter 69 49 IFS2<5> IEC2<5> IPC12<12:10> IPC12<9:8> U6E – UART6 Error 70 50 IFS2<6> IEC2<6> IPC12<20:18> IPC12<17:16> U6RX – UART6 Receiver 71 50 IFS2<7> IEC2<7> IPC12<20:18> IPC12<17:16> U6TX – UART6 Transmitter 72 50 IFS2<8> IEC2<8> IPC12<20:18> IPC12<17:16> U5E – UART5 Error 73 51 IFS2<9> IEC2<9> IPC12<28:26> IPC12<25:24> U5RX – UART5 Receiver 74 51 IFS2<10> IEC2<10> IPC12<28:26> IPC12<25:24> U5TX – UART5 Transmitter 75 51 IFS2<11> IEC2<11> IPC12<28:26> IPC12<25:24> (Reserved) — — — — — — Lowest Natural Order Priority Note 1: Not all interrupt sources are available on all devices. See TABLE 1:“PIC32MX5XX USB and CAN Features”, TABLE 2:“PIC32MX6XX USB and Ethernet Features” and TABLE 3:“PIC32MX7XX USB, Ethernet, and CAN Features” for the list of available peripherals. DS60001156J-page 76  2009-2016 Microchip Technology Inc.

 7.1 Control Registers 2 0 0 9 TABLE 7-2: INTERRUPT REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H AND -2 0 PIC32MX575F512H DEVICES 1 6 M s Bits s icrochip Tec Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 AllResets h no 31:16 — — — — — — — — — — — — — — — SS0 0000 log 1000 INTCON 15:0 — — — MVEC — TPC<2:0> — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 y Inc. 1010 INTSTAT(3) 3115::106 —— —— —— —— —— — SRIPL—<2:0> — —— —— — — VE—C<5:0> — — — 00000000 31:16 0000 1020 IPTMR IPTMR<31:0> 15:0 0000 U1TXIF U1RXIF U1EIF 31:16 I2C1MIF I2C1SIF I2C1BIF SPI3TXIF SPI3RXIF SPI3EIF — — — OC5IF IC5IF T5IF INT4IF OC4IF IC4IF T4IF 0000 1030 IFS0 I2C3MIF I2C3SIF I2C3BIF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF INT1IF OC1IF IC1IF T1IF INT0IF CS1IF CS0IF CTIF 0000 31:16 IC3EIF IC2EIF IC1EIF — — CAN1IF USBIF FCEIF DMA7IF(2) DMA6IF(2) DMA5IF(2) DMA4IF(2) DMA3IF DMA2IF DMA1IF DMA0IF 0000 U2TXIF U2RXIF U2EIF U3TXIF U3RXIF U3EIF 1040 IFS1 15:0 RTCCIF FSCMIF — — — SPI4TXIF SPI4RXIF SPI4EIF SPI2TXIF SPI2RXIF SPI2EIF CMP2IF CMP1IF PMPIF AD1IF CNIF 0000 P I2C5MIF I2C5SIF I2C5BIF I2C4MIF I2C4SIF I2C4BIF I 31:16 — — — — — — — — — — — — — — — — 0000 C 1050 IFS2 15:0 — — — — U5TXIF U5RXIF U5EIF U6TXIF U6RXIF U6EIF U4TXIF U4RXIF U4EIF PMPEIF IC5EIF IC4EIF 0000 3 U1TXIE U1RXIE U1EIE 2 31:16 I2C1MIE I2C1SIE I2C1BIE SPI3TXIE SPI3RXIE SPI3EIE — — — OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE 0000 1060 IEC0 M I2C3MIE I2C3SIE I2C3BIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE INT1IE OC1IE IC1IE T1IE INT0IE CS1IE CS0IE CTIE 0000 X 31:16 IC3EIE IC2EIE IC1EIE — — CAN1IE USBIE FCEIE DMA7IE(2) DMA6IE(2) DMA5IE(2) DMA4IE(2) DMA3IE DMA2IE DMA1IE DMA0IE 0000 5 U2TXIE U2RXIE U2EIE U3TXIE U3RXIE U3EIE 1070 IEC1 X 15:0 RTCCIE FSCMIE — — — SPI4TXIE SPI4RXIE SPI4EIE SPI2TXIE SPI2RXIE SPI2EIE CMP2IE CMP1IE PMPIE AD1IE CNIE 0000 I2C5MIE I2C5SIE I2C5BIE I2C4MIE I2C4SIE I2C4BIE X 1080 IEC2 31:16 — — — — — — — — — — — — — — — — 0000 / 15:0 — — — — U5TXIE U5RXIE U5EIE U6TXIE U6RXIE U6EIE U4TXIE U4RXIE U4EIE PMPEIE IC5EIE IC4EIE 0000 6 D S 31:16 — — — INT0IP<2:0> INT0IS<1:0> — — — CS1IP<2:0> CS1IS<1:0> 0000 X 6 1090 IPC0 00 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 X 0 1 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 156 Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET /7 J and INV Registers” for more information. -pa 2: These bits are not available on PIC32MX534/564/664/764 devices. X ge 7 3: This register does not have associated CLR, SET, and INV registers. X 7

D TABLE 7-2: INTERRUPT REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H AND P S 6 PIC32MX575F512H DEVICES (CONTINUED) 0 I 0 C 01 ss Bits 156J-page 7 Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 AllResets 32M 8 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 X 10A0 IPC1 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 5 31:16 — — — INT2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 X 10B0 IPC2 15:0 — — — IC2IP<2:0> IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 X 31:16 — — — INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 0000 10C0 IPC3 15:0 — — — IC3IP<2:0> IC3IS<1:0> — — — T3IP<2:0> T3IS<1:0> 0000 / 6 31:16 — — — INT4IP<2:0> INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 0000 10D0 IPC4 X 15:0 — — — IC4IP<2:0> IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 31:16 — — — — — — — — — — — OC5IP<2:0> OC5IS<1:0> 0000 X 10E0 IPC5 15:0 — — — IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 / 31:16 — — — AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 7 U1IP<2:0> U1IS<1:0> X 10F0 IPC6 15:0 — — — I2C1IP<2:0> I2C1IS<1:0> — — — SPI3IP<2:0> SPI3IS<1:0> 0000 X I2C3IP<2:0> I2C3IS<1:0> U3IP<2:0> U3IS<1:0> 31:16 — — — SPI2IP<2:0> SPI2IS<1:0> — — — CMP2IP<2:0> CMP2IS<1:0> 0000 1100 IPC7 I2C4IP<2:0> I2C4IS<1:0> 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 31:16 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 U2IP<2:0> U2IS<1:0> 1110 IPC8 15:0 — — — — — — — — — — — SPI4IP<2:0> SPI4IS<1:0> 0000 I2C5IP<2:0> I2C5IS<1:0>  31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 0000 2 1120 IPC9 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 0 09 31:16 — — — DMA7IP<2:0>(2) DMA7IS<1:0>(2) — — — DMA6IP<2:0>(2) DMA6IS<1:0>(2) 0000 -20 1130 IPC10 15:0 — — — DMA5IP<2:0>(2) DMA5IS<1:0>(2) — — — DMA4IP<2:0>(2) DMA4IS<1:0>(2) 0000 1 6 31:16 — — — — — — — — — — — CAN1IP<2:0> CAN1IS<1:0> 0000 M 1140 IPC11 ic 15:0 — — — USBIP<2:0> USBIS<1:0> — — — FCEIP<2:0> FCEIS<1:0> 0000 ro 31:16 — — — U5IP<2:0> U5IS<1:0> — — — U6IP<2:0> U6IS<1:0> 0000 chip 1150 IPC12 15:0 — — — U4IP<2:0> U4IS<1:0> — — — — — — — — 0000 T Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. e ch Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET no and INV Registers” for more information. lo 2: These bits are not available on PIC32MX534/564/664/764 devices. g y 3: This register does not have associated CLR, SET, and INV registers. In c .

 TABLE 7-3: INTERRUPT REGISTER MAP FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H AND 2 0 PIC32MX695F512H DEVICES 0 9 -2016 Microch Virtual Address(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets ip T 1000 INTCON 31:16 — — — — — — — — — — — — — — — SS0 0000 ec 15:0 — — — MVEC — TPC<2:0> — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 hno 1010 INTSTAT(3)31:16 — — — — — — — — — — — — — — — — 0000 lo 15:0 — — — — — SRIPL<2:0> — — VEC<5:0> 0000 gy 31:16 0000 In 1020 IPTMR 15:0 IPTMR<31:0> 0000 c . U1TXIF U1RXIF U1EIF 31:16 I2C1MIF I2C1SIF I2C1BIF SPI3TXIF SPI3RXIF SPI3EIF — — — OC5IF IC5IF T5IF INT4IF OC4IF IC4IF T4IF 0000 1030 IFS0 I2C3MIF I2C3SIF I2C3BIF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF INT1IF OC1IF IC1IF T1IF INT0IF CS1IF CS0IF CTIF 0000 31:16 IC3EIF IC2EIF IC1EIF ETHIF — — USBIF FCEIF DMA7IF(2) DMA6IF(2) DMA5IF(2) DMA4IF(2) DMA3IF DMA2IF DMA1IF DMA0IF 0000 U2TXIF U2RXIF U2EIF U3TXIF U3RXIF U3EIF 1040 IFS1 15:0 RTCCIF FSCMIF — — — SPI4TXIF SPI4RXIF SPI4EIF SPI2TXIF SPI2RXIF SPI2EIF CMP2IF CMP1IF PMPIF AD1IF CNIF 0000 I2C5MIF I2C5SIF I2C5BIF I2C4MIF I2C4SIF I2C4BIF 31:16 — — — — — — — — — — — — — — 0000 1050 IFS2 15:0 — — — — U5TXIF U5RXIF U5EIF U6TXIF U6RXIF U6EIF U4TXIF U4RXIF U4EIF PMPEIF IC5EIF IC4EIF 0000 P U1TXIE U1RXIE U1EIE 31:16 I2C1MIE I2C1SIE I2C1BIE SPI3TXIE SPI3RXIE SPI3EIE — — — OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE 0000 I 1060 IEC0 C I2C3MIE I2C3SIE I2C3BIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE INT1IE OC1IE IC1IE T1IE INT0IE CS1IE CS0IE CTIE 0000 3 31:16 IC3EIE IC2EIE IC1EIE ETHIE — — USBIE FCEIE DMA7IE(2) DMA6IE(2) DMA5IE(2) DMA4IE(2) DMA3IE DMA2IE DMA1IE DMA0IE 0000 2 U2TXIE U2RXIE U2EIE U3TXIE U3RXIE U3EIE 1070 IEC1 M 15:0 RTCCIE FSCMIE — — — SPI4TXIE SPI4RXIE SPI4EIE SPI2TXIE SPI2RXIE SPI2EIE CMP2IE CMP1IE PMPIE AD1IE CNIE 0000 I2C5MIE I2C5SIE I2C5BIE I2C4MIE I2C4SIE I2C4BIE X 31:16 — — — — — — — — — — — — — — — — 0000 1080 IEC2 15:0 — — — — U5TXIE U5RXIE U5EIE U6TXIE U6RXIE U6EIE U4TXIE U4RXIE U4EIE PMPEIE IC5EIE IC4EIE 0000 5 1090 IPC0 31:16 — — — INT0IP<2:0> INT0IS<1:0> — — — CS1IP<2:0> CS1IS<1:0> 0000 X 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 X 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 10A0 IPC1 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 / 31:16 — — — INT2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 6 D 10B0 IPC2 S 15:0 — — — IC2IP<2:0> IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 X 6 0 31:16 — — — INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 0000 0 10C0 IPC3 X 01 15:0 — — — IC3IP<2:0> IC3IS<1:0> — — — T3IP<2:0> T3IS<1:0> 0000 15 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. / 6 7 J Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC respectively. See Section12.1.1 “CLR, SET and INV -p Registers” for more information. X a g 2: These bits are not available on PIC32MX664 devices. e 7 3: This register does not have associated CLR, SET, and INV registers. X 9

D TABLE 7-3: INTERRUPT REGISTER MAP FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H AND P S 6 PIC32MX695F512H DEVICES (CONTINUED) 0 I 0 C 01 ss Bits 156J-page 8 Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32M 0 31:16 — — — INT4IP<2:0> INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 0000 X 10D0 IPC4 15:0 — — — IC4IP<2:0> IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 5 31:16 — — — — — — — — — — — OC5IP<2:0> OC5IS<1:0> 0000 10E0 IPC5 15:0 — — — IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 X 31:16 — — — AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 X U1IP<2:0> U1IS<1:0> 10F0 IPC6 15:0 — — — I2C1IP<2:0> I2C1IS<1:0> — — — SPI3IP<2:0> SPI3IS<1:0> 0000 /6 I2C3IP<2:0> I2C3IS<1:0> X U3IP<2:0> U3IS<1:0> 31:16 — — — SPI2IP<2:0> SPI2IS<1:0> — — — CMP2IP<2:0> CMP2IS<1:0> 0000 X 1100 IPC7 I2C4IP<2:0> I2C4IS<1:0> / 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 7 31:16 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 X U2IP<2:0> U2IS<1:0> 1110 IPC8 15:0 — — — — — — — — — — — SPI4IP<2:0> SPI4IS<1:0> 0000 X I2C5IP<2:0> I2C5IS<1:0> 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 0000 1120 IPC9 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0>(2) DMA7IS<1:0>(2) — — — DMA6IP<2:0>(2) DMA6IS<1:0>(2) 0000 1130 IPC10 15:0 — — — DMA5IP<2:0>(2) DMA5IS<1:0>(2) — — — DMA4IP<2:0>(2) DMA4IS<1:0>(2) 0000 31:16 — — — — — — — — — — — — — — — — 0000 1140 IPC11 15:0 — — — USBIP<2:0> USBIS<1:0> — — — FCEIP<2:0> FCEIS<1:0> 0000 31:16 — — — U5IP<2:0> U5IS<1:0> — — — U6IP<2:0> U6IS<1:0> 0000 1150 IPC12 15:0 — — — U4IP<2:0> U4IS<1:0> — — — ETHIP<2:0> ETHIS<1:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC respectively. See Section12.1.1 “CLR, SET and INV 2 Registers” for more information. 0 0 2: These bits are not available on PIC32MX664 devices. 9-2 3: This register does not have associated CLR, SET, and INV registers. 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

 TABLE 7-4: INTERRUPT REGISTER MAP FOR PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND 2 0 PIC32MX795F512H DEVICES 0 9 -2016 Microchip Virtual Address(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets T 31:16 — — — — — — — — — — — — — — — SS0 0000 e 1000 INTCON ch 15:0 — — — MVEC — TPC<2:0> — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 nolog 1010 INTSTAT(3)3115::106 —— —— —— —— —— — SRIP—L<2:0> — —— —— — — —VEC<5:0>— — — 00000000 y In 1020 IPTMR 31:16 IPTMR<31:0> 0000 c 15:0 0000 . U1TXIF U1RXIF U1EIF 31:16 I2C1MIF I2C1SIF I2C1BIF SPI3TXIF SPI3RXIF SPI3EIF — — — OC5IF IC5IF T5IF INT4IF OC4IF IC4IF T4IF 0000 1030 IFS0 I2C3MIF I2C3SIF I2C3BIF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF INT1IF OC1IF IC1IF T1IF INT0IF CS1IF CS0IF CTIF 0000 31:16 IC3EIF IC2EIF IC1EIF ETHIF CAN2IF(2) CAN1IF USBIF FCEIF DMA7IF(2) DMA6IF(2) DMA5IF(2) DMA4IF(2) DMA3IF DMA2IF DMA1IF DMA0IF 0000 U2TXIF U2RXIF U2EIF U3TXIF U3RXIF U3EIF 1040 IFS1 15:0 RTCCIF FSCMIF — — — SPI4TXIF SPI4RXIF SPI4EIF SPI2TXIF SPI2RXIF SPI2EIF CMP2IF CMP1IF PMPIF AD1IF CNIF 0000 I2C5MIF I2C5SIF I2C5BIF I2C4MIF I2C4SIF I2C4BIF 31:16 — — — — — — — — — — — — — — — — 0000 1050 IFS2 15:0 — — — — U5TXIF U5RXIF U5EIF U6TXIF U6RXIF U6EIF U4TXIF U4RXIF U4EIF PMPEIF IC5EIF IC4EIF 0000 P U1TXIE U1RXIE U1EIE I 1060 IEC0 31:16 I2C1MIE I2C1SIE I2C1BIE SPI3TXIE SPI3RXIE SPI3EIE — — — OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE 0000 C I2C3MIE I2C3SIE I2C3BIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE INT1IE OC1IE IC1IE T1IE INT0IE CS1IE CS0IE CTIE 0000 3 31:16 IC3EIE IC2EIE IC1EIE ETHIE CAN2IE(2) CAN1IE USBIE FCEIE DMA7IE(2) DMA6IE(2) DMA5IE(2) DMA4IE(2) DMA3IE DMA2IE DMA1IE DMA0IE 0000 2 1070 IEC1 U2TXIE U2RXIE U2EIE U3TXIE U3RXIE U3EIE M 15:0 RTCCIE FSCMIE — — — SPI4TXIE SPI4RXIE SPI4EIE SPI2TXIE SPI2RXIE SPI2EIE CMP2IE CMP1IE PMPIE AD1IE CNIE 0000 I2C5MIE I2C5SIE I2C5BIE I2C4MIE I2C4SIE I2C4BIE X 31:16 — — — — — — — — — — — — — — — — 0000 1080 IEC2 5 15:0 — — — — U5TXIE U5RXIE U5EIE U6TXIE U6RXIE U6EIE U4TXIE U4RXIE U4EIE PMPEIE IC5EIE IC4EIE 0000 31:16 — — — INT0IP<2:0> INT0IS<1:0> — — — CS1IP<2:0> CS1IS<1:0> 0000 X 1090 IPC0 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 X 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 10A0 IPC1 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 /6 D 31:16 — — — INT2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 S 10B0 IPC2 X 6 15:0 — — — IC2IP<2:0> IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 0 00115 10C0 IPC3 3115:1:06 —— —— —— INICT33IPIP<<22:0:0>> INICT33ISIS<<11:0:0>> —— —— —— OTC33IPIP<<22:0:0>> OTC33ISIS<<11:0:0>> 00000000 X/ 6 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 7 J -p Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV X a Registers” for more information. g e 8 23:: TThhiiss breitg iiss tuenr idmopeles mnoetn hteadv eo na sPsIoCc3ia2tMedX 7C6L4RF,1 S2E8HT, daenvdi cIeN.V registers. X 1

D TABLE 7-4: INTERRUPT REGISTER MAP FOR PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND P S 6 PIC32MX795F512H DEVICES (CONTINUED) 0 I 0 C 01 ss Bits 156J-page 8 Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32M 2 31:16 — — — INT4IP<2:0> INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 0000 X 10D0 IPC4 15:0 — — — IC4IP<2:0> IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 5 31:16 — — — — — — — — — — — OC5IP<2:0> OC5IS<1:0> 0000 10E0 IPC5 X 15:0 — — — IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 31:16 — — — AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 X U1IP<2:0> U1IS<1:0> 10F0 IPC6 / 15:0 — — — I2C1IP<2:0> I2C1IS<1:0> — — — SPI3IP<2:0> SPI3IS<1:0> 0000 6 I2C3IP<2:0> I2C3IS<1:0> X U3IP<2:0> U3IS<1:0> X 31:16 — — — SPI2IP<2:0> SPI2IS<1:0> — — — CMP2IP<2:0> CMP2IS<1:0> 0000 1100 IPC7 I2C4IP<2:0> I2C4IS<1:0> / 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 7 31:16 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 X U2IP<2:0> U2IS<1:0> 1110 IPC8 X 15:0 — — — — — — — — — — — SPI4IP<2:0> SPI4IS<1:0> 0000 I2C5IP<2:0> I2C5IS<1:0> 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 0000 1120 IPC9 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0>(2) DMA7IS<1:0>(2) — — — DMA6IP<2:0>(2) DMA6IS<1:0>(2) 0000 1130 IPC10 15:0 — — — DMA5IP<2:0>(2) DMA5IS<1:0>(2) — — — DMA4IP<2:0>(2) DMA4IS<1:0>(2) 0000 31:16 — — — CAN2IP<2:0>(2) CAN2IS<1:0>(2) — — — CAN1IP<2:0> CAN1IS<1:0> 0000 1140 IPC11 15:0 — — — USBIP<2:0> USBIS<1:0> — — — FCEIP<2:0> FCEIS<1:0> 0000 31:16 — — — U5IP<2:0> U5IS<1:0> — — — U6IP<2:0> U6IS<1:0> 0000 1150 IPC12 15:0 — — — U4IP<2:0> U4IS<1:0> — — — ETHIP<2:0> ETHIS<1:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  2 Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV 0 Registers” for more information. 0 9 2: This bit is unimplemented on PIC32MX764F128H device. -2 3: This register does not have associated CLR, SET, and INV registers. 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

 TABLE 7-5: INTERRUPT REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L PIC32MX575F512L AND 2 0 PIC32MX575F256L DEVICES 0 9 -2016 Microchip Virtual Address(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets T 31:16 — — — — — — — — — — — — — — — SS0 0000 e 1000 INTCON ch 15:0 — — — MVEC — TPC<2:0> — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 nolog 1010 INTSTAT(3) 3115::106 —— —— —— —— —— — SRIP—L<2:0> — —— —— — — —VEC<5:0>— — — 00000000 y In 1020 IPTMR 31:16 IPTMR<31:0> 0000 c 15:0 0000 . U1TXIF U1RXIF U1EIF 31:16 I2C1MIF I2C1SIF I2C1BIF SPI3TXIF SPI3RXIF SPI3EIF SPI1TXIF SPI1RXIF SPI1EIF OC5IF IC5IF T5IF INT4IF OC4IF IC4IF T4IF 0000 1030 IFS0 I2C3MIF I2C3SIF I2C3BIF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF INT1IF OC1IF IC1IF T1IF INT0IF CS1IF CS0IF CTIF 0000 31:16 IC3EIF IC2EIF IC1EIF — — CAN1IF USBIF FCEIF DMA7IF(2) DMA6IF(2) DMA5IF(2) DMA4IF(2) DMA3IF DMA2IF DMA1IF DMA0IF 0000 U2TXIF U2RXIF U2EIF U3TXIF U3RXIF U3EIF 1040 IFS1 15:0 RTCCIF FSCMIF I2C2MIF I2C2SIF I2C2BIF SPI4TXIF SPI4RXIF SPI4EIF SPI2TXIF SPI2RXIF SPI2EIF CMP2IF CMP1IF PMPIF AD1IF CNIF 0000 I2C5MIF I2C5SIF I2C5BIF I2C4MIF I2C4SIF I2C4BIF 31:16 — — — — — — — — — — — — — — — — 0000 1050 IFS2 15:0 — — — — U5TXIF U5RXIF U5EIF U6TXIF U6RXIF U6EIF U4TXIF U4RXIF U4EIF PMPEIF IC5EIF IC4EIF 0000 P U1TXIE U1RXIE U1EIE I 1060 IEC0 31:16 I2C1MIE I2C1SIE I2C1BIE SPI3TXIE SPI3RXIE SPI3EIE SPI1TXIE SPI1RXIE SPI1EIE OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE 0000 C I2C3MIE I2C3SIE I2C3BIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE INT1IE OC1IE IC1IE T1IE INT0IE CS1IE CS0IE CTIE 0000 3 31:16 IC3EIE IC2EIE IC1EIE — — CAN1IE USBIE FCEIE DMA7IE(2) DMA6IE(2) DMA5IE(2) DMA4IE(2) DMA3IE DMA2IE DMA1IE DMA0IE 0000 2 1070 IEC1 U2TXIE U2RXIE U2EIE U3TXIE U3RXIE U3EIE M 15:0 RTCCIE FSCMIE I2C2MIE I2C2SIE I2C2BIE SPI4TXIE SPI4RXIE SPI4EIE SPI2TXIE SPI2RXIE SPI2EIE CMP2IE CMP1IE PMPIE AD1IE CNIE 0000 I2C5MIE I2C5SIE I2C5BIE I2C4MIE I2C4SIE I2C4BIE X 31:16 — — — — — — — — — — — — — — — — 0000 1080 IEC2 5 15:0 — — — — U5TXIE U5RXIE U5EIE U6TXIE U6RXIE U6EIE U4TXIE U4RXIE U4EIE PMPEIE IC5EIE IC4EIE 0000 31:16 — — — INT0IP<2:0> INT0IS<1:0> — — — CS1IP<2:0> CS1IS<1:0> 0000 X 1090 IPC0 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 X 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 10A0 IPC1 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 /6 D 31:16 — — — INT2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 S 10B0 IPC2 X 6 15:0 — — — IC2IP<2:0> IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 0 0 31:16 — — — INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 0000 X 0 10C0 IPC3 1156 Legend: x = unk1n5o:0wn value— on Reset; —— = unimple—mented, read as ‘0’.I CR3eIsPe<t2 v:a0l>ues are shown in heIxCa3dIeSc<im1:a0l>. — — — T3IP<2:0> T3IS<1:0> 0000 /7 J -p Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV X a Registers” for more information. g e 8 23:: TThheiss ree gbiistste arr deo neost naovat ihlaabvlee aosns PocICia3te2dM CXL5R34, /S5E64T ,d aenvdic IeNsV. registers. X 3

D TABLE 7-5: INTERRUPT REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L PIC32MX575F512L AND P S 6 PIC32MX575F256L DEVICES (CONTINUED) 0 I 0 C 01 ss Bits 156J-page 8 Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32M 4 31:16 — — — INT4IP<2:0> INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 0000 X 10D0 IPC4 15:0 — — — IC4IP<2:0> IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 5 31:16 — — — SPI1IP<2:0> SPI1IS<1:0> — — — OC5IP<2:0> OC5IS<1:0> 0000 10E0 IPC5 X 15:0 — — — IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 31:16 — — — AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 X U1IP<2:0> U1IS<1:0> 10F0 IPC6 / 15:0 — — — I2C1IP<2:0> I2C1IS<1:0> — — — SPI3IP<2:0> SPI3IS<1:0> 0000 6 I2C3IP<2:0> I2C3IS<1:0> X U3IP<2:0> U3IS<1:0> X 31:16 — — — SPI2IP<2:0> SPI2IS<1:0> — — — CMP2IP<2:0> CMP2IS<1:0> 0000 1100 IPC7 I2C4IP<2:0> I2C4IS<1:0> / 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 7 31:16 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 X U2IP<2:0> U2IS<1:0> 1110 IPC8 X 15:0 — — — I2C2IP<2:0> I2C2IS<1:0> — — — SPI4IP<2:0> SPI4IS<1:0> 0000 I2C5IP<2:0> I2C5IS<1:0> 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 0000 1120 IPC9 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0>(2) DMA7IS<1:0>(2) — — — DMA6IP<2:0>(2) DMA6IS<1:0>(2) 0000 1130 IPC10 15:0 — — — DMA5IP<2:0>(2) DMA5IS<1:0>(2) — — — DMA4IP<2:0>(2) DMA4IS<1:0>(2) 0000 31:16 — — — — — — — — — — — CAN1IP<2:0> CAN1IS<1:0> 0000 1140 IPC11 15:0 — — — USBIP<2:0> USBIS<1:0> — — — FCEIP<2:0> FCEIS<1:0> 0000 31:16 — — — U5IP<2:0> U5IS<1:0> — — — U6IP<2:0> U6IS<1:0> 0000 1150 IPC12 15:0 — — — U4IP<2:0> U4IS<1:0> — — — — — — — — 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  2 Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV 0 Registers” for more information. 0 9 2: These bits are not available on PIC32MX534/564 devices. -20 3: This register does not have associated CLR, SET, and INV registers. 1 6 M ic ro c h ip T e c h n o lo g y In c .

 TABLE 7-6: INTERRUPT REGISTER MAP FOR PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L AND 2 0 PIC32MX695F512L DEVICES 0 9 -2016 Microchip Virtual Address(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets T 31:16 — — — — — — — — — — — — — — — SS0 0000 e 1000 INTCON ch 15:0 — — — MVEC — TPC<2:0> — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 nolog 1010 INTSTAT(3)3115:1:06 —— —— —— —— —— — SRIP—L<2:0> — —— —— — — —VEC<5:0>— — — 00000000 y In 1020 IPTMR 31:16 IPTMR<31:0> 0000 c 15:0 0000 . U1TXIF U1RXIF U1EIF 31:16 I2C1MIF I2C1SIF I2C1BIF SPI3TXIF SPI3RXIF SPI3EIF SPI1TXIF SPI1RXIF SPI1EIF OC5IF IC5IF T5IF INT4IF OC4IF IC4IF T4IF 0000 1030 IFS0 I2C3MIF I2C3SIF I2C3BIF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF INT1IF OC1IF IC1IF T1IF INT0IF CS1IF CS0IF CTIF 0000 31:16 IC3EIF IC2EIF IC1EIF ETHIF — — USBIF FCEIF DMA7IF(2) DMA6IF(2) DMA5IF(2) DMA4IF(2) DMA3IF DMA2IF DMA1IF DMA0IF 0000 U2TXIF U2RXIF U2EIF U3TXIF U3RXIF U3EIF 1040 IFS1 15:0 RTCCIF FSCMIF I2C2MIF I2C2SIF I2C2BIF SPI4TXIF SPI4RXIF SPI4EIF SPI2TXIF SPI2RXIF SPI2EIF CMP2IF CMP1IF PMPIF AD1IF CNIF 0000 I2C5MIF I2C5SIF I2C5BIF I2C4MIF I2C4SIF I2C4BIF 31:16 — — — — — — — — — — — — — — — — 0000 1050 IFS2 15:0 — — — — U5TXIF U5RXIF U5EIF U6TXIF U6RXIF U6EIF U4TXIF U4RXIF U4EIF PMPEIF IC5EIF IC4EIF 0000 P U1TXIE U1RXIE U1EIE I 1060 IEC0 31:16 I2C1MIE I2C1SIE I2C1BIE SPI3TXIE SPI3RXIE SPI3EIE SPI1TXIE SPI1RXIE SPI1EIE OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE 0000 C I2C3MIE I2C3SIE I2C3BIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE INT1IE OC1IE IC1IE T1IE INT0IE CS1IE CS0IE CTIE 0000 3 31:16 IC3EIE IC2EIE IC1EIE ETHIE — — USBIE FCEIE DMA7IE(2) DMA6IE(2) DMA5IE(2) DMA4IE(2) DMA3IE DMA2IE DMA1IE DMA0IE 0000 2 1070 IEC1 U2TXIE U2RXIE U2EIE U3TXIE U3RXIE U3EIE M 15:0 RTCCIE FSCMIE I2C2MIE I2C2SIE I2C2BIE SPI4TXIE SPI4RXIE SPI4EIE SPI2TXIE SPI2RXIE SPI2EIE CMP2IE CMP1IE PMPIE AD1IE CNIE 0000 I2C5MIE I2C5SIE I2C5BIE I2C4MIE I2C4SIE I2C4BIE X 31:16 — — — — — — — — — — — — — — — — 0000 1080 IEC2 5 15:0 — — — — U5TXIE U5RXIE U5EIE U6TXIE U6RXIE U6EIE U4TXIE U4RXIE U4EIE PMPEIE IC5EIE IC4EIE 0000 31:16 — — — INT0IP<2:0> INT0IS<1:0> — — — CS1IP<2:0> CS1IS<1:0> 0000 X 1090 IPC0 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 X 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 10A0 IPC1 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 /6 D 31:16 — — — INT2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 S 10B0 IPC2 X 6 15:0 — — — IC2IP<2:0> IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 0 0 31:16 — — — INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 0000 X 0 10C0 IPC3 1156 Legend: x = un1k5n:0own val—ue on Reset—; — = unimp—lemented, read as ‘0IC’. 3RIPes<e2t: 0v>alues are shown in hIeCx3aIdSe<c1im:0a>l. — — — T3IP<2:0> T3IS<1:0> 0000 /7 J -p Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV X a Registers” for more information. g e 8 23:: TThheiss ree gbiistste arr deo neost naovateil ahbalvee o ans PsoICci3a2teMdX C6L6R4 ,d SeEviTc,e asn.d INV registers. X 5

D TABLE 7-6: INTERRUPT REGISTER MAP FOR PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L AND P S 6 PIC32MX695F512L DEVICES (CONTINUED) 0 I 0 C 01 ss Bits 156J-page 8 Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32M 6 31:16 — — — INT4IP<2:0> INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 0000 X 10D0 IPC4 15:0 — — — IC4IP<2:0> IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 5 31:16 — — — SPI1IP<2:0> SPI1IS<1:0> — — — OC5IP<2:0> OC5IS<1:0> 0000 10E0 IPC5 X 15:0 — — — IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 31:16 — — — AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 X U1IP<2:0> U1IS<1:0> 10F0 IPC6 / 15:0 — — — I2C1IP<2:0> I2C1IS<1:0> — — — SPI3IP<2:0> SPI3IS<1:0> 0000 6 I2C3IP<2:0> I2C3IS<1:0> X U3IP<2:0> U3IS<1:0> X 31:16 — — — SPI2IP<2:0> SPI2IS<1:0> — — — CMP2IP<2:0> CMP2IS<1:0> 0000 1100 IPC7 I2C4IP<2:0> I2C4IS<1:0> / 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 7 31:16 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 X U2IP<2:0> U2IS<1:0> 1110 IPC8 X 15:0 — — — I2C2IP<2:0> I2C2IS<1:0> — — — SPI4IP<2:0> SPI4IS<1:0> 0000 I2C5IP<2:0> I2C5IS<1:0> 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 0000 1120 IPC9 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0>(2) DMA7IS<1:0>(2) — — — DMA6IP<2:0>(2) DMA6IS<1:0>(2) 0000 1130 IPC10 15:0 — — — DMA5IP<2:0>(2) DMA5IS<1:0>(2) — — — DMA4IP<2:0>(2) DMA4IS<1:0>(2) 0000 31:16 — — — — — — — — — — — — — — — — 0000 1140 IPC11 15:0 — — — USBIP<2:0> USBIS<1:0> — — — FCEIP<2:0> FCEIS<1:0> 0000 31:16 — — — U5IP<2:0> U5IS<1:0> — — — U6IP<2:0> U6IS<1:0> 0000 1150 IPC12 15:0 — — — U4IP<2:0> U4IS<1:0> — — — ETHIP<2:0> ETHIS<1:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  2 Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV 0 Registers” for more information. 0 9 2: These bits are not available on PIC32MX664 devices. -20 3: This register does note have associated CLR, SET, and INV registers. 1 6 M ic ro c h ip T e c h n o lo g y In c .

 TABLE 7-7: INTERRUPT REGISTER MAP FOR PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND 2 0 PIC32MX795F512L DEVICES 0 9 -2016 Microchip Virtual Address(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets T 31:16 — — — — — — — — — — — — — — — SS0 0000 e 1000 INTCON ch 15:0 — — — MVEC — TPC<2:0> — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 nolog 1010 INTSTAT(3)3115::106 —— —— —— —— —— — SRIP—L<2:0> — —— —— — — —VEC<5:0>— — — 00000000 y In 1020 IPTMR 31:16 IPTMR<31:0> 0000 c 15:0 0000 . U1TXIF U1RXIF U1EIF 31:16 I2C1MIF I2C1SIF I2C1BIF SPI3TXIF SPI3RXIF SPI3EIF SPI1TXIF SPI1RXIF SPI1EIF OC5IF IC5IF T5IF INT4IF OC4IF IC4IF T4IF 0000 1030 IFS0 I2C3MIF I2C3SIF I2C3BIF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF INT1IF OC1IF IC1IF T1IF INT0IF CS1IF CS0IF CTIF 0000 31:16 IC3EIF IC2EIF IC1EIF ETHIF CAN2IF(2) CAN1IF USBIF FCEIF DMA7IF(2) DMA6IF(2) DMA5IF(2) DMA4IF(2) DMA3IF DMA2IF DMA1IF DMA0IF 0000 U2TXIF U2RXIF U2EIF U3TXIF U3RXIF U3EIF 1040 IFS1 15:0 RTCCIF FSCMIF I2C2MIF I2C2SIF I2C2BIF SPI4TXIF SPI4RXIF SPI4EIF SPI2TXIF SPI2RXIF SPI2EIF CMP2IF CMP1IF PMPIF AD1IF CNIF 0000 I2C5MIF I2C5SIF I2C5BIF I2C4MIF I2C4SIF I2C4BIF 31:16 — — — — — — — — — — — — — — — — 0000 1050 IFS2 15:0 — — — — U5TXIF U5RXIF U5EIF U6TXIF U6RXIF U6EIF U4TXIF U4RXIF U4EIF PMPEIF IC5EIF IC4EIF 0000 P U1TXIE U1RXIE U1EIE I 1060 IEC0 31:16 I2C1MIE I2C1SIE I2C1BIE SPI3TXIE SPI3RXIE SPI3EIE SPI1TXIE SPI1RXIE SPI1EIE OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE 0000 C I2C3MIE I2C3SIE I2C3BIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE INT1IE OC1IE IC1IE T1IE INT0IE CS1IE CS0IE CTIE 0000 3 31:16 IC3EIE IC2EIE IC1EIE ETHIE CAN2IE(2) CAN1IE USBIE FCEIE DMA7IE(2) DMA6IE(2) DMA5IE(2) DMA4IE(2) DMA3IE DMA2IE DMA1IE DMA0IE 0000 2 1070 IEC1 U2TXIE U2RXIE U2EIE U3TXIE U3RXIE U3EIE M 15:0 RTCCIE FSCMIE I2C2MIE I2C2SIE I2C2BIE SPI4TXIE SPI4RXIE SPI4EIE SPI2TXIE SPI2RXIE SPI2EIE CMP2IE CMP1IE PMPIE AD1IE CNIE 0000 I2C5MIE I2C5SIE I2C5BIE I2C4MIE I2C4SIE I2C4BIE X 31:16 — — — — — — — — — — — — — — — — 0000 1080 IEC2 5 15:0 — — — — U5TXIE U5RXIE U5EIE U6TXIE U6RXIE U6EIE U4TXIE U4RXIE U4EIE PMPEIE IC5EIE IC4EIE 0000 31:16 — — — INT0IP<2:0> INT0IS<1:0> — — — CS1IP<2:0> CS1IS<1:0> 0000 X 1090 IPC0 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 X 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 10A0 IPC1 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 /6 D 31:16 — — — INT2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 S 10B0 IPC2 X 6 15:0 — — — IC2IP<2:0> IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 0 0 31:16 — — — INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 0000 X 0 10C0 IPC3 1156 Legend: x = un1k5n:o0wn valu—e on Reset;— — = unimpl—emented, read as ‘0IC’. 3RIePs<e2t: 0va>lues are shown in hIeCx3aIdSe<c1im:0a>l. — — — T3IP<2:0> T3IS<1:0> 0000 /7 J -p Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV X a Registers” for more information. g e 8 23:: TThhiiss breitg iiss tuenr idmopeles mnoetn hteadv eo na sPsIoCc3ia2tMedX 7C6L4RF,1 S2E8LT ,d aenvdic IeN.V registers. X 7

D TABLE 7-7: INTERRUPT REGISTER MAP FOR PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND P S 6 PIC32MX795F512L DEVICES (CONTINUED) 0 I 0 C 01 ss Bits 156J-page 8 Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32M 8 31:16 — — — INT4IP<2:0> INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 0000 X 10D0 IPC4 15:0 — — — IC4IP<2:0> IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 5 31:16 — — — SPI1IP<2:0> SPI1IS<1:0> — — — OC5IP<2:0> OC5IS<1:0> 0000 10E0 IPC5 X 15:0 — — — IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 31:16 — — — AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 X U1IP<2:0> U1IS<1:0> 10F0 IPC6 / 15:0 — — — I2C1IP<2:0> I2C1IS<1:0> — — — SPI3IP<2:0> SPI3IS<1:0> 0000 6 I2C3IP<2:0> I2C3IS<1:0> X U3IP<2:0> U3IS<1:0> X 31:16 — — — SPI2IP<2:0> SPI2IS<1:0> — — — CMP2IP<2:0> CMP2IS<1:0> 0000 1100 IPC7 I2C4IP<2:0> I2C4IS<1:0> / 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 7 31:16 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 X U2IP<2:0> U2IS<1:0> 1110 IPC8 X 15:0 — — — I2C2IP<2:0> I2C2IS<1:0> — — — SPI4IP<2:0> SPI4IS<1:0> 0000 I2C5IP<2:0> I2C5IS<1:0> 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 0000 1120 IPC9 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0>(2) DMA7IS<1:0>(2) — — — DMA6IP<2:0>(2) DMA6IS<1:0>(2) 0000 1130 IPC10 15:0 — — — DMA5IP<2:0>(2) DMA5IS<1:0>(2) — — — DMA4IP<2:0>(2) DMA4IS<1:0>(2) 0000 31:16 — — — CAN2IP<2:0>(2) CAN2IS<1:0>(2) — — — CAN1IP<2:0> CAN1IS<1:0> 0000 1140 IPC11 15:0 — — — USBIP<2:0> USBIS<1:0> — — — FCEIP<2:0> FCEIS<1:0> 0000 31:16 — — — U5IP<2:0> U5IS<1:0> — — — U6IP<2:0> U6IS<1:0> 0000 1150 IPC12 15:0 — — — U4IP<2:0> U4IS<1:0> — — — ETHIP<2:0> ETHIS<1:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  2 Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV 0 Registers” for more information. 0 9 2: This bit is unimplemented on PIC32MX764F128L device. -20 3: This register does not have associated CLR, SET, and INV registers. 1 6 M ic ro c h ip T e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 23:16 — — — — — — — SS0 U-0 U-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 15:8 — — — MVEC — TPC<2:0> U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 — — — INT4EP INT3EP INT2EP INT1EP INT0EP Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-17 Unimplemented: Read as ‘0’ bit 16 SS0: Single Vector Shadow Register Set bit 1 = Single vector is presented with a shadow register set 0 = Single vector is not presented with a shadow register set bit 15-13 Unimplemented: Read as ‘0’ bit 12 MVEC: Multiple Vector Configuration bit 1 = Interrupt controller configured for Multi-vector mode 0 = Interrupt controller configured for Single-vector mode bit 11 Unimplemented: Read as ‘0’ bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer 001 = Interrupts of group priority 1 start the Interrupt Proximity timer 000 = Disables Interrupt Proximity timer bit 7-5 Unimplemented: Read as ‘0’ bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit 1 = Rising edge 0 = Falling edge bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit 1 = Rising edge 0 = Falling edge bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit 1 = Rising edge 0 = Falling edge bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit 1 = Rising edge 0 = Falling edge bit 0 INT0EP: External Interrupt 0 Edge Polarity Control bit 1 = Rising edge 0 = Falling edge  2009-2016 Microchip Technology Inc. DS60001156J-page 89

PIC32MX5XX/6XX/7XX REGISTER 7-2: INTSTAT: INTERRUPT STATUS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 15:8 — — — — — RIPL<2:0>(1) U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 — — VEC<5:0>(1) Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-11 Unimplemented: Read as ‘0’ bit 10-8 RIPL<2:0>: Requested Priority Level bits(1) 111-000 = The priority level of the latest interrupt presented to the CPU bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 VEC<5:0>: Interrupt Vector bits(1) 11111-00000 = The interrupt vector that is presented to the CPU Note 1: This value should only be used when the interrupt controller is configured for Single-vectormode. REGISTER 7-3: TPTMR: TEMPORAL PROXIMITY TIMER REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 TPTMR<31:24> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 TPTMR<23:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 TPTMR<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 TPTMR<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 TPTMR<31:0>: Temporal Proximity Timer Reload bits Used by the Temporal Proximity Timer as a reload value when the Temporal Proximity timer is triggered by an interrupt event. DS60001156J-page 90  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 7-4: IFSx: INTERRUPT FLAG STATUS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 IFS31 IFS30 IFS29 IFS28 IFS27 IFS26 IFS25 IFS24 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 IFS23 IFS22 IFS21 IFS20 IFS19 IFS18 IFS17 IFS16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 IFS15 IFS14 IFS13 IFS12 IFS11 IFS10 IFS09 IFS08 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 IFS07 IFS06 IFS05 IFS04 IFS03 IFS02 IFS01 IFS00 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 IFS31-IFS00: Interrupt Flag Status bits 1 = Interrupt request has occurred 0 = Interrupt request has not occurred Note: This register represents a generic definition of the IFSx register. Refer to Table7-1 for the exact bit definitions. REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 IEC31 IEC30 IEC29 IEC28 IEC27 IEC26 IEC25 IEC24 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 IEC23 IEC22 IEC21 IEC20 IEC19 IEC18 IEC17 IEC16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 IEC15 IEC14 IEC13 IEC12 IEC11 IEC10 IEC09 IEC08 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 IEC07 IEC06 IEC05 IEC04 IEC03 IEC02 IEC01 IEC00 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 IEC31-IEC00: Interrupt Enable bits 1 = Interrupt is enabled 0 = Interrupt is disabled Note: This register represents a generic definition of the IECx register. Refer to Table7-1 for the exact bit definitions.  2009-2016 Microchip Technology Inc. DS60001156J-page 91

PIC32MX5XX/6XX/7XX REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 — — — IP03<2:0> IS03<1:0> U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 — — — IP02<2:0> IS02<1:0> U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 — — — IP01<2:0> IS01<1:0> U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 — — — IP00<2:0> IS00<1:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-29 Unimplemented: Read as ‘0’ bit 28-26 IP03<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 • • • 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 25-24 IS03<1:0>: Interrupt Sub-priority bits 11 = Interrupt sub-priority is 3 10 = Interrupt sub-priority is 2 01 = Interrupt sub-priority is 1 00 = Interrupt sub-priority is 0 bit 23-21 Unimplemented: Read as ‘0’ bit 20-18 IP02<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 • • • 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 17-16 IS02<1:0>: Interrupt Sub-priority bits 11 = Interrupt sub-priority is 3 10 = Interrupt sub-priority is 2 01 = Interrupt sub-priority is 1 00 = Interrupt sub-priority is 0 bit 15-13 Unimplemented: Read as ‘0’ Note: This register represents a generic definition of the IPCx register. Refer to Table7-1 for the exact bit definitions. DS60001156J-page 92  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED) bit 12-10 IP01<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 • • • 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 9-8 IS01<1:0>: Interrupt Sub-priority bits 11 = Interrupt sub-priority is 3 10 = Interrupt sub-priority is 2 01 = Interrupt sub-priority is 1 00 = Interrupt sub-priority is 0 bit 7-5 Unimplemented: Read as ‘0’ bit 4-2 IP00<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 • • • 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 1-0 IS00<1:0>: Interrupt Sub-priority bits 11 = Interrupt sub-priority is 3 10 = Interrupt sub-priority is 2 01 = Interrupt sub-priority is 1 00 = Interrupt sub-priority is 0 Note: This register represents a generic definition of the IPCx register. Refer to Table7-1 for the exact bit definitions.  2009-2016 Microchip Technology Inc. DS60001156J-page 93

PIC32MX5XX/6XX/7XX NOTES: DS60001156J-page 94  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 8.0 OSCILLATOR The Oscillator module has the following features: CONFIGURATION • A total of four external and internal oscillator options as clock sources Note: This data sheet summarizes the features • On-chip PLL with user-selectable input divider, of the PIC32MX5XX/6XX/7XX family of multiplier and output divider to boost operating devices. It is not intended to be a frequency on select internal and external comprehensive reference source. To oscillator sources complement the information in this data • On-chip user-selectable divisor postscaler on sheet, refer to Section 6. “Oscillator” select oscillator sources (DS60001112) in the “PIC32 Family Ref- • Software-controllable switching between erence Manual”, which is available from various clock sources the Microchip web site (www.micro- • A Fail-Safe Clock Monitor (FSCM) that detects chip.com/PIC32). clock failure and permits safe application recovery or shutdown • Dedicated On-Chip PLL for USB peripheral Figure8-1shows the Oscillator module block diagram. FIGURE 8-1: OSCILLATOR BLOCK DIAGRAM USB PLL UFIN USB Clock (48 MHz) div x PLL x24 div 2 UFRCEN Primary Oscillator UFIN 4 MHz (POSC) To Internal UPLLIDIV<2:0> UPLLEN Logic C1(3) OSC1 XT, HS, EC XTAL RF(2) 4 MHz FINFIN  5 MHz EXCTPPLLLL, ,F HRSCPPLLLL, Postscaler Peripherals RP(1) div x PLL div y div x PBCLK Enable RS(1) PLL Input Divider PLL Output Divider C2(3) OSC2(4) FPLLIDIV<2:0> PLLODIV<2:0> PBDIV<1:0> FRC COSC<2:0> PLL Multiplier Oscillator (001 = FRC, PLLMULT<2:0> 8 MHz typical 011 = POSC) FRC div 16 FRC/16 TUN<5:0> CPU and Select Peripherals FRCDIV Postscaler SYSCLK FRCDIV<2:0> LPRC LPRC Oscillator 31.25 kHz typical Secondary Oscillator (SOSC) SOSCO 32.768 kHz SOSC COSC<2:0> SOSCEN and FSOSCEN Clock Control Logic FSCM INT Fail-Safe SOSCI Clock FSCM Event Monitor Notes: 1. A series resistor, RS, may be required for AT strip cut crystals or eliminate clipping. Alternately, to increase oscillator circuit gain, add a parallel NOSC<2:0> resistor, RP, with a value of 1 M COSC<2:0> 2. The internal feedback resistor, RF, is typically in the range of 2 to 10M 3. Refer to the “PIC32 Family Reference Manual” Section 6. “Oscillator FSCMEN<1:0> OSWEN WDT, PWRT Configuration” (DS60001112) for help determining the best oscillator components. Timer1, RTCC 4. PBCLK out is available on the OSC2 pin in certain clock modes.  2009-2016 Microchip Technology Inc. DS60001156J-page 95

D 8.1 Control Registers P S 6 00 IC 0 1 TABLE 8-1: OSCILLATOR REGISTER MAP 1 5 3 6J-page 96 Virtual Address(BF80_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 (2)All Resets 2MX 5 31:16 — — PLLODIV<2:0> FRCDIV<2:0> — SOSCRDY — PBDIV<1:0> PLLMULT<2:0> 0000 F000 OSCCON X 15:0 — COSC<2:0> — NOSC<2:0> CLKLOCK ULOCK SLOCK SLPEN CF UFRCEN SOSCEN OSWEN 0000 31:16 — — — — — — — — — — — — — — — — 0000 X F010 OSCTUN 15:0 — — — — — — — — — — TUN<5:0> 0000 / Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 6 Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more X information. 2: Reset values are dependent on the DEVCFGx Configuration bits and the type of Reset. X / 7 X X  2 0 0 9 -2 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 R/W-y R/W-y R/W-y R/W-0 R/W-0 R/W-1 31:24 — — PLLODIV<2:0> FRCDIV<2:0> U-0 R-0 R-1 R/W-y R/W-y R/W-y R/W-y R/W-y 23:16 — SOSCRDY PBDIVRDY PBDIV<1:0> PLLMULT<2:0> U-0 R-0 R-0 R-0 U-0 R/W-y R/W-y R/W-y 15:8 — COSC<2:0> — NOSC<2:0> R/W-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-y R/W-0 7:0 CLKLOCK ULOCK SLOCK SLPEN CF UFRCEN SOSCEN OSWEN Legend: y = Value set from Configuration bits on POR R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-30 Unimplemented: Read as ‘0’ bit 29-27 PLLODIV<2:0>: Output Divider for PLL 111 = PLL output divided by 256 110 = PLL output divided by 64 101 = PLL output divided by 32 100 = PLL output divided by 16 011 = PLL output divided by 8 010 = PLL output divided by 4 001 = PLL output divided by 2 000 = PLL output divided by 1 bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits 111 = FRC divided by 256 110 = FRC divided by 64 101 = FRC divided by 32 100 = FRC divided by 16 011 = FRC divided by 8 010 = FRC divided by 4 001 = FRC divided by 2 (default setting) 000 = FRC divided by 1 bit 23 Unimplemented: Read as ‘0’ bit 22 SOSCRDY: Secondary Oscillator (SOSC) Ready Indicator bit 1 = Indicates that the Secondary Oscillator is running and is stable 0 = Secondary Oscillator is still warming up or is turned off bit 21 PBDIVRDY: Peripheral Bus Clock (PBCLK) Divisor Ready bit 1 = PBDIV<1:0> bits can be written 0 = PBDIV<1:0> bits cannot be written bit 20-19 PBDIV<1:0>: Peripheral Bus Clock (PBCLK) Divisor bits 11 = PBCLK is SYSCLK divided by 8 (default) 10 = PBCLK is SYSCLK divided by 4 01 = PBCLK is SYSCLK divided by 2 00 = PBCLK is SYSCLK divided by 1 Note: Writes to this register require an unlock sequence. Refer to Section 6. “Oscillator” (DS60001112) in the “PIC32 Family Reference Manual” for details.  2009-2016 Microchip Technology Inc. DS60001156J-page 97

PIC32MX5XX/6XX/7XX REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED) bit 18-16 PLLMULT<2:0>: Phase-Locked Loop (PLL) Multiplier bits 111 = Clock is multiplied by 24 110 = Clock is multiplied by 21 101 = Clock is multiplied by 20 100 = Clock is multiplied by 19 011 = Clock is multiplied by 18 010 = Clock is multiplied by 17 001 = Clock is multiplied by 16 000 = Clock is multiplied by 15 bit 15 Unimplemented: Read as ‘0’ bit 14-12 COSC<2:0>: Current Oscillator Selection bits 111 = Internal Fast RC (FRC) Oscillator divided by OSCCON<FRCDIV> bits 110 = Internal Fast RC (FRC) Oscillator divided by 16 101 = Internal Low-Power RC (LPRC) Oscillator 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator (POSC) with PLL module (XTPLL, HSPLL or ECPLL) 010 = Primary Oscillator (POSC) (XT, HS or EC) 001 = Internal Fast RC Oscillator with PLL module via Postscaler (FRCPLL) 000 = Internal Fast RC (FRC) Oscillator bit 11 Unimplemented: Read as ‘0’ bit 10-8 NOSC<2:0>: New Oscillator Selection bits 111 = Internal Fast RC Oscillator (FRC) divided by OSCCON<FRCDIV> bits 110 = Internal Fast RC Oscillator (FRC) divided by 16 101 = Internal Low-Power RC (LPRC) Oscillator 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL or ECPLL) 010 = Primary Oscillator (XT, HS or EC) 001 = Internal Fast Internal RC Oscillator with PLL module via Postscaler (FRCPLL) 000 = Internal Fast Internal RC Oscillator (FRC) On Reset, these bits are set to the value of the FNOSC Configuration bits (DEVCFG1<2:0>). bit 7 CLKLOCK: Clock Selection Lock Enable bit If clock switching and monitoring is disabled (FCKSM<1:0> = 1x): 1 = Clock and PLL selections are locked 0 = Clock and PLL selections are not locked and may be modified If clock switching and monitoring is enabled (FCKSM<1:0> = 0x): Clock and PLL selections are never locked and may be modified. bit 6 ULOCK: USB PLL Lock Status bit 1 = Indicates that the USB PLL module is in lock or USB PLL module start-up timer is satisfied 0 = Indicates that the USB PLL module is out of lock or USB PLL module start-up timer is in progress or USB PLL is disabled bit 5 SLOCK: PLL Lock Status bit 1 = PLL module is in lock or PLL module start-up timer is satisfied 0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled bit 4 SLPEN: Sleep Mode Enable bit 1 = Device will enter Sleep mode when a WAIT instruction is executed 0 = Device will enter Idle mode when a WAIT instruction is executed bit 3 CF: Clock Fail Detect bit 1 = FSCM has detected a clock failure 0 = No clock failure has been detected Note: Writes to this register require an unlock sequence. Refer to Section 6. “Oscillator” (DS60001112) in the “PIC32 Family Reference Manual” for details. DS60001156J-page 98  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED) bit 2 UFRCEN: USB FRC Clock Enable bit 1 = Enable FRC as the clock source for the USB clock source 0 = Use the Primary Oscillator or USB PLL as the USB clock source bit 1 SOSCEN: Secondary Oscillator (SOSC) Enable bit 1 = Enable Secondary Oscillator 0 = Disable Secondary Oscillator bit 0 OSWEN: Oscillator Switch Enable bit 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits 0 = Oscillator switch is complete Note: Writes to this register require an unlock sequence. Refer to Section 6. “Oscillator” (DS60001112) in the “PIC32 Family Reference Manual” for details.  2009-2016 Microchip Technology Inc. DS60001156J-page 99

PIC32MX5XX/6XX/7XX REGISTER 8-2: OSCTUN: FRC TUNING REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 R-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 R-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 — — TUN<5:0>(1) Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-6 Unimplemented: Read as ‘0’ bit 5-0 TUN<5:0>: FRC Oscillator Tuning bits(1) 100000 = Center frequency -12.5% for PIC32MX575/595/675/695/775/795 devices 100000 = Center frequency -1.5% for PIC32MX534/564/664/764 devices 100001 = • • • 111111 = 000000 = Center frequency; Oscillator runs at nominal frequency (8 MHz) 000001 = • • • 011110 = 011111 = Center frequency +12.5% for PIC32MX575/595/675/695/775/795 devices 011111 = Center frequency +1.5% for PIC32MX534/564/664/764 devices Note1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither characterized nor tested. Note: Writes to this register require an unlock sequence. Refer to Section 6. “Oscillator” (DS60001112) in the “PIC32 Family Reference Manual” for details. DS60001156J-page 100  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 9.0 PREFETCH CACHE 9.1 Features Note: This data sheet summarizes the features • 16 fully-associative lockable cache lines of the PIC32MX5XX/6XX/7XX family of • 16-byte cache lines devices. It is not intended to be a • Up to four cache lines allocated to data comprehensive reference source. To • Two cache lines with address mask to hold complement the information in this data repeated instructions sheet, refer to Section 4. “Prefetch • Pseudo-LRU replacement policy Cache” (DS60001119) in the “PIC32 • All cache lines are software writable Family Reference Manual”, which is avail- able from the Microchip web site • 16-byte parallel memory fetch (www.microchip.com/PIC32). • Predictive instruction prefetch A simplified block diagram of the Prefetch Cache Prefetch cache increases performance for applications module is illustrated in Figure9-1. executing out of the cacheable program Flash memory regions by implementing instruction caching, constant data caching and instruction prefetching. FIGURE 9-1: PREFETCH CACHE MODULE BLOCK DIAGRAM FSM CTRL Tag Logic Cache Line U P CTRL C X/ U M P B C Bus Control X/ M Cache Control B Prefetch Control Cache Hit LRU Line RDATA Address Miss LRU Encode Hit Logic Prefetch Prefetch CTRL RDATA PFM  2009-2016 Microchip Technology Inc. DS60001156J-page 101

D 9.2 Control Registers P S 6 0 I 0 C 0 1 TABLE 9-1: PREFETCH REGISTER MAP 1 5 3 6J-page 102 Virtual Address(BF88_#) RegisterName Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 2MX 5 4000 CHECON(1,2)31:16 — — — — — — — — — — — — — — — CHECOH 0000 X 15:0 — — — — — — DCSZ<1:0> — — PREFEN<1:0> — PFMWS<2:0> 0007 4010 CHEACC(1) 31:16 CHEWEN — — — — — — — — — — — — — — — 0000 X 15:0 — — — — — — — — — — — — CHEIDX<3:0> 0000 / 4020 CHETAG(1) 31:16LTAGBOOT — — — — — — — LTAG<23:16> 00xx 6 15:0 LTAG<15:4> LVALID LLOCK LTYPE — xxx2 X 4030 CHEMSK(1) 31:16 — — — — — — — — — — — — — — — — 0000 15:0 LMASK<15:5> — — — — — 0000 X 4040 CHEW0 31:16 CHEW0<31:0> xxxx / 15:0 xxxx 7 31:16 xxxx X 4050 CHEW1 CHEW1<31:0> 15:0 xxxx X 31:16 xxxx 4060 CHEW2 CHEW2<31:0> 15:0 xxxx 31:16 xxxx 4070 CHEW3 CHEW3<31:0> 15:0 xxxx 31:16 — — — — — — — CHELRU<24:16> 0000 4080 CHELRU 15:0 CHELRU<15:0> 0000 31:16 xxxx 4090 CHEHIT CHEHIT<31:0> 15:0 xxxx 31:16 xxxx 40A0 CHEMIS CHEMIS<31:0> 15:0 xxxx 31:16 xxxx  40C0 CHEPFABT CHEPFABT<31:0> 2 15:0 xxxx 00 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 9-2 Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. 0 2: Reset value is dependent on DEVCFGx configuration. 1 6 M ic ro c h ip T e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 9-1: CHECON: CACHE CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 23:16 — — — — — — — CHECOH U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 15:8 — — — — — — DCSZ<1:0> U-0 U-0 R/W-0 R/W-0 U-0 R/W-1 R/W-1 R/W-1 7:0 — — PREFEN<1:0> — PFMWS<2:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-17 Unimplemented: Write ‘0’; ignore read bit 16 CHECOH: Cache Coherency Setting on a PFM Program Cycle bit 1 = Invalidate all data and instruction lines 0 = Invalidate all data lnes and instruction lines that are not locked bit 15-10 Unimplemented: Write ‘0’; ignore read bit 9-8 DCSZ<1:0>: Data Cache Size in Lines bits Changing these bits causes all lines to be reinitialized to the “invalid” state. 11 = Enable data caching with a size of 4 lines 10 = Enable data caching with a size of 2 lines 01 = Enable data caching with a size of 1 line 00 = Disable data caching bit 7-6 Unimplemented: Write ‘0’; ignore read bit 5-4 PREFEN<1:0>: Predictive Prefetch Enable bits 11 = Enable predictive prefetch for both cacheable and non-cacheable regions 10 = Enable predictive prefetch only for non-cacheable regions 01 = Enable predictive prefetch only for cacheable regions 00 = Disable predictive prefetch bit 3 Unimplemented: Write ‘0’; ignore read bit 2-0 PFMWS<2:0>: PFM Access Time Defined in Terms of SYSLK Wait States bits 111 = Seven Wait states 110 = Six Wait states 101 = Five Wait states 100 = Four Wait states 011 = Three Wait states 010 = Two Wait states 001 = One Wait state 000 = Zero Wait state  2009-2016 Microchip Technology Inc. DS60001156J-page 103

PIC32MX5XX/6XX/7XX REGISTER 9-2: CHEACC: CACHE ACCESSREGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 CHEWEN — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 — — — — CHEIDX<3:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31 CHEWEN: Cache Access Enable bits These bits apply to registers CHETAG, CHEMSK, CHEW0, CHEW1, CHEW2, and CHEW3. 1 = The cache line selected by CHEIDX<3:0> is writeable 0 = The cache line selected by CHEIDX<3:0> is not writeable bit 30-4 Unimplemented: Write ‘0’; ignore read bit 3-0 CHEIDX<3:0>: Cache Line Index bits The value selects the cache line for reading or writing. DS60001156J-page 104  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 9-3: CHETAG: CACHE TAG REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 LTAGBOOT — — — — — — — R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 23:16 LTAG<19:12> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 15:8 LTAG<11:4> R/W-x R/W-x R/W-x R/W-x R/W-0 R/W-0 R/W-1 U-0 7:0 LTAG<3:0> LVALID LLOCK LTYPE — Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31 LTAGBOOT: Line Tag Address Boot bit 1 = The line is in the 0x1D000000 (physical) area of memory 0 = The line is in the 0x1FC00000 (physical) area of memory bit 30-24 Unimplemented: Write ‘0’; ignore read bit 23-4 LTAG<19:0>: Line Tag Address bits LTAG<19:0> bits are compared against physical address to determine a hit. Because its address range and position of PFM in kernel space and user space, the LTAG PFM address is identical for virtual addresses, (system) physical addresses, and PFM physical addresses. bit 3 LVALID: Line Valid bit 1 = The line is valid and is compared to the physical address for hit detection 0 = The line is not valid and is not compared to the physical address for hit detection bit 2 LLOCK: Line Lock bit 1 = The line is locked and will not be replaced 0 = The line is not locked and can be replaced bit 1 LTYPE: Line Type bit 1 = The line caches instruction words 0 = The line caches data words bit 0 Unimplemented: Write ‘0’; ignore read  2009-2016 Microchip Technology Inc. DS60001156J-page 105

PIC32MX5XX/6XX/7XX REGISTER 9-4: CHEMSK: CACHE TAG MASK REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 LMASK<10:3> R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 7:0 LMASK<2:0> — — — — — Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Write ‘0’; ignore read bit 15-5 LMASK<10:0>: Line Mask bits 1 = Enables mask logic to force a match on the corresponding bit position in LTAG<19:0> bits (CHETAG<23:4>) and the physical address 0 = Only writeable for values of CHEIDX<3:0> bits (CHEACC<3:0>) equal to 0x0A and 0x0B (disables mask logic) bit 4-0 Unimplemented: Write ‘0’; ignore read REGISTER 9-5: CHEW0: CACHE WORD 0 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 31:24 CHEW0<31:24> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 23:16 CHEW0<23:16> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 15:8 CHEW0<15:8> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 7:0 CHEW0<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 CHEW0<31:0>: Word 0 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected. DS60001156J-page 106  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 9-6: CHEW1: CACHE WORD 1 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 31:24 CHEW1<31:24> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 23:16 CHEW1<23:16> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 15:8 CHEW1<15:8> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 7:0 CHEW1<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 CHEW1<31:0>: Word 1 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected. REGISTER 9-7: CHEW2: CACHE WORD 2 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 31:24 CHEW2<31:24> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 23:16 CHEW2<23:16> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 15:8 CHEW2<15:8> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 7:0 CHEW2<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 CHEW2<31:0>: Word 2 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.  2009-2016 Microchip Technology Inc. DS60001156J-page 107

PIC32MX5XX/6XX/7XX REGISTER 9-8: CHEW3: CACHE WORD 3 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 31:24 CHEW3<31:24> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 23:16 CHEW3<23:16> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 15:8 CHEW3<15:8> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 7:0 CHEW3<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 CHEW3<31:0>: Word 3 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected. Note: This register is a window into the cache data array and is only readable if the device is not code-protected. REGISTER 9-9: CHELRU: CACHE LRU REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 R-0 31:24 — — — — — — — CHELRU<24> R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 23:16 CHELRU<23:16> R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 15:8 CHELRU<15:8> R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7:0 CHELRU<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-25 Unimplemented: Write ‘0’; ignore read bit 24-0 CHELRU<24:0>: Cache Least Recently Used State Encoding bits Indicates the pseudo-LRU state of the cache. DS60001156J-page 108  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 9-10: CHEHIT: CACHE HIT STATISTICS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 31:24 CHEHIT<31:24> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 23:16 CHEHIT<23:16> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 15:8 CHEHIT<15:8> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 7:0 CHEHIT<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 CHEHIT<31:0>: Cache Hit Count bits Incremented each time the processor issues an instruction fetch or load that hits the prefetch cache from a cacheable region. Non-cacheable accesses do not modify this value. REGISTER 9-11: CHEMIS: CACHE MISS STATISTICS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 31:24 CHEMIS<31:24> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 23:16 CHEMIS<23:16> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 15:8 CHEMIS<15:8> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 7:0 CHEMIS<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 CHEMIS<31:0>: Cache Miss Count bits Incremented each time the processor issues an instruction fetch from a cacheable region that misses the prefetch cache. Non-cacheable accesses do not modify this value.  2009-2016 Microchip Technology Inc. DS60001156J-page 109

PIC32MX5XX/6XX/7XX REGISTER 9-12: CHEPFABT: PREFETCH CACHE ABORT STATISTICS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 31:24 CHEPFABT<31:24> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 23:16 CHEPFABT<23:16> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 15:8 CHEPFABT<15:8> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 7:0 CHEPFABT<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 CHEPFABT<31:0>: Prefab Abort Count bits Incremented each time an automatic prefetch cache is aborted due to a non-sequential instruction fetch, load or store. DS60001156J-page 110  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 10.0 DIRECT MEMORY ACCESS • Automatic word-size detection: (DMA) CONTROLLER - Transfer granularity, down to byte level - Bytes need not be word-aligned at source and Note: This data sheet summarizes the features destination of the PIC32MX5XX/6XX/7XX family of • Fixed priority channel arbitration devices. It is not intended to be a • Flexible DMA channel operating modes: comprehensive reference source. To - Manual (software) or automatic (interrupt) DMA complement the information in this data requests sheet, refer to Section 31. “Direct Mem- - One-Shot or Auto-Repeat Block Transfer modes ory Access (DMA) Controller” - Channel-to-channel chaining (DS60001117) in the “PIC32 Family Ref- erence Manual”, which is available from • Flexible DMA requests: the Microchip web site - A DMA request can be selected from any of the (www.microchip.com/PIC32). peripheral interrupt sources - Each channel can select any (appropriate) The Direct Memory Access (DMA) controller is a bus observable interrupt as its DMA request source master module useful for data transfers between - A DMA transfer abort can be selected from any of different devices without CPU intervention. The source the peripheral interrupt sources and destination of a DMA transfer can be any of the - Pattern (data) match transfer termination memory mapped modules existent in the PIC32 (such • Multiple DMA channel status interrupts: as SPI, UART, PMP, etc.) or memory itself. - DMA channel block transfer complete Following are some of the key features of the DMA - Source empty or half empty controller module: - Destination full or half full • Four identical channels, each featuring: - DMA transfer aborted due to an external event - Auto-increment source and destination address - Invalid DMA address generated registers • DMA debug support features: - Source and destination pointers - Most recent address accessed by a DMA channel - Memory to memory and memory to - Most recent DMA channel to transfer data peripheral transfers • CRC Generation module: - CRC module can be assigned to any of the available channels - CRC module is highly configurable FIGURE 10-1: DMA BLOCK DIAGRAM INT Controller System IRQ Peripheral Bus Address Decoder Channel 0 Control I0SEL Channel 1 Control I1 Y Bus Interface Device Bus + Bus Arbitration I2 Global Control Channel ‘n’ Control In (DMACON) S E L Channel Priority Arbitration  2009-2016 Microchip Technology Inc. DS60001156J-page 111

D 10.1 Control Registers P S 6 000 TABLE 10-1: DMA GLOBAL REGISTER MAP IC 1 156J-page 112 Virtual Address(BF88_#) RegisterName Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32MX 3000 DMACON(1) 31:16 — — — — — — — — — — — — — — — — 0000 5 15:0 ON — — SUSPEND DMABUSY — — — — — — — — — — — 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 3010 DMASTAT 15:0 — — — — — — — — — — — — RDWR DMACH<2:0>(2) 0000 X 3020 DMAADDR 31:16 DMAADDR<31:0> 0000 / 15:0 0000 6 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. X Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. X 2: DMACH<3> bit is not available on PIC32MX534/564/664/764 devices. / 7 TABLE 10-2: DMA CRC REGISTER MAP(1) X ss Bits X Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 31:16 — — BYTO<1:0> WBO — — BITO — — — — — — — — 0000 3030 DCRCCON 15:0 — — — PLEN<4:0> CRCEN CRCAPP CRCTYP — — CRCCH<2:0> 0000 31:16 0000 3040 DCRCDATA DCRCDATA<31:0> 15:0 0000 31:16 0000 3050 DCRCXOR DCRCXOR<31:0> 15:0 0000  2 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 00 Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more 9 information. -2 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

 TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP 2 0 09-2016 Micro Virtual Address(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets c hip 3060 DCH0CON 31:16 — — — — — — — — — — — — — — — — 0000 T 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET CHPRI<1:0> 0000 e c 31:16 — — — — — — — — CHAIRQ<7:0> 00FF h 3070 DCH0ECON no 15:0 CHSIRQ<7:0> CFORCE CABORT PATEN SIRQEN AIRQEN — — — FF00 lo 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 g 3080 DCH0INT y In 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 c 31:16 0000 . 3090 DCH0SSA CHSSA<31:0> 15:0 0000 31:16 0000 30A0 DCH0DSA CHDSA<31:0> 15:0 0000 31:16 — — — — — — — — — — — — — — — — 0000 30B0 DCH0SSIZ 15:0 CHSSIZ<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 30C0 DCH0DSIZ 15:0 CHDSIZ<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 30D0 DCH0SPTR 15:0 CHSPTR<15:0> 0000 30E0 DCH0DPTR 31:16 — — — — — — — — — — — — — — — — 0000 P 15:0 CHDPTR<15:0> 0000 30F0 DCH0CSIZ 31:16 — — — — — — — — — — — — — — — — 0000 IC 15:0 CHCSIZ<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 3 3100 DCH0CPTR 15:0 CHCPTR<15:0> 0000 2 31:16 — — — — — — — — — — — — — — — — 0000 3110 DCH0DAT M 15:0 — — — — — — — — CHPDAT<7:0> 0000 3120 DCH1CON 31:16 — — — — — — — — — — — — — — — — 0000 X 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET CHPRI<1:0> 0000 5 31:16 — — — — — — — — CHAIRQ<7:0> 00FF 3130 DCH1ECON 15:0 CHSIRQ<7:0> CFORCE CABORT PATEN SIRQEN AIRQEN — — — FF00 X 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 3140 DCH1INT X 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 31:16 0000 / D 3150 DCH1SSA CHSSA<31:0> 6 S 15:0 0000 60 31:16 0000 X 0 3160 DCH1DSA CHDSA<31:0> 0 15:0 0000 X 1 1 31:16 — — — — — — — — — — — — — — — — 0000 56J 3170 DCH1SSIZ 15:0 CHSSIZ<15:0> 0000 /7 -p Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. a X g Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more e 1 information. X 1 2: DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices. 3

D TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED) P S 60 ss Bits I 001156J-pag Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets C32M e 1 3180 DCH1DSIZ 31:16 — — — — — — — — — — — — — — — — 0000 14 15:0 CHDSIZ<15:0> 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 3190 DCH1SPTR 5 15:0 CHSPTR<15:0> 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 31A0 DCH1DPTR 15:0 CHDPTR<15:0> 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 31B0 DCH1CSIZ / 15:0 CHCSIZ<15:0> 0000 6 31:16 — — — — — — — — — — — — — — — — 0000 31C0 DCH1CPTR X 15:0 CHCPTR<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 X 31D0 DCH1DAT 15:0 — — — — — — — — CHPDAT<7:0> 0000 / 31:16 — — — — — — — — — — — — — — — — 0000 7 31E0 DCH2CON 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET CHPRI<1:0> 0000 X 31:16 — — — — — — — — CHAIRQ<7:0> 00FF 31F0 DCH2ECON X 15:0 CHSIRQ<7:0> CFORCE CABORT PATEN SIRQEN AIRQEN — — — FF00 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 3200 DCH2INT 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 31:16 0000 3210 DCH2SSA CHSSA<31:0> 15:0 0000 31:16 0000 3220 DCH2DSA CHDSA<31:0> 15:0 0000 31:16 — — — — — — — — — — — — — — — — 0000 3230 DCH2SSIZ 15:0 CHSSIZ<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 3240 DCH2DSIZ 15:0 CHDSIZ<15:0> 0000  2 3250 DCH2SPTR 31:16 — — — — — — — — — — — — — — — — 0000 00 15:0 CHSPTR<15:0> 0000 9-2 3260 DCH2DPTR 31:16 — — — — — — — — — — — — — — — — 0000 0 15:0 CHDPTR<15:0> 0000 1 6 M 3270 DCH2CSIZ 31:16 — — — — — — — — — — — — — — — — 0000 ic 15:0 CHCSIZ<15:0> 0000 roch 3280 DCH2CPTR 31:16 — — — — — — — — — — — — — — — — 0000 ip 15:0 CHCPTR<15:0> 0000 Te Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. ch Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more n information. o lo 2: DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices. g y In c .

 TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED) 2 00 ss Bits 9-2016 Micro Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets ch 31:16 — — — — — — — — — — — — — — — — 0000 ip 3290 DCH2DAT T 15:0 — — — — — — — — CHPDAT<7:0> 0000 ec 31:16 — — — — — — — — — — — — — — — — 0000 h 32A0 DCH3CON n 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET CHPRI<1:0> 0000 o lo 31:16 — — — — — — — — CHAIRQ<7:0> 00FF g 32B0 DCH3ECON y Inc. 32C0 DCH3INT 3115:1:06 — — — C—HSIRQ<7:0—> — — — CCFHOSRDCIEE CCAHBSOHRIET CPHADTEDNIE SCIHRDQHEINE ACIHRBQCEINE CH—CCIE CH—TAIE CH—ERIE F0F00000 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 31:16 0000 32D0 DCH3SSA CHSSA<31:0> 15:0 0000 31:16 0000 32E0 DCH3DSA CHDSA<31:0> 15:0 0000 31:16 — — — — — — — — — — — — — — — — 0000 32F0 DCH3SSIZ 15:0 CHSSIZ<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 3300 DCH3DSIZ 15:0 CHDSIZ<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 3310 DCH3SPTR P 15:0 CHSPTR<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 I 3320 DCH3DPTR C 15:0 CHDPTR<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 3 3330 DCH3CSIZ 15:0 CHCSIZ<15:0> 0000 2 31:16 — — — — — — — — — — — — — — — — 0000 3340 DCH3CPTR M 15:0 CHCPTR<15:0> 0000 3350 DCH3DAT 31:16 — — — — — — — — — — — — — — — — 0000 X 15:0 — — — — — — — — CHPDAT<7:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 5 3360 DCH4CON 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET CHPRI<1:0> 0000 X 31:16 — — — — — — — — CHAIRQ<7:0> 00FF 3370 DCH4ECON X 15:0 CHSIRQ<7:0> CFORCE CABORT PATEN SIRQEN AIRQEN — — — FF00 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 / DS 3380 DCH4INT 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 6 6000 3390 DCH4SSA 3115:1:06 CHSSA<31:0> 00000000 XX 1 1 31:16 0000 56J 33A0 DCH4DSA 15:0 CHDSA<31:0> 0000 /7 -p Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. a X g Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more e 1 information. X 1 2: DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices. 5

D TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED) P S 60 ss Bits I 001156J-pag Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets C32M e 1 33B0 DCH4SSIZ 31:16 — — — — — — — — — — — — — — — — 0000 1 15:0 CHSSIZ15:0> 0000 X 6 31:16 — — — — — — — — — — — — — — — — 0000 33C0 DCH4DSIZ 5 15:0 CHDSIZ<15:0> 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 33D0 DCH4SPTR 15:0 CHSPTR<15:0> 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 33E0 DCH4DPTR / 15:0 CHDPTR<15:0> 0000 6 31:16 — — — — — — — — — — — — — — — — 0000 33F0 DCH4CSIZ X 15:0 CHCSIZ<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 X 3400 DCH4CPTR 15:0 CHCPTR<15:0> 0000 / 31:16 — — — — — — — — — — — — — — — — 0000 7 3410 DCH4DAT 15:0 — — — — — — — — CHPDAT<7:0> 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 3420 DCH5CON X 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET CHPRI<1:0> 0000 31:16 — — — — — — — — CHAIRQ<7:0> 00FF 3430 DCH5ECON 15:0 CHSIRQ<7:0> CFORCE CABORT PATEN SIRQEN AIRQEN — — — FF00 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 3440 DCH5INT 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 31:16 0000 3450 DCH5SSA CHSSA<31:0> 15:0 0000 31:16 0000 3460 DCH5DSA CHDSA<31:0> 15:0 0000 31:16 — — — — — — — — — — — — — — — — 0000 3470 DCH5SSIZ 15:0 CHSSIZ<15:0> 0000  2 3480 DCH5DSIZ 31:16 — — — — — — — — — — — — — — — — 0000 00 15:0 CHDSIZ<15:0> 0000 9-2 3490 DCH5SPTR 31:16 — — — — — — — — — — — — — — — — 0000 0 15:0 CHSPTR<15:0> 0000 1 6 M 34A0 DCH5DPTR 31:16 — — — — — — — — — — — — — — — — 0000 ic 15:0 CHDPTR<15:0> 0000 ro 31:16 — — — — — — — — — — — — — — — — 0000 chip 34B0 DCH5CSIZ 15:0 CHCSIZ<15:0> 0000 T 31:16 — — — — — — — — — — — — — — — — 0000 e 34C0 DCH5CPTR c 15:0 CHCPTR<15:0> 0000 h no Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. lo Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more g y information. In 2: DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices. c .

 TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED) 2 00 ss Bits 9-2016 Micro Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets chip 34D0 DCH5DAT 3115::106 —— —— —— —— —— —— —— —— — — — C—HPDAT<7:0—> — — — 00000000 T e 31:16 — — — — — — — — — — — — — — — — 0000 c 34E0 DCH6CON hn 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET CHPRI<1:0> 0000 olo 34F0 DCH6ECON 31:16 — — — — — — — — CHAIRQ<7:0> 00FF gy 15:0 CHSIRQ<7:0> CFORCE CABORT PATEN SIRQEN AIRQEN — — — FF00 In 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 c 3500 DCH6INT . 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 31:16 0000 3510 DCH6SSA CHSSA<31:0> 15:0 0000 31:16 0000 3520 DCH6DSA CHDSA<31:0> 15:0 0000 31:16 — — — — — — — — — — — — — — — — 0000 3530 DCH6SSIZ 15:0 CHSSIZ<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 3540 DCH6DSIZ 15:0 CHDSIZ<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 3550 DCH6SPTR P 15:0 CHSPTR<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 I 3560 DCH6DPTR 15:0 CHDPTR<15:0> 0000 C 3570 DCH6CSIZ 31:16 — — — — — — — — — — — — — — — — 0000 3 15:0 CHCSIZ<15:0> 0000 2 31:16 — — — — — — — — — — — — — — — — 0000 3580 DCH6CPTR 15:0 CHCPTR<15:0> 0000 M 31:16 — — — — — — — — — — — — — — — — 0000 3590 DCH6DAT X 15:0 — — — — — — — — CHPDAT<7:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 5 35A0 DCH7CON 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET CHPRI<1:0> 0000 X 31:16 — — — — — — — — CHAIRQ<7:0> 00FF 35B0 DCH7ECON 15:0 CHSIRQ<7:0> CFORCE CABORT PATEN SIRQEN AIRQEN — — — FF00 X 35C0 DCH7INT 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 / D 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 6 S 6 31:16 0000 X 0 35D0 DCH7SSA CHSSA<31:0> 0 15:0 0000 0 X 1 31:16 0000 1 35E0 DCH7DSA CHDSA<31:0> 56 15:0 0000 / J-p Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 7 ag Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more X e information. 11 2: DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices. X 7

D TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED) P S 60 ss Bits I 001156J-pag Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets C32M e 1 35F0 DCH7SSIZ 31:16 — — — — — — — — — — — — — — — — 0000 1 15:0 CHSSIZ<15:0> 0000 X 8 31:16 — — — — — — — — — — — — — — — — 0000 3600 DCH7DSIZ 5 15:0 CHDSIZ<15:0> 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 3610 DCH7SPTR 15:0 CHSPTR<15:0> 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 3620 DCH7DPTR / 15:0 CHDPTR<15:0> 0000 6 31:16 — — — — — — — — — — — — — — — — 0000 3630 DCH7CSIZ X 15:0 CHCSIZ<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 X 3640 DCH7CPTR 15:0 CHCPTR<15:0> 0000 / 31:16 — — — — — — — — — — — — — — — — 0000 7 3650 DCH7DAT 15:0 — — — — — — — — CHPDAT<7:0> 0000 X Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. X Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. 2: DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices.  2 0 0 9 -2 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 10-1: DMACON: DMA CONTROLLER CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 U-0 U-0 R/W-0 R/W-0 U-0 U-0 U-0 15:8 ON(1) — — SUSPEND DMABUSY — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 7:0 — — — — — — — — Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 ON: DMA On bit(1) 1 = DMA module is enabled 0 = DMA module is disabled bit 14-13 Unimplemented: Read as ‘0’ bit 12 SUSPEND: DMA Suspend bit 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus 0 = DMA operates normally bit 11 DMABUSY: DMA Module Busy bit 1 = DMA module is active 0 = DMA module is disabled and not actively transferring data bit 10-0 Unimplemented: Read as ‘0’ Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  2009-2016 Microchip Technology Inc. DS60001156J-page 119

PIC32MX5XX/6XX/7XX REGISTER 10-2: DMASTAT: DMA STATUS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — U-0 U-0 U-0 U-0 R-0 R-0 R-0 R-0 7:0 — — — — RDWR DMACH<2:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-4 Unimplemented: Read as ‘0’ bit 3 RDWR: Read/Write Status bit 1 = Last DMA bus access was a read 0 = Last DMA bus access was a write bit 2-0 DMACH<2:0>: DMA Channel bits These bits contain the value of the most recent active DMA channel. REGISTER 10-3: DMAADDR: DMA ADDRESS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 31:24 DMAADDR<31:24> R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 23:16 DMAADDR<23:16> R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 15:8 DMAADDR<15:8> R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7:0 DMAADDR<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 DMAADDR<31:0>: DMA Module Address bits These bits contain the address of the most recent DMA access. DS60001156J-page 120  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 31:24 — — BYTO<1:0> WBO(1) — — BITO U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 — — — PLEN<4:0> R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 7:0 CRCEN CRCAPP(1) CRCTYP — — CRCCH<2:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-30 Unimplemented: Read as ‘0’ bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits 11 = Endian byte swap on half-word boundaries (source half-word order with reverse source byte order per half-word) 10 = Swap half-words on word boundaries (reverse source half-word order with source byte order per half-word) 01 = Endian byte swap on word boundaries (reverse source byte order) 00 = No swapping (source byte order) bit 27 WBO: CRC Write Byte Order Selection bit(1) 1 = Source data is written to the destination re-ordered as defined by BYTO<1:0> 0 = Source data is written to the destination unaltered bit 26-25 Unimplemented: Read as ‘0’ bit 24 BITO: CRC Bit Order Selection bit When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode): 1 = The IP header checksum is calculated Least Significant bit (LSb) first (reflected) 0 = The IP header checksum is calculated Most Significant bit (MSb) first (not reflected) When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode): 1 = The LFSR CRC is calculated Least Significant bit first (reflected) 0 = The LFSR CRC is calculated Most Significant bit first (not reflected) bit 23-13 Unimplemented: Read as ‘0’ bit 12-8 PLEN<4:0>: Polynomial Length bits(1) When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode): These bits are unused. When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode): Denotes the length of the polynomial – 1. bit 7 CRCEN: CRC Enable bit 1 = CRC module is enabled and channel transfers are routed through the CRC module 0 = CRC module is disabled and channel transfers proceed normally Note 1: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.  2009-2016 Microchip Technology Inc. DS60001156J-page 121

PIC32MX5XX/6XX/7XX REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED) bit 6 CRCAPP: CRC Append Mode bit(1) 1 = The DMA transfers data from the source into the CRC but not to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination bit 5 CRCTYP: CRC Type Selection bit 1 = The CRC module will calculate an IP header checksum 0 = The CRC module will calculate a LFSR CRC bit 4-3 Unimplemented: Read as ‘0’ bit 2-0 CRCCH<2:0>: CRC Channel Select bits 111 = CRC is assigned to Channel 7 110 = CRC is assigned to Channel 6 101 = CRC is assigned to Channel 5 100 = CRC is assigned to Channel 4 011 = CRC is assigned to Channel 3 010 = CRC is assigned to Channel 2 001 = CRC is assigned to Channel 1 000 = CRC is assigned to Channel 0 Note 1: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set. DS60001156J-page 122  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 10-5: DCRCDATA: DMA CRC DATA REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 DCRCDATA<31:24> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 DCRCDATA<23:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 DCRCDATA<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 DCRCDATA<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 DCRCDATA<31:0>: CRC Data Register bits Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return ‘0’ on any read. When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode): Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always ‘0’. Data written to this register is converted and read back in 1’s complement form (current IP header checksum value). When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode): Bits greater than PLEN will return ‘0’ on any read. REGISTER 10-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 DCRCXOR<31:24> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 DCRCXOR<23:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 DCRCXOR<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 DCRCXOR<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode): This register is unused. When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode): 1 = Enable the XOR input to the Shift register 0 = Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in theregister  2009-2016 Microchip Technology Inc. DS60001156J-page 123

PIC32MX5XX/6XX/7XX REGISTER 10-7: DCHxCON: DMA CHANNEL ‘x’ CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 15:8 CHBUSY — — — — — — CHCHNS(1) R/W-0 R/W-0 R/W-0 R/W-0 U-0 R-0 R/W-0 R/W-0 7:0 CHEN(2) CHAED CHCHN CHAEN — CHEDET CHPRI<1:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 CHBUSY: Channel Busy bit 1 = Channel is active or has been enabled 0 = Channel is inactive or has been disabled bit 14-9 Unimplemented: Read as ‘0’ bit 8 CHCHNS: Chain Channel Selection bit(1) 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete) 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete) bit 7 CHEN: Channel Enable bit(2) 1 = Channel is enabled 0 = Channel is disabled bit 6 CHAED: Channel Allow Events If Disabled bit 1 = Channel start/abort events will be registered, even if the channel is disabled 0 = Channel start/abort events will be ignored if the channel is disabled bit CHCHN: Channel Chain Enable bit 1 = Allow channel to be chained 0 = Do not allow channel to be chained bit 4 CHAEN: Channel Automatic Enable bit 1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete 0 = Channel is disabled on block transfer complete bit 3 Unimplemented: Read as ‘0’ bit 2 CHEDET: Channel Event Detected bit 1 = An event has been detected 0 = No events have been detected bit 1-0 CHPRI<1:0>: Channel Priority bits 11 = Channel has priority 3 (highest) 10 = Channel has priority 2 01 = Channel has priority 1 00 = Channel has priority 0 Note 1: The chain selection bit takes effect when chaining is enabled (CHCHN = 1). 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended. DS60001156J-page 124  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 10-8: DCHxECON: DMA CHANNEL ‘x’ EVENT CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 23:16 CHAIRQ<7:0>(1) R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 15:8 CHSIRQ<7:0>(1) S-0 S-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 7:0 CFORCE CABORT PATEN SIRQEN AIRQEN — — — Legend: S = Settable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-24 Unimplemented: Read as ‘0’ bit 23-16 CHAIRQ<7:0>: Channel Transfer Abort IRQ bits(1) 11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag • • • 00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag bit 15-8 CHSIRQ<7:0>: Channel Transfer Start IRQ bits(1) 11111111 = Interrupt 255 will initiate a DMA transfer • • • 00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer bit 7 CFORCE: DMA Forced Transfer bit 1 = A DMA transfer is forced to begin when this bit is written to a ‘1’ 0 = This bit always reads ‘0’ bit 6 CABORT: DMA Abort Transfer bit 1 = A DMA transfer is aborted when this bit is written to a ‘1’ 0 = This bit always reads ‘0’ bit 5 PATEN: Channel Pattern Match Abort Enable bit 1 = Abort transfer and clear CHEN on pattern match 0 = Pattern match is disabled bit 4 SIRQEN: Channel Start IRQ Enable bit 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs 0 = Interrupt number CHSIRQ is ignored and does not start a transfer bit 3 AIRQEN: Channel Abort IRQ Enable bit 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer bit 2-0 Unimplemented: Read as ‘0’ Note 1: See Table 7-1:“Interrupt IRQ, Vector and Bit Location” for the list of available interrupt IRQ sources.  2009-2016 Microchip Technology Inc. DS60001156J-page 125

PIC32MX5XX/6XX/7XX REGISTER 10-9: DCHxINT: DMA CHANNEL ‘x’ INTERRUPT CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-24 Unimplemented: Read as ‘0’ bit 23 CHSDIE: Channel Source Done Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 22 CHSHIE: Channel Source Half Empty Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 21 CHDDIE: Channel Destination Done Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 20 CHDHIE: Channel Destination Half Full Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 19 CHBCIE: Channel Block Transfer Complete Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 18 CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 17 CHTAIE: Channel Transfer Abort Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 16 CHERIE: Channel Address Error Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 15-8 Unimplemented: Read as ‘0’ bit 7 CHSDIF: Channel Source Done Interrupt Flag bit 1 = Channel Source Pointer has reached end of source (CHSPTR=CHSSIZ) 0 = No interrupt is pending bit 6 CHSHIF: Channel Source Half Empty Interrupt Flag bit 1 = Channel Source Pointer has reached midpoint of source (CHSPTR=CHSSIZ/2) 0 = No interrupt is pending DS60001156J-page 126  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 10-9: DCHxINT: DMA CHANNEL ‘x’ INTERRUPT CONTROL REGISTER (CONTINUED) bit 5 CHDDIF: Channel Destination Done Interrupt Flag bit 1 = Channel Destination Pointer has reached end of destination (CHDPTR=CHDSIZ) 0 = No interrupt is pending bit 4 CHDHIF: Channel Destination Half Full Interrupt Flag bit 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR=CHDSIZ/2) 0 = No interrupt is pending bit 3 CHBCIF: Channel Block Transfer Complete Interrupt Flag bit 1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs 0 = No interrupt is pending bit 2 CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit 1 = A cell transfer has been completed (CHCSIZ bytes have been transferred) 0 = No interrupt is pending bit 1 CHTAIF: Channel Transfer Abort Interrupt Flag bit 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted 0 = No interrupt is pending bit 0 CHERIF: Channel Address Error Interrupt Flag bit 1 = A channel address error has been detected (either the source or the destination address is invalid) 0 = No interrupt is pending  2009-2016 Microchip Technology Inc. DS60001156J-page 127

PIC32MX5XX/6XX/7XX REGISTER 10-10: DCHxSSA: DMA CHANNEL ‘x’ SOURCE START ADDRESS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 CHSSA<31:24> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 CHSSA<23:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 CHSSA<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 CHSSA<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 CHSSA<31:0> Channel Source Start Address bits Channel source start address. Note: This must be the physical address of the source. REGISTER 10-11: DCHxDSA: DMA CHANNEL ‘x’ DESTINATION START ADDRESS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 CHDSA<31:24> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 CHDSA<23:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 CHDSA<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 CHDSA<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 CHDSA<31:0>: Channel Destination Start Address bits Channel destination start address. Note:This must be the physical address of the destination. DS60001156J-page 128  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 10-12: DCHxSSIZ: DMA CHANNEL ‘x’ SOURCE SIZE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 CHSSIZ<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 CHSSIZ<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 CHSSIZ<15:0>: Channel Source Size bits 1111111111111111 = 65,535 byte source size • • • 0000000000000010 = 2 byte source size 0000000000000001 = 1 byte source size 0000000000000000 = 65,536 byte source size REGISTER 10-13: DCHxDSIZ: DMA CHANNEL ‘x’ DESTINATION SIZE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 CHDSIZ<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 CHDSIZ<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 CHDSIZ<15:0>: Channel Destination Size bits 1111111111111111 = 65,535 byte destination size • • • 0000000000000010 = 2 byte destination size 0000000000000001 = 1 byte destination size 0000000000000000 = 65,536 byte destination size  2009-2016 Microchip Technology Inc. DS60001156J-page 129

PIC32MX5XX/6XX/7XX REGISTER 10-14: DCHxSPTR: DMA CHANNEL ‘x’ SOURCE POINTER REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 15:8 CHSPTR<15:8> R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7:0 CHSPTR<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits 1111111111111111 = Points to byte 65,535 of the source • • • 0000000000000001 = Points to byte 1 of the source 0000000000000000 = Points to byte 0 of the source Note: When in Pattern Detect mode, this register is reset on a pattern detect. REGISTER 10-15: DCHxDPTR: DMA CHANNEL ‘x’ DESTINATION POINTER REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 15:8 CHDPTR<15:8> R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7:0 CHDPTR<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits 1111111111111111 = Points to byte 65,535 of the destination • • • 0000000000000001 = Points to byte 1 of the destination 0000000000000000 = Points to byte 0 of the destination DS60001156J-page 130  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 10-16: DCHxCSIZ: DMA CHANNEL ‘x’ CELL-SIZE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 CHCSIZ<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 CHCSIZ<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 CHCSIZ<15:0>: Channel Cell-Size bits 1111111111111111 = 65,535 bytes transferred on an event • • • 0000000000000010 = 2 bytes transferred on an event 0000000000000001 = 1 byte transferred on an event 0000000000000000 = 65,536 bytes transferred on an event REGISTER 10-17: DCHxCPTR: DMA CHANNEL ‘x’ CELL POINTER REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 15:8 CHCPTR<15:8> R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7:0 CHCPTR<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 CHCPTR<7:0>: Channel Cell Progress Pointer bits 1111111111111111 = 65,535 bytes have been transferred since the last event • • • 0000000000000001 = 1 byte has been transferred since the last event 0000000000000000 = 0 bytes have been transferred since the last event Note: When in Pattern Detect mode, this register is reset on a pattern detect.  2009-2016 Microchip Technology Inc. DS60001156J-page 131

PIC32MX5XX/6XX/7XX REGISTER 10-18: DCHxDAT: DMA CHANNEL ‘x’ PATTERN DATA REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 CHPDAT<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7-0 CHPDAT<7:0>: Channel Data Register bits Pattern Terminate mode: Data to be matched must be stored in this register to allow terminate on match. All other modes: Unused. DS60001156J-page 132  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 11.0 USB ON-THE-GO (OTG) The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communi- Note: This data sheet summarizes the features cation. The voltage comparators monitor the voltage on of the PIC32MX5XX/6XX/7XX family of the VBUS pin to determine the state of the bus. The devices. It is not intended to be a transceiver provides the analog translation between comprehensive reference source. To the USB bus and the digital logic. The SIE is a state complement the information in this data machine that transfers data to and from the endpoint sheet, refer to Section 27. “USB On-The- buffers and generates the hardware protocol for data Go (OTG)” (DS60001126) in the “PIC32 transfers. The USB DMA controller transfers data Family Reference Manual”, which is avail- between the data buffers in RAM and the SIE. The inte- able from the Microchip web site grated pull-up and pull-down resistors eliminate the (www.microchip.com/PIC32). need for external signaling components. The register interface allows the CPU to configure and The Universal Serial Bus (USB) module contains communicate with the module. analog and digital components to provide a USB 2.0 The USB module includes the following features: full-speed and low-speed embedded Host, full-speed Device or OTG implementation with a minimum of • USB Full-speed support for host and device external components. This module in Host mode is • Low-speed host support intended for use as an embedded host and therefore • USB OTG support does not implement a UHCI or OHCI controller. • Integrated signaling resistors The USB module consists of the clock generator, the • Integrated analog comparators for VBUS USB voltage comparators, the transceiver, the Serial monitoring Interface Engine (SIE), a dedicated USB DMA control- • Integrated USB transceiver ler, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG • Transaction handshaking performed by hardware module is presented in Figure11-1. • Endpoint buffering anywhere in system RAM • Integrated DMA to access system RAM and Flash Note: The implementation and use of the USB specifications, as well as other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.  2009-2016 Microchip Technology Inc. DS60001156J-page 133

PIC32MX5XX/6XX/7XX FIGURE 11-1: PIC32MX5XX/6XX/7XX FAMILY USB INTERFACE DIAGRAM USBEN FRC USB Suspend Oscillator 8MHzTypical CPU Clock Not POSC Sleep TUN<5:0>(4) Primary Oscillator (POSC) UFIN(5) Divx PLL Div2 UFRCEN(3) OSC1 UPLLIDIV(6) UPLLEN(6) USBSuspend To Clock Generator for Core and Peripherals OSC2 Sleep or Idle (PBOut)(1) USB Module USB SRPCharge Voltage Bus Comparators SRPDischarge 48 MHz USB Clock(7) Full-SpeedPull-up D+(2) Registers and Control HostPull-down Interface SIE Transceiver Low-SpeedPull-up D-(2) DMA System RAM HostPull-down ID Pull-up ID(8) VBUSON(8) VUSB3V3 Transceiver Power 3.3V Note 1: PB clock is only available on this pin for select EC modes. 2: Pins can be used as digital inputs when USB is not enabled. 3: This bit field is contained in the OSCCON register. 4: This bit field is contained in the OSCTRM register. 5: USB PLL UFIN requirements: 4 MHz. 6: This bit field is contained in the DEVCFG2 register. 7: A 48 MHz clock is required for proper USB operation. 8: Pins can be used as GPIO when the USB module is disabled. DS60001156J-page 134  2009-2016 Microchip Technology Inc.

 11.1 Control Registers 2 0 0 9 TABLE 11-1: USB REGISTER MAP -2 016 Microchip T Virtual Address(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 2B3/i7ts 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets ech 5040 U1OTGIR(2) 31:16 — — — — — — — — — — — — — — — — 0000 n 15:0 — — — — — — — — IDIF T1MSECIF LSTATEIF ACTVIF SESVDIF SESENDIF — VBUSVDIF 0000 o lo 31:16 — — — — — — — — — — — — — — — — 0000 g 5050 U1OTGIE y Inc. 5060 U1OTGSTAT(3) 3115::106 —— —— —— —— —— —— —— —— ID—IE T1MS—ECIE LSTA—TEIE AC—TVIE SES—VDIE SESE—NDIE —— VBU—SVDIE 00000000 15:0 — — — — — — — — ID — LSTATE — SESVD SESEND — VBUSVD 0000 31:16 — — — — — — — — — — — — — — — — 0000 5070 U1OTGCON 15:0 — — — — — — — — DPPULUP DMPULUPDPPULDWNDMPULDWN VBUSON OTGEN VBUSCHG VBUSDIS 0000 31:16 — — — — — — — — — — — — — — — — 0000 5080 U1PWRC 15:0 — — — — — — — — UACTPND(4) — — USLPGRD USBBUSY — USUSPEND USBPWR 0000 31:16 — — — — — — — — — — — — — — — — 0000 5200 U1IR(2) URSTIF 0000 15:0 — — — — — — — — STALLIF ATTACHIF RESUMEIF IDLEIF TRNIF SOFIF UERRIF DETACHIF 0000 31:16 — — — — — — — — — — — — — — — — 0000 5210 U1IE URSTIE 0000 15:0 — — — — — — — — STALLIE ATTACHIE RESUMEIE IDLEIE TRNIE SOFIE UERRIE P DETACHIE 0000 31:16 — — — — — — — — — — — — — — — — 0000 I C 5220 U1EIR(2) CRC5EF 0000 15:0 — — — — — — — — BTSEF BMXEF DMAEF BTOEF DFN8EF CRC16EF PIDEF EOFEF 0000 3 31:16 — — — — — — — — — — — — — — — — 0000 2 5230 U1EIE CRC5EE 0000 15:0 — — — — — — — — BTSEE BMXEE DMAEE BTOEE DFN8EE CRC16EE PIDEE M EOFEE 0000 5240 U1STAT(3) 31:16 — — — — — — — — — — — — — — — — 0000 X 15:0 — — — — — — — — ENDPT<3:0>(4) DIR PPBI — — 0000 31:16 — — — — — — — — — — — — — — — — 0000 5 5250 U1CON 15:0 — — — — — — — — JSTATE(4) SE0(4) PKTDIS USBRST HOSTEN RESUME PPBRST USBEN 0000 X TOKBUSY SOFEN 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 5260 U1ADDR 15:0 — — — — — — — — LSPDEN DEVADDR<6:0> 0000 / DS60 5270 U1BDTP1 3115::106 —— —— —— —— —— —— —— —— — — — BDTPTR—L<7:1> — — — —— 00000000 6X 00 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. X 11 Note 1: All registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section12.1.1 “CLR, SET and INV Registers” for 56 more information. / J 2: This register does not have associated SET and INV registers. 7 -pa 3: This register does not have associated CLR, SET and INV registers. X ge 4: Reset value for this bit is undefined. 1 X 3 5

D TABLE 11-1: USB REGISTER MAP (CONTINUED) P S 60 ss Bits I 001156J-pag Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets C32M e 1 5280 U1FRML(3) 31:16 — — — — — — — — — — — — — — — — 0000 3 15:0 — — — — — — — — FRML<7:0> 0000 X 6 5290 U1FRMH(3) 31:16 — — — — — — — — — — — — — — — — 0000 5 15:0 — — — — — — — — — — — — — FRMH<2:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 X 52A0 U1TOK 15:0 — — — — — — — — PID<3:0> EP<3:0> 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 52B0 U1SOF / 15:0 — — — — — — — — CNT<7:0> 0000 6 31:16 — — — — — — — — — — — — — — — — 0000 52C0 U1BDTP2 X 15:0 — — — — — — — — BDTPTRH<7:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 X 52D0 U1BDTP3 15:0 — — — — — — — — BDTPTRU<7:0> 0000 / 31:16 — — — — — — — — — — — — — — — — 0000 7 52E0 U1CNFG1 15:0 — — — — — — — — UTEYE UOEMON — USBSIDL — — — UASUSPND 0001 X 31:16 — — — — — — — — — — — — — — — — 0000 5300 U1EP0 X 15:0 — — — — — — — — LSPD RETRYDIS — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 5310 U1EP1 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 5320 U1EP2 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 5330 U1EP3 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 5340 U1EP4 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 5350 U1EP5 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000  2 5360 U1EP6 31:16 — — — — — — — — — — — — — — — — 0000 00 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 9-2 5370 U1EP7 31:16 — — — — — — — — — — — — — — — — 0000 0 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 1 6 M 5380 U1EP8 31:16 — — — — — — — — — — — — — — — — 0000 ic 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 ro 31:16 — — — — — — — — — — — — — — — — 0000 c 5390 U1EP9 hip 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 T Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. ec Note 1: All registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section12.1.1 “CLR, SET and INV Registers” for h more information. n o 2: This register does not have associated SET and INV registers. lo g 3: This register does not have associated CLR, SET and INV registers. y In 4: Reset value for this bit is undefined. c .

 TABLE 11-1: USB REGISTER MAP (CONTINUED) 2 00 ss Bits 9-2016 Micro Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets chip 53A0 U1EP10 3115::106 —— —— —— —— —— —— —— —— —— —— —— EPCO—NDIS EPR—XEN EPT—XEN EPS—TALL EPH—SHK 00000000 T e 31:16 — — — — — — — — — — — — — — — — 0000 c 53B0 U1EP11 h 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 n olo 53C0 U1EP12 31:16 — — — — — — — — — — — — — — — — 0000 gy 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 In 31:16 — — — — — — — — — — — — — — — — 0000 c 53D0 U1EP13 . 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 53E0 U1EP14 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 53F0 U1EP15 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: All registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. 2: This register does not have associated SET and INV registers. 3: This register does not have associated CLR, SET and INV registers. 4: Reset value for this bit is undefined. P I C 3 2 M X 5 X X / D 6 S 6 X 0 0 0 X 1 1 56 / J 7 -p a X g e 1 X 3 7

PIC32MX5XX/6XX/7XX REGISTER 11-1: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS U-0 R/WC-0, HS 7:0 IDIF T1MSECIF LSTATEIF ACTVIF SESVDIF SESENDIF — VBUSVDIF Legend: WC = Write ‘1’ to clear HS = Hardware Settable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7 IDIF: ID State Change Indicator bit 1 = Change in ID state detected 0 = No change in ID state detected bit 6 T1MSECIF: 1 Millisecond Timer bit 1 = 1 millisecond timer has expired 0 = 1 millisecond timer has not expired bit 5 LSTATEIF: Line State Stable Indicator bit 1 = USB line state has been stable for 1ms, but different from last time 0 = USB line state has not been stable for 1ms bit 4 ACTVIF: Bus Activity Indicator bit 1 = Activity on the D+, D-, ID or VBUS pins has caused the device to wake-up 0 = Activity has not been detected bit 3 SESVDIF: Session Valid Change Indicator bit 1 = VBUS voltage has dropped below the session end level 0 = VBUS voltage has not dropped below the session end level bit 2 SESENDIF: B-Device VBUS Change Indicator bit 1 = A change on the session end input was detected 0 = No change on the session end input was detected bit 1 Unimplemented: Read as ‘0’ bit 0 VBUSVDIF: A-Device VBUS Change Indicator bit 1 = Change on the session valid input detected 0 = No change on the session valid input detected DS60001156J-page 138  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 11-2: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 7:0 IDIE T1MSECIE LSTATEIE ACTVIE SESVDIE SESENDIE — VBUSVDIE Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7 IDIE: ID Interrupt Enable bit 1 = ID interrupt enabled 0 = ID interrupt disabled bit 6 T1MSECIE: 1 Millisecond Timer Interrupt Enable bit 1 = 1 millisecond timer interrupt enabled 0 = 1 millisecond timer interrupt disabled bit 5 LSTATEIE: Line State Interrupt Enable bit 1 = Line state interrupt enabled 0 = Line state interrupt disabled bit 4 ACTVIE: Bus ACTIVITY Interrupt Enable bit 1 = ACTIVITY interrupt enabled 0 = ACTIVITY interrupt disabled bit 3 SESVDIE: Session Valid Interrupt Enable bit 1 = Session valid interrupt enabled 0 = Session valid interrupt disabled bit 2 SESENDIE: B-Session End Interrupt Enable bit 1 = B-session end interrupt enabled 0 = B-session end interrupt disabled bit 1 Unimplemented: Read as ‘0’ bit 0 VBUSVDIE: A-VBUS Valid Interrupt Enable bit 1 = A-VBUS valid interrupt enabled 0 = A-VBUS valid interrupt disabled  2009-2016 Microchip Technology Inc. DS60001156J-page 139

PIC32MX5XX/6XX/7XX REGISTER 11-3: U1OTGSTAT: USB OTG STATUS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R-0 U-0 R-0 U-0 R-0 R-0 U-0 R-0 7:0 ID — LSTATE — SESVD SESEND — VBUSVD Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7 ID: ID Pin State Indicator bit 1 = No cable is attached or a “type B” cable has been inserted into the USB receptacle 0 = A “type A” OTG cable has been inserted into the USB receptacle bit 6 Unimplemented: Read as ‘0’ bit 5 LSTATE: Line State Stable Indicator bit 1 = USB line state (SE0 (U1CON<6> and JSTATE (U1CON<7>) has been stable for the previous 1ms 0 = USB line state (SE0 (U1CON<6> and JSTATE (U1CON<7>) has not been stable for the previous 1ms bit 4 Unimplemented: Read as ‘0’ bit 3 SESVD: Session Valid Indicator bit 1 = VBUS voltage is above Session Valid on the A or B device 0 = VBUS voltage is below Session Valid on the A or B device bit 2 SESEND: B-Device Session End Indicator bit 1 = VBUS voltage is below Session Valid on the B device 0 = VBUS voltage is above Session Valid on the B device bit 1 Unimplemented: Read as ‘0’ bit 0 VBUSVD: A-Device VBUS Valid Indicator bit 1 = VBUS voltage is above Session Valid on the A device 0 = VBUS voltage is below Session Valid on the A device DS60001156J-page 140  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 11-4: U1OTGCON: USB OTG CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 DPPULUP DMPULUP DPPULDWN DMPULDWN VBUSON OTGEN VBUSCHG VBUSDIS Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7 DPPULUP: D+ Pull-Up Enable bit 1 = D+ data line pull-up resistor is enabled 0 = D+ data line pull-up resistor is disabled bit 6 DMPULUP: D- Pull-Up Enable bit 1 = D- data line pull-up resistor is enabled 0 = D- data line pull-up resistor is disabled bit 5 DPPULDWN: D+ Pull-Down Enable bit 1 = D+ data line pull-down resistor is enabled 0 = D+ data line pull-down resistor is disabled bit 4 DMPULDWN: D- Pull-Down Enable bit 1 = D- data line pull-down resistor is enabled 0 = D- data line pull-down resistor is disabled bit 3 VBUSON: VBUS Power-on bit 1 = VBUS line is powered 0 = VBUS line is not powered bit 2 OTGEN: OTG Functionality Enable bit 1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control 0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control bit 1 VBUSCHG: VBUS Charge Enable bit 1 = VBUS line is charged through a pull-up resistor 0 = VBUS line is not charged through a resistor bit 0 VBUSDIS: VBUS Discharge Enable bit 1 = VBUS line is discharged through a pull-down resistor 0 = VBUS line is not discharged through a resistor  2009-2016 Microchip Technology Inc. DS60001156J-page 141

PIC32MX5XX/6XX/7XX REGISTER 11-5: U1PWRC: USB POWER CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R-0 U-0 U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 7:0 UACTPND — — USLPGRD USBBUSY — USUSPEND USBPWR Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7 UACTPND: USB Activity Pending bit 1 = USB bus activity has been detected; but an interrupt is pending, it has not been generated yet 0 = An interrupt is not pending bit 6-5 Unimplemented: Read as ‘0’ bit 4 USLPGRD: USB Sleep Entry Guard bit 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending 0 = USB module does not block Sleep entry bit 3 USBBUSY: USB Module Busy bit 1 = USB module is active or disabled, but not ready to be enabled 0 = USB module is not active and is ready to be enabled Note: When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results. bit 2 Unimplemented: Read as ‘0’ bit 1 USUSPEND: USB Suspend Mode bit 1 = USB module is placed in Suspend mode (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.) 0 = USB module operates normally bit 0 USBPWR: USB Operation Enable bit 1 = USB module is turned on 0 = USB module is disabled (Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.) DS60001156J-page 142  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 11-6: U1IR: USB INTERRUPT REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS R-0 R/WC-0, HS 7:0 URSTIF(5) STALLIF ATTACHIF(1) RESUMEIF(2) IDLEIF TRNIF(3) SOFIF UERRIF(4) DETACHIF(6) Legend: WC = Write ‘1’ to clear HS = Hardware Settable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7 STALLIF: STALL Handshake Interrupt bit 1 = In Host mode a STALL handshake was received during the handshake phase of the transaction. In Device mode, a STALL handshake was transmitted during the handshake phase of the transaction. 0 = STALL handshake has not been sent bit 6 ATTACHIF: Peripheral Attach Interrupt bit(1) 1 = Peripheral attachment was detected by the USB module 0 = Peripheral attachment was not detected bit 5 RESUMEIF: Resume Interrupt bit(2) 1 = K-State is observed on the D+ or D- pin for 2.5 µs 0 = K-State is not observed bit 4 IDLEIF: Idle Detect Interrupt bit 1 = Idle condition detected (constant Idle state of 3ms or more) 0 = No Idle condition detected bit 3 TRNIF: Token Processing Complete Interrupt bit(3) 1 = Processing of current token is complete; a read of the U1STAT register will provide endpoint information 0 = Processing of current token not complete bit 2 SOFIF: SOF Token Interrupt bit 1 = SOF token received by the peripheral or the SOF threshold reached by thehost 0 = SOF token was not received nor threshold reached bit 1 UERRIF: USB Error Condition Interrupt bit(4) 1 = Unmasked error condition has occurred 0 = Unmasked error condition has not occurred bit 0 URSTIF: USB Reset Interrupt bit (Device mode)(5) 1 = Valid USB Reset has occurred 0 = No USB Reset has occurred DETACHIF: USB Detach Interrupt bit (Host mode)(6) 1 = Peripheral detachment was detected by the USB module 0 = Peripheral detachment was not detected Note 1: This bit is only valid if the HOSTEN bit is set (see Register11-11), there is no activity on the USB for 2.5µs, and the current bus state is not SE0. 2: When not in Suspend mode, this interrupt should be disabled. 3: Clearing this bit will cause the STAT FIFO to advance. 4: Only error conditions enabled through the U1EIE register will set this bit. 5: Device mode. 6: Host mode.  2009-2016 Microchip Technology Inc. DS60001156J-page 143

PIC32MX5XX/6XX/7XX REGISTER 11-7: U1IE: USB INTERRUPT ENABLE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 URSTIE(2) STALLIE ATTACHIE RESUMEIE IDLEIE TRNIE SOFIE UERRIE(1) DETACHIE(3) Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7 STALLIE: STALL Handshake Interrupt Enable bit 1 = STALL interrupt is enabled 0 = STALL interrupt is disabled bit 6 ATTACHIE: ATTACH Interrupt Enable bit 1 = ATTACH interrupt is enabled 0 = ATTACH interrupt is disabled bit 5 RESUMEIE: RESUME Interrupt Enable bit 1 = RESUME interrupt is enabled 0 = RESUME interrupt is disabled bit 4 IDLEIE: Idle Detect Interrupt Enable bit 1 = Idle interrupt is enabled 0 = Idle interrupt is disabled bit 3 TRNIE: Token Processing Complete Interrupt Enable bit 1 = TRNIF interrupt is enabled 0 = TRNIF interrupt is disabled bit 2 SOFIE: SOF Token Interrupt Enable bit 1 = SOFIF interrupt is enabled 0 = SOFIF interrupt is disabled bit 1 UERRIE: USB Error Interrupt Enable bit(1) 1 = USB Error interrupt is enabled 0 = USB Error interrupt is disabled bit 0 URSTIE: USB Reset Interrupt Enable bit(2) 1 = URSTIF interrupt is enabled 0 = URSTIF interrupt is disabled DETACHIE: USB Detach Interrupt Enable bit(3) 1 = DATTCHIF interrupt is enabled 0 = DATTCHIF interrupt is disabled Note 1: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set. 2: Device mode. 3: Host mode. DS60001156J-page 144  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 11-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS 7:0 CRC5EF(4) BTSEF BMXEF DMAEF(1) BTOEF(2) DFN8EF CRC16EF PIDEF EOFEF(3,5) Legend: WC = Write ‘1’ to clear HS = Hardware Settable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7 BTSEF: Bit Stuff Error Flag bit 1 = Packet is rejected due to bit stuff error 0 = Packet is accepted bit 6 BMXEF: Bus Matrix Error Flag bit 1 = Invalid base address of the BDT, or the address of an individual buffer pointed to by a BDT entry 0 = No address error bit 5 DMAEF: DMA Error Flag bit(1) 1 = USB DMA error condition detected 0 = No DMA error bit 4 BTOEF: Bus Turnaround Time-Out Error Flag bit(2) 1 = Bus turnaround time-out has occurred 0 = No bus turnaround time-out bit 3 DFN8EF: Data Field Size Error Flag bit 1 = Data field received is not an integral number of bytes 0 = Data field received is an integral number of bytes bit 2 CRC16EF: CRC16 Failure Flag bit 1 = Data packet is rejected due to CRC16 error 0 = Data packet is accepted bit 1 CRC5EF: CRC5 Host Error Flag bit(4) 1 = Token packet is rejected due to CRC5 error 0 = Token packet is accepted EOFEF: EOF Error Flag bit(3,5) 1 = EOF error condition is detected 0 = No EOF error condition bit 0 PIDEF: PID Check Failure Flag bit 1 = PID check is failed 0 = PID check is passed Note 1: This type of error occurs when the module’s request for the DMA bus is not granted in time to service the module’s demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to betruncated. 2: This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) haselapsed. 3: This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero. 4: Device mode. 5: Host mode.  2009-2016 Microchip Technology Inc. DS60001156J-page 145

PIC32MX5XX/6XX/7XX REGISTER 11-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 CRC5EE(1) BTSEE BMXEE DMAEE BTOEE DFN8EE CRC16EE PIDEE EOFEE(2) Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7 BTSEE: Bit Stuff Error Interrupt Enable bit 1 = BTSEF interrupt is enabled 0 = BTSEF interrupt is disabled bit 6 BMXEE: Bus Matrix Error Interrupt Enable bit 1 = BMXEF interrupt is enabled 0 = BMXEF interrupt is disabled bit 5 DMAEE: DMA Error Interrupt Enable bit 1 = DMAEF interrupt is enabled 0 = DMAEF interrupt is disabled bit 4 BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit 1 = BTOEF interrupt is enabled 0 = BTOEF interrupt is disabled bit 3 DFN8EE: Data Field Size Error Interrupt Enable bit 1 = DFN8EF interrupt is enabled 0 = DFN8EF interrupt is disabled bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit 1 = CRC16EF interrupt is enabled 0 = CRC16EF interrupt is disabled bit 1 CRC5EE: CRC5 Host Error Interrupt Enable bit(1) 1 = CRC5EF interrupt is enabled 0 = CRC5EF interrupt is disabled EOFEE: EOF Error Interrupt Enable bit(2) 1 = EOF interrupt is enabled 0 = EOF interrupt is disabled bit 0 PIDEE: PID Check Failure Interrupt Enable bit 1 = PIDEF interrupt is enabled 0 = PIDEF interrupt is disabled Note 1: Device mode. 2: Host mode. Note: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set. DS60001156J-page 146  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 11-10: U1STAT: USB STATUS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R-x R-x R-x R-x R-x R-x U-0 U-0 7:0 ENDPT<3:0> DIR PPBI — — Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7-4 ENDPT<3:0>: Encoded Number of Last Endpoint Activity bits (Represents the number of the BDT, updated by the last USB transfer.) 1111= Endpoint 15 1110= Endpoint 14 • • • 0001= Endpoint 1 0000= Endpoint 0 bit 3 DIR: Last Buffer Descriptor Direction Indicator bit 1 = Last transaction was a transmit transfer (TX) 0 = Last transaction was a receive transfer (RX) bit 2 PPBI: Ping-Pong Buffer Descriptor Pointer Indicator bit 1 = The last transaction was to the Odd buffer descriptor bank 0 = The last transaction was to the Even buffer descriptor bank bit 1-0 Unimplemented: Read as ‘0’ Note: The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when U1IR<TRNIF> is active. Clearing the U1IR<TRNIF> bit advances the FIFO. Data in register is invalid when U1IR<TRNIF>=0.  2009-2016 Microchip Technology Inc. DS60001156J-page 147

PIC32MX5XX/6XX/7XX REGISTER 11-11: U1CON: USB CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R-x R-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 PKTDIS(4) USBEN(4) JSTATE SE0 USBRST HOSTEN(2) RESUME(3) PPBRST TOKBUSY(1,5) SOFEN(5) Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7 JSTATE: Live Differential Receiver JSTATE flag bit 1 = JSTATE was detected on the USB 0 = JSTATE was not detected bit 6 SE0: Live Single-Ended Zero flag bit 1 = Single-ended zero was detected on the USB 0 = Single-ended zero was not detected bit 5 PKTDIS: Packet Transfer Disable bit(4) 1 = Token and packet processing disabled (set upon SETUP token received) 0 = Token and packet processing enabled TOKBUSY: Token Busy Indicator bit(1,5) 1 = Token being executed by the USB module 0 = No token being executed bit 4 USBRST: Module Reset bit(5) 1 = USB reset is generated 0 = USB reset is terminated bit 3 HOSTEN: Host Mode Enable bit(2) 1 = USB host capability is enabled 0 = USB host capability is disabled bit 2 RESUME: RESUME Signaling Enable bit(3) 1 = RESUME signaling is activated 0 = RESUME signaling is disabled Note 1: Software is required to check this bit before issuing another token command to the U1TOK register (see Register11-15). 2: All host control logic is reset any time that the value of this bit is toggled. 3: Software must set RESUME for 10ms in Device mode, or for 25 ms in Host mode, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared. 4: Device mode. 5: Host mode. DS60001156J-page 148  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 11-11: U1CON: USB CONTROL REGISTER (CONTINUED) bit 1 PPBRST: Ping-Pong Buffers Reset bit 1 = Reset all Even/Odd buffer pointers to the Even buffer descriptor banks 0 = Even/Odd buffer pointers are not reset bit 0 USBEN: USB Module Enable bit(4) 1 = USB module and supporting circuitry is enabled 0 = USB module and supporting circuitry is disabled SOFEN: SOF Enable bit(5) 1 = SOF token is sent every 1 ms 0 = SOF token is disabled Note 1: Software is required to check this bit before issuing another token command to the U1TOK register (see Register11-15). 2: All host control logic is reset any time that the value of this bit is toggled. 3: Software must set RESUME for 10ms in Device mode, or for 25 ms in Host mode, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared. 4: Device mode. 5: Host mode.  2009-2016 Microchip Technology Inc. DS60001156J-page 149

PIC32MX5XX/6XX/7XX REGISTER 11-12: U1ADDR: USB ADDRESS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 LSPDEN DEVADDR<6:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7 LSPDEN: Low-Speed Enable Indicator bit 1 = Next token command to be executed at low-speed 0 = Next token command to be executed at full-speed bit 6-0 DEVADDR<6:0>: 7-bit USB Device Address bits REGISTER 11-13: U1FRML: USB FRAME NUMBER LOW REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7:0 FRML<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7-0 FRML<7:0>: 11-bit Frame Number Lower bits The register bits are updated with the current frame number whenever a SOF TOKEN is received. DS60001156J-page 150  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 11-14: U1FRMH: USB FRAME NUMBER HIGH REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — U-0 U-0 U-0 U-0 U-0 R-0 R-0 R-0 7:0 — — — — — FRMH<2:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-3 Unimplemented: Read as ‘0’ bit 2-0 FRMH<2:0>: Upper 3 bits of the Frame Numbers bits These register bits are updated with the current frame number whenever a SOF TOKEN is received. REGISTER 11-15: U1TOK: USB TOKEN REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 PID<3:0> EP<3:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7-4 PID<3:0>: Token Type Indicator bits(1) 1101= SETUP (TX) token type transaction 1001= IN (RX) token type transaction 0001= OUT (TX) token type transaction Note: All other values not listed, are Reserved and must not be used. bit 3-0 EP<3:0>: Token Command Endpoint Address bits The four bit value must specify a valid endpoint.  2009-2016 Microchip Technology Inc. DS60001156J-page 151

PIC32MX5XX/6XX/7XX REGISTER 11-16: U1SOF: USB SOF THRESHOLD REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 CNT<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7-0 CNT<7:0>: SOF Threshold Value bits Typical values of the threshold are: 01001010 = 64-byte packet 00101010 = 32-byte packet 00011010 = 16-byte packet 00010010 = 8-byte packet REGISTER 11-17: U1BDTP1: USB BUFFER DESCRIPTOR TABLE PAGE 1 REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 7:0 BDTPTRL<15:9> — Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7-1 BDTPTRL<15:9>: BDT Base Address bits This 7-bit value provides address bits 15 through 9 of the BDT base address, which defines the starting location of the BDT in system memory. The 32-bit BDT base address is 512-byte aligned. bit 0 Unimplemented: Read as ‘0’ DS60001156J-page 152  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 11-18: U1BDTP2: USB BUFFER DESCRIPTOR TABLE PAGE 2 REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 BDTPTRH<23:16> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7-0 BDTPTRH<23:16>: BDT Base Address bits This 8-bit value provides address bits 23 through 16 of the BDT base address, which defines the starting location of the BDT in system memory. The 32-bit BDT base address is 512-byte aligned. REGISTER 11-19: U1BDTP3: USB BUFFER DESCRIPTOR TABLE PAGE 3 REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 BDTPTRU<31:24> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7-0 BDTPTRU<31:24>: BDT Base Address bits This 8-bit value provides address bits 31 through 24 of the BDT base address, defines the starting location of the BDT in system memory. The 32-bit BDT base address is 512-byte aligned.  2009-2016 Microchip Technology Inc. DS60001156J-page 153

PIC32MX5XX/6XX/7XX REGISTER 11-20: U1CNFG1: USB CONFIGURATION 1 REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/W-0 R/W-0 U-0 R/W-0 U-0 U-0 U-0 R/W-0 7:0 UTEYE UOEMON — USBSIDL — — — UASUSPND Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7 UTEYE: USB Eye-Pattern Test Enable bit 1 = Eye-Pattern Test is enabled 0 = Eye-Pattern Test is disabled bit 6 UOEMON: USB OE Monitor Enable bit 1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving 0 = OE signal is inactive bit 5 Unimplemented: Read as ‘0’ bit 4 USBSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 3-1 Unimplemented: Read as ‘0’ bit 0 UASUSPND: Automatic Suspend Enable bit 1 = USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit (U1PWRC<1>) in Register11-5. 0 = USB module does not automatically suspend upon entry to Sleep mode. Software must use the USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock. DS60001156J-page 154  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 11-21: U1EP0-U1EP15: USB ENDPOINT CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 LSPD RETRYDIS — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as ‘0’ bit 7 LSPD: Low-Speed Direct Connection Enable bit (Host mode and U1EP0 only) 1 = Direct connection to a low-speed device enabled 0 = Direct connection to a low-speed device disabled; hub required with PRE_PID bit 6 RETRYDIS: Retry Disable bit (Host mode and U1EP0 only) 1 = Retry NACK’d transactions disabled 0 = Retry NACK’d transactions enabled; retry done in hardware bit 5 Unimplemented: Read as ‘0’ bit 4 EPCONDIS: Bidirectional Endpoint Control bit If EPTXEN=1 and EPRXEN=1: 1 = Disable Endpoint ‘n’ from control transfers; only TX and RX transfers are allowed 0 = Enable Endpoint ‘n’ for control (SETUP) transfers; TX and RX transfers are also allowed Otherwise, this bit is ignored. bit 3 EPRXEN: Endpoint Receive Enable bit 1 = Endpoint ’n’ receive is enabled 0 = Endpoint ’n’ receive is disabled bit 2 EPTXEN: Endpoint Transmit Enable bit 1 = Endpoint ’n’ transmit is enabled 0 = Endpoint ’n’ transmit is disabled bit 1 EPSTALL: Endpoint Stall Status bit 1 = Endpoint ’n’ was stalled 0 = Endpoint ’n’ was not stalled bit 0 EPHSHK: Endpoint Handshake Enable bit 1 = Endpoint Handshake is enabled 0 = Endpoint Handshake is disabled (typically used for isochronous endpoints)  2009-2016 Microchip Technology Inc. DS60001156J-page 155

PIC32MX5XX/6XX/7XX NOTES: DS60001156J-page 156  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 12.0 I/O PORTS Following are some of the key features of this module: • Individual output pin open-drain enable/disable Note: This data sheet summarizes the features • Individual input pin weak pull-up enable/disable of the PIC32MX5XX/6XX/7XX family of • Monitor selective inputs and generate interrupt devices. It is not intended to be a when change in pin state is detected comprehensive reference source. To • Operation during Sleep and Idle modes complement the information in this data sheet, refer to Section 12. “I/O Ports” • Fast bit manipulation using CLR, SET and INV (DS60001120) in the “PIC32 Family registers Reference Manual”, which is available Figure12-1 illustrates a block diagram of a typical from the Microchip web site multiplexed I/O port. (www.microchip.com/PIC32). General purpose I/O pins are the simplest of peripher- als. They allow the PIC32 MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin. FIGURE 12-1: BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE Peripheral Module Peripheral Module Enable Peripheral Output Enable Peripheral Output Data PIO Module RD ODC Data Bus D Q PBCLK CK ODC EN Q WR ODC 1 I/O Cell RD TRIS 0 0 1 D Q CK TRIS 1 EN Q 0 WR TRIS Output Multiplexers D Q CK LAT I/O Pin EN Q WR LAT WR PORT RD LAT 1 RD PORT Q D Q D 0 Sleep Q CK Q CK PBCLK Synchronization Peripheral Input R Peripheral Input Buffer Legend: R = Peripheral input buffer types may vary. Refer to Table1-1 for peripheral details. Note: This block diagram is a general representation of a shared port/peripheral structure is only for illustration purposes. The actual structure for any specific port/peripheral combination may be different than it is shown here.  2009-2016 Microchip Technology Inc. DS60001156J-page 157

PIC32MX5XX/6XX/7XX 12.1 Parallel I/O (PIO) Ports The maximum input voltage allowed on the input pins is the same as the maximum VIH specification. Refer to All port pins have three registers (TRIS, LAT and Section32.0 “Electrical Characteristics” for VIH PORT) that are directly associated with their operation. specification details. TRIS is a Data Direction or Tri-State Control register Note: Analog levels on any pin that is defined as that determines whether a digital pin is an input or an a digital input (including the ANx pins) output. Setting a TRISx register bit= 1, configures the may cause the input buffer to consume corresponding I/O pin as an input; setting a TRISx current that exceeds the device register bit = 0, configures the corresponding I/O pin as specifications. an output. All port I/O pins are defined as inputs after a device Reset. Certain I/O pins are shared with analog 12.1.3 ANALOG INPUTS peripherals and default to analog inputs after a device Reset. Certain pins can be configured as analog inputs used by the ADC and comparator modules. Setting the PORT is a register used to read the current state of the corresponding bits in the AD1PCFG register = 0 signal applied to the port I/O pins. Writing to a PORTx enables the pin as an analog input pin and must have register performs a write to the port’s latch, LATx the corresponding TRIS bit set = 1 (input). If the TRIS register, latching the data to the port’s I/O pins. bit is cleared = 0 (output), the digital output level (VOH LAT is a register used to write data to the port I/O pins. or VOL) will be converted. Any time a port I/O pin is The LATx Latch register holds the data written to either configured as analog, its digital input is disabled and the LATx or PORTx registers. Reading the LATx Latch the corresponding PORTx register bit will read ‘0’. The register reads the last value written to the AD1PCFG register has a default value of 0x0000; corresponding PORT or Latch register. therefore, all pins that share ANx functions are analog Not all port I/O pins are implemented on some devices, (not digital) by default. therefore, the corresponding PORTx, LATx and TRISx 12.1.4 DIGITAL OUTPUTS register bits will read as zeros. Pins are configured as digital outputs by setting the 12.1.1 CLR, SET AND INV REGISTERS corresponding TRIS register bits = 0. When configured Every I/O module register has a corresponding Clear as digital outputs, these pins are CMOS drivers or can (CLR), Set (SET) and Invert (INV) register designed to be configured as open-drain outputs by setting the provide fast atomic bit manipulations. As the name of corresponding bits in the Open-Drain Configuration the register implies, a value written to a SET, CLR or (ODCx) register. INV register effectively performs the implied operation, The open-drain feature allows generation of outputs but only on the corresponding base register and only higher than VDD (e.g., 5V) on any desired 5V tolerant bits specified as ‘1’ are modified. Bits specified as ‘0’ pins by using external pull-up resistors. The maximum are not modified. open-drain voltage allowed is the same as the Reading SET, CLR and INV registers returns undefined maximum VIH specification. values. To see the affects of a write operation to a SET, See the “Device Pin Tables” section for the available CLR or INV register, the base register must be read. pins and their functionality. 12.1.5 ANALOG OUTPUTS Note: Using a PORTxINV register to toggle a bit is recommended because the operation is Certain pins can be configured as analog outputs, such performed in hardware atomically, using as the CVREF output voltage used by the comparator fewer instructions, as compared to the module. Configuring the comparator reference module traditional read-modify-write method, as to provide this output will present the analog output follows: voltage on the pin, independent of the TRIS register PORTC ^ = 0x0001; setting for the corresponding pin. 12.1.2 DIGITAL INPUTS 12.1.6 INPUT CHANGE NOTIFICATION Pins are configured as digital inputs by setting the The input change notification function of the I/O ports corresponding TRIS register bits = 1. When configured (CNx) allows devices to generate interrupt requests in as inputs, they are either TTL buffers or Schmitt response to change-of-state on selected pin. Triggers. Several digital pins share functionality with Each CNx pin also has a weak pull-up, which acts as a analog inputs and default to the analog inputs at POR. current source connected to the pin. The pull-ups are Setting the corresponding bit in the AD1PCFG enabled by setting the corresponding bit in the CNPUE register = 1 enables the pin as a digital pin. register. DS60001156J-page 158  2009-2016 Microchip Technology Inc.

 12.2 Control Registers 2 0 0 9 TABLE 12-1: PORTA REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, -2 0 PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, 1 6 M PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES icro ss Bits chip Techno Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets lo g 31:16 — — — — — — — — — — — — — — — — 0000 y 6000 TRISA In 15:0 TRISA15 TRISA14 — — — TRISA10 TRISA9 — TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 C6FF c. 6010 PORTA 31:16 — — — — — — — — — — — — — — — — 0000 15:0 RA15 RA14 — — — RA10 RA9 — RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 6020 LATA 15:0 LATA15 LATA14 — — — LATA10 LATA9 — LATA7 LATA6 LATA5 LATA4 LATA3 LATA2 LATA1 LATA0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 6030 ODCA 15:0 ODCA15 ODCA14 — — — ODCA10 ODCA9 — ODCA7 ODCA6 ODCA5 ODCA4 ODCA3 ODCA2 ODCA1 ODCA0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. P TABLE 12-2: PORTB REGISTER MAP I ss Bits C Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32M 31:16 — — — — — — — — — — — — — — — — 0000 X 6040 TRISB 15:0 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 FFFF 5 31:16 — — — — — — — — — — — — — — — — 0000 6050 PORTB X 15:0 RB15 RB14 RB13 RB12 RB11 RB10 RB9 RB8 RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 X 6060 LATB 15:0 LATB15 LATB14 LATB13 LATB12 LATB11 LATB10 LATB9 LATB8 LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 xxxx / D 6070 ODCB 31:16 — — — — — — — — — — — — — — — — 0000 6 S 15:0 ODCB15 ODCB14 ODCB13 ODCB12 ODCB11 ODCB10 ODCB9 ODCB8 ODCB7 ODCB6 ODCB5 ODCB4 ODCB3 ODCB2 ODCB1 ODCB0 0000 6 X 0 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 0 01 Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more X 1 information. 56 / J 7 -p a X g e 1 X 5 9

D TABLE 12-3: PORTC REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, P S 60 PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, I 0 C 0 PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES 1 1 56 ss Bits 3 J-page 160 Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 2MX 5 31:16 — — — — — — — — — — — — — — — — 0000 6080 TRISC 15:0 TRISC15 TRISC14 TRISC13 TRISC12 — — — — — — — — — — — — F000 X 31:16 — — — — — — — — — — — — — — — — 0000 6090 PORTC X 15:0 RC15 RC14 RC13 RC12 — — — — — — — — — — — — xxxx 31:16 — — — — — — — — — — — — — — — — 0000 / 60A0 LATC 6 15:0 LATC15 LATC14 LATC13 LATC12 — — — — — — — — — — — — xxxx X 31:16 — — — — — — — — — — — — — — — — 0000 60B0 ODCC 15:0 ODCC15 ODCC14 ODCC13 ODCC12 — — — — — — — — — — — — 0000 X Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. / Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more 7 information. X X TABLE 12-4: PORTC REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES ss Bits Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 31:16 — — — — — — — — — — — — — — — — 0000  6080 TRISC 2 15:0 TRISC15 TRISC14 TRISC13 TRISC12 — — — — — — — TRISC4 TRISC3 TRISC2 TRISC1 — F00F 009-2 6090 PORTC 3115:1:06 RC—15 RC—14 RC—13 RC—12 —— —— —— —— —— —— —— R—C4 R—C3 R—C2 R—C1 —— 0x0x0x0x 016 M 60A0 LATC 3115:1:06 LAT—C15 LAT—C14 LAT—C13 LAT—C12 —— —— —— —— —— —— —— LA—TC4 LA—TC3 LA—TC2 LA—TC1 —— 0x0x0x0x icro 60B0 ODCC 3115:1:06 OD—CC15 ODC—C14 ODC—C13 ODC—C12 —— —— —— —— —— —— —— OD—CC4 OD—CC3 OD—CC2 OD—CC1 —— 00000000 c hip Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. T Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more ec information. h n o lo g y In c .

 TABLE 12-5: PORTD REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, 2 0 PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, 0 9 -2 PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES 0 16 ss Bits Microchip T Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets e ch 31:16 — — — — — — — — — — — — — — — — 0000 n 60C0 TRISD o 15:0 — — — — TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 0FFF lo g 31:16 — — — — — — — — — — — — — — — — 0000 y 60D0 PORTD In 15:0 — — — — RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx c. 60E0 LATD 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — LATD11 LATD10 LATD9 LATD8 LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 60F0 ODCD 15:0 — — — — ODCD11 ODCD10 ODCD9 ODCD8 ODCD7 ODCD6 ODCD5 ODCD4 ODCD3 ODCD2 ODCD1 ODCD0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. TABLE 12-6: PORTD REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, P PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES I C ss Bits Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32M X 31:16 — — — — — — — — — — — — — — — — 0000 60C0 TRISD 15:0 TRISD15 TRISD14 TRISD13 TRISD12 TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 FFFF 5 60D0 PORTD 31:16 — — — — — — — — — — — — — — — — 0000 X 15:0 RD15 RD14 RD13 RD12 RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 X 60E0 LATD 15:0 LAT15 LAT14 LAT13 LAT12 LATD11 LATD10 LATD9 LATD8 LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0 xxxx / D 31:16 — — — — — — — — — — — — — — — — 0000 6 S 60F0 ODCD 6 15:0 ODCD15 ODCD14 ODCD13 ODCD12 ODCD11 ODCD10 ODCD9 ODCD8 ODCD7 ODCD6 ODCD5 ODCD4 ODCD3 ODCD2 ODCD1 ODCD0 0000 X 0 0 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 0 X 1 Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more 1 56 information. / J 7 -p a X g e 1 X 6 1

D TABLE 12-7: PORTE REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, P S 60 PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, I 0 C 0 PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES 1 1 56 ss Bits 3 J-page 162 Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 2MX 5 31:16 — — — — — — — — — — — — — — — — 0000 6100 TRISE 15:0 — — — — — — — — TRISE7 TRISE6 TRISE5 TRISE4 TRISE3 TRISE2 TRISE1 TRISE0 00FF X 31:16 — — — — — — — — — — — — — — — — 0000 6110 PORTE X 15:0 — — — — — — — — RE7 RE6 RE5 RE4 RE3 RE2 RE1 RE0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 / 6120 LATE 6 15:0 — — — — — — — — LATE7 LATE6 LATE5 LATE4 LATE3 LATE2 LATE1 LATE0 xxxx X 31:16 — — — — — — — — — — — — — — — — 0000 6130 ODCE 15:0 — — — — — — — — ODCE7 0DCE6 ODCE5 ODCE4 ODCE3 ODCE2 ODCE1 ODCE0 0000 X Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. / Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more 7 information. X X TABLE 12-8: PORTE REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES ss Bits Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 31:16 — — — — — — — — — — — — — — — — 0000  6100 TRISE 2 15:0 — — — — — — TRISE9 TRISE8 TRISE7 TRISE6 TRISE5 TRISE4 TRISE3 TRISE2 TRISE1 TRISE0 03FF 009-2 6110 PORTE 3115:1:06 —— —— —— —— —— —— R—E9 R—E8 R—E7 R—E6 R—E5 R—E4 R—E3 R—E2 R—E1 R—E0 0x0x0x0x 016 M 6120 LATE 3115:1:06 —— —— —— —— —— —— LA—TE9 LA—TE8 LA—TE7 LA—TE6 LA—TE5 LA—TE4 LA—TE3 LA—TE2 LA—TE1 LA—TE0 0x0x0x0x icro 6130 ODCE 3115:1:06 —— —— —— —— —— —— OD—CE9 OD—CE8 OD—CE7 0D—CE6 OD—CE5 OD—CE4 OD—CE3 OD—CE2 OD—CE1 OD—CE0 00000000 c hip Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. T Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more ec information. h n o lo g y In c .

 TABLE 12-9: PORTF REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, 2 0 PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, 0 9 -2 PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES 0 16 ss Bits Microchip T Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets e ch 31:16 — — — — — — — — — — — — — — — — 0000 n 6140 TRISF o 15:0 — — — — — — — — — — TRISF5 TRISF4 TRISF3 — TRISF1 TRISF0 003B lo g 31:16 — — — — — — — — — — — — — — — — 0000 y 6150 PORTF In 15:0 — — — — — — — — — — RF5 RF4 RF3 — RF1 RF0 xxxx c. 6160 LATF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — LATF5 LATF4 LATF3 — LATF1 LATF0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 6170 ODCF 15:0 — — — — — — — — — — ODCF5 ODCF4 ODCF3 — ODCF1 ODCF0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. TABLE 12-10: PORTF REGISTER MAP PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX775F256L, P PIC32MX764F128L, PIC32MX775F512L AND PIC32MX795F512L DEVICES I C ss Bits Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32M X 31:16 — — — — — — — — — — — — — — — — 0000 6140 TRISF 15:0 — — TRISF13 TRISF12 — — — TRISF8 — — TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 313F 5 6150 PORTF 31:16 — — — — — — — — — — — — — — — — 0000 X 15:0 — — RF13 RF12 — — — RF8 — — RF5 RF4 RF3 RF2 RF1 RF0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 X 6160 LATF 15:0 — — LATF13 LATF12 — — — LATF8 — — LATF5 LATF4 LATF3 LATF2 LATF1 LATF0 xxxx / D 31:16 — — — — — — — — — — — — — — — — 0000 6 S 6170 ODCF 6 15:0 — — ODCF13 ODCF12 — — — ODCF8 — — ODCF5 ODCF4 ODCF3 ODCF2 ODCF1 ODCF0 0000 X 0 0 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 0 X 1 Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more 1 56 information. / J 7 -p a X g e 1 X 6 3

D TABLE 12-11: PORTG REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, P S 60 PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, I 0 C 0 PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES 1 1 56 ss Bits 3 J-page 164 Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 2MX 5 31:16 — — — — — — — — — — — — — — — — 0000 6180 TRISG 15:0 — — — — — — TRISG9 TRISG8 TRISG7 TRISG6 — — TRISG3 TRISG2 — — 03CC X 31:16 — — — — — — — — — — — — — — — — 0000 6190 PORTG X 15:0 — — — — — — RG9 RG8 RG7 RG6 — — RG3 RG2 — — xxxx 31:16 — — — — — — — — — — — — — — — — 0000 / 61A0 LATG 6 15:0 — — — — — — LATG9 LATG8 LATG7 LATG6 — — LATG3 LATG2 — — xxxx X 31:16 — — — — — — — — — — — — — — — — 0000 61B0 ODCG 15:0 — — — — — — ODCG9 ODCG8 ODCG7 ODCG6 — — ODCG3 ODCG2 — — 0000 X Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. / Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more 7 information. X X TABLE 12-12: PORTG REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES ss Bits Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 31:16 — — — — — — — — — — — — — — — — 0000  6180 TRISG 2 15:0 TRISG15 TRISG14 TRISG13 TRISG12 — — TRISG9 TRISG8 TRISG7 TRISG6 — — TRISG3 TRISG2 TRISG1 TRISG0 F3CF 009-2 6190 PORTG 3115:1:06 RG—15 RG—14 RG—13 RG—12 —— —— R—G9 R—G8 R—G7 R—G6 —— —— R—G3 R—G2 R—G1 R—G0 0x0x0x0x 016 M 61A0 LATG 3115:1:06 LAT—G15 LAT—G14 LAT—G13 LAT—G12 —— —— LA—TG9 LA—TG8 LA—TG7 LA—TG6 —— —— LA—TG3 LA—TG2 LA—TG1 LA—TG0 0x0x0x0x icro 61B0 ODCG 3115:1:06 ODC—G15 ODC—G14 ODC—G13 ODC—G12 —— —— OD—CG9 OD—CG8 OD—CG7 OD—CG6 —— —— OD—CG3 OD—CG2 OD—CG1 OD—CG0 00000000 c hip Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. T Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more ec information. h n o lo g y In c .

 TABLE 12-13: CHANGE NOTICE AND PULL-UP REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, 2 0 PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, 0 9 -2 PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512 AND PIC32MX795F512L DEVICES 0 16 ss Bits Microchip T Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets e ch 31:16 — — — — — — — — — — — — — — — — 0000 n 61C0 CNCON o 15:0 ON — SIDL — — — — — — — — — — — — — 0000 lo g 31:16 — — — — — — — — — — CNEN21 CNEN20 CNEN19 CNEN18 CNEN17 CNEN16 0000 y 61D0 CNEN In 15:0 CNEN15 CNEN14 CNEN13 CNEN12 CNEN11 CNEN10 CNEN9 CNEN8 CNEN7 CNEN6 CNEN5 CNEN4 CNEN3 CNEN2 CNEN1 CNEN0 0000 c. 61E0 CNPUE 31:16 — — — — — — — — — — CNPUE21 CNPUE20 CNPUE19 CNPUE18 CNPUE17 CNPUE16 0000 15:0 CNPUE15 CNPUE14 CNPUE13 CNPUE12 CNPUE11 CNPUE10 CNPUE9 CNPUE8 CNPUE7 CNPUE6 CNPUE5 CNPUE4 CNPUE3 CNPUE2 CNPUE1 CNPUE0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. TABLE 12-14: CHANGE NOTICE AND PULL-UP REGISTER MAP FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES Virtual Address(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets PIC3 31:16 — — — — — — — — — — — — — — — — 0000 2 61C0 CNCON 15:0 ON — SIDL — — — — — — — — — — — — — 0000 M 31:16 — — — — — — — — — — — — — CNEN18 CNEN17 CNEN16 0000 61D0 CNEN 15:0 CNEN15 CNEN14 CNEN13 CNEN12 CNEN11 CNEN10 CNEN9 CNEN8 CNEN7 CNEN6 CNEN5 CNEN4 CNEN3 CNEN2 CNEN1 CNEN0 0000 X 61E0 CNPUE 31:16 — — — — — — — — — — — — — CNPUE18 CNPUE17 CNPUE16 0000 5 15:0 CNPUE15 CNPUE14 CNPUE13 CNPUE12 CNPUE11 CNPUE10 CNPUE9 CNPUE8 CNPUE7 CNPUE6 CNPUE5 CNPUE4 CNPUE3 CNPUE2 CNPUE1 CNPUE0 0000 X Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more X information. / D 6 S 6 X 0 0 0 X 1 1 56 / J 7 -p a X g e 1 X 6 5

PIC32MX5XX/6XX/7XX REGISTER 12-1: CNCON: CHANGE NOTICE CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 15:8 ON — SIDL — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 7:0 — — — — — — — — Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 ON: Change Notice (CN) Control ON bit 1 = CN is enabled 0 = CN is disabled bit 14 Unimplemented: Read as ‘0’ bit 13 SIDL: Stop in Idle Control bit 1 = Idle mode halts CN operation 0 = Idle mode does not affect CN operation bit 12-0 Unimplemented: Read as ‘0’ DS60001156J-page 166  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 13.0 TIMER1 13.1 Additional Supported Features Note: This data sheet summarizes the features • Selectable clock prescaler of the PIC32MX5XX/6XX/7XX family of • Timer operation during Idle and Sleep mode devices. It is not intended to be a • Fast bit manipulation using CLR, SET and INV comprehensive reference source. To registers complement the information in this data • Asynchronous mode can be used with the SOSC sheet, refer to Section 14. “Timers” to function as a Real-Time Clock (RTC) (DS60001105) in the “PIC32 Family A simplified block diagram of the Timer1 module is Reference Manual”, which is available illustrated in Figure13-1. from the Microchip web site (www.microchip.com/PIC32). This family of PIC32 devices features one synchronous/ asynchronous 16-bit timer that can operate as a free-run- ning interval timer for various timing applications and counting external events. This timer can also be used with the low-power Secondary Oscillator (SOSC) for Real-Time Clock (RTC) applications. The following modes are supported: • Synchronous Internal Timer • Synchronous Internal Gated Timer • Synchronous External Timer • Asynchronous External Timer FIGURE 13-1: TIMER1 BLOCK DIAGRAM PR1 Equal 16-bit Comparator TSYNC (T1CON<2>) 1 Sync TMR1 Reset 0 0 T1IF Event Flag 1 Q D TGATE (T1CON<7>) Q TCS (T1CON<1>) TGATE (T1CON<7>) ON (T1CON<15>) SOSCO/T1CK x 1 SOSCEN(1) Gate Prescaler Sync 1 0 1, 8, 64, 256 SOSCI PBCLK 0 0 2 TCKPS<1:0> (T1CON<5:4>) Note 1: The default state of the SOSCEN (OSCCON<1>) during a device Reset is controlled by the FSOSCEN bit in Configuration Word, DEVCFG1.  2009-2016 Microchip Technology Inc. DS60001156J-page 167

D 13.2 Control Registers P S 6 000 TABLE 13-1: TIMER1 REGISTER MAP IC 1 156J-page 168 Virtual Address(BF80_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32MX 31:16 — — — — — — — — — — — — — — — — 0000 5 0600 T1CON 15:0 ON — SIDL TWDIS TWIP — — — TGATE — TCKPS<1:0> — TSYNC TCS — 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 0610 TMR1 15:0 TMR1<15:0> 0000 X 0620 PR1 31:16 — — — — — — — — — — — — — — — — 0000 / 15:0 PR1<15:0> FFFF 6 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. X Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. X / 7 X X  2 0 0 9 -2 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 U-0 R/W-0 R/W-0 R-0 U-0 U-0 U-0 15:8 ON(1) — SIDL TWDIS TWIP — — — R/W-0 U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 U-0 7:0 TGATE — TCKPS<1:0> — TSYNC TCS — Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 ON: Timer On bit(1) 1 = Timer is enabled 0 = Timer is disabled bit 14 Unimplemented: Read as ‘0’ bit 13 SIDL: Stop in Idle Mode bit 1 = Discontinue operation when device enters Idle mode 0 = Continue operation when device is in Idle mode bit 12 TWDIS: Asynchronous Timer Write Disable bit 1 = Writes to TMR1 are ignored until pending write operation completes 0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality) bit 11 TWIP: Asynchronous Timer Write in Progress bit In Asynchronous Timer mode: 1 = Asynchronous write to TMR1 register in progress 0 = Asynchronous write to TMR1 register complete In Synchronous Timer mode: This bit is read as ‘0’. bit 10-8 Unimplemented: Read as ‘0’ bit 7 TGATE: Timer Gated Time Accumulation Enable bit When TCS=1: This bit is ignored. When TCS=0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled bit 6 Unimplemented: Read as ‘0’ bit 5-4 TCKPS<1:0>: Timer Input Clock Prescale Select bits 11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  2009-2016 Microchip Technology Inc. DS60001156J-page 169

PIC32MX5XX/6XX/7XX REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER (CONTINUED) bit 3 Unimplemented: Read as ‘0’ bit 2 TSYNC: Timer External Clock Input Synchronization Selection bit When TCS=1: 1 = External clock input is synchronized 0 = External clock input is not synchronized When TCS=0: This bit is ignored. bit 1 TCS: Timer Clock Source Select bit 1 = External clock from TxCKI pin 0 = Internal peripheral clock bit 0 Unimplemented: Read as ‘0’ Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit. DS60001156J-page 170  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 14.0 TIMER2/3, TIMER4/5 Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. Note: This data sheet summarizes the features The 32-bit timers can operate in three modes: of the PIC32MX5XX/6XX/7XX family of • Synchronous Internal 32-bit Timer devices. It is not intended to be a • Synchronous Internal 32-bit Gated Timer comprehensive reference source. To • Synchronous External 32-bit Timer complement the information in this data sheet, refer to Section 14. “Timers” Note: In this chapter, references to registers, (DS60001105) of the “PIC32 Family Ref- TxCON, TMRx and PRx, use ‘x’ to erence Manual”, which is available from represent Timer2 through Timer5 in 16-bit the Microchip web site (www.micro- modes. In 32-bit modes, ‘x’ represents chip.com/PIC32). Timer2 or Timer4; ‘y’ represents Timer3 or Timer5. This family of PIC32 devices features four synchronous 16-bit timers (default) that can operate as a free- running interval timer for various timing applications 14.1 Additional Supported Features and counting external events. The following modes are • Selectable clock prescaler supported: • Timers operational during CPU idle • Synchronous Internal 16-bit Timer • Time base for Input Capture and Output Compare • Synchronous Internal 16-bit Gated Timer modules (only Timer2 and Timer3) • Synchronous External 16-bit Timer • ADC event trigger (only Timer3) • Fast bit manipulation using CLR, SET and INV registers FIGURE 14-1: TIMER2/3 AND TIMER4/5 BLOCK DIAGRAM (16-BIT) TMRx Sync ADC Event Trigger(1) Comparator x 16 Equal PRx Reset 0 TxIF Event Flag 1 Q D TGATE (TxCON<7>) Q TCS (TxCON<1>) TGATE (TxCON<7>) ON (TxCON<15>) TxCK(2) x 1 Prescaler Gate 1, 2, 4, 8, 16, Sync 1 0 32, 64, 256 PBCLK 0 0 3 TCKPS (TxCON<6:4>) Note 1: ADC event trigger is only available on Timer3. 2: TxCK pins are not available on 64-pin devices.  2009-2016 Microchip Technology Inc. DS60001156J-page 171

PIC32MX5XX/6XX/7XX FIGURE 14-2: TIMER2/3 AND TIMER4/5 BLOCK DIAGRAM (32-BIT) Reset TMRy TMRx Sync MS Half Word LS Half Word ADC Event Trigger(3) 32-bit Comparator Equal PRy PRx TyIF Event 0 Flag 1 Q D TGATE (TxCON<7>) Q TCS (TxCON<1>) TGATE (TxCON<7>) ON (TxCON<15>) TxCK(2) x 1 Prescaler Gate 1, 2, 4, 8, 16, Sync 1 0 32, 64, 256 PBCLK 0 0 3 TCKPS (TxCON<6:4>) Note 1: In this diagram, the use of ‘x’ in registers, TxCON, TMRx, PRx and TxCK, refers to either Timer2 or Timer4; the use of ‘y’ in registers, TyCON, TMRy, PRy, TyIF, refers to either Timer3 or Timer5. 2: TxCK pins are not available on 64-pin devices. 3: ADC event trigger is only available on the Timer2/3 pair. DS60001156J-page 172  2009-2016 Microchip Technology Inc.

 14.2 Control Registers 2 0 0 9 TABLE 14-1: TIMER2 THROUGH TIMER5 REGISTER MAP -2 016 Microchip T Virtual Address(BF80_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets echn 0800 T2CON 3115::106 O—N —— S—IDL —— —— —— —— —— TG—ATE — TCKP—S<2:0> — T—32 —— TC—S(2) —— 00000000 o lo 31:16 — — — — — — — — — — — — — — — — 0000 g 0810 TMR2 y 15:0 TMR2<15:0> 0000 Inc. 0820 PR2 3115::106 — — — — — — — —PR2<15:0>— — — — — — — — 0F0F0F0F 31:16 — — — — — — — — — — — — — — — — 0000 0A00 T3CON 15:0 ON — SIDL — — — — — TGATE TCKPS<2:0> — — TCS(2) — 0000 31:16 — — — — — — — — — — — — — — — — 0000 0A10 TMR3 15:0 TMR3<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 0A20 PR3 15:0 PR3<15:0> FFFF 31:16 — — — — — — — — — — — — — — — — 0000 0C00 T4CON 15:0 ON — SIDL — — — — — TGATE TCKPS<2:0> T32 — TCS(2) — 0000 31:16 — — — — — — — — — — — — — — — — 0000 0C10 TMR4 P 15:0 TMR4<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 I 0C20 PR4 C 15:0 PR4<15:0> FFFF 31:16 — — — — — — — — — — — — — — — — 0000 3 0E00 T5CON 15:0 ON — SIDL — — — — — TGATE TCKPS<2:0> — — TCS(2) — 0000 2 31:16 — — — — — — — — — — — — — — — — 0000 0E10 TMR5 M 15:0 TMR5<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 0E20 PR5 X 15:0 PR5<15:0> FFFF Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 5 Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more X information. 2: These bits are not available on 64-pin devices. X / D 6 S 6 X 0 0 0 X 1 1 56 / J 7 -p a X g e 1 X 7 3

PIC32MX5XX/6XX/7XX REGISTER 14-1: TXCON: TYPE B TIMER CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 15:8 ON(1,3) — SIDL(4) — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 U-0 7:0 TGATE(3) TCKPS<2:0>(3) T32(2) — TCS(3) — Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 ON: Timer On bit(1,3) 1 = Module is enabled 0 = Module is disabled bit 14 Unimplemented: Read as ‘0’ bit 13 SIDL: Stop in Idle Mode bit(4) 1 = Discontinue operation when device enters Idle mode 0 = Continue operation when device is in Idle mode bit 12-8 Unimplemented: Read as ‘0’ bit 7 TGATE: Timer Gated Time Accumulation Enable bit(3) When TCS=1: This bit is ignored and is read as ‘0’. When TCS=0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled bit 6-4 TCKPS<2:0>: Timer Input Clock Prescale Select bits(3) 111 = 1:256 prescale value 110 = 1:64 prescale value 101 = 1:32 prescale value 100 = 1:16 prescale value 011 = 1:8 prescale value 010 = 1:4 prescale value 001 = 1:2 prescale value 000 = 1:1 prescale value Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit. 2: This bit is only available on even numbered timers (Timer2 and Timer4). 3: While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, and Tim- er5). All timer functions are set through the even numbered timers. 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode. DS60001156J-page 174  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 14-1: TXCON: TYPE B TIMER CONTROL REGISTER (CONTINUED) bit 3 T32: 32-Bit Timer Mode Select bit(2) 1 = Odd numbered and even numbered timers form a 32-bit timer 0 = Odd numbered and even numbered timers form a separate 16-bit timer bit 2 Unimplemented: Read as ‘0’ bit 1 TCS: Timer Clock Source Select bit(3) 1 = External clock from TxCK pin 0 = Internal peripheral clock bit 0 Unimplemented: Read as ‘0’ Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit. 2: This bit is only available on even numbered timers (Timer2 and Timer4). 3: While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, and Tim- er5). All timer functions are set through the even numbered timers. 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.  2009-2016 Microchip Technology Inc. DS60001156J-page 175

PIC32MX5XX/6XX/7XX NOTES: DS60001156J-page 176  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 15.0 WATCHDOG TIMER (WDT) This section describes the operation of the WDT and Power-up Timer of the PIC32MX5XX/6XX/7XX. Note: This data sheet summarizes the features The WDT, when enabled, operates from the internal of the PIC32MX5XX/6XX/7XX family of Low-Power Oscillator (LPRC) clock source and can be devices. However, it is not intended to be used to detect system software malfunctions by reset- a comprehensive reference source. To ting the device if the WDT is not cleared periodically in complement the information in this data software. Various WDT time-out periods can be sheet, refer to Section 8. “Watchdog selected using the WDT postscaler. The WDT can also Timer and Power-up Timer” be used to wake the device from Sleep or Idle mode. (DS60001114) in the “PIC32 Family Reference Manual”, which is available The following are key features of the WDT module: from the Microchip web site • Configuration or software controlled (www.microchip.com/PIC32). • User-configurable time-out period • Can wake the device from Sleep or Idle mode FIGURE 15-1: WATCHDOG TIMER AND POWER-UP TIMER BLOCK DIAGRAM PWRTEnable LPRC WDTEnable Control PWRTEnable 1:64Output LPRC PWRT Oscillator 1 Clock 25-bitCounter WDTCLR=1 WDTEnable 25 Wake 0 DeviceReset WDTCounterReset WDT Enable 1 NMI(Wake-up) Reset Event PowerSave Decoder FWDTPS<4:0> (DEVCFG1<20:16>)  2009-2016 Microchip Technology Inc. DS60001156J-page 177

D 15.1 Control Registers P S 6 000 TABLE 15-1: WATCHDOG TIMER REGISTER MAP IC 1 156J-page 178 Virtual Address(BF80_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 (2)All Resets 32MX 31:16 — — — — — — — — — — — — — — — — 0000 5 0000 WDTCON 15:0 ON — — — — — — — — SWDTPS<4:0> — WDTCLR 0000 X Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more X information. 2: Reset values are dependent on the DEVCFGx Configuration bits and the type of Reset. / 6 X X / 7 X X  2 0 0 9 -2 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 15-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 ON(1,2) — — — — — — — U-0 R-y R-y R-y R-y R-y R/W-0 R/W-0 7:0 — SWDTPS<4:0> WDTWINEN WDTCLR Legend: y = Values set from Configuration bits on POR R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 ON: Watchdog Timer Enable bit(1,2) 1 = Enables the WDT if it is not enabled by the device configuration 0 = Disable the WDT if it was enabled in software bit 14-7 Unimplemented: Read as ‘0’ bit 6-2 SWDTPS<4:0>: Shadow Copy of Watchdog Timer Postscaler Value from Device Configuration bits On reset, these bits are set to the values of the WDTPS <4:0> Configuration bits. bit 1 WDTWINEN: Watchdog Timer Window Enable bit 1 = Enable windowed Watchdog Timer 0 = Disable windowed Watchdog Timer bit 0 WDTCLR: Watchdog Timer Reset bit 1 = Writing a ‘1’ will clear the WDT 0 = Software cannot force this bit to a ‘0’ Note 1: A read of this bit results in a ‘1’ if the Watchdog Timer is enabled by the device configuration or software. 2: When using the 1:1 PBCLK divisor, the user’s software should not read or write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  2009-2016 Microchip Technology Inc. DS60001156J-page 179

PIC32MX5XX/6XX/7XX NOTES: DS60001156J-page 180  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 16.0 INPUT CAPTURE • Capture timer value on every edge (rising and falling) Note: This data sheet summarizes the features • Capture timer value on every edge (rising and of the PIC32MX5XX/6XX/7XX family of falling), specified edge first. devices. It is not intended to be a • Prescaler capture event modes: comprehensive reference source. To - Capture timer value on every 4th rising edge of complement the information in this data input at ICx pin sheet, refer to Section 15. “Input Cap- - Capture timer value on every 16th rising edge of ture” (DS60001122) of the “PIC32 Family Reference Manual”, which is available input at ICx pin from the Microchip web site Each input capture channel can select between one of (www.microchip.com/PIC32). two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to The Input Capture module is useful in applications form a 32-bit timer. The selected timer can use either requiring frequency (period) and pulse measurement. an internal or external clock. The Input Capture module captures the 16-bit or 32-bit Other operational features include: value of the selected Time Base registers when an event occurs at the ICx pin. The following events cause • Device wake-up from capture pin during Sleep and capture events: Idle modes • Interrupt on input capture event • Simple capture event modes: • 4-word FIFO buffer for capture values - Capture timer value on every falling edge of input Interrupt optionally generated after 1, 2, 3 or 4 buffer at ICx pin locations are filled - Capture timer value on every rising edge of input • Input Capture module can also be used to provide at ICx pin additional sources of external interrupts FIGURE 16-1: INPUT CAPTURE BLOCK DIAGRAM ICx Input Timer3 Timer2 ICTMR 0 1 C32 FIFO Control ICxBUF<31:16> ICxBUF<15:0> Prescaler Edge Detect 1, 4, 16 ICM<2:0> ICM<2:0> FEDGE ICBNE ICOV Interrupt ICxCON Event ICI<1:0> Generation Data Space Interface Interrupt Peripheral Data Bus  2009-2016 Microchip Technology Inc. DS60001156J-page 181

D 16.1 Control Registers P S 6 000 TABLE 16-1: INPUT CAPTURE 1-INPUT CAPTURE 5 REGISTER MAP IC 1 156J-page 182 Virtual Address(BF80_#) RegisterName Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32MX 31:16 — — — — — — — — — — — — — — — — 0000 5 2000 IC1CON(1) 15:0 ON — SIDL — — — FEDGE C32 ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0000 X 31:16 xxxx 2010 IC1BUF IC1BUF<31:0> X 15:0 xxxx 2200 IC2CON(1) 3115::106 O—N —— S—IDL —— —— —— FE—DGE C—32 ICT—MR —ICI<1:0>— IC—OV ICB—NE — ICM—<2:0> — 00000000 /6 31:16 xxxx X 2210 IC2BUF IC2BUF<31:0> 15:0 xxxx X 2400 IC3CON(1) 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ON — SIDL — — — FEDGE C32 ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0000 / 7 31:16 xxxx 2410 IC3BUF IC3BUF<31:0> X 15:0 xxxx 2600 IC4CON(1) 31:16 — — — — — — — — — — — — — — — — 0000 X 15:0 ON — SIDL — — — FEDGE C32 ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0000 31:16 xxxx 2610 IC4BUF IC4BUF<31:0> 15:0 xxxx 2800 IC5CON(1) 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ON — SIDL — — — FEDGE C32 ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0000 31:16 xxxx 2810 IC5BUF IC5BUF<31:0> 15:0 xxxx Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information.  2 0 0 9 -2 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 16-1: ICXCON: INPUT CAPTURE ‘X’ CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 U-0 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 15:8 ON(1) — SIDL — — — FEDGE C32 R/W-0 R/W-0 R/W-0 R-0 R-0 R/W-0 R/W-0 R/W-0 7:0 ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 ON: Input Capture Module Enable bit(1) 1=Module is enabled 0=Disable and reset module, disable clocks, disable interrupt generation and allow SFR modifications bit 14 Unimplemented: Read as ‘0’ bit 13 SIDL: Stop in Idle Control bit 1=Halt in Idle mode 0=Continue to operate in Idle mode bit 12-10 Unimplemented: Read as ‘0’ bit 9 FEDGE: First Capture Edge Select bit (only used in mode 6, ICM<2:0> = 110) 1=Capture rising edge first 0=Capture falling edge first bit 8 C32: 32-bit Capture Select bit 1=32-bit timer resource capture 0=16-bit timer resource capture bit 7 ICTMR: Timer Select bit (Does not affect timer selection when C32 (ICxCON<8>) is ‘1’) 1=Timer2 is the counter source for capture 0=Timer3 is the counter source for capture bit 6-5 ICI<1:0>: Interrupt Control bits 11= Interrupt on every fourth capture event 10= Interrupt on every third capture event 01= Interrupt on every second capture event 00= Interrupt on every capture event bit 4 ICOV: Input Capture Overflow Status Flag bit (read-only) 1=Input capture overflow is occurred 0=No input capture overflow is occurred bit 3 ICBNE: Input Capture Buffer Not Empty Status bit (read-only) 1=Input capture buffer is not empty; at least one more capture value can be read 0=Input capture buffer is empty Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  2009-2016 Microchip Technology Inc. DS60001156J-page 183

PIC32MX5XX/6XX/7XX REGISTER 16-1: ICXCON: INPUT CAPTURE ‘X’ CONTROL REGISTER (CONTINUED) bit 2-0 ICM<2:0>: Input Capture Mode Select bits 111= Interrupt-Only mode (only supported while in Sleep mode or Idle mode) 110= Simple Capture Event mode – every edge, specified edge first and every edge thereafter 101= Prescaled Capture Event mode – every sixteenth rising edge 100= Prescaled Capture Event mode – every fourth rising edge 011= Simple Capture Event mode – every rising edge 010= Simple Capture Event mode – every falling edge 001= Edge Detect mode – every edge (rising and falling) 000= Input Capture module is disabled Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit. DS60001156J-page 184  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 17.0 OUTPUT COMPARE The following are key features of the Output Compare module: Note: This data sheet summarizes the features • Multiple Output Compare modules in a device of the PIC32MX5XX/6XX/7XX family of • Programmable interrupt generation on compare devices. It is not intended to be a event comprehensive reference source. To complement the information in this data • Single and Dual Compare modes sheet, refer to Section 16. “Output Com- • Single and continuous output pulse generation pare” (DS60001111) in the “PIC32 Family • Pulse-Width Modulation (PWM) mode Reference Manual”, which is available • Hardware-based PWM Fault detection and from the Microchip web site automatic output disable (www.microchip.com/PIC32). • Programmable selection of 16-bit or 32-bit time The Output Compare module is used to generate a bases single pulse or a series of pulses in response to • Can operate from either of two available 16-bit selected time base events. For all modes of operation, time bases or a single 32-bit time base the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation. FIGURE 17-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM Set Flag bit OCxIF(1) OCxRS(1) OCxR(1) Output S Q OCx(1) Logic R Output Output Enable 3 Enable Logic OCM<2:0> Mode Select OCFA or OCFB(2) Comparator 0 1 OCTSEL 0 1 16 16 TMR Register Inputs Period Match Signals from Time Bases(3) from Time Bases(3) Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare channels, 1 through 5. 2: The OCFA pin controls the OC1-OC4 channels. The OCFB pin controls the OC5 channel. 3: Each output compare channel can use one of two selectable 16-bit time bases or a single 32-bit timer base.  2009-2016 Microchip Technology Inc. DS60001156J-page 185

D 17.1 Control Registers P S 6 000 TABLE 17-1: OUTPUT COMPARE 1-OUTPUT COMPARE 5 REGISTER MAP IC 1 156J-page 186 Virtual Address(BF80_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32MX 31:16 — — — — — — — — — — — — — — — — 0000 5 3000 OC1CON 15:0 ON — SIDL — — — — — — — OC32 OCFLT OCTSEL OCM<2:0> 0000 X 31:16 xxxx 3010 OC1R 15:0 OC1R<31:0> xxxx X 3020 OC1RS 31:16 OC1RS<31:0> xxxx / 15:0 xxxx 6 31:16 — — — — — — — — — — — — — — — — 0000 X 3200 OC2CON 15:0 ON — SIDL — — — — — — — OC32 OCFLT OCTSEL OCM<2:0> 0000 X 31:16 xxxx 3210 OC2R OC2R<31:0> 15:0 xxxx / 7 31:16 xxxx 3220 OC2RS OC2RS<31:0> 15:0 xxxx X 3400 OC3CON 31:16 — — — — — — — — — — — — — — — — 0000 X 15:0 ON — SIDL — — — — — — — OC32 OCFLT OCTSEL OCM<2:0> 0000 31:16 xxxx 3410 OC3R OC3R<31:0> 15:0 xxxx 31:16 xxxx 3420 OC3RS OC3RS<31:0> 15:0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 3600 OC4CON 15:0 ON — SIDL — — — — — — — OC32 OCFLT OCTSEL OCM<2:0> 0000 31:16 xxxx 3610 OC4R OC4R<31:0> 15:0 xxxx 31:16 xxxx 3620 OC4RS OC4RS<31:0>  15:0 xxxx 2 31:16 — — — — — — — — — — — — — — — — 0000 0 3800 OC5CON 0 15:0 ON — SIDL — — — — — — — OC32 OCFLT OCTSEL OCM<2:0> 0000 9 -2 31:16 xxxx 0 3810 OC5R OC5R<31:0> 1 15:0 xxxx 6 M 31:16 xxxx 3820 OC5RS OC5RS<31:0> ic 15:0 xxxx ro c Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. h ip Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more T information. e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 17-1: OCxCON: OUTPUT COMPARE ‘x’ CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 15:8 ON(1) — SIDL — — — — — U-0 U-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 — — OC32 OCFLT(2) OCTSEL OCM<2:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 ON: Output Compare Module On bit(1) 1 = Output Compare module is enabled 0 = Output Compare module is disabled bit 14 Unimplemented: Read as ‘0’ bit 13 SIDL: Stop in Idle Mode bit 1 = Discontinue operation when CPU enters Idle mode 0 = Continue operation when CPU is in Idle mode bit 12-6 Unimplemented: Read as ‘0’ bit 5 OC32: 32-bit Compare Mode bit 1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisons to the 32-bit timer source 0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source bit 4 OCFLT: PWM Fault Condition Status bit(2) 1 = PWM Fault condition has occurred (only cleared in hardware) 0 = PWM Fault condition has not occurred bit 3 OCTSEL: Output Compare Timer Select bit 1 = Timer3 is the clock source for this Output Compare module 0 = Timer2 is the clock source for this Output Compare module bit 2-0 OCM<2:0>: Output Compare Mode Select bits 111 = PWM mode on OCx; Fault pin enabled 110 = PWM mode on OCx; Fault pin disabled 101 = Initialize OCx pin low; generate continuous output pulses on OCx pin 100 = Initialize OCx pin low; generate single output pulse on OCx pin 011 = Compare event toggles OCx pin 010 = Initialize OCx pin high; compare event forces OCx pin low 001 = Initialize OCx pin low; compare event forces OCx pin high 000 = Output compare peripheral is disabled but continues to draw current Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit. 2: This bit is only used when OCM<2:0> = 111. It is read as ‘0’ in all other modes.  2009-2016 Microchip Technology Inc. DS60001156J-page 187

PIC32MX5XX/6XX/7XX NOTES: DS60001156J-page 188  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 18.0 SERIAL PERIPHERAL The following are some of the key features of the SPI INTERFACE (SPI) module: • Master mode and Slave mode support Note: This data sheet summarizes the features • Four different clock formats of the PIC32MX5XX/6XX/7XX family of • Enhanced Framed SPI protocol support devices. It is not intended to be a • User-configurable 8-bit, 16-bit and 32-bit data comprehensive reference source. To com- width plement the information in this data sheet, refer to Section 23. “Serial Peripheral • Separate SPI FIFO buffers for receive and transmit Interface (SPI)” (DS60001106) in the - FIFO buffers act as 4/8/16-level deep FIFOs “PIC32 Family Reference Manual”, which based on 32/16/8-bit data width is available from the Microchip web site • Programmable interrupt event on every 8-bit, (www.microchip.com/PIC32). 16-bit and 32-bit data transfer • Operation during Sleep and Idle modes The SPI module is a synchronous serial interface that is useful for communicating with external peripherals • Fast bit manipulation using CLR, SET and INV and other microcontroller devices. These peripheral registers devices may be Serial EEPROMs, Shift registers, dis- play drivers, Analog-to-Digital Converters, etc. The PIC32 SPI module is compatible with Motorola® SPI and SIOP interfaces. FIGURE 18-1: SPI MODULE BLOCK DIAGRAM Internal Data Bus SPIxBUF Read Write FIFOs Share Address SPIxBUF SPIxRXB FIFO SPIxTXB FIFO Transmit Receive SPIxSR SDIx bit 0 SDOx Shift Control Slave Select Clock Edge and Frame Control Select SSx/FSYNC Sync Control Baud Rate PBCLK Generator SCKx Enable Master Clock Note: Access SPIxTXB and SPIxRXB FIFOs via SPIxBUF register.  2009-2016 Microchip Technology Inc. DS60001156J-page 189

D 18.1 Control Registers P S 6 0 I 0 C 01 TABLE 18-1: SPI1 THROUGH SPI4 REGISTER MAP 1 56J-page 190 Virtual Address(BF80_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32MX 5 5E00 SPI1CON(2) 31:16 FRMEN FRMSYNC FRMPOL MSSEN FRMSYPW FRMCNT<2:0> — — — — — — SPIFE ENHBUF 0000 15:0 ON — SIDL DISSDO MODE32 MODE16 SMP CKE SSEN CKP MSTEN — STXISEL<1:0> SRXISEL<1:0> 0000 X 5E10 SPI1STAT(2)31:16 — — — RXBUFELM<4:0> — — — TXBUFELM<4:0> 0000 X 15:0 — — — — SPIBUSY — — SPITUR SRMT SPIROV SPIRBE — SPITBE — SPITBF SPIRBF 0008 5E20 SPI1BUF(2) 31:16 DATA<31:0> 0000 /6 15:0 0000 X 5E30 SPI1BRG(2) 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — BRG<8:0> 0000 X 31:16 FRMEN FRMSYNC FRMPOL MSSEN FRMSYPW FRMCNT<2:0> — — — — — — SPIFE ENHBUF 0000 5800 SPI3CON / 15:0 ON — SIDL DISSDO MODE32 MODE16 SMP CKE SSEN CKP MSTEN — STXISEL<1:0> SRXISEL<1:0> 0000 7 5810 SPI3STAT 31:16 — — — RXBUFELM<4:0> — — — TXBUFELM<4:0> 0000 X 15:0 — — — — SPIBUSY — — SPITUR SRMT SPIROV SPIRBE — SPITBE — SPITBF SPIRBF 0008 31:16 0000 X 5820 SPI3BUF DATA<31:0> 15:0 0000 31:16 — — — — — — — — — — — — — — — — 0000 5830 SPI3BRG 15:0 — — — — — — — BRG<8:0> 0000 31:16 FRMEN FRMSYNC FRMPOL MSSEN FRMSYPW FRMCNT<2:0> — — — — — — SPIFE ENHBUF 0000 5A00 SPI2CON 15:0 ON — SIDL DISSDO MODE32 MODE16 SMP CKE SSEN CKP MSTEN — STXISEL<1:0> SRXISEL<1:0> 0000 31:16 — — — RXBUFELM<4:0> — — — TXBUFELM<4:0> 0000 5A10 SPI2STAT 15:0 — — — — SPIBUSY — — SPITUR SRMT SPIROV SPIRBE — SPITBE — SPITBF SPIRBF 0008 31:16 0000 5A20 SPI2BUF DATA<31:0> 15:0 0000 31:16 — — — — — — — — — — — — — — — — 0000  5A30 SPI2BRG 2 15:0 — — — — — — — BRG<8:0> 0000 0 31:16 FRMEN FRMSYNC FRMPOL MSSEN FRMSYPW FRMCNT<2:0> — — — — — — SPIFE ENHBUF 0000 0 5C00 SPI4CON 9-2 15:0 ON — SIDL DISSDO MODE32 MODE16 SMP CKE SSEN CKP MSTEN — STXISEL<1:0> SRXISEL<1:0> 0000 0 31:16 — — — RXBUFELM<4:0> — — — TXBUFELM<4:0> 0000 1 5C10 SPI4STAT 6 15:0 — — — — SPIBUSY — — SPITUR SRMT SPIROV SPIRBE — SPITBE — SPITBF SPIRBF 0008 M icro 5C20 SPI4BUF 3115:1:06 DATA<31:0> 00000000 c h 31:16 — — — — — — — — — — — — — — — — 0000 ip 5C30 SPI4BRG T 15:0 — — — — — — — BRG<8:0> 0000 ec Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. h n Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” olo for more information. g 2: This register is not available on 64-pin devices. y In c .

PIC32MX5XX/6XX/7XX REGISTER 18-1: SPIxCON: SPI CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 FRMEN FRMSYNC FRMPOL MSSEN FRMSYPW FRMCNT<2:0> U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 23:16 — — — — — — SPIFE ENHBUF(2) R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 ON(1) — SIDL DISSDO MODE32 MODE16 SMP CKE(3) R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 SSEN CKP MSTEN — STXISEL<1:0> SRXISEL<1:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31 FRMEN: Framed SPI Support bit 1 = Framed SPI support is enabled (SSx pin used as FSYNC input/output) 0 = Framed SPI support is disabled bit 30 FRMSYNC: Frame Sync Pulse Direction Control on SSx pin bit (only Framed SPI mode) 1 = Frame sync pulse input (Slave mode) 0 = Frame sync pulse output (Master mode) bit 29 FRMPOL: Frame Sync Polarity bit (only Framed SPI mode) 1 = Frame pulse is active-high 0 = Frame pulse is active-low bit 28 MSSEN: Master Mode Slave Select Enable bit 1 = Slave select SPI support enabled. The SS pin is automatically driven during transmission in Master mode. Polarity is determined by the FRMPOL bit. 0 = Slave select SPI support is disabled. bit 27 FRMSYPW: Frame Sync Pulse Width bit 1 = Frame sync pulse is one character wide 0 = Frame sync pulse is one clock wide bit 26-24 FRMCNT<2:0>: Frame Sync Pulse Counter bits. Controls the number of data characters transmitted per pulse. This bit is only valid in Framed Sync mode. 111 = Reserved 110 = Reserved 101 = Generate a frame sync pulse on every 32 data characters 100 = Generate a frame sync pulse on every 16 data characters 011 = Generate a frame sync pulse on every 8 data characters 010 = Generate a frame sync pulse on every 4 data characters 001 = Generate a frame sync pulse on every 2 data characters 000 = Generate a frame sync pulse on every data character bit 23-18 Unimplemented: Read as ‘0’ bit 17 SPIFE: Frame Sync Pulse Edge Select bit (only Framed SPI mode) 1 = Frame synchronization pulse coincides with the first bit clock 0 = Frame synchronization pulse precedes the first bit clock bit 16 ENHBUF: Enhanced Buffer Enable bit(2) 1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read or write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit. 2: This bit can only be written when the ON bit = 0. 3: This bit is not used in the Framed SPI mode. The user should program this bit to ‘0’ for the Framed SPI mode (FRMEN=1).  2009-2016 Microchip Technology Inc. DS60001156J-page 191

PIC32MX5XX/6XX/7XX REGISTER 18-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED) bit 15 ON: SPI Peripheral On bit(1) 1 = SPI Peripheral is enabled 0 = SPI Peripheral is disabled bit 14 Unimplemented: Read as ‘0’ bit 13 SIDL: Stop in Idle Mode bit 1 = Discontinue operation when CPU enters in Idle mode 0 = Continue operation in Idle mode bit 12 DISSDO: Disable SDOx pin bit 1 = SDOx pin is not used by the module (pin is controlled by associated PORT register) 0 = SDOx pin is controlled by the module bit 11-10 MODE<32,16>: 32/16-Bit Communication Select bits MODE32 MODE16 Communication 1 x 32-bit 0 1 16-bit 0 0 8-bit bit 9 SMP: SPI Data Input Sample Phase bit Master mode (MSTEN=1): 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time Slave mode (MSTEN=0): SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0. bit 8 CKE: SPI Clock Edge Select bit(3) 1 = Serial output data changes on transition from active clock state to Idle clock state (see CKP bit) 0 = Serial output data changes on transition from Idle clock state to active clock state (see CKP bit) bit 7 SSEN: Slave Select Enable (Slave mode) bit 1 = SSx pin used for Slave mode 0 = SSx pin not used for Slave mode (pin is controlled by port function) bit 6 CKP: Clock Polarity Select bit 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level bit 5 MSTEN: Master Mode Enable bit 1 = Master mode 0 = Slave mode bit 4 Unimplemented: Read as ‘0’ bit 3-2 STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits 11 = Interrupt is generated when the buffer is not full (has one or more empty elements) 10 = Interrupt is generated when the buffer is empty by one-half or more 01 = Interrupt is generated when the buffer is completely empty 00 = Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are complete bit 1-0 SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits 11 = Interrupt is generated when the buffer is full 10 = Interrupt is generated when the buffer is full by one-half or more 01 = Interrupt is generated when the buffer is not empty 00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty) Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read or write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit. 2: This bit can only be written when the ON bit = 0. 3: This bit is not used in the Framed SPI mode. The user should program this bit to ‘0’ for the Framed SPI mode (FRMEN=1). DS60001156J-page 192  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 18-2: SPIxSTAT: SPI STATUS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 R-0 R-0 R-0 R-0 R-0 31:24 — — — RXBUFELM<4:0> U-0 U-0 U-0 R-0 R-0 R-0 R-0 R-0 23:16 — — — TXBUFELM<4:0> U-0 U-0 U-0 U-0 R-0 U-0 U-0 R-0 15:8 — — — — SPIBUSY — — SPITUR R-0 R/W-0 R-0 U-0 R-1 U-0 R-0 R-0 7:0 SRMT SPIROV SPIRBE — SPITBE — SPITBF SPIRBF Legend: C = Clearable bit HS = Set in hardware R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-29 Unimplemented: Read as ‘0’ bit 28-24 RXBUFELM<4:0>: Receive Buffer Element Count bits (only valid when ENHBUF = 1) bit 23-21 Unimplemented: Read as ‘0’ bit 20-16 TXBUFELM<4:0>: Transmit Buffer Element Count bits (only valid when ENHBUF = 1) bit 15-12 Unimplemented: Read as ‘0’ bit 11 SPIBUSY: SPI Activity Status bit 1 = SPI peripheral is currently busy with some transactions 0 = SPI peripheral is currently idle bit 10-9 Unimplemented: Read as ‘0’ bit 8 SPITUR: Transmit Under Run bit 1 = Transmit buffer has encountered an underrun condition 0 = Transmit buffer has no underrun condition This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling/re-enabling the module. bit 7 SRMT: Shift Register Empty bit (only valid when ENHBUF = 1) 1 = When SPI module shift register is empty 0 = When SPI module shift register is not empty bit 6 SPIROV: Receive Overflow Flag bit 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register. 0 = No overflow has occurred This bit is set in hardware; can only be cleared (= 0) in software. bit 5 SPIRBE: RX FIFO Empty bit (only valid when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR) 0 = RX FIFO is not empty (CRPTR SWPTR) bit 4 Unimplemented: Read as ‘0’ bit 3 SPITBE: SPI Transmit Buffer Empty Status bit 1 = Transmit buffer, SPIxTXB is empty 0 = Transmit buffer, SPIxTXB is not empty Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR. Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB. bit 2 Unimplemented: Read as ‘0’  2009-2016 Microchip Technology Inc. DS60001156J-page 193

PIC32MX5XX/6XX/7XX REGISTER 18-2: SPIxSTAT: SPI STATUS REGISTER bit 1 SPITBF: SPI Transmit Buffer Full Status bit 1 = Transmit not yet started, SPITXB is full 0 = Transmit buffer is not full Standard Buffer Mode: Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR. Enhanced Buffer Mode: Set when CWPTR + 1 = SRPTR; cleared otherwise bit 0 SPIRBF: SPI Receive Buffer Full Status bit 1 = Receive buffer, SPIxRXB is full 0 = Receive buffer, SPIxRXB is not full Standard Buffer Mode: Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB. Enhanced Buffer Mode: Set when SWPTR + 1 = CRPTR; cleared otherwise DS60001156J-page 194  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 19.0 INTER-INTEGRATED CIRCUIT The I2C module provides complete hardware support (I2C) for both Slave and Multi-Master modes of the I2C serial communication standard. Figure19-1 illustrates the Note: This data sheet summarizes the features I2C module block diagram. of the PIC32MX5XX/6XX/7XX family of Each I2C module has a 2-pin interface: the SCLx pin is devices. It is not intended to be a clock and the SDAx pin is data. comprehensive reference source. To Each I2C module offers the following key features: complement the information in this data sheet, refer to Section 24. “Inter- • I2C interface supporting both master and slave Integrated Circuit (I2C)” (DS60001116) operation in the “PIC32 Family Reference Manual”, • I2C Slave mode supports 7-bit and 10-bit addressing which is available from the Microchip web • I2C Master mode supports 7-bit and 10-bit site (www.microchip.com/PIC32). addressing • I2C port allows bidirectional transfers between master and slaves • Serial clock synchronization for the I2C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control) • I2C supports multi-master operation; detects bus collision and arbitrates accordingly • Provides support for address bit masking  2009-2016 Microchip Technology Inc. DS60001156J-page 195

PIC32MX5XX/6XX/7XX FIGURE 19-1: I2C BLOCK DIAGRAM Internal Data Bus I2CxRCV Read Shift SCLx Clock I2CxRSR LSB SDAx Address Match Match Detect Write I2CxMSK Write Read I2CxADD Read Start and Stop bit Detect Write Start and Stop bit Generation I2CxSTAT c gi Read o CDoellitseicotn ntrol L Write o C I2CxCON Acknowledge Generation Read Clock Stretching Write I2CxTRN LSB Read ShiftClock Reload Control Write BRG Down Counter I2CxBRG Read PBCLK DS60001156J-page 196  2009-2016 Microchip Technology Inc.

 19.1 Control Registers 2 0 0 9 TABLE 19-1: I2C1THROUGH I2C5 REGISTER MAP -2 016 Microchip T Virtual Address(BF80_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets ec 31:16 — — — — — — — — — — — — — — — — 0000 h 5000 I2C3CON n 15:0 ON — SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000 o lo 31:16 — — — — — — — — — — — — — — — — 0000 g 5010 I2C3STAT y Inc. 5020 I2C3ADD 3115:1:06 ACK—STAT TRS—TAT —— —— —— B—CL GC—STAT AD—D10 IW—COL I2C—OV D—/A —P —S R—/W R—BF T—BF 00000000 15:0 — — — — — — ADD<9:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 5030 I2C3MSK 15:0 — — — — — — MSK<9:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 5040 I2C3BRG 15:0 — — — — Baud Rate Generator Register 0000 31:16 — — — — — — — — — — — — — — — — 0000 5050 I2C3TRN 15:0 — — — — — — — — Transmit Register 0000 31:16 — — — — — — — — — — — — — — — — 0000 5060 I2C3RCV 15:0 — — — — — — — — Receive Register 0000 31:16 — — — — — — — — — — — — — — — — 0000 5100 I2C4CON P 15:0 ON — SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000 31:16 — — — — — — — — — — — — — — — — 0000 I 5110 I2C4STAT C 15:0 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF 0000 31:16 — — — — — — — — — — — — — — — — 0000 3 5120 I2C4ADD 15:0 — — — — — — ADD<9:0> 0000 2 31:16 — — — — — — — — — — — — — — — — 0000 5130 I2C4MSK M 15:0 — — — — — — MSK<9:0> 0000 5140 I2C4BRG 31:16 — — — — — — — — — — — — — — — — 0000 X 15:0 — — — — Baud Rate Generator Register 0000 31:16 — — — — — — — — — — — — — — — — 0000 5 5150 I2C4TRN 15:0 — — — — — — — — Transmit Register 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 5160 I2C4RCV X 15:0 — — — — — — — — Receive Register 0000 31:16 — — — — — — — — — — — — — — — — 0000 / DS 5200 I2C5CON 15:0 ON — SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000 6 6000 5210 I2C5STAT 3115:1:06 ACK—STAT TRS—TAT —— —— —— B—CL GC—STAT AD—D10 IW—COL I2C—OV D—/A —P —S R—/W R—BF T—BF 00000000 XX 1 1 31:16 — — — — — — — — — — — — — — — — 0000 56J 5220 I2C5ADD 15:0 — — — — — — ADD<9:0> 0000 /7 -p Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. a X g Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” e 1 for more information. X 9 2: This register is not available on 64-pin devices. 7

D TABLE 19-1: I2C1THROUGH I2C5 REGISTER MAP (CONTINUED) P S 60 ss Bits I 001156J-pag Virtual Addre(BF80_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets C32M e 1 5230 I2C5MSK 31:16 — — — — — — — — — — — — — — — — 0000 9 15:0 — — — — — — MSK<9:0> 0000 X 8 31:16 — — — — — — — — — — — — — — — — 0000 5240 I2C5BRG 5 15:0 — — — — Baud Rate Generator Register 0000 31:16 — — — — — — — — — — — — — — — — 0000 X 5250 I2C5TRN 15:0 — — — — — — — — Transmit Register 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 5260 I2C5RCV / 15:0 — — — — — — — — Receive Register 0000 6 31:16 — — — — — — — — — — — — — — — — 0000 5300 I2C1CON X 15:0 ON — SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000 31:16 — — — — — — — — — — — — — — — — 0000 X 5310 I2C1STAT 15:0 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF 0000 / 31:16 — — — — — — — — — — — — — — — — 0000 7 5320 I2C1ADD 15:0 — — — — — — ADD<9:0> 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 5330 I2C1MSK 15:0 — — — — — — MSK<9:0> 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 5340 I2C1BRG 15:0 — — — — Baud Rate Generator Register 0000 31:16 — — — — — — — — — — — — — — — — 0000 5350 I2C1TRN 15:0 — — — — — — — — Transmit Register 0000 31:16 — — — — — — — — — — — — — — — — 0000 5360 I2C1RCV 15:0 — — — — — — — — Receive Register 0000 5400 I2C2CON(2) 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ON — SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000 5410 I2C2STAT(2)31:16 — — — — — — — — — — — — — — — — 0000 15:0 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF 0000  2 5420 I2C2ADD(2) 31:16 — — — — — — — — — — — — — — — — 0000 00 15:0 — — — — — — ADD<9:0> 0000 9-2 5430 I2C2MSK(2) 31:16 — — — — — — — — — — — — — — — — 0000 0 15:0 — — — — — — MSK<9:0> 0000 1 6 M 5440 I2C2BRG(2) 31:16 — — — — — — — — — — — — — — — — 0000 ic 15:0 — — — — Baud Rate Generator Register 0000 roc 5450 I2C2TRN(2) 31:16 — — — — — — — — — — — — — — — — 0000 hip 15:0 — — — — — — — — Transmit Register 0000 Te 5460 I2C2RCV(2) 31:16 — — — — — — — — — — — — — — — — 0000 c 15:0 — — — — — — — — Receive Register 0000 h no Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. lo Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” g y for more information. In 2: This register is not available on 64-pin devices. c .

PIC32MX5XX/6XX/7XX 2 REGISTER 19-1: I2CXCON: I C CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 U-0 R/W-0 R/W-1, HC R/W-0 R/W-0 R/W-0 R/W-0 15:8 ON(1) — SIDL SCLREL STRICT A10M DISSLW SMEN R/W-0 R/W-0 R/W-0 R/W-0, HC R/W-0, HC R/W-0, HC R/W-0, HC R/W-0, HC 7:0 GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN Legend: HC = Cleared by hardware R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 ON: I2C Enable bit(1) 1 = Enables the I2C module and configures the SDA and SCL pins as serial port pins 0 = Disables the I2C module; all I2C pins are controlled by PORT functions bit 14 Unimplemented: Read as ‘0’ bit 13 SIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation when device enters Idle mode bit 12 SCLREL: SCLx Release Control bit (when operating as I2C slave) 1 = Release SCLx clock 0 = Hold SCLx clock low (clock stretch) If STREN = 1: Bit is R/W (software can write ‘0’ to initiate stretch and write ‘1’ to release clock). Cleared by hardware at the beginning of a slave transmission and at the end of slave reception. If STREN = 0: Bit is R/S (software can only write ‘1’ to release clock). Cleared by hardware at the beginning of slave transmission. bit 11 STRICT: Strict I2C Reserved Address Rule Enable bit 1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate addresses in reserved address space. 0 = Strict I2C reserved address rule is not enabled bit 10 A10M: 10-bit Slave Address bit 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address bit 9 DISSLW: Disable Slew Rate Control bit 1 = Slew rate control is disabled 0 = Slew rate control is enabled bit 8 SMEN: SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  2009-2016 Microchip Technology Inc. DS60001156J-page 199

PIC32MX5XX/6XX/7XX 2 REGISTER 19-1: I2CXCON: I C CONTROL REGISTER (CONTINUED) bit 7 GCEN: General Call Enable bit (when operating as I2C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address is disabled bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 0 = Disable software or receive clock stretching bit 5 ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive) Value that is transmitted when the software initiates an acknowledge sequence. 1 = Send NACK during an acknowledge 0 = Send ACK during an acknowledge bit 4 ACKEN: Acknowledge Sequence Enable bit (when operating as I2C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress bit 3 RCEN: Receive Enable bit (when operating as I2C master) 1 = Enables Receive mode for I2C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence is not in progress bit 2 PEN: Stop Condition Enable bit (when operating as I2C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition is not in progress bit 1 RSEN: Repeated Start Condition Enable bit (when operating as I2C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence. 0 = Repeated Start condition is not in progress bit 0 SEN: Start Condition Enable bit (when operating as I2C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition is not in progress Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit. DS60001156J-page 200  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 2 REGISTER 19-2: I2CXSTAT: I C STATUS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R-0, HSC R-0, HSC U-0 U-0 U-0 R/C-0, HS R-0, HSC R-0, HSC 15:8 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 R/C-0, HS R/C-0, HS R-0, HSC R/C-0, HSC R/C-0, HSC R-0, HSC R-0, HSC R-0, HSC 7:0 IWCOL I2COV D_A P S R_W RBF TBF Legend: HS = Set by hardware HSC = Hardware set/cleared R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared C = Clearable bit bit 31-16 Unimplemented: Read as ‘0’ bit 15 ACKSTAT: Acknowledge Status bit (when operating as I2C master, applicable to master transmit operation) This bit is set or cleared by hardware at the end of a slave Acknowledge. 1 = NACK received from slave 0 = ACK received from slave bit 14 TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation) This bit is set by hardware at the beginning of a master transmission, and is cleared by hardware at the end of a slave Acknowledge. 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress bit 13-11 Unimplemented: Read as ‘0’ bit 10 BCL: Master Bus Collision Detect bit This bit is set by hardware at the detection of a bus collision. 1 = A bus collision has been detected during a master operation 0 = No collision bit 9 GCSTAT: General Call Status bit This bit is set by hardware when the address matches the general call address, and is cleared by hardware clear at a Stop detection. 1 = General call address was received 0 = General call address was not received bit 8 ADD10: 10-bit Address Status bit This bit is set by hardware upon a match of the 2nd byte of the matched 10-bit address, and is cleared by hardware at a Stop detection. 1 = 10-bit address was matched 0 = 10-bit address was not matched bit 7 IWCOL: Write Collision Detect bit This bit is set by hardware at the occurrence of a write to I2CxTRN while busy (cleared by software). 1 = An attempt to write the I2CxTRN register failed because the I2C module is busy 0 = No collision bit 6 I2COV: Receive Overflow Flag bit This bit is set by hardware at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software). 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow  2009-2016 Microchip Technology Inc. DS60001156J-page 201

PIC32MX5XX/6XX/7XX 2 REGISTER 19-2: I2CXSTAT: I C STATUS REGISTER (CONTINUED) bit 5 D_A: Data/Address bit (when operating as I2C slave) This bit is cleared by hardware upon a device address match, and is set by hardware by reception of the slave byte. 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was device address bit 4 P: Stop bit This bit is set or cleared by hardware when a Start, Repeated Start, or Stop condition is detected. 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last bit 3 S: Start bit This bit is set or cleared by hardware when a Start, Repeated Start, or Stop condition is detected. 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last bit 2 R_W: Read/Write Information bit (when operating as I2C slave) This bit is set or cleared by hardware after reception of an I2C device address byte. 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave bit 1 RBF: Receive Buffer Full Status bit This bit is set by hardware when the I2CxRCV register is written with a received byte, and is cleared by hardware when software reads I2CxRCV. 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty bit 0 TBF: Transmit Buffer Full Status bit This bit is set by hardware when software writes to the I2CxTRN register, and is cleared by hardware upon completion of data transmission. 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty DS60001156J-page 202  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 20.0 UNIVERSAL ASYNCHRONOUS The following are primary features of the UART RECEIVER TRANSMITTER module: (UART) • Full-duplex, 8-bit or 9-bit data transmission • Even, Odd or No Parity options (for 8-bit data) Note: This data sheet summarizes the features • One or two Stop bits of the PIC32MX5XX/6XX/7XX family of • Hardware auto-baud feature devices. It is not intended to be a • Hardware flow control option comprehensive reference source. To complement the information in this data • Fully integrated Baud Rate Generator (BRG) with sheet, refer to Section 21. “Universal 16-bit prescaler Asynchronous Receiver Transmitter • Baud rates ranging from 76 bps to 20 Mbps at (UART)” (DS60001107) in the “PIC32 80MHz Family Reference Manual”, which is avail- • 8-level deep First-In-First-Out (FIFO) transmit able from the Microchip web site data buffer (www.microchip.com/PIC32). • 8-level deep FIFO receive data buffer The UART module is one of the serial I/O modules • Parity, framing and buffer overrun error detection available in the PIC32MX5XX/6XX/7XX family of • Support for interrupt-only on address detect devices. The UART is a full-duplex, asynchronous (ninth bit=1) communication channel that communicates with • Separate transmit and receive interrupts peripheral devices and personal computers through • Loopback mode for diagnostic support protocols, such as RS-232, RS-485, LIN 1.2 and IrDA®. • LIN 2.1 Protocol support The module also supports the hardware flow control option, with UxCTS and UxRTS pins, and also includes • IrDA encoder and decoder with 16x baud clock an IrDA encoder and decoder. output for external IrDA encoder/decoder support Figure20-1 illustrates a simplified block diagram of the UART module. FIGURE 20-1: UART SIMPLIFIED BLOCK DIAGRAM Baud Rate Generator IrDA® BCLKx UxRTS Hardware Flow Control UxCTS UARTx Receiver UxRX UARTx Transmitter UxTX Note: Not all pins are available for all UART modules. Refer to the device-specific pin diagram for more information (see “Device Pin Tables”).  2009-2016 Microchip Technology Inc. DS60001156J-page 203

PIC32MX5XX/6XX/7XX Figure20-2 and Figure20-3 illustrate typical receive and transmit timing for the UART module. FIGURE 20-2: UART RECEPTION Char 1 Char 2-4 Char 5-10 Char 11-13 Read to UxRXREG UxRX Start 1 Stop Start 2 Stop 4 Start 5 Stop 10Start 11 Stop 13 RIDLE Cleared by Software OERR Cleared by Software UxRXIF URXISEL = 00 Cleared by Software UxRXIF URXISEL = 01 UxRXIF URXISEL = 10 FIGURE 20-3: TRANSMISSION (8-BIT OR 9-BIT DATA) 8 into TxBUF Write to UxTXREG TSR BCLK/16 Pull from Buffer (Shift Clock) UxTX Start Bit 0 Bit 1 Stop Start Bit 1 UxTXIF UTXISEL = 00 UxTXIF UTXISEL = 01 UxTXIF UTXISEL = 10 DS60001156J-page 204  2009-2016 Microchip Technology Inc.

 20.1 Control Registers 2 0 0 9 TABLE 20-1: UART1 THROUGH UART6 REGISTER MAP -2 016 Microchip T Virtual Address(BF80_#) RegisterName Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets ech 6000 U1MODE(1) 31:16 — — — — — — — — — — — — — — — — 0000 n 15:0 ON — SIDL IREN RTSMD — UEN<1:0> WAKE LPBACK ABAUD RXINV BRGH PDSEL<1:0> STSEL 0000 o log 6010 U1STA(1) 31:16 — — — — — — — ADM_EN ADDR<7:0> 0000 y Inc. 6020 U1TXREG 3115:1:06 U—TXISEL<1:—0> UT—XINV UR—XEN UTX—BRK UT—XEN UT—XBF TR—MT U—RXISEL<1:—0> AD—DEN RI—DLE PE—RR FE—RR OE—RR UR—XDA 00011000 15:0 — — — — — — — TX8 Transmit Register 0000 31:16 — — — — — — — — — — — — — — — — 0000 6030 U1RXREG 15:0 — — — — — — — RX8 Receive Register 0000 6040 U1BRG(1) 31:16 — — — — — — — — — — — — — — — — 0000 15:0 BRG<15:0> 0000 6200 U4MODE(1) 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ON — SIDL IREN — — — — WAKE LPBACK ABAUD RXINV BRGH PDSEL<1:0> STSEL 0000 6210 U4STA(1) 31:16 — — — — — — — ADM_EN ADDR<7:0> 0000 15:0 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA 0110 31:16 — — — — — — — — — — — — — — — — 0000 6220 U4TXREG P 15:0 — — — — — — — TX8 Transmit Register 0000 31:16 — — — — — — — — — — — — — — — — 0000 I 6230 U4RXREG C 15:0 — — — — — — — RX8 Receive Register 0000 6240 U4BRG(1) 31:16 — — — — — — — — — — — — — — — — 0000 3 15:0 BRG<15:0> 0000 2 6400 U3MODE(1) 31:16 — — — — — — — — — — — — — — — — 0000 M 15:0 ON — SIDL IREN RTSMD — UEN<1:0> WAKE LPBACK ABAUD RXINV BRGH PDSEL<1:0> STSEL 0000 6410 U3STA(1) 31:16 — — — — — — — ADM_EN ADDR<7:0> 0000 X 15:0 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA 0110 31:16 — — — — — — — — — — — — — — — — 0000 5 6420 U3TXREG 15:0 — — — — — — — TX8 Transmit Register 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 6430 U3RXREG X 15:0 — — — — — — — RX8 Receive Register 0000 DS 6440 U3BRG(1) 3115:1:06 — — — — — — — —BRG<15:0>— — — — — — — — 00000000 /6 6000 6600 U6MODE(1) 3115:1:06 O—N —— S—IDL IR—EN —— —— —— —— WA—KE LPB—ACK AB—AUD RX—INV BR—GH —PDSEL<1:0—> ST—SEL 00000000 XX 1 156J 6610 U6STA(1) 3115:1:06 U—TXISEL<1:—0> UT—XINV UR—XEN UTX—BRK UT—XEN UT—XBF ADTRMM_ETN URXISEL<1:0> ADDEN RIDALDEDR<7:P0E>RR FERR OERR URXDA 00010100 /7 -p Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. a X g Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. e 2 X 0 5

D TABLE 20-1: UART1 THROUGH UART6 REGISTER MAP (CONTINUED) P S 60 ss Bits I 001156J-pag Virtual Addre(BF80_#) RegisterName Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets C32M e 2 6620 U6TXREG 31:16 — — — — — — — — — — — — — — — — 0000 0 15:0 — — — — — — — TX8 Transmit Register 0000 X 6 31:16 — — — — — — — — — — — — — — — — 0000 6630 U6RXREG 5 15:0 — — — — — — — RX8 Receive Register 0000 X 6640 U6BRG(1) 31:16 — — — — — — — — — — — — — — — — 0000 15:0 BRG<15:0> 0000 X 6800 U2MODE(1) 31:16 — — — — — — — — — — — — — — — — 0000 / 15:0 ON — SIDL IREN RTSMD — UEN<1:0> WAKE LPBACK ABAUD RXINV BRGH PDSEL<1:0> STSEL 0000 6 6810 U2STA(1) 31:16 — — — — — — — ADM_EN ADDR<7:0> 0000 X 15:0 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA 0110 31:16 — — — — — — — — — — — — — — — — 0000 X 6820 U2TXREG 15:0 — — — — — — — TX8 Transmit Register 0000 / 31:16 — — — — — — — — — — — — — — — — 0000 7 6830 U2RXREG 15:0 — — — — — — — RX8 Receive Register 0000 X 6840 U2BRG(1) 31:16 — — — — — — — — — — — — — — — — 0000 X 15:0 BRG<15:0> 0000 6A00 U5MODE(1) 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ON — SIDL IREN — — — — WAKE LPBACK ABAUD RXINV BRGH PDSEL<1:0> STSEL 0000 6A10 U5STA(1) 31:16 — — — — — — — ADM_EN ADDR<7:0> 0000 15:0 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA 0110 31:16 — — — — — — — — — — — — — — — — 0000 6A20 U5TXREG 15:0 — — — — — — — TX8 Transmit Register 0000 31:16 — — — — — — — — — — — — — — — — 0000 6A30 U5RXREG 15:0 — — — — — — — RX8 Receive Register 0000 6A40 U5BRG(1) 31:16 — — — — — — — — — — — — — — — — 0000 15:0 BRG<15:0> 0000  2 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 0 Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. 0 9 -2 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 20-1: UxMODE: UARTx MODE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 U-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 15:8 ON(1) — SIDL IREN RTSMD — UEN<1:0> R/W-0 R/W-0 R/W-0, HC R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 WAKE LPBACK ABAUD RXINV BRGH PDSEL<1:0> STSEL Legend: HC = Cleared by hardware R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 ON: UARTx Enable bit(1) 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits. 0 = UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal. bit 14 Unimplemented: Read as ‘0’ bit 13 SIDL: Stop in Idle Mode bit 1 = Discontinue operation when device enters Idle mode 0 = Continue operation when device enters Idle mode bit 12 IREN: IrDA Encoder and Decoder Enable bit 1 = IrDA is enabled 0 = IrDA is disabled bit 11 RTSMD: Mode Selection for UxRTS Pin bit 1 = UxRTS pin is in Simplex mode 0 = UxRTS pin is in Flow Control mode bit 10 Unimplemented: Read as ‘0’ bit 9-8 UEN<1:0>: UARTx Enable bits 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit 1 = Wake-up is enabled 0 = Wake-up is disabled bit 6 LPBACK: UARTx Loopback Mode Select bit 1 = Loopback mode is enabled 0 = Loopback mode is disabled Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  2009-2016 Microchip Technology Inc. DS60001156J-page 207

PIC32MX5XX/6XX/7XX REGISTER 20-1: UxMODE: UARTx MODE REGISTER (CONTINUED) bit 5 ABAUD: Auto-Baud Enable bit 1 = Enable baud rate measurement on the next character – requires reception of Sync character (0x55); cleared by hardware upon completion 0 = Baud rate measurement disabled or completed bit 4 RXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is ‘0’ 0 = UxRX Idle state is ‘1’ bit 3 BRGH: High Baud Rate Enable bit 1 = High-Speed mode – 4x baud clock enabled 0 = Standard Speed mode – 16x baud clock enabled bit 2-1 PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity bit 0 STSEL: Stop Selection bit 1 = 2 Stop bits 0 = 1 Stop bit Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit. DS60001156J-page 208  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 31:24 — — — — — — — ADM_EN R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 ADDR<7:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0, HC R/W-0 R-0 R-1 15:8 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT R/W-0 R/W-0 R/W-0 R-1 R-0 R-0 R/W-0, HS R-0 7:0 URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA Legend: HS = Set by hardware HC = Cleared by hardware R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-25 Unimplemented: Read as ‘0’ bit 24 ADM_EN: Automatic Address Detect Mode Enable bit 1 = Automatic Address Detect mode is enabled 0 = Automatic Address Detect mode is disabled bit 23-16 ADDR<7:0>: Automatic Address Mask bits When the ADM_EN bit is ‘1’, this value defines the address character to use for automatic address detection. bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits 11 = Reserved, do not use 10 = Interrupt is generated and asserted while the transmit buffer is empty 01 = Interrupt is generated and asserted when all characters have been transmitted 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space bit 13 UTXINV: Transmit Polarity Inversion bit If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is ‘0’): 1 = UxTX Idle state is ‘0’ 0 = UxTX Idle state is ‘1’ If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is ‘1’): 1 = IrDA encoded UxTX Idle state is ‘1’ 0 = IrDA encoded UxTX Idle state is ‘0’ bit 12 URXEN: Receiver Enable bit 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON=1) 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module. UxRX pin is controlled by port. bit 11 UTXBRK: Transmit Break bit 1 = Send Break on next transmission. Start bit followed by twelve ‘0’ bits, followed by Stop bit; cleared by hardware upon completion. 0 = Break transmission is disabled or completed bit 10 UTXEN: Transmit Enable bit 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON=1) 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset. UxTX pin is controlled by port. bit 9 UTXBF: Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written  2009-2016 Microchip Technology Inc. DS60001156J-page 209

PIC32MX5XX/6XX/7XX REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED) bit 8 TRMT: Transmit Shift Register is Empty bit (read-only) 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full (has 6 or more data characters) 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full (has 4 or more data characters) 00 = Interrupt flag bit is asserted while receive buffer is not empty (has at least 1 data character) bit 5 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect. 0 = Address Detect mode is disabled bit 4 RIDLE: Receiver Idle bit (read-only) 1 = Receiver is idle 0 = Data is being received bit 3 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected bit 2 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character 0 = Framing error has not been detected bit 1 OERR: Receive Buffer Overrun Error Status bit. This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to an empty state. 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed bit 0 URXDA: Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty DS60001156J-page 210  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 21.0 PARALLEL MASTER PORT The following are key features of the PMP module: (PMP) • 8-bit and 16-bit interface • Up to 16 programmable address lines Note: This data sheet summarizes the features • Up to two Chip Select lines of the PIC32MX5XX/6XX/7XX family of • Programmable strobe options devices. It is not intended to be a comprehensive reference source. To - Individual read and write strobes, or complement the information in this data - Read/Write strobe with enable strobe sheet, refer to Section 13. “Parallel Mas- • Address auto-increment/auto-decrement ter Port (PMP)” (DS60001128) in the • Programmable address/data multiplexing “PIC32 Family Reference Manual”, which • Programmable polarity on control signals is available from the Microchip web site • Parallel Slave Port support (www.microchip.com/PIC32). - Legacy addressable The PMP is a parallel 8-bit/16-bit input/output module - Address support specifically designed to communicate with a wide - 4-byte deep auto-incrementing buffer variety of parallel devices, such as communications • Programmable wait states peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel • Operates during Sleep and Idle modes peripherals varies significantly, the PMP module is • Fast bit manipulation using CLR, SET and INV highly configurable. Figure21-1 shows the PMP registers module pinout and its connections to external devices. Note: On 64-pin devices, the PMD<15:8> data pins are not available. FIGURE 21-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES Address Bus Data Bus Control Lines PIC32MX5XX/6XX/7XX PMA<0> PMALL Parallel Master Port PMA<1> PMALH Up to 16-bit Address Flash EEPROM PMA<13:2> SRAM PMA<14> PMCS1 PMA<15> PMCS2 PMRD PMRD/PMWR FIFO PMWR Microcontroller LCD Buffer PMENB PMD<7:0> PMD<15:8>(1) 16/8-bit Data (with or without multiplexed addressing) Note 1: On 64-pin devices, data pins, PMD<15:8>, are not available in 16-bit Master modes.  2009-2016 Microchip Technology Inc. DS60001156J-page 211

D 21.1 Control Registers P S 6 0 I 00 TABLE 21-1: PARALLEL MASTER PORT REGISTER MAP C 1 156J-page 212 Virtual Address(BF80_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32MX 31:16 — — — — — — — — — — — — — — — — 0000 5 7000 PMCON 15:0 ON — SIDL ADRMUX<1:0> PMPTTL PTWREN PTRDEN CSF<1:0> ALP CS2P CS1P — WRSP RDSP 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 7010 PMMODE 15:0 BUSY IRQM<1:0> INCM<1:0> MODE16 MODE<1:0> WAITB<1:0> WAITM<3:0> WAITE<1:0> 0000 X 7020 PMADDR 31:16 — — — — — — — — — — — — — — — — 0000 / 15:0 CS2EN/A15CS1EN/A14 ADDR<13:0> 0000 6 31:16 0000 X 7030 PMDOUT DATAOUT<31:0> 15:0 0000 X 31:16 0000 7040 PMDIN DATAIN<31:0> 15:0 0000 / 7 31:16 — — — — — — — — — — — — — — — — 0000 7050 PMAEN 15:0 PTEN<15:0> 0000 X 7060 PMSTAT 31:16 — — — — — — — — — — — — — — — — 0000 X 15:0 IBF IBOV — — IB3F IB2F IB1F IB0F OBE OBUF — — OB3E OB2E OB1E OB0E 008F Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information.  2 0 0 9 -2 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 21-1: PMCON: PARALLEL PORT CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 ON(1) — SIDL ADRMUX<1:0> PMPTTL PTWREN PTRDEN R/W-0 R/W-0 R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 7:0 CSF<1:0>(2) ALP(2) — CS1P(2) — WRSP RDSP Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 ON: Parallel Master Port Enable bit(1) 1 = PMP is enabled 0 = PMP is disabled, no off-chip access performed bit 14 Unimplemented: Read as ‘0’ bit 13 SIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation when device enters Idle mode bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits 11 = All 16 bits of address are multiplexed on PMD<15:0> pins 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<15:8> 00 = Address and data appear on separate pins bit 10 PMPTTL: PMP Module TTL Input Buffer Select bit 1 = PMP module uses TTL input buffers 0 = PMP module uses Schmitt Trigger input buffer bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port is enabled 0 = PMRD/PMWR port is disabled bit 7-6 CSF<1:0>: Chip Select Function bits(2) 11 = Reserved 10 = PMCS2 and PMCS1 function as Chip Select 01 = PMCS2 functions as Chip Select, PMCS1 functions as address bit 14 00 = PMCS2 and PMCS1 function as address bits 15 and 14(2) bit 5 ALP: Address Latch Polarity bit(2) 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) bit 4 Unimplemented: Read as ‘0’ Note1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON control bit. 2: These bits have no effect when their corresponding pins are used as address lines.  2009-2016 Microchip Technology Inc. DS60001156J-page 213

PIC32MX5XX/6XX/7XX REGISTER 21-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED) bit 3 CS1P: Chip Select 0 Polarity bit(2) 1 = Active-high (PMCS1) 0 = Active-low (PMCS1) bit 2 Unimplemented: Read as ‘0’ bit 1 WRSP: Write Strobe Polarity bit For Slave Modes and Master mode 2 (PMMODE<9:8>=00,01,10): 1=Write strobe active-high (PMWR) 0=Write strobe active-low (PMWR) For Master mode 1 (PMMODE<9:8>=11): 1=Enable strobe active-high (PMENB) 0=Enable strobe active-low (PMENB) bit 0 RDSP: Read Strobe Polarity bit For Slave modes and Master mode 2 (PMMODE<9:8>=00,01,10): 1=Read Strobe active-high (PMRD) 0=Read Strobe active-low (PMRD) For Master mode 1 (PMMODE<9:8>=11): 1=Read/write strobe active-high (PMRD/PMWR) 0=Read/write strobe active-low (PMRD/PMWR) Note1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON control bit. 2: These bits have no effect when their corresponding pins are used as address lines. DS60001156J-page 214  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 21-2: PMMODE: PARALLEL PORT MODE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 15:8 BUSY IRQM<1:0> INCM<1:0> — MODE<1:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 WAITB<1:0>(1) WAITM<3:0>(1) WAITE<1:0>(1) Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 BUSY: Busy bit (only Master mode) 1 = Port is busy 0 = Port is not busy bit 14-13 IRQM<1:0>: Interrupt Request Mode bits 11 = Reserved 10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (only Addressable Slave mode) 01 = Interrupt generated at the end of the read/write cycle 00 = Interrupt is not generated bit 12-11 INCM<1:0>: Increment Mode bits 11 = Slave mode read and write buffers auto-increment (only PMMODE<1:0> = 00) 10 = Decrement ADDR<10:2> and ADDR<14> by 1 every read/write cycle(2) 01 = Increment ADDR<10:2> and ADDR<14> by 1 every read/write cycle(2) 00 = No increment or decrement of address bit 10 Unimplemented: Read as ‘0’ bit 9-8 MODE<1:0>: Parallel Port Mode Select bits 11 = Master mode 1 (PMCS1, PMRD/PMWR, PMENB, PMA<x:0>, and PMD<7:0>) 10 = Master mode 2 (PMCS1, PMRD, PMWR, PMA<x:0>, and PMD<7:0>) 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS1, PMD<7:0>, and PMA<1:0>) 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS1, and PMD<7:0>) bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits(1) 11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB 10 = Data wait of 3 TPB; multiplexed address phase of 3 TPB 01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB 00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default) Note1: Whenever WAITM<3:0>=0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB=1 TPBCLK cycle, WAITE=0 TPBCLK cycles for a read operation. 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.  2009-2016 Microchip Technology Inc. DS60001156J-page 215

PIC32MX5XX/6XX/7XX REGISTER 21-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED) bit 5-2 WAITM<3:0>: Data Read/Write Strobe Wait States bits(1) 1111 = Wait of 16 TPB • • • 0001 = Wait of 2 TPB 0000 = Wait of 1 TPB (default) bit 1-0 WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits(1) 11 = Wait of 4 TPB 10 = Wait of 3 TPB 01 = Wait of 2 TPB 00 = Wait of 1 TPB (default) For Read operations: 11 = Wait of 3 TPB 10 = Wait of 2 TPB 01 = Wait of 1 TPB 00 = Wait of 0 TPB (default) Note1: Whenever WAITM<3:0>=0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB=1 TPBCLK cycle, WAITE=0 TPBCLK cycles for a read operation. 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1. DS60001156J-page 216  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 21-3: PMADDR: PARALLEL PORT ADDRESS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 CS2(1) CS1(3) ADDR<13:8> ADDR15(2) ADDR14(4) 7:0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ADDR<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 CS2: Chip Select 2 bit(1) 1 = Chip Select 2 is active 0 = Chip Select 2 is inactive bit 15 ADDR<15>: Destination Address bit 15(2) bit 14 CS1: Chip Select 1 bit(3) 1 = Chip Select 1 is active 0 = Chip Select 1 is inactive bit 14 ADDR<14>: Destination Address bit 14(4) bit 13-0 ADDR<13:0>: Address bits Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01. 2: When the CSF<1:0> bits (PMCON<7:6>) = 00. 3: When the CSF<1:0> bits (PMCON<7:6>) = 10. 4: When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.  2009-2016 Microchip Technology Inc. DS60001156J-page 217

PIC32MX5XX/6XX/7XX REGISTER 21-4: PMAEN: PARALLEL PORT PIN ENABLE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 15:8 — PTEN14 — — — PTEN<10:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 PTEN<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-15 Unimplemented: Read as ‘0’ bit 15-14 PTEN14: PMCS1 Strobe Enable bits 1 = PMA14 functions as either PMA14 or PMCS1(1) 0 = PMA14 functions as port I/O bit 13-11 Unimplemented: Read as ‘0’ bit 10-2 PTEN<10:2>: PMP Address Port Enable bits 1 = PMA<10:2> function as PMP address lines 0 = PMA<10:2> function as port I/O bit 1-0 PTEN<1:0>: PMALH/PMALL Strobe Enable bits 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL(2) 0 = PMA1 and PMA0 pads function as port I/O Note 1: The use of this pin as PMA14 or CS1 is selected by the CSF<1:0> bits in the PMCON register. 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by bits ADRMUX<1:0> in the PMCON register. DS60001156J-page 218  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 21-5: PMSTAT: PARALLEL PORT STATUS REGISTER (ONLY SLAVE MODES) Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R-0 R/W-0, HS, SC U-0 U-0 R-0 R-0 R-0 R-0 15:8 IBF IBOV — — IB3F IB2F IB1F IB0F R-1 R/W-0, HS, SC U-0 U-0 R-1 R-1 R-1 R-1 7:0 OBE OBUF — — OB3E OB2E OB1E OB0E Legend: HS = Set by Hardware SC = Cleared by software R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 IBF: Input Buffer Full Status bit 1 = All writable input buffer registers are full 0 = Some or all of the writable input buffer registers are empty bit 14 IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte buffer occurred (must be cleared in software) 0 = An overflow has not occurred bit 13-12 Unimplemented: Read as ‘0’ bit 11-8 IBxF: Input Buffer ‘x’ Status Full bits 1 = Input buffer contains data that has not been read (reading buffer will clear this bit) 0 = Input buffer does not contain any unread data bit 7 OBE: Output Buffer Empty Status bit 1 = All readable output buffer registers are empty 0 = Some or all of the readable output buffer registers are full bit 6 OBUF: Output Buffer Underflow Status bit 1 = A read occurred from an empty output byte buffer (must be cleared in software) 0 = An underflow has not occurred bit 5-4 Unimplemented: Read as ‘0’ bit 3-0 OBxE: Output Buffer ‘x’ Status Empty bits 1 = Output buffer is empty (writing data to the buffer will clear this bit) 0 = Output buffer contains data that has not been transmitted  2009-2016 Microchip Technology Inc. DS60001156J-page 219

PIC32MX5XX/6XX/7XX NOTES: DS60001156J-page 220  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 22.0 REAL-TIME CLOCK AND Key features of the RTCC module include: CALENDAR (RTCC) • Time: hours, minutes and seconds • 24-hour format (military time) Note: This data sheet summarizes the features • Visibility of one-half second period of the PIC32MX5XX/6XX/7XX family of • Provides calendar: Weekday, date, month and year devices. It is not intended to be a comprehensive reference source. To • Alarm intervals are configurable for half of a complement the information in this data second, one second, 10 seconds, one minute, 10 sheet, refer to Section 29. “Real-Time minutes, one hour, one day, one week, one month Clock and Calendar (RTCC)” and one year (DS60001125) in the “PIC32 Family Ref- • Alarm repeat with decrementing counter erence Manual”, which is available from • Alarm with indefinite repeat: Chime the Microchip web site (www.micro- • Year range: 2000 to 2099 chip.com/PIC32). • Leap year correction The PIC32 RTCC module is intended for applications • BCD format for smaller firmware overhead in which accurate time must be maintained for • Optimized for long-term battery operation extended periods of time with minimal or no CPU • Fractional second synchronization intervention. Low-power optimization provides • User calibration of the clock crystal frequency with extended battery lifetime while keeping track of time. auto-adjust A simplified block diagram of the RTCC module is illustrated in Figure22-1. • Calibration range: 0.66 seconds error per month • Calibrates up to 260 ppm of crystal error • Requirements: External 32.768 kHz clock crystal • Alarm pulse or seconds clock output on RTCC pin FIGURE 22-1: RTCC BLOCK DIAGRAM 32.768 kHz Input from Secondary Oscillator (SOSC) RTCC Prescalers 0.5s YEAR, MTH, DAY RTCC Timer RTCVAL WKDAY Alarm HR, MIN, SEC Event Comparator MTH, DAY Compare Registers ALRMVAL WKDAY with Masks HR, MIN, SEC Repeat Counter RTCC Interrupt RTCC Interrupt Logic Alarm Pulse Seconds Pulse RTCC Pin RTCOE  2009-2016 Microchip Technology Inc. DS60001156J-page 221

D 22.1 Control Registers P S 6 0 I 00 TABLE 22-1: RTCC REGISTER MAP C 1 156J-page 222 Virtual Address(BF80_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32MX 31:16 — — — — — — CAL<9:0> 0000 5 0200 RTCCON 15:0 ON — SIDL — — — — — RTSECSELRTCCLKON — — RTCWRENRTCSYNC HALFSEC RTCOE 0000 X 31:16 — — — — — — — — — — — — — — — — 0000 0210 RTCALRM 15:0 ALRMEN CHIME PIV ALRMSYNC AMASK<3:0> ARPT<7:0> 0000 X 0220 RTCTIME 31:16 HR10<3:0> HR01<3:0> MIN10<3:0> MIN01<3:0> xxxx / 15:0 SEC10<3:0> SEC01<3:0> — — — — — — — — xx00 6 31:16 YEAR10<3:0> YEAR01<3:0> MONTH10<3:0> MONTH01<3:0> xxxx X 0230 RTCDATE 15:0 DAY10<3:0> DAY01<3:0> — — — — WDAY01<3:0> xx00 X 31:16 HR10<3:0> HR01<3:0> MIN10<3:0> MIN01<3:0> xxxx 0240 ALRMTIME 15:0 SEC10<3:0> SEC01<3:0> — — — — — — — — xx00 / 7 31:16 — — — — — — — — MONTH10<3:0> MONTH01<3:0> 00xx 0250 ALRMDATE 15:0 DAY10<3:0> DAY01<3:0> — — — — WDAY01<3:0> xx0x X Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. X Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information.  2 0 0 9 -2 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 22-1: RTCCON: RTC CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 31:24 — — — — — — CAL<9:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 CAL<7:0> R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 15:8 ON(1,2) — SIDL — — — — — R/W-0 R-0 U-0 U-0 R/W-0 R-0 R-0 R/W-0 7:0 RTSECSEL(3) RTCCLKON — — RTCWREN(4) RTCSYNC HALFSEC(5) RTCOE Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-26 Unimplemented: Read as ‘0’ bit 25-16 CAL<9:0>: RTC Drift Calibration bits, which contain a signed 10-bit integer value 1111111111 = Minimum negative adjustment, subtracts 1 RTC clock pulse every one minute • • • 1000000000 = Maximum negative adjustment, subtracts 512 clock pulses every one minute 0111111111 = Maximum positive adjustment, adds 511 RTC clock pulses every one minute • • • 0000000001 = Minimum positive adjustment, adds 1 RTC clock pulse every one minute 0000000000 = No adjustment bit 15 ON: RTCC On bit(1,2) 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as ‘0’ bit 13 SIDL: Stop in Idle Mode bit 1 = Disables the PBCLK to the RTCC when CPU enters in Idle mode 0 = Continue normal operation in Idle mode bit 12-8 Unimplemented: Read as ‘0’ bit 7 RTSECSEL: RTCC Seconds Clock Output Select bit(3) 1 = RTCC Seconds Clock is selected for the RTCC pin 0 = RTCC Alarm Pulse is selected for the RTCC pin bit 6 RTCCLKON: RTCC Clock Enable Status bit 1 = RTCC Clock is actively running 0 = RTCC Clock is not running bit 5-4 Unimplemented: Read as ‘0’ Note 1: The ON bit is only writable when RTCWREN = 1. 2: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit. 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active. 4: The RTCWREN bit can only be set when the write sequence is enabled. 5: This bit is read-only. It is cleared to ‘0’ on a write to the seconds bit fields (RTCTIME<14:8>). Note: This register is only reset on a Power-on Reset (POR).  2009-2016 Microchip Technology Inc. DS60001156J-page 223

PIC32MX5XX/6XX/7XX REGISTER 22-1: RTCCON: RTC CONTROL REGISTER (CONTINUED) bit 3 RTCWREN: RTC Value Registers Write Enable bit(4) 1 = RTC Value registers can be written to by the user 0 = RTC Value registers are locked out from being written to by the user bit 2 RTCSYNC: RTCC Value Registers Read Synchronization bit 1 = RTC Value registers can change while reading, due to a rollover ripple that results in an invalid data read. If the register is read twice and results in the same data, the data can be assumed to be valid. 0 = RTC Value registers can be read without concern about a rollover ripple bit 1 HALFSEC: Half-Second Status bit(5) 1 = Second half period of a second 0 = First half period of a second bit 0 RTCOE: RTCC Output Enable bit 1 = RTCC clock output is enabled (clock presented onto an I/O) 0 = RTCC clock output is disabled Note 1: The ON bit is only writable when RTCWREN = 1. 2: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit. 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active. 4: The RTCWREN bit can only be set when the write sequence is enabled. 5: This bit is read-only. It is cleared to ‘0’ on a write to the seconds bit fields (RTCTIME<14:8>). Note: This register is only reset on a Power-on Reset (POR). DS60001156J-page 224  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 ALRMEN(1,2) CHIME(2) PIV(2) ALRMSYNC(3) AMASK<3:0>(2) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 ARPT<7:0>(2) Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 ALRMEN: Alarm Enable bit(1,2) 1 = Alarm is enabled 0 = Alarm is disabled bit 14 CHIME: Chime Enable bit(2) 1 = Chime is enabled – ARPT<7:0> is allowed to rollover from 0x00 to 0xFF 0 = Chime is disabled – ARPT<7:0> stops once it reaches 0x00 bit 13 PIV: Alarm Pulse Initial Value bit(3) When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse. bit 12 ALRMSYNC: Alarm Sync bit(3) 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing, which are then synchronized to the PB clock domain. 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is > 32 RTC clocks away from a half-second rollover bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits(2) 1111 = Reserved • • • 1010 = Reserved 1001 = Once a year (except when configured for February 29, once every four years) 1000 = Once a month 0111 = Once a week 0110 = Once a day 0101 = Every hour 0100 = Every 10 minutes 0011 = Every minute 0010 = Every 10 seconds 0001 = Every second 0000 = Every half-second Note 1: Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0>=00 and CHIME=0. 2: This field should not be written when the RTCC ON bit = ‘1’ (RTCCON<15>) and ALRMSYNC=1. 3: This assumes a CPU read will execute in less than 32 PBCLKs. Note: This register is only reset on a Power-on Reset (POR).  2009-2016 Microchip Technology Inc. DS60001156J-page 225

PIC32MX5XX/6XX/7XX REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED) bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits(2) 11111111 = Alarm will trigger 256 times • • • 00000000 = Alarm will trigger one time The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME=1. Note 1: Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0>=00 and CHIME=0. 2: This field should not be written when the RTCC ON bit = ‘1’ (RTCCON<15>) and ALRMSYNC=1. 3: This assumes a CPU read will execute in less than 32 PBCLKs. Note: This register is only reset on a Power-on Reset (POR). DS60001156J-page 226  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 22-3: RTCTIME: RTC TIME VALUE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 31:24 HR10<3:0> HR01<3:0> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 23:16 MIN10<3:0> MIN01<3:0> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 15:8 SEC10<3:0> SEC01<3:0> U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 7:0 — — — — — — — — Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-28 HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10 digits; contains a value from 0 to 2 bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1 digit; contains a value from 0 to 9 bit 23-20 MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10 digits; contains a value from 0 to 5 bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1 digit; contains a value from 0 to 9 bit 15-12 SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10 digits; contains a value from 0 to 5 bit 11-8 SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1 digit; contains a value from 0 to 9 bit 7-0 Unimplemented: Read as ‘0’ Note: This register is only writable when RTCWREN=1 (RTCCON<3>).  2009-2016 Microchip Technology Inc. DS60001156J-page 227

PIC32MX5XX/6XX/7XX REGISTER 22-4: RTCDATE: RTC DATE VALUE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 31:24 YEAR10<3:0> YEAR01<3:0> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 23:16 MONTH10<3:0> MONTH01<3:0> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 15:8 DAY10<3:0> DAY01<3:0> U-0 U-0 U-0 U-0 R/W-x R/W-x R/W-x R/W-x 7:0 — — — — WDAY01<3:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10 digits bit 27-24 YEAR01<3:0>: Binary-Coded Decimal Value of Years bits, 1 digit bit 23-20 MONTH10<3:0>: Binary-Coded Decimal Value of Months bits, 10 digits; contains a value from 0 to 1 bit 19-16 MONTH01<3:0>: Binary-Coded Decimal Value of Months bits, 1 digit; contains a value from 0 to 9 bit 15-12 DAY10<3:0>: Binary-Coded Decimal Value of Days bits, 10 digits; contains a value from 0 to 3 bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1 digit; contains a value from 0 to 9 bit 7-4 Unimplemented: Read as ‘0’ bit 3-0 WDAY01<3:0>: Binary-Coded Decimal Value of Weekdays bits,1 digit; contains a value from 0 to 6 Note: This register is only writable when RTCWREN=1 (RTCCON<3>). DS60001156J-page 228  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 22-5: ALRMTIME: ALARM TIME VALUE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 31:24 HR10<3:0> HR01<3:0> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 23:16 MIN10<3:0> MIN01<3:0> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 15:8 SEC10<3:0> SEC01<3:0> U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 7:0 — — — — — — — — Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-28 HR10<3:0>: Binary Coded Decimal value of hours bits, 10 digits; contains a value from 0 to 2 bit 27-24 HR01<3:0>: Binary Coded Decimal value of hours bits, 1 digit; contains a value from 0 to 9 bit 23-20 MIN10<3:0>: Binary Coded Decimal value of minutes bits, 10 digits; contains a value from 0 to 5 bit 19-16 MIN01<3:0>: Binary Coded Decimal value of minutes bits, 1 digit; contains a value from 0 to 9 bit 15-12 SEC10<3:0>: Binary Coded Decimal value of seconds bits, 10 digits; contains a value from 0 to 5 bit 11-8 SEC01<3:0>: Binary Coded Decimal value of seconds bits, 1 digit; contains a value from 0 to 9 bit 7-0 Unimplemented: Read as ‘0’  2009-2016 Microchip Technology Inc. DS60001156J-page 229

PIC32MX5XX/6XX/7XX REGISTER 22-6: ALRMDATE: ALARM DATE VALUE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 23:16 MONTH10<3:0> MONTH01<3:0> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 15:8 DAY10<1:0> DAY01<3:0> U-0 U-0 U-0 U-0 R/W-x R/W-x R/W-x R/W-x 7:0 — — — — WDAY01<3:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-24 Unimplemented: Read as ‘0’ bit 23-20 MONTH10<3:0>: Binary Coded Decimal value of months bits, 10 digits; contains a value from 0 to 1 bit 19-16 MONTH01<3:0>: Binary Coded Decimal value of months bits, 1 digit; contains a value from 0 to 9 bit 15-12 DAY10<3:0>: Binary Coded Decimal value of days bits, 10 digits; contains a value from 0 to 3 bit 11-8 DAY01<3:0>: Binary Coded Decimal value of days bits, 1 digit; contains a value from 0 to 9 bit 7-4 Unimplemented: Read as ‘0’ bit 3-0 WDAY01<3:0>: Binary Coded Decimal value of weekdays bits, 1 digit; contains a value from 0 to 6 DS60001156J-page 230  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 23.0 10-BIT ANALOG-TO-DIGITAL • 16-word conversion result buffer CONVERTER (ADC) • Selectable buffer fill modes • Eight conversion result format options Note: This data sheet summarizes the features • Operation during Sleep and Idle modes of the PIC32MX5XX/6XX/7XX family of A block diagram of the 10-bit ADC is illustrated in devices. It is not intended to be a Figure23-1. The 10-bit ADC has up to 16 analog input comprehensive reference source. To pins, designated AN0-AN15. In addition, there are two complement the information in this data analog input pins for external voltage reference sheet, refer to Section 17. “10-bit Ana- connections. These voltage reference inputs may be log-to-Digital Converter (ADC)” shared with other analog input pins and may be (DS60001104) in the “PIC32 Family Ref- common to other analog module references. erence Manual”, which is available from The analog inputs are connected through two multi- the Microchip web site plexers to one S&H. The analog input multiplexers can (www.microchip.com/PIC32). be switched between two sets of analog inputs between conversions. Unipolar differential conversions The PIC32MX5XX/6XX/7XX 10-bit Analog-to-Digital are possible on all channels, other than the pin used as Converter (ADC) includes the following features: the reference, using a reference input pin (see • Successive Approximation Register (SAR) Figure23-1). conversion The Analog Input Scan mode sequentially converts • Up to 1 Msps conversion speed user-specified channels. A control register specifies • Up to 16 analog input pins which analog input channels will be included in the • External voltage reference input pins scanning sequence. • One unipolar, differential Sample and Hold (S&H) The 10-bit ADC is connected to a 16-word result buffer. circuit Each 10-bit result is converted to one of eight 32-bit • Automatic Channel Scan mode output formats when it is read from the result buffer. • Selectable conversion trigger source FIGURE 23-1: ADC1 MODULE BLOCK DIAGRAM VREF+(1) AVDD VREF-(1) AVSS VCFG<2:0> AN0 ADC1BUF0 ADC1BUF1 AN15 ADC1BUF2 Channel S&H VREFH VREFL Scan + CH0SA<4:0> CH0SB<4:0> - SAR ADC CSCNA AN1 ADC1BUFE VREFL ADC1BUFF CH0NA CH0NB Alternate Input Selection Note 1: VREF+ and VREF- inputs can be multiplexed with other analog inputs.  2009-2016 Microchip Technology Inc. DS60001156J-page 231

PIC32MX5XX/6XX/7XX FIGURE 23-2: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM ADRC FRC  2 1 TAD ADCS<7:0> 0 8 ADC Conversion Clock Multiplier TPB 2, 4,..., 512 DS60001156J-page 232  2009-2016 Microchip Technology Inc.

 23.1 Control Registers 2 0 0 9 TABLE 23-1: ADC REGISTER MAP -2 016 Microchip T Virtual Address(BF80_#) RegisterName Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets ech 9000 AD1CON1(1)31:16 — — — — — — — — — — — — — — — — 0000 n 15:0 ON — SIDL — — FORM<2:0> SSRC<2:0> CLRASAM — ASAM SAMP DONE 0000 o log 9010 AD1CON2(1)31:16 — — — — — — — — — — — — — — — — 0000 y Inc. 9020 AD1CON3(1)3115:1:06 VC—FG2 VC—FG1 VC—FG0 OFF—CAL —— CS—CNA —— —— BU—FS —— — —SMPI<3:0>— — BU—FM AL—TS 00000000 15:0 ADRC — — SAMC<4:0> ADCS<7:0> 0000 9040 AD1CHS(1) 31:16 CH0NB — — — CH0SB<3:0> CH0NA — — — CH0SA<3:0> 0000 15:0 — — — — — — — — — — — — — — — — 0000 9060 AD1PCFG(1)31:16 — — — — — — — — — — — — — — — — 0000 15:0 PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8 PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0 0000 9050 AD1CSSL(1) 31:16 — — — — — — — — — — — — — — — — 0000 15:0 CSSL15 CSSL14 CSSL13 CSSL12 CSSL11 CSSL10 CSSL9 CSSL8 CSSL7 CSSL6 CSSL5 CSSL4 CSSL3 CSSL2 CSSL1 CSSL0 0000 31:16 0000 9070 ADC1BUF0 ADC Result Word 0 (ADC1BUF0<31:0>) 15:0 0000 31:16 0000 9080 ADC1BUF1 ADC Result Word 1 (ADC1BUF1<31:0>) P 15:0 0000 31:16 0000 I 9090 ADC1BUF2 ADC Result Word 2 (ADC1BUF2<31:0>) C 15:0 0000 31:16 0000 3 90A0 ADC1BUF3 ADC Result Word 3 (ADC1BUF3<31:0>) 15:0 0000 2 31:16 0000 90B0 ADC1BUF4 ADC Result Word 4 (ADC1BUF4<31:0>) M 15:0 0000 90C0 ADC1BUF5 31:16 ADC Result Word 5 (ADC1BUF5<31:0>) 0000 X 15:0 0000 31:16 0000 5 90D0 ADC1BUF6 ADC Result Word 6 (ADC1BUF6<31:0>) 15:0 0000 X 31:16 0000 90E0 ADC1BUF7 ADC Result Word 7 (ADC1BUF7<31:0>) X 15:0 0000 31:16 0000 / DS 90F0 ADC1BUF8 15:0 ADC Result Word 8 (ADC1BUF8<31:0>) 0000 6 6000 9100 ADC1BUF9 3115:1:06 ADC Result Word 9 (ADC1BUF9<31:0>) 00000000 XX 1 1 31:16 0000 56J 9110 ADC1BUFA 15:0 ADC Result Word A (ADC1BUFA<31:0>) 0000 /7 -p Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. a X g Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. e 2 X 3 3

D TABLE 23-1: ADC REGISTER MAP (CONTINUED) P S 60 ss Bits I 001156J-pag Virtual Addre(BF80_#) RegisterName Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets C32M e 2 9120 ADC1BUFB 31:16 ADC Result Word B (ADC1BUFB<31:0>) 0000 3 15:0 0000 X 4 31:16 0000 9130 ADC1BUFC ADC Result Word C (ADC1BUFC<31:0>) 5 15:0 0000 X 31:16 0000 9140 ADC1BUFD ADC Result Word D (ADC1BUFD<31:0>) 15:0 0000 X 31:16 0000 9150 ADC1BUFE ADC Result Word E (ADC1BUFE<31:0>) / 15:0 0000 6 31:16 0000 9160 ADC1BUFF ADC Result Word F (ADC1BUFF<31:0>) X 15:0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. X Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. / 7 X X  2 0 0 9 -2 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 23-1: AD1CON1: ADC CONTROL REGISTER 1 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 15:8 ON(1) — SIDL — — FORM<2:0> R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0, HSC R/C-0, HSC 7:0 SSRC<2:0> CLRASAM — ASAM SAMP(2) DONE(3) Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 ON: ADC Operating Mode bit(1) 1 = ADC module is operating 0 = ADC module is not operating bit 14 Unimplemented: Read as ‘0’ bit 13 SIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-11 Unimplemented: Read as ‘0’ bit 10-8 FORM<2:0>: Data Output Format bits 111 = Signed Fractional 32-bit (DOUT = sddd dddd dd00 0000 0000 0000 0000) 110 = Fractional 32-bit (DOUT = dddd dddd dd00 0000 0000 0000 0000 0000) 101 = Signed Integer 32-bit (DOUT = ssss ssss ssss ssss ssss sssd dddd dddd) 100 = Integer 32-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd) 011 = Signed Fractional 16-bit (DOUT = 0000 0000 0000 0000 sddd dddd dd00 0000) 010 = Fractional 16-bit (DOUT = 0000 0000 0000 0000 dddd dddd dd00 0000) 001 = Signed Integer 16-bit (DOUT = 0000 0000 0000 0000 ssss sssd dddd dddd) 000 = Integer 16-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd) bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits 111 = Internal counter ends sampling and starts conversion (auto convert) 110 = Reserved 101 = Reserved 100 = Reserved 011 = CTMU ends sampling and starts conversion 010 = Timer 3 period match ends sampling and starts conversion 001 = Active transition on INT0 pin ends sampling and starts conversion 000 = Clearing the SAMP bit ends sampling and starts conversion Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit. 2: If ASAM = 0, software can write a ‘1’ to start sampling. This bit is automatically set by hardware if ASAM=1. If SSRC<2:0> = 000, software can write a ‘0’ to end sampling and start conversion. If SSRC<2:0> ‘000’, this bit is automatically cleared by hardware to end sampling and start conversion. 3: This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a ‘0’ to clear this bit (a write of ‘1’ is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.  2009-2016 Microchip Technology Inc. DS60001156J-page 235

PIC32MX5XX/6XX/7XX REGISTER 23-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED) bit 4 CLRASAM: Stop Conversion Sequence bit (when the first ADC interrupt is generated) 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated. 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence bit 3 Unimplemented: Read as ‘0’ bit 2 ASAM: ADC Sample Auto-Start bit 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set 0 = Sampling begins when SAMP bit is set bit 1 SAMP: ADC Sample Enable bit(2) 1 = The ADC S&H circuit is sampling 0 = The ADC S&H circuit is holding When ASAM=0, writing ‘1’ to this bit starts sampling. When SSRC<2:0>=000, writing ‘0’ to this bit will end sampling and start conversion. bit 0 DONE: Analog-to-Digital Conversion Status bit(3) Clearing this bit will not affect any operation in progress. 1 = Analog-to-digital conversion is done 0 = Analog-to-digital conversion is not done or has not started Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit. 2: If ASAM = 0, software can write a ‘1’ to start sampling. This bit is automatically set by hardware if ASAM=1. If SSRC<2:0> = 000, software can write a ‘0’ to end sampling and start conversion. If SSRC<2:0> ‘000’, this bit is automatically cleared by hardware to end sampling and start conversion. 3: This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a ‘0’ to clear this bit (a write of ‘1’ is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion. DS60001156J-page 236  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 23-2: AD1CON2: ADC CONTROL REGISTER 2 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 U-0 U-0 15:8 VCFG<2:0> OFFCAL — CSCNA — — R-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 BUFS — SMPI<3:0> BUFM ALTS Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits Bit Value VREFH VREFL 1xx AVDD AVss 011 External VREF+ pin External VREF- pin 010 AVDD External VREF- pin 001 External VREF+ pin AVSS 000 AVDD AVss bit 12 OFFCAL: Input Offset Calibration Mode Select bit 1 = Enable Offset Calibration mode Positive and negative inputs of the S&H circuit are connected to VREFL. 0 = Disable Offset Calibration mode The inputs to the S&H circuit are controlled by AD1CHS or AD1CSSL. bit 11 Unimplemented: Read as ‘0’ bit 10 CSCNA: Input Scan Select bit 1 = Scan inputs 0 = Do not scan inputs bit 9-8 Unimplemented: Read as ‘0’ bit 7 BUFS: Buffer Fill Status bit Only valid when BUFM=1. 1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7 0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF bit 6 Unimplemented: Read as ‘0’ bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits 1111 =Interrupts at the completion of conversion for each 16th sample/convert sequence 1110 =Interrupts at the completion of conversion for each 15th sample/convert sequence • • • 0001 =Interrupts at the completion of conversion for each 2nd sample/convert sequence 0000 =Interrupts at the completion of conversion for each sample/convert sequence bit 1 BUFM: ADC Result Buffer Mode Select bit 1 = Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8 0 = Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0 bit 0 ALTS: Alternate Input Sample Mode Select bit 1 = Uses Sample A input multiplexer settings for first sample, and then alternates between Sample B and Sample A input multiplexer settings for all subsequent samples 0 = Always use Sample A input multiplexer settings  2009-2016 Microchip Technology Inc. DS60001156J-page 237

PIC32MX5XX/6XX/7XX REGISTER 23-3: AD1CON3: ADC CONTROL REGISTER 3 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 ADRC — — SAMC<4:0>(1) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W R/W-0 7:0 ADCS<7:0>(2) Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 ADRC: ADC Conversion Clock Source bit 1 = Clock derived from FRC 0 = Clock derived from Peripheral Bus Clock (PBCLK) bit 14-13 Unimplemented: Read as ‘0’ bit 12-8 SAMC<4:0>: Auto-Sample Time bits(1) 11111 =31 TAD • • • 00001 =1 TAD 00000 =0 TAD (Not allowed) bit 7-0 ADCS<7:0>: ADC Conversion Clock Select bits(2) 11111111 =TPB • 2 • (ADCS<7:0> + 1) = 512 • TPB = TAD • • • 00000001 =TPB • 2 • (ADCS<7:0> + 1) = 4 • TPB = TAD 00000000 =TPB • 2 • (ADCS<7:0> + 1) = 2 • TPB = TAD Note 1: This bit is only used if the SSRC<2:0> bits (AD1CON1<7:5>) = 111. 2: This bit is not used if the ADRC bit (AD1CON3<15>) = 1. DS60001156J-page 238  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 23-4: AD1CHS: ADC INPUT SELECT REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 CH0NB — — — CH0SB<3:0> R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 CH0NA — — — CH0SA<3:0> U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 7:0 — — — — — — — — Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31 CH0NB: Negative Input Select bit for Sample B 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREFL bit 30-28 Unimplemented: Read as ‘0’ bit 27-24 CH0SB<3:0>: Positive Input Select bits for Sample B 1111 =Channel 0 positive input is AN15 • • • 0001 =Channel 0 positive input is AN1 0000 =Channel 0 positive input is AN0 bit 23 CH0NA: Negative Input Select bit for Sample A Multiplexer Setting 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREFL bit 22-20 Unimplemented: Read as ‘0’ bit 19-16 CH0SA<3:0>: Positive Input Select bits for Sample A Multiplexer Setting 1111 =Channel 0 positive input is AN15 • • • 0001 =Channel 0 positive input is AN1 0000 =Channel 0 positive input is AN0 bit 15-0 Unimplemented: Read as ‘0’  2009-2016 Microchip Technology Inc. DS60001156J-page 239

PIC32MX5XX/6XX/7XX R EGISTER 23-5: AD1CSSL: ADC INPUT SCAN SELECT REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 CSSL15 CSSL14 CSSL13 CSSL12 CSSL11 CSSL10 CSSL9 CSSL8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 CSSL7 CSSL6 CSSL5 CSSL4 CSSL3 CSSL2 CSSL1 CSSL0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 CSSL<15:0>: ADC Input Pin Scan Selection bits(1) 1 = Select ANx for input scan 0 = Skip ANx for input scan Note 1: CSSL = ANx, where ‘x’ = 0-15. DS60001156J-page 240  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 24.0 CONTROLLER AREA - FIFO can be a transmit message FIFO or a NETWORK (CAN) receive message FIFO - User-defined priority levels for message Note: This data sheet summarizes the features FIFOs used for transmission of the PIC32MX5XX/6XX/7XX family of - 32 acceptance filters for message filtering devices. It is not intended to be a - Four acceptance filter mask registers for comprehensive reference source. To message filtering complement the information in this data - Automatic response to remote transmit request sheet, refer to Section 34. “Controller - DeviceNet™ addressing support Area Network (CAN)” (DS60001154) in the “PIC32 Family Reference Manual”, • Additional Features: which is available from the Microchip web - Loopback, Listen All Messages, and Listen site (www.microchip.com/PIC32). Only modes for self-test, system diagnostics and bus monitoring The Controller Area Network (CAN) module supports - Low-power operating modes the following key features: - CAN module is a bus master on the PIC32 • Standards Compliance: system bus - Full CAN 2.0B compliance - Use of DMA is not required - Programmable bit rate up to 1 Mbps - Dedicated time-stamp timer • Message Reception and Transmission: - Dedicated DMA channels - 32 message FIFOs - Data-only Message Reception mode - Each FIFO can have up to 32 messages for a Figure24-1 illustrates the general structure of the CAN total of 1024 messages module. FIGURE 24-1: PIC32 CAN MODULE BLOCK DIAGRAM CxTX 32 Filters 4 Masks CxRX CPU CAN Module System Bus Message Buffer Size System RAM s 2 or 4 Words er Message Buffer 31 Message Buffer 31 Message Buffer 31 uff B e g a s s e M 2 Message Buffer 1 Message Buffer 1 Message Buffer 1 3 o Message Buffer 0 Message Buffer 0 Message Buffer 0 p t U FIFO0 FIFO1 FIFO31 CAN Message FIFO (up to 32 FIFOs)  2009-2016 Microchip Technology Inc. DS60001156J-page 241

D 24.1 Control Registers P S 6 0 I 00 TABLE 24-1: CAN1 REGISTER SUMMARY FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, C 1 15 PIC32MX575F512H, PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX534F064L, 3 6 J-p PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX764F128L, PIC32MX775F256L, 2 a PIC32MX775F512L AND PIC32MX795F512L DEVICES g M e 242 Virtual Address(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets X5XX 31:16 — — — — ABAT REQOP<2:0> OPMOD<2:0> CANCAP — — — — 0480 B000 C1CON / 15:0 ON — SIDLE — CANBUSY — — — — — — DNCNT<4:0> 0000 6 31:16 — — — — — — — — — WAKFIL — — — SEG2PH<2:0> 0000 B010 C1CFG X 15:0 SEG2PHTS SAM SEG1PH<2:0> PRSEG<2:0> SJW<1:0> BRP<5:0> 0000 31:16 IVRIE WAKIE CERRIE SERRIE RBOVIE — — — — — — — MODIE CTMRIE RBIE TBIE 0000 X B020 C1INT 15:0 IVRIF WAKIF CERRIF SERRIF RBOVIF — — — — — — — MODIF CTMRIF RBIF TBIF 0000 / 31:16 — — — — — — — — — — — — — — — — 0000 7 B030 C1VEC 15:0 — — — FILHIT<4:0> — ICODE<6:0> 0040 X 31:16 — — — — — — — — — — TXBO TXBP RXBP TXWARN RXWARN EWARN 0000 B040 C1TREC 15:0 TERRCNT<7:0> RERRCNT<7:0> 0000 X 31:16 FIFOIP31 FIFOIP30 FIFOIP29 FIFOIP28 FIFOIP27 FIFOIP26 FIFOIP25 FIFOIP24 FIFOIP23 FIFOIP22 FIFOIP21 FIFOIP20 FIFOIP19 FIFOIP18 FIFOIP17 FIFOIP16 0000 B050 C1FSTAT 15:0 FIFOIP15 FIFOIP14 FIFOIP13 FIFOIP12 FIFOIP11 FIFOIP10 FIFOIP9 FIFOIP8 FIFOIP7 FIFOIP6 FIFOIP5 FIFOIP4 FIFOIP3 FIFOIP2 FIFOIP1 FIFOIP0 0000 31:16 RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000 B060 C1RXOVF 15:0 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9 RXOVF8 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000 31:16 CANTS<15:0> 0000 B070 C1TMR 15:0 CANTSPRE<15:0> 0000 31:16 SID<10:0> -— MIDE — EID<17:16> xxxx B080 C1RXM0 15:0 EID<15:0> xxxx 31:16 SID<10:0> -— MIDE — EID<17:16> xxxx B090 C1RXM1 15:0 EID<15:0> xxxx  200 B0A0 C1RXM2 3115::106 SID<10:0> EID<15:0> -— MIDE — EID<17:16> xxxxxxxx 9 -20 B0B0 C1RXM3 31:16 SID<10:0> -— MIDE — EID<17:16> xxxx 1 15:0 EID<15:0> xxxx 6 M B0C0 C1FLTCON0 31:16 FLTEN3 MSEL3<1:0> FSEL3<4:0> FLTEN2 MSEL2<1:0> FSEL2<4:0> 0000 ic 15:0 FLTEN1 MSEL1<1:0> FSEL1<4:0> FLTEN0 MSEL0<1:0> FSEL0<4:0> 0000 roc 31:16 FLTEN7 MSEL7<1:0> FSEL7<4:0> FLTEN6 MSEL6<1:0> FSEL6<4:0> 0000 h B0D0 C1FLTCON1 ip 15:0 FLTEN5 MSEL5<1:0> FSEL5<4:0> FLTEN4 MSEL4<1:0> FSEL4<4:0> 0000 T 31:16 FLTEN11 MSEL11<1:0> FSEL11<4:0> FLTEN10 MSEL10<1:0> FSEL10<4:0> 0000 e B0E0 C1FLTCON2 ch 15:0 FLTEN9 MSEL9<1:0> FSEL9<4:0> FLTEN8 MSEL8<1:0> FSEL8<4:0> 0000 n o Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. lo Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more g y information. In c .

 TABLE 24-1: CAN1 REGISTER SUMMARY FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, 20 PIC32MX575F512H, PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX534F064L, 0 9 PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX764F128L, PIC32MX775F256L, -2 0 PIC32MX775F512L AND PIC32MX795F512L DEVICES (CONTINUED) 1 6 M ss Bits icrochip Tec Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets h nolog B0F0 C1FLTCON3 3115:1:06 FFLLTTEENN1153 MMSSEELL1153<<11::00>> FFSSEELL1153<<44::00>> FFLLTTEENN1142 MMSSEELL1142<<11::00>> FFSSEELL1142<<44::00>> 00000000 y In B100 C1FLTCON4 31:16 FLTEN19 MSEL19<1:0> FSEL19<4:0> FLTEN18 MSEL18<1:0> FSEL18<4:0> 0000 c 15:0 FLTEN17 MSEL17<1:0> FSEL17<4:0> FLTEN16 MSEL16<1:0> FSEL16<4:0> 0000 . 31:16 FLTEN23 MSEL23<1:0> FSEL23<4:0> FLTEN22 MSEL22<1:0> FSEL22<4:0> 0000 B110 C1FLTCON5 15:0 FLTEN21 MSEL21<1:0> FSEL21<4:0> FLTEN20 MSEL20<1:0> FSEL20<4:0> 0000 31:16 FLTEN27 MSEL27<1:0> FSEL27<4:0> FLTEN26 MSEL26<1:0> FSEL26<4:0> 0000 B120 C1FLTCON6 15:0 FLTEN25 MSEL25<1:0> FSEL25<4:0> FLTEN24 MSEL24<1:0> FSEL24<4:0> 0000 31:16 FLTEN31 MSEL31<1:0> FSEL31<4:0> FLTEN30 MSEL30<1:0> FSEL30<4:0> 0000 B130 C1FLTCON7 15:0 FLTEN29 MSEL29<1:0> FSEL29<4:0> FLTEN28 MSEL28<1:0> FSEL28<4:0> 0000 C1RXFn 31:16 SID<10:0> -— EXID — EID<17:16> xxxx B140 (n = 0-31) 15:0 EID<15:0> xxxx 31:16 0000 B340 C1FIFOBA C1FIFOBA<31:0> 15:0 0000 P C1FIFOCONn31:16 — — — — — — — — — — — FSIZE<4:0> 0000 B350 I (n = 0-31) 15:0 — FRESET UINC DONLY — — — — TXEN TXABAT TXLARB TXERR TXREQ RTREN TXPRI<1:0> 0000 C RXN C1FIFOINTn 31:16 — — — — — TXNFULLIETXHALFIETXEMPTYIE — — — — RXOVFLIE RXFULLIE RXHALFIEEMPTYIE 0000 3 B360 (n = 0-31) 15:0 — — — — — TXNFULLIF TXHALFIFTXEMPTYIF — — — — RXOVFLIF RXFULLIF RXHALFIF RXN 0000 2 EMPTYIF M C1FIFOUAn 31:16 0000 B370 C1FIFOUA<31:0> (n = 0-31) 15:0 0000 X C1FIFOCIn 31:16 — — — — — — — — — — — — — — — — 0000 B380 (n = 0-31) 15:0 — — — — — — — — — — — C1FIFOCI<4:0> 0000 5 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. X Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. X / D 6 S 6 X 0 0 0 X 1 1 56 / J 7 -p a X g e 2 X 4 3

D TABLE 24-2: CAN2 REGISTER SUMMARY FOR PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX775F256L, P S 60 PIC32MX775F512L AND PIC32MX795F512L DEVICES I 0 C 0 1156J-page 2 Virtual Address(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32M 4 X 4 31:16 — — — — ABAT REQOP<2:0> OPMOD<2:0> CANCAP — — — — 0480 C000 C2CON 15:0 ON — SIDLE — CANBUSY — — — — — — DNCNT<4:0> 0000 5 31:16 — — — — — — — — — WAKFIL — — — SEG2PH<2:0> 0000 X C010 C2CFG 15:0 SEG2PHTS SAM SEG1PH<2:0> PRSEG<2:0> SJW<1:0> BRP<5:0> 0000 X 31:16 IVRIE WAKIE CERRIE SERRIE RBOVIE — — — — — — — MODIE CTMRIE RBIE TBIE 0000 C020 C2INT 15:0 IVRIF WAKIF CERRIF SERRIF RBOVIF — — — — — — — MODIF CTMRIF RBIF TBIF 0000 / 6 31:16 — — — — — — — — — — — — — — — — 0000 C030 C2VEC X 15:0 — — — FILHIT<4:0> — ICODE<6:0> 0040 31:16 — — — — — — — — — — TXBO TXBP RXBP TXWARN RXWARN EWARN 0000 X C040 C2TREC 15:0 TERRCNT<7:0> RERRCNT<7:0> 0000 / 31:16 FIFOIP31 FIFOIP30 FIFOIP29 FIFOIP28 FIFOIP27 FIFOIP26 FIFOIP25 FIFOIP24 FIFOIP23 FIFOIP22 FIFOIP21 FIFOIP20 FIFOIP19 FIFOIP18 FIFOIP17 FIFOIP16 0000 7 C050 C2FSTAT 15:0 FIFOIP15 FIFOIP14 FIFOIP13 FIFOIP12 FIFOIP11 FIFOIP10 FIFOIP9 FIFOIP8 FIFOIP7 FIFOIP6 FIFOIP5 FIFOIP4 FIFOIP3 FIFOIP2 FIFOIP1 FIFOIP0 0000 X 31:16 RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000 C060 C2RXOVF X 15:0 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9 RXOVF8 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000 31:16 CANTS<15:0> 0000 C070 C2TMR 15:0 CANTSPRE<15:0> 0000 31:16 SID<10:0> -— MIDE — EID<17:16> xxxx C080 C2RXM0 15:0 EID<15:0> xxxx 31:16 SID<10:0> -— MIDE — EID<17:16> xxxx C0A0 C2RXM1 15:0 EID<15:0> xxxx 31:16 SID<10:0> -— MIDE — EID<17:16> xxxx C0B0 C2RXM2 15:0 EID<15:0> xxxx 31:16 SID<10:0> -— MIDE — EID<17:16> xxxx C0B0 C2RXM3  15:0 EID<15:0> xxxx 2 0 31:16 FLTEN3 MSEL3<1:0> FSEL3<4:0> FLTEN2 MSEL2<1:0> FSEL2<4:0> 0000 0 C0C0 C2FLTCON0 9-2 15:0 FLTEN1 MSEL1<1:0> FSEL1<4:0> FLTEN0 MSEL0<1:0> FSEL0<4:0> 0000 016 M C0D0 C2FLTCON1 3115:1:06 FFLLTTEENN57 MMSSEELL57<<11::00>> FFSSEELL57<<44::00>> FFLLTTEENN64 MMSSEELL64<<11::00>> FFSSEELL64<<44::00>> 00000000 ic 31:16 FLTEN11 MSEL11<1:0> FSEL11<4:0> FLTEN10 MSEL10<1:0> FSEL10<4:0> 0000 roc C0E0 C2FLTCON2 15:0 FLTEN9 MSEL9<1:0> FSEL9<4:0> FLTEN8 MSEL8<1:0> FSEL8<4:0> 0000 h ip 31:16 FLTEN15 MSEL15<1:0> FSEL15<4:0> FLTEN14 MSEL14<1:0> FSEL14<4:0> 0000 T C0F0 C2FLTCON3 e 15:0 FLTEN13 MSEL13<1:0> FSEL13<4:0> FLTEN12 MSEL12<1:0> FSEL12<4:0> 0000 c h Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. n o Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more lo information. g y In c .

 TABLE 24-2: CAN2 REGISTER SUMMARY FOR PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX775F256L, 20 PIC32MX775F512L AND PIC32MX795F512L DEVICES (CONTINUED) 0 9-2 ss Bits 016 Microch Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets ip Te C100 C2FLTCON4 31:16 FLTEN19 MSEL19<1:0> FSEL19<4:0> FLTEN18 MSEL18<1:0> FSEL18<4:0> 0000 c 15:0 FLTEN17 MSEL17<1:0> FSEL17<4:0> FLTEN16 MSEL16<1:0> FSEL16<4:0: 0000 h nolog C110 C2FLTCON5 3115:1:06 FFLLTTEENN2213 MMSSEELL2231<<11::00>> FFSSEELL2231<<44::00>> FFLLTTEENN2220 MMSSEELL2220<<11::00>> FFSSEELL2220<<44::00>> 00000000 y In C120 C2FLTCON6 31:16 FLTEN27 MSEL27<1:0> FSEL27<4:0> FLTEN26 MSEL26<1:0> FSEL26<4:0> 0000 c. 15:0 FLTEN25 MSEL25<1:0> FSEL25<4:0> FLTEN24 MSEL24<1:0> FSEL24<4:0> 0000 31:16 FLTEN31 MSEL31<1:0> FSEL31<4:0> FLTEN30 MSEL30<1:0> FSEL30<4:0> 0000 C130 C2FLTCON7 15:0 FLTEN29 MSEL29<1:0> FSEL29<4:0> FLTEN28 MSEL28<1:0> FSEL28<4:0> 0000 C2RXFn 31:16 SID<10:0> -— EXID — EID<17:16> xxxx C140 (n = 0-31) 15:0 EID<15:0> xxxx 31:16 0000 C340 C2FIFOBA C2FIFOBA<31:0> 15:0 0000 C2FIFOCONn31:16 — — — — — — — — — — — FSIZE<4:0> 0000 C350 (n = 0-31) 15:0 — FRESET UINC DONLY — — — — TXEN TXABAT TXLARB TXERR TXREQ RTREN TXPRI<1:0> 0000 31:16 — — — — — TXNFULLIETXHALFIETXEMPTYIE — — — — RXOVFLIE RXFULLIE RXHALFIE RXN 0000 P C2FIFOINTn EMPTYIE C360 (n = 0-31) 15:0 — — — — — TXNFULLIF TXHALFIFTXEMPTYIF — — — — RXOVFLIF RXFULLIF RXHALFIF EMRPXTNYIF 0000 IC C370 C2FIFOUAn 31:16 C2FIFOUA<31:0> 0000 3 (n = 0-31) 15:0 0000 2 C2FIFOCIn 31:16 — — — — — — — — — — — — — — — — 0000 C380 M (n = 0-31) 15:0 — — — — — — — — — — — C2FIFOCI<4:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. X Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. 5 X X / D 6 S 6 X 0 0 0 X 1 1 56 / J 7 -p a X g e 2 X 4 5

PIC32MX5XX/6XX/7XX REGISTER 24-1: CiCON: CAN MODULE CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 S/HC-0 R/W-1 R/W-0 R/W-0 31:24 — — — — ABAT REQOP<2:0> R-1 R-0 R-0 R/W-0 U-0 U-0 U-0 U-0 23:16 OPMOD<2:0> CANCAP — — — — R/W-0 U-0 R/W-0 U-0 R-0 U-0 U-0 U-0 15:8 ON(1) — SIDLE — CANBUSY — — — U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 — — — DNCNT<4:0> Legend: HC = Hardware Clear S = Settable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-28 Unimplemented: Read as ‘0’ bit 27 ABAT: Abort All Pending Transmissions bit 1 = Signal all transmit buffers to abort transmission 0 = Module will clear this bit when all transmissions aborted bit 26-24 REQOP<2:0>: Request Operation Mode bits 111 = Set Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Set Configuration mode 011 = Set Listen Only mode 010 = Set Loopback mode 001 = Set Disable mode 000 = Set Normal Operation mode bit 23-21 OPMOD<2:0>: Operation Mode Status bits 111 = Module is in Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Module is in Configuration mode 011 = Module is in Listen Only mode 010 = Module is in Loopback mode 001 = Module is in Disable mode 000 = Module is in Normal Operation mode bit 20 CANCAP: CAN Message Receive Time Stamp Timer Capture Enable bit 1 = CANTMR value is stored on valid message reception and is stored with the message 0 = Disable CAN message receive time stamp timer capture and stop CANTMR to conserve power bit 19-16 Unimplemented: Read as ‘0’ bit 15 ON: CAN On bit(1) 1 = CAN module is enabled 0 = CAN module is disabled bit 14 Unimplemented: Read as ‘0’ Note 1: If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored. DS60001156J-page 246  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 24-1: CiCON: CAN MODULE CONTROL REGISTER (CONTINUED) bit 13 SIDLE: CAN Stop in Idle bit 1 = CAN Stops operation when system enters Idle mode 0 = CAN continues operation when system enters Idle mode bit 12 Unimplemented: Read as ‘0’ bit 11 CANBUSY: CAN Module is Busy bit 1 = The CAN module is active 0 = The CAN module is completely disabled bit 10-5 Unimplemented: Read as ‘0’ bit 4-0 DNCNT<4:0>: Device Net Filter Bit Number bits 10011-11111 = Invalid Selection (compare up to 18-bits of data with EID) 10010 = Compare up to data byte 2 bit 6 with EID17 (CiRXFn<17>) • • • 00001 = Compare up to data byte 0 bit 7 with EID0 (CiRXFn<0>) 00000 = Do not compare data bytes Note 1: If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.  2009-2016 Microchip Technology Inc. DS60001156J-page 247

PIC32MX5XX/6XX/7XX REGISTER 24-2: CiCFG: CAN BAUD RATE CONFIGURATION REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 23:16 — WAKFIL — — — SEG2PH<2:0>(1,4) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 SEG2PHTS(1) SAM(2) SEG1PH<2:0> PRSEG<2:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 SJW<1:0>(3) BRP<5:0> Legend: HC = Hardware Clear S = Settable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-23 Unimplemented: Read as ‘0’ bit 22 WAKFIL: CAN Bus Line Filter Enable bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up bit 21-19 Unimplemented: Read as ‘0’ bit 18-16 SEG2PH<2:0>: Phase Buffer Segment 2 bits(1,4) 111 = Length is 8 x TQ • • • 000 = Length is 1 x TQ bit 15 SEG2PHTS: Phase Segment 2 Time Select bit(1) 1 = Freely programmable 0 = Maximum of SEG1PH or Information Processing Time, whichever is greater bit 14 SAM: Sample of the CAN Bus Line bit(2) 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point bit 13-11 SEG1PH<2:0>: Phase Buffer Segment 1 bits(4) 111 = Length is 8 x TQ • • • 000 = Length is 1 x TQ Note 1: SEG2PH SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically. 2: 3 Time bit sampling is not allowed for BRP < 2. 3: SJW  SEG2PH. 4: The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7). Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100). DS60001156J-page 248  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 24-2: CiCFG: CAN BAUD RATE CONFIGURATION REGISTER (CONTINUED) bit 10-8 PRSEG<2:0>: Propagation Time Segment bits(4) 111 = Length is 8 x TQ • • • 000 = Length is 1 x TQ bit 7-6 SJW<1:0>: Synchronization Jump Width bits(3) 11 = Length is 4 x TQ 10 = Length is 3 x TQ 01 = Length is 2 x TQ 00 = Length is 1 x TQ bit 5-0 BRP<5:0>: Baud Rate Prescaler bits 111111 = TQ = (2 x 64)/FSYS 111110 = TQ = (2 x 63)/FSYS • • • 000001 = TQ = (2 x 2)/FSYS 000000 = TQ = (2 x 1)/FSYS Note 1: SEG2PH SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically. 2: 3 Time bit sampling is not allowed for BRP < 2. 3: SJW  SEG2PH. 4: The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7). Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).  2009-2016 Microchip Technology Inc. DS60001156J-page 249

PIC32MX5XX/6XX/7XX REGISTER 24-3: CiINT: CAN INTERRUPT REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 31:24 IVRIE WAKIE CERRIE SERRIE RBOVIE — — — U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 — — — — MODIE CTMRIE RBIE TBIE R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 15:8 IVRIF WAKIF CERRIF SERRIF(1) RBOVIF — — — U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 — — — — MODIF CTMRIF RBIF TBIF Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31 IVRIE: Invalid Message Received Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled bit 30 WAKIE: CAN Bus Activity Wake-up Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled bit 29 CERRIE: CAN Bus Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled bit 28 SERRIE: System Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled bit 27 RBOVIE: Receive Buffer Overflow Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled bit 26-20 Unimplemented: Read as ‘0’ bit 19 MODIE: Mode Change Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled bit 18 CTMRIE: CAN Timestamp Timer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled bit 17 RBIE: Receive Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled bit 16 TBIE: Transmit Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled bit 15 IVRIF: Invalid Message Received Interrupt Flag bit 1 = An invalid messages interrupt has occurred 0 = An invalid message interrupt has not occurred Note 1: This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CiCON<15>). DS60001156J-page 250  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 24-3: CiINT: CAN INTERRUPT REGISTER (CONTINUED) bit 14 WAKIF: CAN Bus Activity Wake-up Interrupt Flag bit 1 = A bus wake-up activity interrupt has occurred 0 = A bus wake-up activity interrupt has not occurred bit 13 CERRIF: CAN Bus Error Interrupt Flag bit 1 = A CAN bus error has occurred 0 = A CAN bus error has not occurred bit 12 SERRIF: System Error Interrupt Flag bit 1 = A system error occurred (typically an illegal address was presented to the system bus) 0 = A system error has not occurred bit 11 RBOVIF: Receive Buffer Overflow Interrupt Flag bit 1 = A receive buffer overflow has occurred 0 = A receive buffer overflow has not occurred bit 10-4 Unimplemented: Read as ‘0’ bit 3 MODIF: CAN Mode Change Interrupt Flag bit 1 = A CAN module mode change has occurred (OPMOD<2:0> has changed to reflect REQOP) 0 = A CAN module mode change has not occurred bit 2 CTMRIF: CAN Timer Overflow Interrupt Flag bit 1 = A CAN timer (CANTMR) overflow has occurred 0 = A CAN timer (CANTMR) overflow has not occurred bit 1 RBIF: Receive Buffer Interrupt Flag bit 1 = A receive buffer interrupt is pending 0 = A receive buffer interrupt is not pending bit 0 TBIF: Transmit Buffer Interrupt Flag bit 1 = A transmit buffer interrupt is pending 0 = A transmit buffer interrupt is not pending Note 1: This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CiCON<15>).  2009-2016 Microchip Technology Inc. DS60001156J-page 251

PIC32MX5XX/6XX/7XX REGISTER 24-4: CiVEC: CAN INTERRUPT CODE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 R-0 R-0 R-0 R-0 R-0 15:8 — — — FILHIT<4:0> U-0 R-1 R-0 R-0 R-0 R-0 R-0 R-0 7:0 — ICODE<6:0>(1) Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-13 Unimplemented: Read as ‘0’ bit 12-8 FILHIT<4:0>: Filter Hit Number bit 11111 = Filter 31 11110 = Filter 30 • • • 00001 = Filter 1 00000 = Filter 0 bit 7 Unimplemented: Read as ‘0’ bit 6-0 ICODE<6:0>: Interrupt Flag Code bits(1) 1111111 = Reserved • • • 1001001 = Reserved 1001000 = Invalid message received (IVRIF) 1000111 = CAN module mode change (MODIF) 1000110 = CAN timestamp timer (CTMRIF) 1000101 = Bus bandwidth error (SERRIF) 1000100 = Address error interrupt (SERRIF) 1000011 = Receive FIFO overflow interrupt (RBOVIF) 1000010 = Wake-up interrupt (WAKIF) 1000001 = Error Interrupt (CERRIF) 1000000 = No interrupt 0111111 = Reserved • • • 0100000 = Reserved 0011111 = FIFO31 Interrupt (CiFSTAT<31> set) 0011110 = FIFO30 Interrupt (CiFSTAT<30> set) • • • 0000001 = FIFO1 Interrupt (CiFSTAT<1> set) 0000000 = FIFO0 Interrupt (CiFSTAT<0> set) Note 1: These bits are only updated for enabled interrupts. DS60001156J-page 252  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 24-5: CiTREC: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 R-0 R-0 R-0 R-0 R-0 R-0 23:16 — — TXBO TXBP RXBP TXWARN RXWARN EWARN R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 15:8 TERRCNT<7:0> R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7:0 RERRCNT<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-22 Unimplemented: Read as ‘0’ bit 21 TXBO: Transmitter in Error State Bus OFF (TERRCNT  256) bit 20 TXBP: Transmitter in Error State Bus Passive (TERRCNT  128) bit 19 RXBP: Receiver in Error State Bus Passive (RERRCNT  128) bit 18 TXWARN: Transmitter in Error State Warning (128 > TERRCNT  96) bit 17 RXWARN: Receiver in Error State Warning (128 > RERRCNT  96) bit 16 EWARN: Transmitter or Receiver is in Error State Warning bit 15-8 TERRCNT<7:0>: Transmit Error Counter bit 7-0 RERRCNT<7:0>: Receive Error Counter REGISTER 24-6: CiFSTAT: CAN FIFO STATUS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 31:24 FIFOIP31 FIFOIP30 FIFOIP29 FIFOIP28 FIFOIP27 FIFOIP26 FIFOIP25 FIFOIP24 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 23:16 FIFOIP23 FIFOIP22 FIFOIP21 FIFOIP20 FIFOIP19 FIFOIP18 FIFOIP17 FIFOIP16 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 15:8 FIFOIP15 FIFOIP14 FIFOIP13 FIFOIP12 FIFOIP11 FIFOIP10 FIFOIP9 FIFOIP8 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7:0 FIFOIP7 FIFOIP6 FIFOIP5 FIFOIP4 FIFOIP3 FIFOIP2 FIFOIP1 FIFOIP0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 FIFOIP<31:0>: FIFOn Interrupt Pending bits 1 = One or more enabled FIFO interrupts are pending 0 = No FIFO interrupts are pending  2009-2016 Microchip Technology Inc. DS60001156J-page 253

PIC32MX5XX/6XX/7XX REGISTER 24-7: CiRXOVF: CAN RECEIVE FIFO OVERFLOW STATUS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 31:24 RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 23:16 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 15:8 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9 RXOVF8 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7:0 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 RXOVF<31:0>: FIFOn Receive Overflow Interrupt Pending bit 1 = FIFO has overflowed 0 = FIFO has not overflowed REGISTER 24-8: CiTMR: CAN TIMER REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 CANTS<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 CANTS<7:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 CANTSPRE<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 CANTSPRE<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 CANTS<15:0>: CAN Time Stamp Timer bits This is a free-running timer that increments every CANTSPRE system clocks when the CANCAP bit (CiCON<20>) is set. bit 15-0 CANTSPRE<15:0>: CAN Time Stamp Timer Prescaler bits 1111 1111 1111 1111 = CAN time stamp timer (CANTS) increments every 65,535 system clocks • • • 0000 0000 0000 0000 = CAN time stamp timer (CANTS) increments every system clock Note 1: CiTMR will be paused when CANCAP = 0. 2: The CiTMR prescaler count will be reset on any write to CiTMR (CANTSPRE will be unaffected). DS60001156J-page 254  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 24-9: CiRXMn: CAN ACCEPTANCE FILTER MASK ‘n’ REGISTER (n = 0, 1, 2 OR 3) Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 SID<10:3> R/W-0 R/W-0 R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 23:16 SID<2:0> — MIDE — EID<17:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 EID<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 EID<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-21 SID<10:0>: Standard Identifier bits 1 = Include the SIDx bit in filter comparison 0 = The SIDx bit is a ‘don’t care’ in filter operation bit 20 Unimplemented: Read as ‘0’ bit 19 MIDE: Identifier Receive Mode bit 1 = Match only message types (standard/extended address) that correspond to the EXID bit in filter 0 = Match either standard or extended address message if filters match (that is, if (Filter SID) = (Message SID) or if (FILTER SID/EID) = (Message SID/EID)) bit 18 Unimplemented: Read as ‘0’ bit 17-0 EID<17:0>: Extended Identifier bits 1 = Include the EIDx bit in filter comparison 0 = The EIDx bit is a ‘don’t care’ in filter operation Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).  2009-2016 Microchip Technology Inc. DS60001156J-page 255

PIC32MX5XX/6XX/7XX REGISTER 24-10: CiFLTCON0: CAN FILTER CONTROL REGISTER 0 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 FLTEN3 MSEL3<1:0> FSEL3<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 FLTEN2 MSEL2<1:0> FSEL2<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 FLTEN1 MSEL1<1:0> FSEL1<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 FLTEN0 MSEL0<1:0> FSEL0<4:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31 FLTEN3: Filter 3 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 30-29 MSEL3<1:0>: Filter 3 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 28-24 FSEL3<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 23 FLTEN2: Filter 2 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 22-21 MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 20-16 FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ‘0’. DS60001156J-page 256  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 24-10: CiFLTCON0: CAN FILTER CONTROL REGISTER 0 (CONTINUED) bit 15 FLTEN1: Filter 1 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL1<1:0>: Filter 1 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL1<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN0: Filter 0 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL0<1:0>: Filter 0 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL0<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ‘0’.  2009-2016 Microchip Technology Inc. DS60001156J-page 257

PIC32MX5XX/6XX/7XX REGISTER 24-11: CiFLTCON1: CAN FILTER CONTROL REGISTER 1 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 FLTEN7 MSEL7<1:0> FSEL7<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 FLTEN6 MSEL6<1:0> FSEL6<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 FLTEN5 MSEL5<1:0> FSEL5<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 FLTEN4 MSEL4<1:0> FSEL4<4:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31 FLTEN7: Filter 7 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 30-29 MSEL7<1:0>: Filter 7 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 28-24 FSEL7<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 23 FLTEN6: Filter 6 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 22-21 MSEL6<1:0>: Filter 6 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 20-16 FSEL6<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ‘0’. DS60001156J-page 258  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 24-11: CiFLTCON1: CAN FILTER CONTROL REGISTER 1 (CONTINUED) bit 15 FLTEN5: Filter 17 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL5<1:0>: Filter 5 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL5<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN4: Filter 4 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL4<1:0>: Filter 4 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL4<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ‘0’.  2009-2016 Microchip Technology Inc. DS60001156J-page 259

PIC32MX5XX/6XX/7XX REGISTER 24-12: CiFLTCON2: CAN FILTER CONTROL REGISTER 2 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 FLTEN11 MSEL11<1:0> FSEL11<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 FLTEN10 MSEL10<1:0> FSEL10<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 FLTEN9 MSEL9<1:0> FSEL9<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 FLTEN8 MSEL8<1:0> FSEL8<4:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31 FLTEN11: Filter 11 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 30-29 MSEL11<1:0>: Filter 11 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 28-24 FSEL11<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 23 FLTEN10: Filter 10 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 22-21 MSEL10<1:0>: Filter 10 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 20-16 FSEL10<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ‘0’. DS60001156J-page 260  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 24-12: CiFLTCON2: CAN FILTER CONTROL REGISTER 2 (CONTINUED) bit 15 FLTEN9: Filter 9 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL9<1:0>: Filter 9 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL9<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN8: Filter 8 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL8<1:0>: Filter 8 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL8<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ‘0’.  2009-2016 Microchip Technology Inc. DS60001156J-page 261

PIC32MX5XX/6XX/7XX REGISTER 24-13: CiFLTCON3: CAN FILTER CONTROL REGISTER 3 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 FLTEN15 MSEL15<1:0> FSEL15<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 FLTEN14 MSEL14<1:0> FSEL14<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 FLTEN13 MSEL13<1:0> FSEL13<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 FLTEN12 MSEL12<1:0> FSEL12<4:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31 FLTEN15: Filter 15 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 30-29 MSEL15<1:0>: Filter 15 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 28-24 FSEL15<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 23 FLTEN14: Filter 14 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 22-21 MSEL14<1:0>: Filter 14 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 20-16 FSEL14<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ‘0’. DS60001156J-page 262  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 24-13: CiFLTCON3: CAN FILTER CONTROL REGISTER 3 (CONTINUED) bit 15 FLTEN13: Filter 13 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL13<1:0>: Filter 13 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL13<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN12: Filter 12 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL12<1:0>: Filter 12 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL12<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ‘0’.  2009-2016 Microchip Technology Inc. DS60001156J-page 263

PIC32MX5XX/6XX/7XX ,R4 EGISTER 24-14: CiFLTCON4: CAN FILTER CONTROL REGISTER 4 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 FLTEN19 MSEL19<1:0> FSEL19<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 FLTEN18 MSEL18<1:0> FSEL18<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 FLTEN17 MSEL17<1:0> FSEL17<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 FLTEN16 MSEL16<1:0> FSEL16<4:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31 FLTEN19: Filter 19 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 30-29 MSEL19<1:0>: Filter 19 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 28-24 FSEL19<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 23 FLTEN18: Filter 18 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 22-21 MSEL18<1:0>: Filter 18 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 20-16 FSEL18<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ‘0’. DS60001156J-page 264  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 24-14: CiFLTCON4: CAN FILTER CONTROL REGISTER 4 (CONTINUED) bit 15 FLTEN17: Filter 13 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL17<1:0>: Filter 17 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL17<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN16: Filter 16 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL16<1:0>: Filter 16 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL16<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ‘0’.  2009-2016 Microchip Technology Inc. DS60001156J-page 265

PIC32MX5XX/6XX/7XX REGISTER 24-15: CiFLTCON5: CAN FILTER CONTROL REGISTER 5 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 FLTEN23 MSEL23<1:0> FSEL23<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 FLTEN22 MSEL22<1:0> FSEL22<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 FLTEN21 MSEL21<1:0> FSEL21<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 FLTEN20 MSEL20<1:0> FSEL20<4:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31 FLTEN23: Filter 23 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 30-29 MSEL23<1:0>: Filter 23 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 28-24 FSEL23<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 23 FLTEN22: Filter 22 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 22-21 MSEL22<1:0>: Filter 22 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 20-16 FSEL22<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ‘0’. DS60001156J-page 266  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 24-15: CiFLTCON5: CAN FILTER CONTROL REGISTER 5 (CONTINUED) bit 15 FLTEN21: Filter 21 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL21<1:0>: Filter 21 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL21<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN20: Filter 20 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL20<1:0>: Filter 20 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL20<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ‘0’.  2009-2016 Microchip Technology Inc. DS60001156J-page 267

PIC32MX5XX/6XX/7XX REGISTER 24-16: CiFLTCON6: CAN FILTER CONTROL REGISTER 6 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 FLTEN27 MSEL27<1:0> FSEL27<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 FLTEN26 MSEL26<1:0> FSEL26<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 FLTEN25 MSEL25<1:0> FSEL25<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 FLTEN24 MSEL24<1:0> FSEL24<4:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31 FLTEN27: Filter 27 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 30-29 MSEL27<1:0>: Filter 27 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 28-24 FSEL27<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 23 FLTEN26: Filter 26 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 22-21 MSEL26<1:0>: Filter 26 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 20-16 FSEL26<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ‘0’. DS60001156J-page 268  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 24-16: CiFLTCON6: CAN FILTER CONTROL REGISTER 6 (CONTINUED) bit 15 FLTEN25: Filter 25 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL25<1:0>: Filter 25 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL25<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN24: Filter 24 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL24<1:0>: Filter 24 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL24<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ‘0’.  2009-2016 Microchip Technology Inc. DS60001156J-page 269

PIC32MX5XX/6XX/7XX REGISTER 24-17: CiFLTCON7: CAN FILTER CONTROL REGISTER 7 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 FLTEN31 MSEL31<1:0> FSEL31<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 FLTEN30 MSEL30<1:0> FSEL30<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 FLTEN29 MSEL29<1:0> FSEL29<4:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 FLTEN28 MSEL28<1:0> FSEL28<4:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31 FLTEN31: Filter 31 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 30-29 MSEL31<1:0>: Filter 31 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 28-24 FSEL31<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 23 FLTEN30: Filter 30Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 22-21 MSEL30<1:0>: Filter 30Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 20-16 FSEL30<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ‘0’. DS60001156J-page 270  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 24-17: CiFLTCON7: CAN FILTER CONTROL REGISTER 7 (CONTINUED) bit 15 FLTEN29: Filter 29 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL29<1:0>: Filter 29 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL29<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN28: Filter 28 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL28<1:0>: Filter 28 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL28<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ‘0’.  2009-2016 Microchip Technology Inc. DS60001156J-page 271

PIC32MX5XX/6XX/7XX REGISTER 24-18: CiRXFn: CAN ACCEPTANCE FILTER ‘n’ REGISTER 7 (n = 0 THROUGH 31) Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 31:24 SID<10:3> R/W-x R/W-x R/W-x U-0 R/W-0 U-0 R/W-x R/W-x 23:16 SID<2:0> — EXID — EID<17:16> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 15:8 EID<15:8> R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x 7:0 EID<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-21 SID<10:0>: Standard Identifier bits 1 = Message address bit SIDx must be ‘1’ to match filter 0 = Message address bit SIDx must be ‘0’ to match filter bit 20 Unimplemented: Read as ‘0’ bit 19 EXID: Extended Identifier Enable bits 1 = Match only messages with extended identifier addresses 0 = Match only messages with standard identifier addresses bit 18 Unimplemented: Read as ‘0’ bit 17-0 EID<17:0>: Extended Identifier bits 1 = Message address bit EIDx must be ‘1’ to match filter 0 = Message address bit EIDx must be ‘0’ to match filter Note: This register can only be modified when the filter is disabled (FLTENn = 0). DS60001156J-page 272  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 24-19: CiFIFOBA: CAN MESSAGE BUFFER BASE ADDRESS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 CiFIFOBA<31:24> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 CiFIFOBA<23:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 CiFIFOBA<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0(1) R-0(1) 7:0 CiFIFOBA<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 CiFIFOBA<31:0>: CAN FIFO Base Address bits These bits define the base address of all message buffers. Individual message buffers are located based on the size of the previous message buffers. This address is a physical address. Bits <1:0> are read-only and read as ‘0’, forcing the messages to be 32-bit word-aligned in device RAM. Note 1: This bit is unimplemented and will always read ‘0’, which forces word-alignment of messages. Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).  2009-2016 Microchip Technology Inc. DS60001156J-page 273

PIC32MX5XX/6XX/7XX REGISTER 24-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER ‘n’ (n = 0 THROUGH 31) Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 — — — FSIZE<4:0>(1) U-0 S/HC-0 S/HC-0 R/W-0 U-0 U-0 U-0 U-0 15:8 — FRESET UINC DONLY(1) — — — — R/W-0 R-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 TXEN TXABAT(2) TXLARB(3) TXERR(3) TXREQ RTREN TXPR<1:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-21 Unimplemented: Read as ‘0’ bit 20-16 FSIZE<4:0>: FIFO Size bits(1) 11111 = FIFO is 32 messages deep • • • 00010 = FIFO is 3 messages deep 00001 = FIFO is 2 messages deep 00000 = FIFO is 1 message deep bit 15 Unimplemented: Read as ‘0’ bit 14 FRESET: FIFO Reset bits 1 = FIFO will be reset when bit is set, cleared by hardware when FIFO is reset. After setting, the user should poll whether this bit is clear before taking any action. 0 = No effect bit 13 UINC: Increment Head/Tail bit TXEN = 1: (FIFO configured as a Transmit FIFO) When this bit is set the FIFO head will increment by a single message TXEN = 0: (FIFO configured as a Receive FIFO) When this bit is set the FIFO tail will increment by a single message bit 12 DONLY: Store Message Data Only bit(1) TXEN = 1: (FIFO configured as a Transmit FIFO) This bit is not used and has no effect. TXEN = 0: (FIFO configured as a Receive FIFO) 1 = Only data bytes will be stored in the FIFO 0 = Full message is stored, including identifier bit 11-8 Unimplemented: Read as ‘0’ bit 7 TXEN: TX/RX Buffer Selection bit 1 = FIFO is a Transmit FIFO 0 = FIFO is a Receive FIFO Note 1: These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CiCON<23:21>) = 100). 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset. 3: This bit is reset on any read of this register or when the FIFO is reset. DS60001156J-page 274  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 24-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER ‘n’ (n = 0 THROUGH 31) bit 6 TXABAT: Message Aborted bit(2) 1 = Message was aborted 0 = Message completed successfully bit 5 TXLARB: Message Lost Arbitration bit(3) 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent bit 4 TXERR: Error Detected During Transmission bit(3) 1 = A bus error occured while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 TXREQ: Message Send Request TXEN = 1: (FIFO configured as a Transmit FIFO) Setting this bit to ‘1’ requests sending a message. The bit will automatically clear when all the messages queued in the FIFO are successfully sent. Clearing the bit to ‘0’ while set (‘1’) will request a message abort. TXEN = 0: (FIFO configured as a receive FIFO) This bit has no effect. bit 2 RTREN: Auto RTR Enable bit 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected bit 1-0 TXPR<1:0>: Message Transmit Priority bits 11 = Highest message priority 10 = High intermediate message priority 01 = Low intermediate message priority 00 = Lowest message priority Note 1: These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CiCON<23:21>) = 100). 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset. 3: This bit is reset on any read of this register or when the FIFO is reset.  2009-2016 Microchip Technology Inc. DS60001156J-page 275

PIC32MX5XX/6XX/7XX REGISTER 24-21: CiFIFOINTn: CAN FIFO INTERRUPT REGISTER ‘n’ (n = 0 THROUGH 31) Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 31:24 — — — — — TXNFULLIE TXHALFIE TXEMPTYIE U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 — — — — RXOVFLIE RXFULLIE RXHALFIE RXNEMPTYIE U-0 U-0 U-0 U-0 U-0 R-0 R-0 R-0 15:8 — — — — — TXNFULLIF(1) TXHALFIF TXEMPTYIF(1) U-0 U-0 U-0 U-0 R/W-0 R-0 R-0 R-0 7:0 — — — — RXOVFLIF RXFULLIF(1) RXHALFIF(1) RXNEMPTYIF(1) Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-27 Unimplemented: Read as ‘0’ bit 26 TXNFULLIE: Transmit FIFO Not Full Interrupt Enable bit 1 = Interrupt enabled for FIFO not full 0 = Interrupt disabled for FIFO not full bit 25 TXHALFIE: Transmit FIFO Half Full Interrupt Enable bit 1 = Interrupt enabled for FIFO half full 0 = Interrupt disabled for FIFO half full bit 24 TXEMPTYIE: Transmit FIFO Empty Interrupt Enable bit 1 = Interrupt enabled for FIFO empty 0 = Interrupt disabled for FIFO empty bit 23-20 Unimplemented: Read as ‘0’ bit 19 RXOVFLIE: Overflow Interrupt Enable bit 1 = Interrupt enabled for overflow event 0 = Interrupt disabled for overflow event bit 18 RXFULLIE: Full Interrupt Enable bit 1 = Interrupt enabled for FIFO full 0 = Interrupt disabled for FIFO full bit 17 RXHALFIE: FIFO Half Full Interrupt Enable bit 1 = Interrupt enabled for FIFO half full 0 = Interrupt disabled for FIFO half full bit 16 RXNEMPTYIE: Empty Interrupt Enable bit 1 = Interrupt enabled for FIFO not empty 0 = Interrupt disabled for FIFO not empty bit 15-11 Unimplemented: Read as ‘0’ bit 10 TXNFULLIF: Transmit FIFO Not Full Interrupt Flag bit(1) TXEN = 1: (FIFO configured as a transmit buffer) 1 = FIFO is not full 0 = FIFO is full TXEN = 0: (FIFO configured as a receive buffer) Unused, reads ‘0’ Note 1: This bit is read-only and reflects the status of the FIFO. DS60001156J-page 276  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 24-21: CiFIFOINTn: CAN FIFO INTERRUPT REGISTER ‘n’ (n = 0 THROUGH 31) bit 9 TXHALFIF: FIFO Transmit FIFO Half Empty Interrupt Flag bit(1) TXEN = 1: (FIFO configured as a transmit buffer) 1 = FIFO is half full 0 = FIFO is> half full TXEN = 0: (FIFO configured as a receive buffer) Unused, reads ‘0’ bit 8 TXEMPTYIF: Transmit FIFO Empty Interrupt Flag bit(1) TXEN = 1: (FIFO configured as a transmit buffer) 1 = FIFO is empty 0 = FIFO is not empty, at least 1 message queued to be transmitted TXEN = 0: (FIFO configured as a receive buffer) Unused, reads ‘0’ bit 7-4 Unimplemented: Read as ‘0’ bit 3 RXOVFLIF: Receive FIFO Overflow Interrupt Flag bit TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads ‘0’ TXEN = 0: (FIFO configured as a receive buffer) 1 = Overflow event has occurred 0 = No overflow event occured bit 2 RXFULLIF: Receive FIFO Full Interrupt Flag bit(1) TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads ‘0’ TXEN = 0: (FIFO configured as a receive buffer) 1 = FIFO is full 0 = FIFO is not full bit 1 RXHALFIF: Receive FIFO Half Full Interrupt Flag bit(1) TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads ‘0’ TXEN = 0: (FIFO configured as a receive buffer) 1 = FIFO is half full 0 = FIFO is < half full bit 0 RXNEMPTYIF: Receive Buffer Not Empty Interrupt Flag bit(1) TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads ‘0’ TXEN = 0: (FIFO configured as a receive buffer) 1 = FIFO is not empty, has at least 1 message 0 = FIFO is empty Note 1: This bit is read-only and reflects the status of the FIFO.  2009-2016 Microchip Technology Inc. DS60001156J-page 277

PIC32MX5XX/6XX/7XX REGISTER 24-22: CiFIFOUAn: CAN FIFO USER ADDRESS REGISTER ‘n’ (n = 0 THROUGH 31) Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R-x R-x R-x R-x R-x R-x R-x R-x 31:24 CiFIFOUAn<31:24> R-x R-x R-x R-x R-x R-x R-x R-x 23:16 CiFIFOUAn<23:16> R-x R-x R-x R-x R-x R-x R-x R-x 15:8 CiFIFOUAn<15:8> R-x R-x R-x R-x R-x R-x R-0(1) R-0(1) 7:0 CiFIFOUAn<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 CiFIFOUAn<31:0>: CAN FIFO User Address bits TXEN = 1: (FIFO configured as a transmit buffer) A read of this register will return the address where the next message is to be written (FIFO head). TXEN = 0: (FIFO configured as a receive buffer) A read of this register will return the address where the next message is to be read (FIFO tail). Note 1: This bit will always read ‘0’, which forces byte-alignment of messages. Note: This register is not guaranteed to read correctly in Configuration mode, and should only be accessed when the module is not in Configuration mode. REGISTER 24-23: CiFIFOCIN: CAN MODULE MESSAGE INDEX REGISTER ‘n’ (n = 0 THROUGH 31) Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — U-0 U-0 U-0 R-0 R-0 R-0 R-0 R-0 7:0 — — — CiFIFOCI<4:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-5 Unimplemented: Read as ‘0’ bit 4-0 CiFIFOCIn<4:0>: CAN Side FIFO Message Index bits TXEN = 1: (FIFO configured as a transmit buffer) A read of this register will return an index to the message that the FIFO will next attempt to transmit. TXEN = 0: (FIFO configured as a receive buffer) A read of this register will return an index to the message that the FIFO will use to save the next message. DS60001156J-page 278  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 25.0 ETHERNET CONTROLLER Key features of the Ethernet Controller include: • Supports 10/100 Mbps data transfer rates Note: This data sheet summarizes the features • Supports full-duplex and half-duplex operation of the PIC32MX5XX/6XX/7XX family of • Supports RMII and MII PHY interface devices. It is not intended to be a comprehensive reference source. To • Supports MIIM PHY management interface complement the information in this data • Supports both manual and automatic Flow Control sheet, refer to Section 35. “Ethernet • RAM descriptor-based DMA operation for both Controller” (DS60001155) in the “PIC32 receive and transmit path Family Reference Manual”, which is avail- • Fully configurable interrupts able from the Microchip web site • Configurable receive packet filtering (www.microchip.com/PIC32). - CRC check The Ethernet controller is a bus master module that - 64-byte pattern match interfaces with an off-chip Physical Layer (PHY) to - Broadcast, multicast and unicast packets implement a complete Ethernet node in a system. - Magic Packet™ - 64-bit hash table - Runt packet • Supports packet payload checksum calculation • Supports various hardware statistics counters Figure25-1 illustrates a block diagram of the Ethernet controller. FIGURE 25-1: ETHERNET CONTROLLER BLOCK DIAGRAM TX DMA TX FIFO TXBM TX Bus TX Function Master TX Flow Control S y s te MII/RMII m IF Bu RX Flow s RX DMA RX FIFO RXBM Control MAC External PHY RX Bus RX Filter RX Function Master Checksum MIIM IF Fast P RCeDogMnistAtreo rls Ethernet DMA CMoAnCfia gCnudoranttiroonl Buserip Registers h e ra l Host IF Ethernet Controller  2009-2016 Microchip Technology Inc. DS60001156J-page 279

PIC32MX5XX/6XX/7XX Table25-1, Table25-2, Table25-3 and Table25-4 TABLE 25-3: MII MODE ALTERNATE show four interfaces and the associated pins that can INTERFACE SIGNALS be used with the Ethernet Controller. (FMIIEN = 1, FETHIO = 0) TABLE 25-1: MII MODE DEFAULT Pin Name Description INTERFACE SIGNALS AEMDC Management Clock (FMIIEN = 1, FETHIO = 1) AEMDIO Management I/O Pin Name Description AETXCLK Transmit Clock EMDC Management Clock AETXEN Transmit Enable EMDIO Management I/O AETXD0 Transmit Data ETXCLK Transmit Clock AETXD1 Transmit Data ETXEN Transmit Enable AETXD2 Transmit Data ETXD0 Transmit Data AETXD3 Transmit Data ETXD1 Transmit Data AETXERR Transmit Error ETXD2 Transmit Data AERXCLK Receive Clock ETXD3 Transmit Data AERXDV Receive Data Valid ETXERR Transmit Error AERXD0 Receive Data ERXCLK Receive Clock AERXD1 Receive Data ERXDV Receive Data Valid AERXD2 Receive Data ERXD0 Receive Data AERXD3 Receive Data ERXD1 Receive Data AERXERR Receive Error ERXD2 Receive Data AECRS Carrier Sense ERXD3 Receive Data AECOL Collision Indication ERXERR Receive Error Note: The MII mode Alternate Interface is not ECRS Carrier Sense available on 64-pin devices. ECOL Collision Indication TABLE 25-4: RMII MODE ALTERNATE TABLE 25-2: RMII MODE DEFAULT INTERFACE SIGNALS INTERFACE SIGNALS (FMIIEN = 0, FETHIO = 0) (FMIIEN = 0, FETHIO = 1) Pin Name Description Pin Name Description AEMDC Management Clock EMDC Management Clock AEMDIO Management I/O EMDIO Management I/O AETXEN Transmit Enable ETXEN Transmit Enable AETXD0 Transmit Data ETXD0 Transmit Data AETXD1 Transmit Data ETXD1 Transmit Data AEREFCLK Reference Clock EREFCLK Reference Clock AECRSDV Carrier Sense – Receive Data Valid ECRSDV Carrier Sense – Receive Data Valid AERXD0 Receive Data ERXD0 Receive Data AERXD1 Receive Data ERXD1 Receive Data AERXERR Receive Error ERXERR Receive Error Note: Ethernet controller pins that are not used by selected interface can be used by other peripherals. DS60001156J-page 280  2009-2016 Microchip Technology Inc.

 25.1 Control Registers 2 0 0 9 TABLE 25-5: ETHERNET CONTROLLER REGISTER SUMMARY FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX664F064L, -2 0 PIC32MX664F128L, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H, 1 6 M PIC32MX795F512H, PIC32MX695F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX764F128H, PIC32MX764F128L, ic PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES ro c hip Technolog Virtual Address(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets y In 31:16 PTV<15:0> 0000 c 9000 ETHCON1 . 15:0 ON — SIDL — — — TXRTS RXEN AUTOFC — — MANFC — — — BUFCDEC 0000 31:16 — — — — — — — — — — — — — — — — 0000 9010 ETHCON2 15:0 — — — — — RXBUFSZ<6:0> — — — — 0000 31:16 TXSTADDR<31:16> 0000 9020 ETHTXST 15:0 TXSTADDR<15:2> — — 0000 31:16 RXSTADDR<31:16> 0000 9030 ETHRXST 15:0 RXSTADDR<15:2> — — 0000 31:16 0000 9040 ETHHT0 HT<31:0> 15:0 0000 31:16 0000 9050 ETHHT1 15:0 HT<63:32> 0000 P 9060 ETHPMM0 31:16 PMM<31:0> 0000 I 15:0 0000 C 31:16 0000 9070 ETHPMM1 PMM<63:32> 3 15:0 0000 2 31:16 — — — — — — — — — — — — — — — — 0000 9080 ETHPMCS 15:0 PMCS<15:0> 0000 M 31:16 — — — — — — — — — — — — — — — — 0000 9090 ETHPMO X 15:0 PMO<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 5 90A0 ETHRXFC CRC CRC RUNT NOT 15:0 HTEN MPEN — NOTPM PMMODE<3:0> RUNTEN UCEN MCEN BCEN 0000 X ERREN OKEN ERREN MEEN 90B0 ETHRXWM 31:16 — — — — — — — — RXFWM<7:0> 0000 X 15:0 — — — — — — — — RXEWM<7:0> 0000 / D 31:16 — — — — — — — — — — — — — — — — 0000 6 S6 90C0 ETHIEN 15:0 — BUTSXEIE BURSXEIE — — — MAERWKIE MAFRWKIE DORNXEIE TPEPNKDIE ACRTXIE — DOTNXEIE ABOTRXTIE BUFRNXAIE OVFRLXWIE 0000 X 0 001 90D0 ETHIRQ 31:16 — — — — — — — — — — — — — — — — 0000 X 1 15:0 — TXBUSE RXBUSE — — — EWMARK FWMARK RXDONE PKTPEND RXACT — TXDONE TXABORT RXBUFNA RXOVFLW 0000 56 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. / J-pa Note 1: AINllV r eRgeisgtiesrtse rins ”t hfoisr tmabolree ( iwniftohr mthaet ieoxnc.eption of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and 7X ge 2: Reset values default to the factory programmed value. 2 X 8 1

D TABLE 25-5: ETHERNET CONTROLLER REGISTER SUMMARY FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX664F064L, P S 6 PIC32MX664F128L, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H, 0 I 00 PIC32MX795F512H, PIC32MX695F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX764F128H, PIC32MX764F128L, C 1 15 PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES (CONTINUED) 3 6 J-p ss Bits 2 age 282 Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets MX5 31:16 — — — — — — — — BUFCNT<7:0> 0000 X 90E0 ETHSTAT 15:0 — — — — — — — — BUSY TXBUSY RXBUSY — — — — — 0000 X ETH 31:16 — — — — — — — — — — — — — — — — 0000 9100 RXOVFLOW 15:0 RXOVFLWCNT<15:0> 0000 / 6 ETH 31:16 — — — — — — — — — — — — — — — — 0000 9110 FRMTXOK 15:0 FRMTXOKCNT<15:0> 0000 X 9120 ETH 31:16 — — — — — — — — — — — — — — — — 0000 X SCOLFRM 15:0 SCOLFRMCNT<15:0> 0000 / 9130 ETH 31:16 — — — — — — — — — — — — — — — — 0000 7 MCOLFRM 15:0 MCOLFRMCNT<15:0> 0000 X ETH 31:16 — — — — — — — — — — — — — — — — 0000 9140 FRMRXOK 15:0 FRMRXOKCNT<15:0> 0000 X ETH 31:16 — — — — — — — — — — — — — — — — 0000 9150 FCSERR 15:0 FCSERRCNT<15:0> 0000 ETH 31:16 — — — — — — — — — — — — — — — — 0000 9160 ALGNERR 15:0 ALGNERRCNT<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 EMAC1 9200 CFG1 15:0 SOFT SIM — — RESET RESET RESET RESET — — — LOOPBACK TXPAUSE RXPAUSE PASSALL RXENABLE800D RESET RESET RMCS RFUN TMCS TFUN 31:16 — — — — — — — — — — — — — — — — 0000 EMAC1 9210 CFG2 15:0 — EXCESS BP NOBKOFF — — LONGPRE PUREPRE AUTOPAD VLANPAD PAD CRC DELAYCRC HUGEFRM LENGTHCK FULLDPLX 4082 DFR NOBKOFF ENABLE ENABLE EMAC1 31:16 — — — — — — — — — — — — — — — — 0000  2 9220 IPGT 15:0 — — — — — — — — — B2BIPKTGP<6:0> 0012 00 9230 EMAC1 31:16 — — — — — — — — — — — — — — — — 0000 9-2 IPGR 15:0 — NB2BIPKTGP1<6:0> — NB2BIPKTGP2<6:0> 0C12 0 EMAC1 31:16 — — — — — — — — — — — — — — — — 0000 1 9240 6 CLRT 15:0 — — CWINDOW<5:0> — — — — RETX<3:0> 370F M ic 9250 EMAC1 31:16 — — — — — — — — — — — — — — — — 0000 ro MAXF 15:0 MACMAXF<15:0> 05EE c h Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. ip Note 1: All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and Te INV Registers” for more information. ch 2: Reset values default to the factory programmed value. n o lo g y In c .

 TABLE 25-5: ETHERNET CONTROLLER REGISTER SUMMARY FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX664F064L, 20 PIC32MX664F128L, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H, 0 9 PIC32MX795F512H, PIC32MX695F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX764F128H, PIC32MX764F128L, -2 0 PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES (CONTINUED) 1 6 M ss Bits icrochip Tec Virtual Addre(BF88_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets h n o 31:16 — — — — — — — — — — — — — — — — 0000 logy 9260 ESMUAPCP1 15:0 — — — — RREMSEIIT — — SRPEMEIID — — — — — — — — 1000 Inc. 9270 ETMEASCT1 3115:1:06 —— —— —— —— —— —— —— —— —— —— —— —— —— TES—TBP TEST—PAUSESHRT—QNTA00000000 31:16 — — — — — — — — — — — — — — — — 0000 EMAC1 9280 MCFG 15:0 RESET — — — — — — — — — CLKSEL<3:0> NOPRE SCANINC 0020 MGMT EMAC1 31:16 — — — — — — — — — — — — — — — — 0000 9290 MCMD 15:0 — — — — — — — — — — — — — — SCAN READ 0000 EMAC1 31:16 — — — — — — — — — — — — — — — — 0000 92A0 MADR 15:0 — — — PHYADDR<4:0> — — — REGADDR<4:0> 0100 EMAC1 31:16 — — — — — — — — — — — — — — — — 0000 92B0 MWTD 15:0 MWTD<15:0> 0000 EMAC1 31:16 — — — — — — — — — — — — — — — — 0000 P 92C0 MRDD 15:0 MRDD<15:0> 0000 I EMAC1 31:16 — — — — — — — — — — — — — — — — 0000 C 92D0 MIND 15:0 — — — — — — — — — — — — LINKFAIL NOTVALID SCAN MIIMBUSY 0000 3 EMAC1 31:16 — — — — — — — — — — — — — — — — xxxx 9300 SA0(2) 15:0 STNADDR6<7:0> STNADDR5<7:0> xxxx 2 EMAC1 31:16 — — — — — — — — — — — — — — — — xxxx M 9310 SA1(2) 15:0 STNADDR4<7:0> STNADDR3<7:0> xxxx X EMAC1 31:16 — — — — — — — — — — — — — — — — xxxx 9320 SA2(2) 15:0 STNADDR2<7:0> STNADDR1<7:0> xxxx 5 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. X Note 1: All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” for more information. X 2: Reset values default to the factory programmed value. / D 6 S 6 X 0 0 0 X 1 1 56 / J 7 -p a X g e 2 X 8 3

PIC32MX5XX/6XX/7XX REGISTER 25-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1 Bit Range Bit Bit Bit Bit Bit Bit Bit Bit 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 PTV<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 PTV<7:0> R/W-0 U-0 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 15:8 ON — SIDL — — — TXRTS RXEN(1) R/W-0 U-0 U-0 R/W-0 U-0 U-0 U-0 R/W-0 7:0 AUTOFC — — MANFC — — — BUFCDEC Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 PTV<15:0>: PAUSE Timer Value bits PAUSE Timer Value used for Flow Control. This register should only be written when RXEN (ETHCON1<8>) is not set. These bits are only used for Flow Control operations. bit 15 ON: Ethernet ON bit 1 = Ethernet module is enabled 0 = Ethernet module is disabled bit 14 Unimplemented: Read as ‘0’ bit 13 SIDL: Ethernet Stop in Idle Mode bit 1 = Ethernet module transfers are paused during Idle mode 0 = Ethernet module transfers continue during Idle mode bit 12-10 Unimplemented: Read as ‘0’ bit 9 TXRTS: Transmit Request to Send bit 1 = Activate the TX logic and send the packet(s) defined in the TX EDT 0 = Stop transmit (when cleared by software) or transmit done (when cleared by hardware) After the bit is written with a ‘1’, it will clear to a ‘0’ whenever the transmit logic has finished transmitting the requested packets in the Ethernet Descriptor Table (EDT). If a ‘0’ is written by the CPU, the transmit logic finishes the current packet’s transmission and then stops any further. This bit only affects TX operations. bit 8 RXEN: Receive Enable bit(1) 1 = Enable RX logic, packets are received and stored in the RX buffer as controlled by the filter configuration 0 = Disable RX logic, no packets are received in the RX buffer This bit only affects RX operations. Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to ‘0’), and then the RX changes applied. DS60001156J-page 284  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1 (CONTINUED) bit 7 AUTOFC: Automatic Flow Control bit 1 = Automatic Flow Control is enabled 0 = Automatic Flow Control is disabled Setting this bit will enable automatic Flow Control. If set, the full and empty watermarks are used to automatically enable and disable the Flow Control, respectively. When the number of received buffers BUFCNT (ETHSTAT<16:23>) rises to the full watermark, Flow Control is automatically enabled. When the BUFCNT falls to the empty watermark, Flow Control is automatically disabled. This bit is only used for Flow Control operations and affects both TX and RX operations. bit 6-5 Unimplemented: Read as ‘0’ bit 4 MANFC: Manual Flow Control bit 1 = Manual Flow Control is enabled 0 = Manual Flow Control is disabled Setting this bit will enable manual Flow Control. If set, the Flow Control logic will send a PAUSE frame using the PAUSE timer value in the PTV register. It will then resend a PAUSE frame every 128 * PTV<15:0>/2 TX clock cycles until the bit is cleared. Note: For 10 Mbps operation, TX clock runs at 2.5 MHz. For 100 Mbps operation, TX clock runs at 25 MHz. When this bit is cleared, the Flow Control logic will automatically send a PAUSE frame with a 0x0000 PAUSE timer value to disable Flow Control. This bit is only used for Flow Control operations and affects both TX and RX operations. bit 3-1 Unimplemented: Read as ‘0’ bit 0 BUFCDEC: Descriptor Buffer Count Decrement bit The BUFCDEC bit is a write-1 bit that reads as ‘0’. When written with a ‘1’, the Descriptor Buffer Counter, BUFCNT, will decrement by one. If BUFCNT is incremented by the RX logic at the same time that this bit is written, the BUFCNT value will remain unchanged. Writing a ‘0’ will have no effect. This bit is only used for RX operations. Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to ‘0’), and then the RX changes applied.  2009-2016 Microchip Technology Inc. DS60001156J-page 285

PIC32MX5XX/6XX/7XX REGISTER 25-2: ETHCON2: ETHERNET CONTROLLER CONTROL REGISTER 2 Bit Range Bit Bit Bit Bit Bit Bit Bit Bit 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 15:8 — — — — — RXBUFSZ<6:4> R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 7:0 RXBUFSZ<3:0> — — — — Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-11 Unimplemented: Read as ‘0’ bit 10-4 RXBUFSZ<6:0>: RX Data Buffer Size for All RX Descriptors (in 16-byte increments) bits 1111111 = RX data Buffer size for descriptors is 2032 bytes • • • 1100000 = RX data Buffer size for descriptors is 1536 bytes • • • 0000011 = RX data Buffer size for descriptors is 48 bytes 0000010 = RX data Buffer size for descriptors is 32 bytes 0000001 = RX data Buffer size for descriptors is 16 bytes 0000000 = Reserved bit 3-0 Unimplemented: Read as ‘0’ Note 1: This register is only used for RX operations. 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0. DS60001156J-page 286  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-3: ETHTXST: ETHERNET CONTROLLER TX PACKET DESCRIPTOR START ADDRESS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 TXSTADDR<31:24> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 TXSTADDR<23:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 TXSTADDR<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 7:0 TXSTADDR<7:2> — — Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-2 TXSTADDR<31:2>: Starting Address of First Transmit Descriptor bits This register should not be written while any transmit, receive or DMA operations are in progress. This address must be 4-byte aligned (bits 1-0 must be ‘00’). bit 1-0 Unimplemented: Read as ‘0’ Note 1: This register is only used for TX operations. 2: This register will be updated by hardware with the last descriptor used by the last successfully transmitted packet. REGISTER 25-4: ETHRXST: ETHERNET CONTROLLER RX PACKET DESCRIPTOR START ADDRESS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 RXSTADDR<31:24> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 RXSTADDR<23:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 RXSTADDR<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 7:0 RXSTADDR<7:2> — — Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-2 RXSTADDR<31:2>: Starting Address of First Receive Descriptor bits This register should not be written while any transmit, receive or DMA operations are in progress. This address must be 4-byte aligned (bits 1-0 must be ‘00’). bit 1-0 Unimplemented: Read as ‘0’ Note 1: This register is only used for RX operations. 2: This register will be updated by hardware with the last descriptor used by the last successfully transmitted packet.  2009-2016 Microchip Technology Inc. DS60001156J-page 287

PIC32MX5XX/6XX/7XX REGISTER 25-5: ETHHT0: ETHERNET CONTROLLER HASH TABLE 0 REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 HT<31:24> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 HT<23:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 HT<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 HT<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 HT<31:0>: Hash Table Bytes 0-3 bits Note 1: This register is only used for RX operations. 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the HTEN bit (ETHRXFC<15>)= 0. REGISTER 25-6: ETHHT1: ETHERNET CONTROLLER HASH TABLE 1 REGISTER Bit Range Bit Bit Bit Bit Bit Bit Bit Bit 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 HT<63:56> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 HT<55:48> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 HT<47:40> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 HT<39:32> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-0 HT<63:32>: Hash Table Bytes 4-7 bits Note 1: This register is only used for RX operations. 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the HTEN bit (ETHRXFC<15>)= 0. DS60001156J-page 288  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-7: ETHPMM0: ETHERNET CONTROLLER PATTERN MATCH MASK 0 REGISTER Bit Range Bit Bit Bit Bit Bit Bit Bit Bit 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 PMM<31:24> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 PMM<23:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 PMM<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 PMM<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-24 PMM<31:24>: Pattern Match Mask 3 bits bit 23-16 PMM<23:16>: Pattern Match Mask 2 bits bit 15-8 PMM<15:8>: Pattern Match Mask 1 bits bit 7-0 PMM<7:0>: Pattern Match Mask 0 bits Note 1: This register is only used for RX operations. 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0. REGISTER 25-8: ETHPMM1: ETHERNET CONTROLLER PATTERN MATCH MASK 1 REGISTER Bit Range Bit Bit Bit Bit Bit Bit Bit Bit 24/16/8/0 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 31:24 PMM<63:56> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 PMM<55:48> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 PMM<47:40> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 PMM<39:32> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-24 PMM<63:56>: Pattern Match Mask 7 bits bit 23-16 PMM<55:48>: Pattern Match Mask 6 bits bit 15-8 PMM<47:40>: Pattern Match Mask 5 bits bit 7-0 PMM<39:32>: Pattern Match Mask 4 bits Note 1: This register is only used for RX operations. 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.  2009-2016 Microchip Technology Inc. DS60001156J-page 289

PIC32MX5XX/6XX/7XX REGISTER 25-9: ETHPMCS: ETHERNET CONTROLLER PATTERN MATCH CHECKSUM REGISTER Bit Range Bit Bit Bit Bit Bit Bit Bit Bit 24/16/8/0 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 PMCS<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 PMCS<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-8 PMCS<15:8>: Pattern Match Checksum 1 bits bit 7-0 PMCS<7:0>: Pattern Match Checksum 0 bits Note 1: This register is only used for RX operations. 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0. REGISTER 25-10: ETHPMO: ETHERNET CONTROLLER PATTERN MATCH OFFSET REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 PMO<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 PMO<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 PMO<15:0>: Pattern Match Offset 1 bits Note 1: This register is only used for RX operations. 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0. DS60001156J-page 290  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-11: ETHRXFC: ETHERNET CONTROLLER RECEIVE FILTER CONFIGURATION REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 HTEN MPEN — NOTPM PMMODE<3:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 CRCERREN CRCOKEN RUNTERREN RUNTEN UCEN NOTMEEN MCEN BCEN Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 HTEN: Enable Hash Table Filtering bit 1 = Enable Hash Table Filtering 0 = Disable Hash Table Filtering bit 14 MPEN: Magic Packet™ Enable bit 1 = Enable Magic Packet Filtering 0 = Disable Magic Packet Filtering bit 13 Unimplemented: Read as ‘0’ bit 12 NOTPM: Pattern Match Inversion bit 1 = The Pattern Match Checksum must not match for a successful Pattern Match to occur 0 = The Pattern Match Checksum must match for a successful Pattern Match to occur This bit determines whether Pattern Match Checksum must match in order for a successful Pattern Match to occur. bit 11-8 PMMODE<3:0>: Pattern Match Mode bits 1001 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Packet = Magic Packet)(1,3) 1000 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Hash Table Filter match)(1,2) 0111 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Broadcast Address)(1) 0110 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Broadcast Address)(1) 0101 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Unicast Address)(1) 0100 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Unicast Address)(1) 0011 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Station Address)(1) 0010 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Station Address)(1) 0001 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches)(1) 0000 = Pattern Match is disabled; pattern match is always unsuccessful Note 1: XOR = True when either one or the other conditions are true, but not both. 2: This Hash Table Filter match is active regardless of the value of the HTEN bit. 3: This Magic Packet Filter match is active regardless of the value of the MPEN bit. Note 1: This register is only used for RX operations. 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.  2009-2016 Microchip Technology Inc. DS60001156J-page 291

PIC32MX5XX/6XX/7XX REGISTER 25-11: ETHRXFC: ETHERNET CONTROLLER RECEIVE FILTER CONFIGURATION REGISTER (CONTINUED) bit 7 CRCERREN: CRC Error Collection Enable bit 1 = The received packet CRC must be invalid for the packet to be accepted 0 = Disable CRC Error Collection filtering This bit allows the user to collect all packets that have an invalid CRC. bit 6 CRCOKEN: CRC OK Enable bit 1 = The received packet CRC must be valid for the packet to be accepted 0 = Disable CRC filtering This bit allows the user to reject all packets that have an invalid CRC. bit 5 RUNTERREN: Runt Error Collection Enable bit 1 = The received packet must be a runt packet for the packet to be accepted 0 = Disable Runt Error Collection filtering This bit allows the user to collect all packets that are runt packets. For this filter, a runt packet is defined as any packet with a size of less than 64 bytes (when CRCOKEN = 0) or any packet with a size of less than 64 bytes that has a valid CRC (when CRCOKEN = 1). bit 4 RUNTEN: Runt Enable bit 1 = The received packet must not be a runt packet for the packet to be accepted 0 = Disable Runt filtering This bit allows the user to reject all runt packets. For this filter, a runt packet is defined as any packet with a size of less than 64 bytes. bit 3 UCEN: Unicast Enable bit 1 = Enable Unicast Filtering 0 = Disable Unicast Filtering This bit allows the user to accept all unicast packets whose Destination Address matches the Station Address. bit 2 NOTMEEN: Not Me Unicast Enable bit 1 = Enable Not Me Unicast Filtering 0 = Disable Not Me Unicast Filtering This bit allows the user to accept all unicast packets whose Destination Address does not match the Station Address. bit 1 MCEN: Multicast Enable bit 1 = Enable Multicast Filtering 0 = Disable Multicast Filtering This bit allows the user to accept all Multicast Address packets. bit 0 BCEN: Broadcast Enable bit 1 = Enable Broadcast Filtering 0 = Disable Broadcast Filtering This bit allows the user to accept all Broadcast Address packets. Note 1: XOR = True when either one or the other conditions are true, but not both. 2: This Hash Table Filter match is active regardless of the value of the HTEN bit. 3: This Magic Packet Filter match is active regardless of the value of the MPEN bit. Note 1: This register is only used for RX operations. 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0. DS60001156J-page 292  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-12: ETHRXWM: ETHERNET CONTROLLER RECEIVE WATERMARKS REGISTER Bit Range Bit Bit Bit Bit Bit Bit Bit Bit 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 RXFWM<7:0> U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 RXEWM<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-24 Unimplemented: Read as ‘0’ bit 23-16 RXFWM<7:0>: Receive Full Watermark bits The software controlled RX Buffer Full Watermark Pointer is compared against the RX BUFCNT to determine the full watermark condition for the FWMARK interrupt and for enabling Flow Control when automatic Flow Control is enabled. The Full Watermark Pointer should always be greater than the Empty Watermark Pointer. bit 15-8 Unimplemented: Read as ‘0’ bit 7-0 RXEWM<7:0>: Receive Empty Watermark bits The software controlled RX Buffer Empty Watermark Pointer is compared against the RX BUFCNT to determine the empty watermark condition for the EWMARK interrupt and for disabling Flow Control when automatic Flow Control is enabled. The Empty Watermark Pointer should always be less than the Full Watermark Pointer. Note: This register is only used for RX operations.  2009-2016 Microchip Technology Inc. DS60001156J-page 293

PIC32MX5XX/6XX/7XX REGISTER 25-13: ETHIEN: ETHERNET CONTROLLER INTERRUPT ENABLE REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 R/W-0 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 15:8 — TXBUSEIE(1) RXBUSEIE(2) — — — EWMARKIE(2) FWMARKIE(2) R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 RXDONEIE(2)PKTPENDIE(2) RXACTIE(2) — TXDONEIE(1)TXABORTIE(1)RXBUFNAIE(2)RXOVFLWIE(2) Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-15 Unimplemented: Read as ‘0’ bit 14 TXBUSEIE: Transmit BVCI Bus Error Interrupt Enable bit(1) 1 = Enable TXBUS Error Interrupt 0 = Disable TXBUS Error Interrupt bit 13 RXBUSEIE: Receive BVCI Bus Error Interrupt Enable bit(2) 1 = Enable RXBUS Error Interrupt 0 = Disable RXBUS Error Interrupt bit 12-10 Unimplemented: Read as ‘0’ bit 9 EWMARKIE: Empty Watermark Interrupt Enable bit(2) 1 = Enable EWMARK Interrupt 0 = Disable EWMARK Interrupt bit 8 FWMARKIE: Full Watermark Interrupt Enable bit(2) 1 = Enable FWMARK Interrupt 0 = Disable FWMARK Interrupt bit 7 RXDONEIE: Receiver Done Interrupt Enable bit(2) 1 = Enable RXDONE Interrupt 0 = Disable RXDONE Interrupt bit 6 PKTPENDIE: Packet Pending Interrupt Enable bit(2) 1 = Enable PKTPEND Interrupt 0 = Disable PKTPEND Interrupt bit 5 RXACTIE: RX Activity Interrupt Enable bit 1 = Enable RXACT Interrupt 0 = Disable RXACT Interrupt bit 4 Unimplemented: Read as ‘0’ bit 3 TXDONEIE: Transmitter Done Interrupt Enable bit(1) 1 = Enable TXDONE Interrupt 0 = Disable TXDONE Interrupt bit 2 TXABORTIE: Transmitter Abort Interrupt Enable bit(1) 1 = Enable TXABORT Interrupt 0 = Disable TXABORT Interrupt bit 1 RXBUFNAIE: Receive Buffer Not Available Interrupt Enable bit(2) 1 = Enable RXBUFNA Interrupt 0 = Disable RXBUFNA Interrupt bit 0 RXOVFLWIE: Receive FIFO Overflow Interrupt Enable bit(2) 1 = Enable RXOVFLW Interrupt 0 = Disable RXOVFLW Interrupt Note 1: This bit is only used for TX operations. 2: This bit is only used for RX operations. DS60001156J-page 294  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER Bit Range Bit Bit Bit Bit Bit Bit Bit Bit 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 R/W-0 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 15:8 — TXBUSE RXBUSE — — — EWMARK FWMARK R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 RXDONE PKTPEND RXACT — TXDONE TXABORT RXBUFNA RXOVFLW Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-15 Unimplemented: Read as ‘0’ bit 14 TXBUSE: Transmit BVCI Bus Error Interrupt bit 1 = BVCI Bus Error has occurred 0 = BVCI Bus Error has not occurred This bit is set when the TX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a ‘1’ to the CLR register. bit 13 RXBUSE: Receive BVCI Bus Error Interrupt bit 1 = BVCI Bus Error has occurred 0 = BVCI Bus Error has not occurred This bit is set when the RX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a ‘1’ to the CLR register. bit 12-10 Unimplemented: Read as ‘0’ bit 9 EWMARK: Empty Watermark Interrupt bit 1 = Empty Watermark pointer reached 0 = No interrupt pending This bit is set when the RX Descriptor Buffer Count is less than or equal to the value in the RXEWM bit (ETHRXWM<0:7>) value. It is cleared by BUFCNT bit (ETHSTAT<16:23>) being incremented by hardware. Writing a ‘0’ or a ‘1’ has no effect. bit 8 FWMARK: Full Watermark Interrupt bit 1 = Full Watermark pointer reached 0 = No interrupt pending This bit is set when the RX Descriptor Buffer Count is greater than or equal to the value in the RXFWM bit (ETHRXWM<16:23>) field. It is cleared by writing the BUFCDEC (ETHCON1<0>) bit to decrement the BUFCNT counter. Writing a ‘0’ or a ‘1’ has no effect. bit 7 RXDONE: Receive Done Interrupt bit 1 = RX packet was successfully received 0 = No interrupt pending This bit is set whenever an RX packet is successfully received. It is cleared by either a Reset or CPU write of a ‘1’ to the CLR register. Note: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.  2009-2016 Microchip Technology Inc. DS60001156J-page 295

PIC32MX5XX/6XX/7XX REGISTER 25-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER bit 6 PKTPEND: Packet Pending Interrupt bit 1 = RX packet pending in memory 0 = RX packet is not pending in memory This bit is set when the BUFCNT counter has a value other than ‘0’. It is cleared by either a Reset or by writing the BUFCDEC bit to decrement the BUFCNT counter. Writing a ‘0’ or a ‘1’ has no effect. bit 5 RXACT: Receive Activity Interrupt bit 1 = RX packet data was successfully received 0 = No interrupt pending This bit is set whenever RX packet data is stored in the RXBM FIFO. It is cleared by either a Reset or CPU write of a ‘1’ to the CLR register. bit 4 Unimplemented: Read as ‘0’ bit 3 TXDONE: Transmit Done Interrupt bit 1 = TX packet was successfully sent 0 = No interrupt pending This bit is set when the currently transmitted TX packet completes transmission, and the Transmit Status Vector is loaded into the first descriptor used for the packet. It is cleared by either a Reset or CPU write of a ‘1’ to the CLR register. bit 2 TXABORT: Transmit Abort Condition Interrupt bit 1 = TX abort condition occurred on the last TX packet 0 = No interrupt pending This bit is set when the MAC aborts the transmission of a TX packet for one of the following reasons: • Jumbo TX packet abort • Underrun abort • Excessive defer abort • Late collision abort • Excessive collisions abort This bit is cleared by either a Reset or CPU write of a ‘1’ to the CLR register. bit 1 RXBUFNA: Receive Buffer Not Available Interrupt bit 1 = RX Buffer Descriptor Not Available condition has occurred 0 = No interrupt pending This bit is set by a RX Buffer Descriptor Overrun condition. It is cleared by either a Reset or a CPU write of a ‘1’ to the CLR register. bit 0 RXOVFLW: Receive FIFO Over Flow Error bit 1 = RX FIFO Overflow Error condition has occurred 0 = No interrupt pending RXOVFLW is set by the RXBM Logic for an RX FIFO Overflow condition. It is cleared by either a Reset or CPU write of a ‘1’ to the CLR register. Note: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes. DS60001156J-page 296  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23:16 BUFCNT<7:0> U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 7:0 ETHBUSY(1) TXBUSY(2) RXBUSY(2) — — — — — Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-24 Unimplemented: Read as ‘0’ bit 23-16 BUFCNT<7:0>: Packet Buffer Count bits Number of packet buffers received in memory. Once a packet has been successfully received, this register is incremented by hardware based on the number of descriptors used by the packet. Software decrements the counter (by writing to the BUFCDEC bit (ETHCON1<0>) for each descriptor used) after a packet has been read out of the buffer. The register does not roll over (0xFF to 0x00) when hardware tries to increment the register and the register is already at 0xFF. Conversely, the register does not roll under (0x00 to 0xFF) when software tries to decrement the register and the register is already at 0x0000. When software attempts to decrement the counter at the same time that the hardware attempts to increment the counter, the counter value will remain unchanged. When this register value reaches 0xFF, the RX logic will halt (only if automatic Flow Control is enabled) awaiting software to write the BUFCDEC bit in order to decrement the register below 0xFF. If automatic Flow Control is disabled, the RXDMA will continue processing and the BUFCNT will saturate at a value of 0xFF. When this register is non-zero, the PKTPEND status bit will be set and an interrupt may be generated, depending on the value of the ETHIEN bit <PKTPENDIE> register. When the ETHRXST register is written, the BUFCNT counter is automatically cleared to 0x00. Note: BUFCNT will not be cleared when ON is set to ‘0’. This enables software to continue to utilize and decrement this count. bit 15-8 Unimplemented: Read as ‘0’ bit 7 ETHBUSY: Ethernet Module busy bit(1) 1 = Ethernet logic has been turned on (ON (ETHCON1<15>) = 1) or is completing a transaction 0 = Ethernet logic is idle This bit indicates that the module has been turned on or is completing a transaction after being turned off. bit 6 TXBUSY: Transmit Busy bit(2) 1 = TX logic is receiving data 0 = TX logic is idle This bit indicates that a packet is currently being transmitted. A change in this status bit is not necessarily reflected by the TXDONE interrupt, as TX packets may be aborted or rejected by the MAC. Note 1: This bit will be set when the ON bit (ETHCON1<15>) = 1. 2: This bit will be cleared when the ON bit (ETHCON1<15>) = 0.  2009-2016 Microchip Technology Inc. DS60001156J-page 297

PIC32MX5XX/6XX/7XX REGISTER 25-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER (CONTINUED) bit 5 RXBUSY: Receive Busy bit(2) 1 = RX logic is receiving data 0 = RX logic is idle This bit indicates that a packet is currently being received. A change in this status bit is not necessarily reflected by the RXDONE interrupt, as RX packets may be aborted or rejected by the RX filter. bit 4-0 Unimplemented: Read as ‘0’ Note 1: This bit will be set when the ON bit (ETHCON1<15>) = 1. 2: This bit will be cleared when the ON bit (ETHCON1<15>) = 0. DS60001156J-page 298  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-16: ETHRXOVFLOW: ETHERNET CONTROLLER RECEIVE OVERFLOW STATISTICS REGISTER Bit Range Bit Bit Bit Bit Bit Bit Bit Bit 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 RXOVFLWCNT<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 RXOVFLWCNT<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 RXOVFLWCNT<15:0>: Dropped Receive Frames Count bits Increment counter for frames accepted by the RX filter and subsequently dropped due to internal receive error (RXFIFO overrun). This event also sets the RXOVFLW bit (ETHIRQ<0>) interrupt flag. Note 1: This register is only used for RX operations. 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are ‘0’. 3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.  2009-2016 Microchip Technology Inc. DS60001156J-page 299

PIC32MX5XX/6XX/7XX REGISTER 25-17: ETHFRMTXOK: ETHERNET CONTROLLER FRAMES TRANSMITTED OK STATISTICS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 FRMTXOKCNT<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 FRMTXOKCNT<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 FRMTXOKCNT<15:0>: Frame Transmitted OK Count bits Increment counter for frames successfully transmitted. Note 1: This register is only used for TX operations. 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are ‘0’. 3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes. DS60001156J-page 300  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-18: ETHSCOLFRM: ETHERNET CONTROLLER SINGLE COLLISION FRAMES STATISTICS REGISTER Bit Range Bit Bit Bit Bit Bit Bit Bit Bit 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 SCOLFRMCNT<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 SCOLFRMCNT<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 SCOLFRMCNT<15:0>: Single Collision Frame Count bits Increment count for frames that were successfully transmitted on the second try. Note 1: This register is only used for TX operations. 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are ‘0’. 3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.  2009-2016 Microchip Technology Inc. DS60001156J-page 301

PIC32MX5XX/6XX/7XX REGISTER 25-19: ETHMCOLFRM: ETHERNET CONTROLLER MULTIPLE COLLISION FRAMES STATISTICS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 24/16/8/0 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 MCOLFRMCNT<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 MCOLFRMCNT<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 MCOLFRMCNT<15:0>: Multiple Collision Frame Count bits Increment count for frames that were successfully transmitted after there was more than one collision. Note 1: This register is only used for TX operations. 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are ‘0’. 3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes. DS60001156J-page 302  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-20: ETHFRMRXOK: ETHERNET CONTROLLER FRAMES RECEIVED OK STATISTICS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 FRMRXOKCNT<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 FRMRXOKCNT<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 FRMRXOKCNT<15:0>: Frames Received OK Count bits Increment count for frames received successfully by the RX Filter. This count will not be incremented if there is a Frame Check Sequence (FCS) or Alignment error. Note 1: This register is only used for RX operations. 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are ‘0’. 3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.  2009-2016 Microchip Technology Inc. DS60001156J-page 303

PIC32MX5XX/6XX/7XX REGISTER 25-21: ETHFCSERR: ETHERNET CONTROLLER FRAME CHECK SEQUENCE ERROR STATISTICS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 FCSERRCNT<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 FCSERRCNT<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 FCSERRCNT<15:0>: FCS Error Count bits Increment count for frames received with FCS error and the frame length in bits is an integral multiple of 8bits. Note 1: This register is only used for RX operations. 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are ‘0’. 3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should be only done for debug/test purposes. DS60001156J-page 304  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-22: ETHALGNERR: ETHERNET CONTROLLER ALIGNMENT ERRORS STATISTICS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 ALGNERRCNT<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 ALGNERRCNT<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 ALGNERRCNT<15:0>: Alignment Error Count bits Increment count for frames with alignment errors. Note that an alignment error is a frame that has an FCS error and the frame length in bits is not an integral multiple of 8 bits (a.k.a., dribble nibble) Note 1: This register is only used for RX operations. 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are ‘0’. 3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should be only done for debug/test purposes.  2009-2016 Microchip Technology Inc. DS60001156J-page 305

PIC32MX5XX/6XX/7XX REGISTER 25-23: EMAC1CFG1: ETHERNET CONTROLLER MAC CONFIGURATION 1 REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-1 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 SOFT SIM RESET RESET RESET RESET — — RESET RESET RMCS RFUN TMCS TFUN U-0 U-0 U-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-1 7:0 TX RX RX — — — LOOPBACK PASSALL PAUSE PAUSE ENABLE Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 SOFTRESET: Soft Reset bit Setting this bit will put the MACMII in reset. Its default value is ‘1’. bit 14 SIMRESET: Simulation Reset bit Setting this bit will cause a reset to the random number generator within the Transmit Function. bit 13-12 Unimplemented: Read as ‘0’ bit 11 RESETRMCS: Reset MCS/RX bit Setting this bit will put the MAC Control Sub-layer/Receive domain logic in reset. bit 10 RESETRFUN: Reset RX Function bit Setting this bit will put the MAC Receive function logic in reset. bit 9 RESETTMCS: Reset MCS/TX bit Setting this bit will put the MAC Control Sub-layer/TX domain logic in reset. bit 8 RESETTFUN: Reset TX Function bit Setting this bit will put the MAC Transmit function logic in reset. bit 7-5 Unimplemented: Read as ‘0’ bit 4 LOOPBACK: MAC Loopback mode bit 1 = MAC Transmit interface is loop backed to the MAC Receive interface 0 = MAC normal operation bit 3 TXPAUSE: MAC TX Flow Control bit 1 = PAUSE Flow Control frames are allowed to be transmitted 0 = PAUSE Flow Control frames are blocked bit 2 RXPAUSE: MAC RX Flow Control bit 1 = The MAC acts upon received PAUSE Flow Control frames 0 = Received PAUSE Flow Control frames are ignored bit 1 PASSALL: MAC Pass all Receive Frames bit 1 = The MAC will accept all frames regardless of type (Normal vs. Control) 0 = The received Control frames are ignored bit 0 RXENABLE: MAC Receive Enable bit 1 = Enable the MAC receiving of frames 0 = Disable the MAC receiving of frames Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware. DS60001156J-page 306  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 25/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 15:8 EXCESS BPNOBK NOBK — — — LONGPRE PUREPRE DFR OFF OFF R/W-1 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-1 R/W-0 7:0 AUTO VLAN PAD CRC DELAYCRC HUGEFRM LENGTHCK FULLDPLX PAD(1,2) PAD(1,2) ENABLE(1,3) ENABLE Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-15 Unimplemented: Read as ‘0’ bit 14 EXCESSDER: Excess Defer bit 1 = The MAC will defer to carrier indefinitely as per the Standard 0 = The MAC will abort when the excessive deferral limit is reached bit 13 BPNOBKOFF: Backpressure/No Backoff bit 1 = The MAC after incidentally causing a collision during backpressure will immediately retransmit without backoff reducing the chance of further collisions and ensuring transmit packets get sent 0 = The MAC will not remove the backoff bit 12 NOBKOFF: No Backoff bit 1 = Following a collision, the MAC will immediately retransmit rather than using the Binary Exponential Back- off algorithm as specified in the Standard 0 = Following a collision, the MAC will use the Binary Exponential Backoff algorithm bit 11-10 Unimplemented: Read as ‘0’ bit 9 LONGPRE: Long Preamble Enforcement bit 1 = The MAC only allows receive packets which contain preamble fields less than 12 bytes in length 0 = The MAC allows any length preamble as per the Standard bit 8 PUREPRE: Pure Preamble Enforcement bit 1 = The MAC will verify the content of the preamble to ensure it contains 0x55 and is error-free. A packet with errors in its preamble is discarded 0 = The MAC does not perform any preamble checking bit 7 AUTOPAD: Automatic Detect Pad Enable bit(1,2) 1 = The MAC will automatically detect the type of frame, either tagged or untagged, by comparing the two octets following the source address with 0x8100 (VLAN Protocol ID) and pad accordingly 0 = The MAC does not perform automatic detection Note 1: Table25-6 provides a description of the pad function based on the configuration of this register. 2: This bit is ignored if the PADENABLE bit is cleared. 3: This bit is used in conjunction with the AUTOPAD and VLANPAD bits. Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware  2009-2016 Microchip Technology Inc. DS60001156J-page 307

PIC32MX5XX/6XX/7XX REGISTER 25-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER (CONTINUED) bit 6 VLANPAD: VLAN Pad Enable bit(1,2) 1 = The MAC will pad all short frames to 64 bytes and append a valid CRC 0 = The MAC does not perform padding of short frames bit 5 PADENABLE: Pad/CRC Enable bit(1,3) 1 = The MAC will pad all short frames 0 = The frames presented to the MAC have a valid length bit 4 CRCENABLE: CRC Enable1 bit 1 = The MAC will append a CRC to every frame whether padding was required or not. Must be set if the PADENABLE bit is set. 0 = The frames presented to the MAC have a valid CRC bit 3 DELAYCRC: Delayed CRC bit This bit determines the number of bytes, if any, of proprietary header information that exist on the front of the IEEE 802.3 frames. 1 = Four bytes of header (ignored by the CRC function) 0 = No proprietary header bit 2 HUGEFRM: Huge Frame enable bit 1 = Frames of any length are transmitted and received 0 = Huge frames are not allowed for receive or transmit bit 1 LENGTHCK: Frame Length checking bit 1 = Both transmit and receive frame lengths are compared to the Length/Type field. If the Length/Type field represents a length then the check is performed. Mismatches are reported on the transmit/receive statistics vector. 0 = Length/Type field check is not performed bit 0 FULLDPLX: Full-Duplex Operation bit 1 = The MAC operates in Full-Duplex mode 0 = The MAC operates in Half-Duplex mode Note 1: Table25-6 provides a description of the pad function based on the configuration of this register. 2: This bit is ignored if the PADENABLE bit is cleared. 3: This bit is used in conjunction with the AUTOPAD and VLANPAD bits. Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware TABLE 25-6: PAD OPERATION Type AUTOPAD VLANPAD PADENABLE Action Any x x 0 No pad, check CRC Any 0 0 1 Pad to 60 Bytes, append CRC Any x 1 1 Pad to 64 Bytes, append CRC Any 1 0 1 If untagged: Pad to 60 Bytes, append CRC If VLAN tagged: Pad to 64 Bytes, append CRC DS60001156J-page 308  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-25: EMAC1IPGT: ETHERNET CONTROLLER MAC BACK-TO-BACK INTERPACKET GAP REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — U-0 R/W-0 R/W-0 R/W-1 R/W-0 R/W-0 R/W-1 R/W-0 7:0 — B2BIPKTGP<6:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-7 Unimplemented: Read as ‘0’ bit 6-0 B2BIPKTGP<6:0>: Back-to-Back Interpacket Gap bits This is a programmable field representing the nibble time offset of the minimum possible period between the end of any transmitted packet, to the beginning of the next. In Full-Duplex mode, the register value should be the desired period in nibble times minus 3. In Half-Duplex mode, the register value should be the desired period in nibble times minus 6. In Full-Duplex the recommended setting is 0x15 (21d), which rep- resents the minimum IPG of 0.96 µs (in 100 Mbps) or 9.6 µs (in 10 Mbps). In Half-Duplex mode, the rec- ommended setting is 0x12 (18d), which also represents the minimum IPG of 0.96 µs (in 100 Mbps) or 9.6 µs (in 10 Mbps). Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.  2009-2016 Microchip Technology Inc. DS60001156J-page 309

PIC32MX5XX/6XX/7XX REGISTER 25-26: EMAC1IPGR: ETHERNET CONTROLLER MAC NON-BACK-TO-BACK INTERPACKET GAP REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 15:8 — NB2BIPKTGP1<6:0> U-0 R/W-0 R/W-0 R/W-1 R/W-0 R/W-0 R/W-1 R/W-0 7:0 — NB2BIPKTGP2<6:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-15 Unimplemented: Read as ‘0’ bit 14-8 NB2BIPKTGP1<6:0>: Non-Back-to-Back Interpacket Gap Part 1 bits This is a programmable field representing the optional carrierSense window referenced in section 4.2.3.2.1“Deference” of the IEEE 80.23 Specification. If the carrier is detected during the timing of IPGR1, the MAC defers to the carrier. If, however, the carrier comes after IPGR1, the MAC continues timing IPGR2 and transmits, knowingly causing a collision, thus ensuring fair access to the medium. Its range of values is 0x0 to IPGR2. Its recommend value is 0xC (12d). bit 7 Unimplemented: Read as ‘0’ bit 6-0 NB2BIPKTGP2<6:0>: Non-Back-to-Back Interpacket Gap Part 2 bits This is a programmable field representing the non-back-to-back Inter-Packet-Gap. Its recommended value is 0x12 (18d), which represents the minimum IPG of 0.96 µs (in 100 Mbps) or 9.6 µs (in 10 Mbps). Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware. DS60001156J-page 310  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-27: EMAC1CLRT: ETHERNET CONTROLLER MAC COLLISION WINDOW/RETRY LIMIT REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 R/W-1 R/W-1 R/W-0 R/W-1 R/W-1 R/W-1 15:8 — — CWINDOW<5:0> U-0 U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 7:0 — — — — RETX<3:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-14 Unimplemented: Read as ‘0’ bit 13-8 CWINDOW<5:0>: Collision Window bits This is a programmable field representing the slot time or collision window during which collisions occur in properly configured networks. Since the collision window starts at the beginning of transmission, the pre- amble and SFD is included. Its default of 0x37 (55d) corresponds to the count of frame bytes at the end of the window. bit 7-4 Unimplemented: Read as ‘0’ bit 3-0 RETX<3:0>: Retransmission Maximum bits This is a programmable field specifying the number of retransmission attempts following a collision before aborting the packet due to excessive collisions. The Standard specifies the maximum number of attempts (attemptLimit) to be 0xF (15d). Its default is ‘0xF’. Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.  2009-2016 Microchip Technology Inc. DS60001156J-page 311

PIC32MX5XX/6XX/7XX REGISTER 25-28: EMAC1MAXF: ETHERNET CONTROLLER MAC MAXIMUM FRAME LENGTH REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-0 R/W-1 15:8 MACMAXF<15:8>(1) R/W-1 R/W-1 R/W-1 R/W-0 R/W-1 R/W-1 R/W-1 R/W-0 7:0 MACMAXF<7:0>(1) Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 MACMAXF<15:0>: Maximum Frame Length bits(1) These bits reset to 0x05EE, which represents a maximum receive frame of 1518 octets. An untagged maximum size Ethernet frame is 1518 octets. A tagged frame adds four octets for a total of 1522 octets. If a shorter/longer maximum length restriction is desired, program this 16-bit field. Note 1: If a proprietary header is allowed, this bit should be adjusted accordingly. For example, if 4-byte headers are prepended to frames, MACMAXF could be set to 1527 octets. This would allow the maximum VLAN tagged frame plus the 4-byte header. Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware. DS60001156J-page 312  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-29: EMAC1SUPP: ETHERNET CONTROLLER MAC PHY SUPPORT REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 R/W-0 U-0 U-0 R/W-0 15:8 — — — — RESETRMII(1) — — SPEEDRMII(1) U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 7:0 — — — — — — — — Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-12 Unimplemented: Read as ‘0’ bit 11 RESETRMII: Reset RMII Logic bit(1) 1 = Reset the MAC RMII module 0 = Normal operation. bit 10-9 Unimplemented: Read as ‘0’ bit 8 SPEEDRMII: RMII Speed bit(1) This bit configures the Reduced MII logic for the current operating speed. 1 = RMII is running at 100 Mbps 0 = RMII is running at 10 Mbps bit 7-0 Unimplemented: Read as ‘0’ Note 1: This bit is only used for the RMII module. Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.  2009-2016 Microchip Technology Inc. DS60001156J-page 313

PIC32MX5XX/6XX/7XX REGISTER 25-30: EMAC1TEST: ETHERNET CONTROLLER MAC TEST REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 7:0 — — — — — TESTBP TESTPAUSE(1) SHRTQNTA(1) Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-3 Unimplemented: Read as ‘0’ bit 2 TESTBP: Test Backpressure bit 1 = The MAC will assert backpressure on the link. Backpressure causes preamble to be transmitted, raising carrier sense. A transmit packet from the system will be sent during backpressure. 0 = Normal operation bit 1 TESTPAUSE: Test PAUSE bit(1) 1 = The MAC Control sub-layer will inhibit transmissions, just as if a PAUSE Receive Control frame with a non-zero pause time parameter was received 0 = Normal operation bit 0 SHRTQNTA: Shortcut PAUSE Quanta bit(1) 1 = The MAC reduces the effective PAUSE Quanta from 64 byte-times to 1 byte-time 0 = Normal operation Note 1: This bit is only for testing purposes. Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware. DS60001156J-page 314  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-31: EMAC1MCFG: ETHERNET CONTROLLER MAC MII MANAGEMENT CONFIGURATION REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 RESETMGMT — — — — — — — U-0 U-0 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 — — CLKSEL<3:0>(1) NOPRE SCANINC Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 RESETMGMT: Test Reset MII Management bit 1 = Reset the MII Management module 0 = Normal Operation bit 14-6 Unimplemented: Read as ‘0’ bit 5-2 CLKSEL<3:0>: MII Management Clock Select 1 bits(1) These bits are used by the clock divide logic in creating the MII Management Clock (MDC), which the IEEE 802.3 Specification defines to be no faster than 2.5 MHz. Some PHYs support clock rates up to 12.5 MHz. bit 1 NOPRE: Suppress Preamble bit 1 = The MII Management will perform read/write cycles without the 32-bit preamble field. Some PHYs support suppressed preamble 0 = Normal read/write cycles are performed bit 0 SCANINC: Scan Increment bit 1 = The MII Management module will perform read cycles across a range of PHYs. The read cycles will start from address 1 through the value set in EMAC1MADR<PHYADDR> 0 = Continuous reads of the same PHY Note 1: Table25-7 provides a description of the clock divider encoding. Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware. TABLE 25-7: MIIM CLOCK SELECTION MIIM Clock Select EMAC1MCFG<5:2> SYSCLK divided by 4 000x SYSCLK divided by 6 0010 SYSCLK divided by 8 0011 SYSCLK divided by 10 0100 SYSCLK divided by 14 0101 SYSCLK divided by 20 0110 SYSCLK divided by 28 0111 SYSCLK divided by 40 1000 Undefined Any other combination  2009-2016 Microchip Technology Inc. DS60001156J-page 315

PIC32MX5XX/6XX/7XX REGISTER 25-32: EMAC1MCMD: ETHERNET CONTROLLER MAC MII MANAGEMENT COMMAND REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 7:0 — — — — — — SCAN READ Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-2 Unimplemented: Read as ‘0’ bit 1 SCAN: MII Management Scan Mode bit 1 = The MII Management module will perform read cycles continuously (for example, useful for monitoring the Link Fail) 0 = Normal Operation bit 0 READ: MII Management Read Command bit 1 = The MII Management module will perform a single read cycle. The read data is returned in the EMAC1MRDD register 0 = The MII Management module will perform a write cycle. The write data is taken from the EMAC1MWTD register Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware. DS60001156J-page 316  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-33: EMAC1MADR: ETHERNET CONTROLLER MAC MII MANAGEMENT ADDRESS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 15:8 — — — PHYADDR<4:0> U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 — — — REGADDR<4:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-13 Unimplemented: Read as’0’ bit 12-8 PHYADDR<4:0>: MII Management PHY Address bits This field represents the 5-bit PHY Address field of Management cycles. Up to 31 PHYs can be addressed (0 is reserved). bit 7-5 Unimplemented: Read as’0’ bit 4-0 REGADDR<4:0>: MII Management Register Address bits This field represents the 5-bit Register Address field of Management cycles. Up to 32 registers can be accessed. Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.  2009-2016 Microchip Technology Inc. DS60001156J-page 317

PIC32MX5XX/6XX/7XX REGISTER 25-34: EMAC1MWTD: ETHERNET CONTROLLER MAC MII MANAGEMENT WRITE DATA REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 MWTD<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 MWTD<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as’0’ bit 15-0 MWTD<15:0>: MII Management Write Data bits When written, a MII Management write cycle is performed using the 16-bit data and the pre-configured PHY and Register addresses from the EMAC1MADR register. Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware. REGISTER 25-35: EMAC1MRDD: ETHERNET CONTROLLER MAC MII MANAGEMENT READ DATA REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15:8 MRDD<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 MRDD<7:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-0 MRDD<15:0>: MII Management Read Data bits Following a MII Management Read Cycle, the 16-bit data can be read from this location. Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware. DS60001156J-page 318  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-36: EMAC1MIND: ETHERNET CONTROLLER MAC MII MANAGEMENT INDICATORS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 — — — — LINKFAIL NOTVALID SCAN MIIMBUSY Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-4 Unimplemented: Read as ‘0’ bit 3 LINKFAIL: Link Fail bit When ‘1’ is returned - indicates link fail has occurred. This bit reflects the value last read from the PHY status register. bit 2 NOTVALID: MII Management Read Data Not Valid bit When ‘1’ is returned - indicates an MII management read cycle has not completed and the Read Data is not yet valid. bit 1 SCAN: MII Management Scanning bit When ‘1’ is returned - indicates a scan operation (continuous MII Management Read cycles) is in progress. bit 0 MIIMBUSY: MII Management Busy bit When ‘1’ is returned - indicates MII Management module is currently performing an MII Management Read or Write cycle. Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.  2009-2016 Microchip Technology Inc. DS60001156J-page 319

PIC32MX5XX/6XX/7XX REGISTER 25-37: EMAC1SA0: ETHERNET CONTROLLER MAC STATION ADDRESS 0 REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P 15:8 STNADDR6<7:0> R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P 7:0 STNADDR5<7:0> Legend: P = Programmable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-8 STNADDR6<7:0>: Station Address Octet 6 bits These bits hold the sixth transmitted octet of the station address. bit 7-0 STNADDR5<7:0>: Station Address Octet 5 bits These bits hold the fifth transmitted octet of the station address. Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware. 2: This register is loaded at reset from the factory preprogrammed station address. DS60001156J-page 320  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 25-38: EMAC1SA1: ETHERNET CONTROLLER MAC STATION ADDRESS 1 REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P 15:8 STNADDR4<7:0> R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P 7:0 STNADDR3<7:0> Legend: P = Programmable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15-8 STNADDR4<7:0>: Station Address Octet 4 bits These bits hold the fourth transmitted octet of the station address. bit 7-0 STNADDR3<7:0>: Station Address Octet 3 bits These bits hold the third transmitted octet of the station address. Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware. 2: This register is loaded at reset from the factory preprogrammed station address.  2009-2016 Microchip Technology Inc. DS60001156J-page 321

PIC32MX5XX/6XX/7XX REGISTER 25-39: EMAC1SA2: ETHERNET CONTROLLER MAC STATION ADDRESS 2 REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P 15:8 STNADDR2<7:0> R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P R/W-P 7:0 STNADDR1<7:0> Legend: P = Programmable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Reserved: Maintain as ‘0’; ignore read bit 15-8 STNADDR2<7:0>: Station Address Octet 2 bits These bits hold the second transmitted octet of the station address. bit 7-0 STNADDR1<7:0>: Station Address Octet 1 bits These bits hold the most significant (first transmitted) octet of the station address. Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware. 2: This register is loaded at reset from the factory preprogrammed station address. DS60001156J-page 322  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 26.0 COMPARATOR The Comparator module contains two comparators that can be configured in a variety of ways. Note: This data sheet summarizes the features Key features of the Comparator module include: of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a • Selectable inputs available include: comprehensive reference source. To - Analog inputs multiplexed with I/O pins complement the information in this data - On-chip internal absolute voltage reference (IVREF) sheet, refer to Section 19. - Comparator voltage reference (CVREF) “Comparator” (DS60001110) in the • Outputs can be inverted “PIC32 Family Reference Manual”, which • Selectable interrupt generation is available from the Microchip web site (www.microchip.com/PIC32). A block diagram of the Comparator module is illustrated in Figure26-1. FIGURE 26-1: COMPARATOR MODULE BLOCK DIAGRAM Comparator 1 CREF COUT (CM1CON<8>) ON C1OUT (CMSTAT<0>) CPOL C1IN+(1) CVREF(2) C1OUT CCH<1:0> C1 C1IN- COE C1IN+ C2IN+ IVREF(2) Comparator 2 CREF COUT (CM2CON<8>) ON C2OUT (CMSTAT<1>) CPOL C2IN+ CVREF(2) C2OUT CCH<1:0> C2 C2IN- COE C2IN+ C1IN+ IVREF(2) Note 1: On devices with a USB module, and when the module is enabled, this pin is controlled by the USB module, and therefore, is not available as a comparator input. 2: Internally connected. See Section27.0 “Comparator Voltage Reference (CVREF)”.  2009-2016 Microchip Technology Inc. DS60001156J-page 323

D 26.1 Control Registers P S 6 0 I 00 TABLE 26-1: COMPARATOR REGISTER MAP C 1 156J-page 324 Virtual Address(BF80_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 32MX 31:16 — — — — — — — — — — — — — — — — 0000 5 A000 CM1CON 15:0 ON COE CPOL — — — — COUT EVPOL<1:0> — CREF — — CCH<1:0> 00C3 X 31:16 — — — — — — — — — — — — — — — — 0000 A010 CM2CON X 15:0 ON COE CPOL — — — — COUT EVPOL<1:0> — CREF — — CCH<1:0> 00C3 31:16 — — — — — — — — — — — — — — — — 0000 / A060 CMSTAT 6 15:0 — — SIDL — — — — — — — — — — — C2OUT C1OUT 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. X Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” X for more information. / 7 X X  2 0 0 9 -2 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 26-1: CMxCON: COMPARATOR ‘x’ CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 R-0 15:8 ON(1) COE CPOL(2) — — — — COUT R/W-1 R/W-1 U-0 R/W-0 U-0 U-0 R/W-1 R/W-1 7:0 EVPOL<1:0> — CREF — — CCH<1:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 ON: Comparator ON bit(1) Clearing this bit does not affect the other bits in this register. 1 = Module is enabled. Setting this bit does not affect the other bits in this register 0 = Module is disabled and does not consume current. bit 14 COE: Comparator Output Enable bit 1 = Comparator output is driven on the output CxOUT pin 0 = Comparator output is not driven on the output CxOUT pin bit 13 CPOL: Comparator Output Inversion bit(2) 1 = Output is inverted 0 = Output is not inverted bit 12-9 Unimplemented: Read as ‘0’ bit 8 COUT: Comparator Output bit 1 = Output of the Comparator is a ‘1’ 0 = Output of the Comparator is a ‘0’ bit 7-6 EVPOL<1:0>: Interrupt Event Polarity Select bits 11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output 10 = Comparator interrupt is generated on a high-to-low transition of the comparator output 01 = Comparator interrupt is generated on a low-to-high transition of the comparator output 00 = Comparator interrupt generation is disabled bit 5 Unimplemented: Read as ‘0’ bit 4 CREF: Comparator Positive Input Configure bit 1 = Comparator non-inverting input is connected to the internal CVREF 0 = Comparator non-inverting input is connected to the CXIN+ pin bit 3-2 Unimplemented: Read as ‘0’ bit 1-0 CCH<1:0>: Comparator Negative Input Select bits for Comparator 11 = Comparator inverting input is connected to the IVREF 10 = Comparator inverting input is connected to the C2IN+ pin for C1 and C1IN+ pin for C2 01 = Comparator inverting input is connected to the C1IN+ pin for C1 and C2IN+ pin for C2 00 = Comparator inverting input is connected to the C1IN- pin for C1 and C2IN- pin for C2 Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit. 2: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.  2009-2016 Microchip Technology Inc. DS60001156J-page 325

PIC32MX5XX/6XX/7XX REGISTER 26-2: CMSTAT: COMPARATOR STATUS REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 15:8 — — SIDL — — — — — U-0 U-0 U-0 U-0 U-0 U-0 R-0 R-0 7:0 — — — — — — C2OUT C1OUT Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-14 Unimplemented: Read as ‘0’ bit 13 SIDL: Stop in Idle Control bit 1 = All Comparator modules are disabled while in Idle mode 0 = All Comparator modules continue to operate while in Idle mode bit 12-2 Unimplemented: Read as ‘0’ bit 1 C2OUT: Comparator Output bit 1 = Output of Comparator 2 is a ‘1’ 0 = Output of Comparator 2 is a ‘0’ bit 0 C1OUT: Comparator Output bit 1 = Output of Comparator 1 is a ‘1’ 0 = Output of Comparator 1 is a ‘0’ DS60001156J-page 326  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 27.0 COMPARATOR VOLTAGE A block diagram of the module is illustrated in REFERENCE (CV ) Figure27-1. The resistor ladder is segmented to REF provide two ranges of voltage reference values and has Note: This data sheet summarizes the features a power-down function to conserve power when the of the PIC32MX5XX/6XX/7XX family of reference is not being used. The module’s supply refer- devices. It is not intended to be a ence can be provided from either device VDD/VSS or an comprehensive reference source. To com- external voltage reference. The CVREF output is avail- plement the information in this data sheet, able for the comparators and typically available for pin output. refer to Section 20. “Comparator Voltage Reference (CVREF)” (DS60001109) in the Key features of the CVREF module include: “PIC32 Family Reference Manual”, which • High and low range selection is available from the Microchip web site • Sixteen output levels available for each range (www.microchip.com/PIC32). • Internally connected to comparators to conserve The CVREF module is a 16-tap, resistor ladder network device pins that provides a selectable reference voltage. Although • Output can be connected to a pin its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. FIGURE 27-1: COMPARATOR VOLTAGE REFERENCE MODULE BLOCK DIAGRAM BGSEL<1:0>(1) 1.2V 0.6V IVREF VREFSEL(1) CVRSS = 1 VREF+ CVRSRC CVREF AVDD CVRSS = 0 8R CVR<3:0> R CVREN R R R X U M 16 Steps 1 CVREFOUT o- 6-t CVROE (CVRCON<6>) 1 R R R CVRR 8R CVRSS = 1 VREF- AVSS CVRSS = 0 Note 1: This bit is not available on PIC32MX575/675/695/775/795 devices. On these devices CVREF is generated by the Register network and IVREF is connected to 0.6V.  2009-2016 Microchip Technology Inc. DS60001156J-page 327

D 27.1 Control Register P S 6 00 IC 0 1 TABLE 27-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP 1 5 3 6J-page 328 Virtual Address(BF80_#) Register(1)Name Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets 2MX 5 31:16 — — — — — — — — — — — — — — — — 0000 9800 CVRCON 15:0 ON — — — — VREFSEL(2) BGSEL<1:0>(2) — CVROE CVRR CVRSS CVR<3:0> 0100 X Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. X Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section12.1.1 “CLR, SET and INV Registers” / for more information. 6 2: These bits are not available on PIC32MX575/675/695/775/795 devices. On these devices, reset value for CVRCON is ‘0000’. X X / 7 X X  2 0 0 9 -2 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 27-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — R/W-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-1 15:8 ON(1) — — — — VREFSEL(2) BGSEL<1:0>(2) U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 — CVROE CVRR CVRSS CVR<3:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as ‘0’ bit 15 ON: Comparator Voltage Reference On bit(1) Setting or clearing this bit does not affect the other bits in this register. 1=Module is enabled 0=Module is disabled and does not consume current bit 14-11 Unimplemented: Read as ‘0’ bit 10 VREFSEL: Voltage Reference Select bit(2) 1=CVREF = VREF+ 0=CVREF is generated by the resistor network bit 9-8 BGSEL<1:0>: Band Gap Reference Source bits(2) 11=IVREF = VREF+ 10=Reserved 01=IVREF = 0.6V (nominal, default) 00=IVREF = 1.2V (nominal) bit 7 Unimplemented: Read as ‘0’ bit 6 CVROE: CVREFOUT Enable bit 1=Voltage level is output on CVREFOUT pin 0=Voltage level is disconnected from CVREFOUT pin bit 5 CVRR: CVREF Range Selection bit 1=0 to 0.625 CVRSRC, with CVRSRC/24 step size 0=0.25 CVRSRC to 0.719 CVRSRC, with CVRSRC/32 step size bit 4 CVRSS: CVREF Source Selection bit 1=Comparator voltage reference source, CVRSRC = (VREF+) – (VREF-) 0=Comparator voltage reference source, CVRSRC = AVDD – AVSS bit 3-0 CVR<3:0>: CVREF Value Selection 0  CVR<3:0>  15 bits When CVRR=1: CVREF=(CVR<3:0>/24)  (CVRSRC) When CVRR=0: CVREF=1/4  (CVRSRC) + (CVR<3:0>/32)  (CVRSRC) Note1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit. 2: These bits are not available on PIC32MX575/675/775/795 devices. On these devices, the reset value for CVRON is ‘0000’.  2009-2016 Microchip Technology Inc. DS60001156J-page 329

PIC32MX5XX/6XX/7XX NOTES: DS60001156J-page 330  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 28.0 POWER-SAVING FEATURES • SOSC Idle mode: the system clock is derived from the SOSC. Peripherals continue to operate, but Note: This data sheet summarizes the features can optionally be individually disabled. of the PIC32MX5XX/6XX/7XX family of • LPRC Idle mode: the system clock is derived devices. It is not intended to be a from the LPRC. Peripherals continue to operate, comprehensive reference source. To com- but can optionally be individually disabled. This is plement the information in this data the lowest power mode for the device with a clock sheet, refer to Section 10. “Power-Sav- running. ing Features” (DS60001130) in the • Sleep mode: the CPU, the system clock source “PIC32 Family Reference Manual”, which and any peripherals that operate from the system is available from the Microchip web site clock source are Halted. Some peripherals can (www.microchip.com/PIC32). operate in Sleep using specific clock sources. This section describes power-saving features for the This is the lowest power mode for the device. PIC32MX5XX/6XX/7XX family of devices. These devices offer a total of nine methods and modes, 28.3 Power-Saving Operation organized into two categories, that allow the user to Peripherals and the CPU can be halted or disabled to balance power consumption with device performance. further reduce power consumption. In all of the methods and modes described in this section, power-saving is controlled by software. 28.3.1 SLEEP MODE Sleep mode has the lowest power consumption of the 28.1 Power-Saving with CPU Running device power-saving operating modes. The CPU and When the CPU is running, power consumption can be most peripherals are halted. Select peripherals can controlled by reducing the CPU clock frequency, continue to operate in Sleep mode and can be used to lowering the Peripheral Bus Clock (PBCLK) and by wake the device from Sleep. See the individual individually disabling modules. These methods are peripheral module sections for descriptions of grouped into the following categories: behavior in Sleep. • FRC Run mode: the CPU is clocked from the FRC Sleep mode includes the following characteristics: clock source with or without postscalers. • The CPU is halted • LPRC Run mode: the CPU is clocked from the • The system clock source is typically shutdown. LPRC clock source. See Section28.3.3 “Peripheral Bus Scaling • SOSC Run mode: the CPU is clocked from the Method” for specific information. SOSC clock source. • There can be a wake-up delay based on the oscillator selection In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable • The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode fraction of the CPU clock (SYSCLK). • The BOR circuit, if enabled, remains operative 28.2 CPU Halted Methods during Sleep mode • The WDT, if enabled, is not automatically cleared The device supports two power-saving modes, Sleep prior to entering Sleep mode and Idle, both of which Halt the clock to the CPU. These • Some peripherals can continue to operate at modes operate with all clock sources, as listed below: limited functionality in Sleep mode. These • POSC Idle mode: the system clock is derived from peripherals include I/O pins that detect a change the POSC. The system clock source continues to in the input signal, WDT, ADC, UART and operate. Peripherals continue to operate, but can peripherals that use an external clock input or the optionally be individually disabled. internal LPRC oscillator (e.g., RTCC, Timer1 and • FRC Idle mode: the system clock is derived from Input Capture). the FRC with or without postscalers. Peripherals • I/O pins continue to sink or source current in the continue to operate, but can optionally be same manner as they do when the device is not in individually disabled. Sleep • Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption  2009-2016 Microchip Technology Inc. DS60001156J-page 331

PIC32MX5XX/6XX/7XX The processor will exit, or ‘wake-up’, from Sleep mode The device enters Idle mode when the SLPEN bit on one of the following events: (OSCCON<4>) is clear and a WAIT instruction is executed. • On any interrupt from an enabled source that is operating in Sleep mode. The interrupt priority The processor will wake or exit from Idle mode on the must be greater than the current CPU priority. following events: • On any form of device Reset • On any interrupt event for which the interrupt • On a WDT time-out source is enabled. The priority of the interrupt If the interrupt priority is lower than or equal to the event must be greater than the current priority of current priority, the CPU will remain Halted, but the the CPU. If the priority of the interrupt event is PBCLK will start running and the device will enter into lower than or equal to current priority of the CPU, Idle mode. the CPU will remain Halted and the device will remain in Idle mode. 28.3.2 IDLE MODE • On any form of device Reset In Idle mode, the CPU is Halted but the System Clock • On a WDT time-out interrupt (SYSCLK) source is still enabled. This allows peripher- als to continue operation when the CPU is Halted. 28.3.3 PERIPHERAL BUS SCALING Peripherals can be individually configured to Halt when METHOD entering Idle by setting their respective SIDL bit. Most of the peripherals on the device are clocked using Latency, when exiting Idle mode, is very low due to the the PBCLK. The Peripheral Bus (PB) can be scaled rel- CPU oscillator source remaining active. ative to the SYSCLK to minimize the dynamic power Note1: Changing the PBCLK divider ratio consumed by the peripherals. The PBCLK divisor is con- requires recalculation of peripheral tim- trolled by PBDIV<1:0> (OSCCON<20:19>), allowing ing. For example, assume the UART is SYSCLK to PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All configured for 9600 baud with a PB clock peripherals using PBCLK are affected when the divisor ratio of 1:1 and a POSC of 8 MHz. When is changed. Peripherals such as USB, interrupt control- the PB clock divisor of 1:2 is used, the ler, DMA, bus matrix and prefetch cache are clocked input frequency to the baud clock is cut in directly from SYSCLK. As a result, they are not affected half; therefore, the baud rate is reduced by PBCLK divisor changes. to 1/2 its former value. Due to numeric Changing the PBCLK divisor affects: truncation in calculations (such as the • The CPU to peripheral access latency. The CPU baud rate divisor), the actual baud rate has to wait for next PBCLK edge for a read to may be a tiny percentage different than complete. In 1:8 mode, this results in a latency of expected. For this reason, any timing cal- one to seven SYSCLKs. culation required for a peripheral should be performed with the new PB clock fre- • The power consumption of the peripherals. Power quency instead of scaling the previous consumption is directly proportional to the fre- value based on a change in the PB divisor quency at which the peripherals are clocked. The ratio. greater the divisor, the lower the power consumed by the peripherals. 2: Oscillator start-up and PLL lock delays are applied when switching to a clock To minimize dynamic power, the PB divisor should be source that was disabled and that uses a chosen to run the peripherals at the lowest frequency crystal and/or the PLL. For example, that provides acceptable system performance. When assume the clock source is switched from selecting a PBCLK divider, peripheral clock require- POSC to LPRC just prior to entering Sleep ments, such as baud rate accuracy, should be taken in order to save power. No oscillator start- into account. For example, the UART peripheral may up delay would be applied when exiting not be able to achieve all baud rate values at some Idle. However, when switching back to PBCLK divider depending on the SYSCLK value. POSC, the appropriate PLL and/or oscillator start-up/lock delays would be applied. DS60001156J-page 332  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 29.0 SPECIAL FEATURES Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 33. “Programming and Diagnostics” (DS60001129) in the “PIC32 Family Reference Manual”, which are available from the Microchip web site (www.microchip.com/PIC32). The PIC32MX5XX/6XX/7XX family of devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. Key features include: • Flexible device configuration • Watchdog Timer (WDT) • Joint Test Action Group (JTAG) interface • In-Circuit Serial Programming™ (ICSP™) 29.1 Configuration Bits The Configuration bits can be programmed using the following registers to select various device configurations. • DEVCFG0: Device Configuration Word 0 • DEVCFG1: Device Configuration Word 1 • DEVCFG2: Device Configuration Word 2 • DEVCFG3: Device Configuration Word 3 • DEVID: Device and Revision ID Register  2009-2016 Microchip Technology Inc. DS60001156J-page 333

D P S TABLE 29-1: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY 6 0 I 001156J-page Virtual Address(BFC0_#) RegisterName Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets C32M 334 2FF0 DEVCFG331:16FVBUSONIO FUSBIDIO — — — FCANIO FETHIO FMIIEN — — — — — FSRSSEL<2:0> xxxx X 15:0 USERID<15:0> xxxx 31:16 — — — — — — — — — — — — — FPLLODIV<2:0> xxxx 5 2FF4 DEVCFG2 15:0 UPLLEN — — — — UPLLIDIV<2:0> — FPLLMUL<2:0> — FPLLIDIV<2:0> xxxx X 31:16 — — — — — — — — FWDTEN — — WDTPS<4:0> xxxx 2FF8 DEVCFG1 X 15:0 FCKSM<1:0> FPBDIV<1:0> — OSCIOFNC POSCMOD<1:0> IESO — FSOSCEN — — FNOSC<2:0> xxxx 31:16 — — — CP — — — BWP — — — — PWP<7:4> xxxx / 2FFC DEVCFG0 6 15:0 PWP<3:0> — — — — — — — — ICESEL — DEBUG<1:0> xxxx Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. X X TABLE 29-2: DEVICE ID, REVISION, AND CONFIGURATION SUMMARY / 7 Virtual Address(BF80_#) RegisterName Bit Range 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 Bits 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 (1)All Resets XX 31:16 — — — — — — — — — — — — — — — — 0000 F200 DDPCON 15:0 — — — — — — — — — — — — JTAGEN TROEN — TDOEN 0008 31:16 VER<3:0> DEVID<27:16> xxxx F220 DEVID 15:0 DEVID<15:0> xxxx 31:16 0000 F230 SYSKEY SYSKEY<31:0> 15:0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  Note 1: Reset values are dependent on the device variant. Refer to “PIC32MX5XX/6XX/7XX Family Silicon Errata and Data Sheet Clarification” (DS80000480) for more information. 2 0 0 9 -2 0 1 6 M ic ro c h ip T e c h n o lo g y In c .

PIC32MX5XX/6XX/7XX REGISTER 29-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 r-0 r-1 r-1 R/P r-1 r-1 r-1 R/P 31:24 — — — CP — — — BWP r-1 r-1 r-1 r-1 R/P R/P R/P R/P 23:16 — — — — PWP<7:4> R/P R/P R/P R/P r-1 r-1 r-1 r-1 15:8 PWP<3:0> — — — — r-1 r-1 r-1 r-1 R/P r-1 R/P R/P 7:0 — — — — ICESEL — DEBUG<1:0> Legend: r = Reserved bit P = Programmable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31 Reserved: Write ‘0’ bit 30-29 Reserved: Write ‘1’ bit 28 CP: Code-Protect bit Prevents boot and program Flash memory from being read or modified by an external programming device. 1 = Protection is disabled 0 = Protection is enabled bit 27-25 Reserved: Write ‘1’ bit 24 BWP: Boot Flash Write-Protect bit Prevents boot Flash memory from being modified during code execution. 1 = Boot Flash is writable 0 = Boot Flash is not writable bit 23-20 Reserved: Write ‘1’ bit 19-12 PWP<7:0>: Program Flash Write-Protect bits Prevents selected program Flash memory pages from being modified during code execution. The PWP bits represent the 1’s complement of the number of write-protected program Flash memory pages. 11111111 = Disabled 11111110 = 0xBD00_0FFF 11111101 = 0xBD00_1FFF 11111100 = 0xBD00_2FFF 11111011 = 0xBD00_3FFF 11111010 = 0xBD00_4FFF 11111001 = 0xBD00_5FFF 11111000 = 0xBD00_6FFF 11110111 = 0xBD00_7FFF 11110110 = 0xBD00_8FFF 11110101 = 0xBD00_9FFF 11110100 = 0xBD00_AFFF 11110011 = 0xBD00_BFFF 11110010 = 0xBD00_CFFF 11110001 = 0xBD00_DFFF 11110000 = 0xBD00_EFFF 11101111 = 0xBD00_FFFF • • • 01111111 = 0xBD07_FFFF bit 11-4 Reserved: Write ‘1’  2009-2016 Microchip Technology Inc. DS60001156J-page 335

PIC32MX5XX/6XX/7XX REGISTER 29-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED) bit 3 ICESEL: In-Circuit Emulator/Debugger Communication Channel Select bit 1 = PGEC2/PGED2 pair is used 0 = PGEC1/PGED1 pair is used bit 2 Reserved: Write ‘1’ bit 1-0 DEBUG<1:0>: Background Debugger Enable bits (forced to ‘11’ if code-protect is enabled) 11 = Debugger is disabled 10 = Debugger is enabled 01 = Reserved (same as ‘11’ setting) 00 = Reserved (same as ‘11’ setting) DS60001156J-page 336  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 29-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 r-1 r-1 r-1 r-1 r-1 r-1 r-1 r-1 31:24 — — — — — — — — R/P r-1 r-1 R/P R/P R/P R/P R/P 23:16 FWDTEN — — WDTPS<4:0> R/P R/P R/P R/P r-1 R/P R/P R/P 15:8 FCKSM<1:0> FPBDIV<1:0> — OSCIOFNC POSCMOD<1:0> R/P r-1 R/P r-1 r-1 R/P R/P R/P 7:0 IESO — FSOSCEN — — FNOSC<2:0> Legend: r = Reserved bit P = Programmable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-24 Reserved: Write ‘1’ bit 23 FWDTEN: Watchdog Timer Enable bit 1 = The WDT is enabled and cannot be disabled by software 0 = The WDT is not enabled; it can be enabled in software bit 22-21 Reserved: Write ‘1’ bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits 10100 = 1:1048576 10011 = 1:524288 10010 = 1:262144 10001 = 1:131072 10000 = 1:65536 01111 = 1:32768 01110 = 1:16384 01101 = 1:8192 01100 = 1:4096 01011 = 1:2048 01010 = 1:1024 01001 = 1:512 01000 = 1:256 00111 = 1:128 00110 = 1:64 00101 = 1:32 00100 = 1:16 00011 = 1:8 00010 = 1:4 00001 = 1:2 00000 = 1:1 All other combinations not shown result in operation = 10100 bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled Note 1: Do not disable the POSC (POSCMOD = 11) when using this oscillator source.  2009-2016 Microchip Technology Inc. DS60001156J-page 337

PIC32MX5XX/6XX/7XX REGISTER 29-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED) bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits 11 = PBCLK is SYSCLK divided by 8 10 = PBCLK is SYSCLK divided by 4 01 = PBCLK is SYSCLK divided by 2 00 = PBCLK is SYSCLK divided by 1 bit 11 Reserved: Write ‘1’ bit 10 OSCIOFNC: CLKO Enable Configuration bit 1 = CLKO output is disabled 0 = CLKO output signal is active on the OSCO pin; the Primary Oscillator must be disabled or configured for External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0>=11 or 00) bit 9-8 POSCMOD<1:0>: Primary Oscillator Configuration bits 11 = Primary Oscillator is disabled 10 = HS Oscillator mode is selected 01 = XT Oscillator mode is selected 00 = External Clock mode is selected bit 7 IESO: Internal External Switchover bit 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled) 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled) bit 6 Reserved: Write ‘1’ bit 5 FSOSCEN: Secondary Oscillator Enable bit 1 = Enable the Secondary Oscillator 0 = Disable the Secondary Oscillator bit 4-3 Reserved: Write ‘1’ bit 2-0 FNOSC<2:0>: Oscillator Selection bits 111 = Fast RC Oscillator with divide-by-N (FRCDIV) 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator (POSC) with PLL module (XT+PLL, HS+PLL, EC+PLL) 010 = Primary Oscillator (XT, HS, EC)(1) 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL) 000 = Fast RC Oscillator (FRC) Note 1: Do not disable the POSC (POSCMOD = 11) when using this oscillator source. DS60001156J-page 338  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 29-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 r-1 r-1 r-1 r-1 r-1 r-1 r-1 r-1 31:24 — — — — — — — — r-1 r-1 r-1 r-1 r-1 R/P R/P R/P 23:16 — — — — — FPLLODIV<2:0> R/P r-1 r-1 r-1 r-1 R/P R/P R/P 15:8 UPLLEN — — — — UPLLIDIV<2:0> r-1 R/P-1 R/P R/P-1 r-1 R/P R/P R/P 7:0 — FPLLMUL<2:0> — FPLLIDIV<2:0> Legend: r = Reserved bit P = Programmable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-19 Reserved: Write ‘1’ bit 18-16 FPLLODIV<2:0>: PLL Output Divider bits 111 = PLL output divided by 256 110 = PLL output divided by 64 101 = PLL output divided by 32 100 = PLL output divided by 16 011 = PLL output divided by 8 010 = PLL output divided by 4 001 = PLL output divided by 2 000 = PLL output divided by 1 bit 15 UPLLEN: USB PLL Enable bit 1 = Disable and bypass USB PLL 0 = Enable USB PLL bit 14-11 Reserved: Write ‘1’ bit 10-8 UPLLIDIV<2:0>: USB PLL Input Divider bits 111 = 12x divider 110 = 10x divider 101 = 6x divider 100 = 5x divider 011 = 4x divider 010 = 3x divider 001 = 2x divider 000 = 1x divider bit 7 Reserved: Write ‘1’ bit 6-4 FPLLMUL<2:0>: PLL Multiplier bits 111 = 24x multiplier 110 = 21x multiplier 101 = 20x multiplier 100 = 19x multiplier 011 = 18x multiplier 010 = 17x multiplier 001 = 16x multiplier 000 = 15x multiplier bit 3 Reserved: Write ‘1’  2009-2016 Microchip Technology Inc. DS60001156J-page 339

PIC32MX5XX/6XX/7XX REGISTER 29-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED) bit 2-0 FPLLIDIV<2:0>: PLL Input Divider bits 111 = 12x divider 110 = 10x divider 101 = 6x divider 100 = 5x divider 011 = 4x divider 010 = 3x divider 001 = 2x divider 000 = 1x divider DS60001156J-page 340  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX REGISTER 29-4: DEVCFG3: DEVICE CONFIGURATION WORD 3 Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/P R/P r-1 r-1 r-1 R/P R/P R/P 31:24 FVBUSONIO FUSBIDIO — — — FCANIO(1) FETHIO(2) FMIIEN(2) r-1 r-1 r-1 r-1 r-1 R/P R/P R/P 23:16 — — — — — FSRSSEL<2:0> R/P R/P R/P R/P R/P R/P R/P R/P 15:8 USERID<15:8> R/P R/P R/P R/P R/P R/P R/P R/P 7:0 USERID<7:0> Legend: r = Reserved bit P = Programmable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31 FVBUSONIO: USB VBUSON Selection bit 1 = VBUSON pin is controlled by the USB module 0 = VBUSON pin is controlled by the port function bit 30 FUSBIDIO: USB USBID Selection bit 1 = USBID pin is controlled by the USB module 0 = USBID pin is controlled by the port function bit 29-27 Reserved: Write ‘1’ bit 26 FCANIO: CAN I/O Pin Selection bit(1) 1 = Default CAN I/O Pins 0 = Alternate CAN I/O Pins bit 25 FETHIO: Ethernet I/O Pin Selection bit(2) 1 = Default Ethernet I/O Pins 0 = Alternate Ethernet I/O Pins bit 24 FMIIEN: Ethernet MII Enable bit(2) 1 = MII is enabled 0 = RMII is enabled bit 23-19 Reserved: Write ‘1’ bit 18-16 FSRSSEL<2:0>: SRS Select bits 111 = Assign Interrupt Priority 7 to a shadow register set 110 = Assign Interrupt Priority 6 to a shadow register set • • • 001 = Assign Interrupt Priority 1 to a shadow register set 000 = All interrupt priorities are assigned to a shadow register set bit 15-0 USERID<15:0>: User ID bits This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG. Note 1: This bit is Reserved and reads ‘1’ on PIC32MX664/675/695 devices. 2: This bit is Reserved and reads ‘1’ on PIC32MX534/564/575 devices.  2009-2016 Microchip Technology Inc. DS60001156J-page 341

PIC32MX5XX/6XX/7XX REGISTER 29-5: DEVID: DEVICE AND REVISION ID REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R R R R R R R R 31:24 VER<3:0>(1) DEVID<27:24>(1) R R R R R R R R 23:16 DEVID<23:16>(1) R R R R R R R R 15:8 DEVID<15:8>(1) R R R R R R R R 7:0 DEVID<7:0>(1) Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-28 VER<3:0>: Revision Identifier bits(1) bit 27-0 DEVID<27:0>: Device ID bits(1) Note 1: See the “PIC32 Flash Programming Specification” (DS60001145) for a list of Revision and Device ID values. REGISTER 29-6: DDPCON: DEBUG DATA PORT CONTROL REGISTER Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 — — — — — — — — U-0 U-0 U-0 U-0 R/W-1 R/W-0 U-0 R/W-0 7:0 — — — — JTAGEN TROEN — TDOEN Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-4 Unimplemented: Read as ‘0’ bit 3 JTAGEN: JTAG Port Enable bit 1 = Enable the JTAG port 0 = Disable the JTAG port bit 2 TROEN: Trace Output Enable bit 1 = Enable the trace port 0 = Disable the trace port bit 1 Unimplemented: Read as ‘0’ bit 0 TDOEN: TDO Enable for 2-Wire JTAG 1 = 2-wire JTAG protocol uses TDO 0 = 2-wire JTAG protocol does not use TDO DS60001156J-page 342  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 29.2 On-Chip Voltage Regulator 29.3 Programming and Diagnostics All PIC32MX5XX/6XX/7XX devices’ core and digital PIC32MX5XX/6XX/7XX devices provide a complete logic are designed to operate at a nominal 1.8V. To range of programming and diagnostic features that can simplify system designs, most devices in the PIC32MX- increase the flexibility of any application using them. 5XX/6XX/7XX family incorporate an on-chip regulator These features allow system designers to include: providing the required core logic voltage from VDD. • Simplified field programmability using two-wire A low-ESR capacitor (such as tantalum) must be In-Circuit Serial Programming™ (ICSP™) connected to the VCAP pin (see Figure29-1). This interfaces helps to maintain the stability of the regulator. The • Debugging using ICSP recommended value for the filter capacitor is provided • Programming and debugging capabilities using in Section32.1 “DC Characteristics”. the EJTAG extension of JTAG Note: It is important that the low-ESR capacitor • JTAG boundary scan testing for device and board is placed as close as possible to the VCAP diagnostics pin. PIC32 devices incorporate two programming and diag- nostic modules, and a trace controller, that provide a 29.2.1 ON-CHIP REGULATOR AND POR range of functions to the application developer. It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code FIGURE 29-2: PROGRAMMING, execution is disabled. TPU is applied every time the DEBUGGING, AND TRACE device resumes operation after any power-down, PORTS BLOCK DIAGRAM including Sleep mode. 29.2.2 ON-CHIP REGULATOR AND BOR PGEC1 PIC32MX5XX/6XX/7XX devices also have a simple PGED1 brown-out capability. If the voltage supplied to the ICSP™ regulator is inadequate to maintain a regulated level, Controller the regulator Reset circuitry will generate a Brown-out PGEC2 Reset (BOR). This event is captured by the BOR flag PGED2 bit (RCON<1>). The brown-out voltage levels are specified in Section32.1 “DC Characteristics”. ICESEL FIGURE 29-1: CONNECTIONS FOR THE TDI ON-CHIP REGULATOR TDO JTAG Core Controller TCK 3.3V(1) TMS PIC32 VDD JTAGEN DEBUG<1:0> VCAP TRCLK CEFC(2) TRD0 (10F typical) VSS Instruction Trace TRD1 Controller TRD2 (see Note 1) Note 1: These are typical operating voltages. Refer to TRD3 Section32.1 “DC Characteristics” for the full operating ranges of VDD. DEBUG<1:0> 2: It is important that the low-ESR capacitor is placed as close as possible to the VCAP pin. Note 1: Trace is not available on 64-pin devices.  2009-2016 Microchip Technology Inc. DS60001156J-page 343

PIC32MX5XX/6XX/7XX NOTES: DS60001156J-page 344  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 30.0 INSTRUCTION SET The PIC32MX5XX/6XX/7XX family instruction set complies with the MIPS32 Release 2 instruction set architecture. The PIC32 device family does not support the following features: • Core Extend instructions • Coprocessor 1 instructions • Coprocessor 2 instructions Note: Refer to “MIPS32® Architecture for Programmers Volume II: The MIPS32® Instruction Set” at www.imgtec.com for more information.  2009-2016 Microchip Technology Inc. DS60001156J-page 345

PIC32MX5XX/6XX/7XX NOTES: DS60001156J-page 346  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 31.0 DEVELOPMENT SUPPORT 31.1 MPLAB X Integrated Development Environment Software The PIC® microcontrollers (MCU) and dsPIC® digital signal controllers (DSC) are supported with a full range The MPLAB X IDE is a single, unified graphical user of software and hardware development tools: interface for Microchip and third-party software, and hardware development tool that runs on Windows®, • Integrated Development Environment Linux and Mac OS® X. Based on the NetBeans IDE, - MPLAB® X IDE Software MPLAB X IDE is an entirely new IDE with a host of free • Compilers/Assemblers/Linkers software components and plug-ins for high- - MPLAB XC Compiler performance application development and debugging. - MPASMTM Assembler Moving between tools and upgrading from software - MPLINKTM Object Linker/ simulators to hardware debugging and programming MPLIBTM Object Librarian tools is simple with the seamless user interface. - MPLAB Assembler/Linker/Librarian for With complete project management, visual call graphs, Various Device Families a configurable watch window and a feature-rich editor • Simulators that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new - MPLAB X SIM Software Simulator users. With the ability to support multiple tools on • Emulators multiple projects with simultaneous debugging, MPLAB - MPLAB REAL ICE™ In-Circuit Emulator X IDE is also suitable for the needs of experienced • In-Circuit Debuggers/Programmers users. - MPLAB ICD 3 Feature-Rich Editor: - PICkit™ 3 • Color syntax highlighting • Device Programmers • Smart code completion makes suggestions and - MPLAB PM3 Device Programmer provides hints as you type • Low-Cost Demonstration/Development Boards, • Automatic code formatting based on user-defined Evaluation Kits and Starter Kits rules • Third-party development tools • Live parsing User-Friendly, Customizable Interface: • Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc. • Call graph window Project-Based Workspaces: • Multiple projects • Multiple tools • Multiple configurations • Simultaneous debugging sessions File History and Bug Tracking: • Local file history feature • Built-in support for Bugzilla issue tracker  2009-2016 Microchip Technology Inc. DS60001156J-page 347

PIC32MX5XX/6XX/7XX 31.2 MPLAB XC Compilers 31.4 MPLINK Object Linker/ MPLIB Object Librarian The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip’s 8, 16, and 32-bit MCU The MPLINK Object Linker combines relocatable and DSC devices. These compilers provide powerful objects created by the MPASM Assembler. It can link integration capabilities, superior code optimization and relocatable objects from precompiled libraries, using ease of use. MPLAB XC Compilers run on Windows, directives from a linker script. Linux or MAC OS X. The MPLIB Object Librarian manages the creation and For easy source level debugging, the compilers provide modification of library files of precompiled code. When debug information that is optimized to the MPLAB X a routine from a library is called from a source file, only IDE. the modules that contain that routine will be linked in The free MPLAB XC Compiler editions support all with the application. This allows large libraries to be devices and commands, with no time or memory used efficiently in many different applications. restrictions, and offer sufficient code optimization for The object linker/library features include: most applications. • Efficient linking of single libraries instead of many MPLAB XC Compilers include an assembler, linker and smaller files utilities. The assembler generates relocatable object • Enhanced code maintainability by grouping files that can then be archived or linked with other relo- related modules together catable object files and archives to create an execut- • Flexible creation of libraries with easy module able file. MPLAB XC Compiler uses the assembler to listing, replacement, deletion and extraction produce its object file. Notable features of the assem- bler include: 31.5 MPLAB Assembler, Linker and • Support for the entire device instruction set Librarian for Various Device • Support for fixed-point and floating-point data Families • Command-line interface • Rich directive set MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, • Flexible macro language PIC32 and dsPIC DSC devices. MPLAB XC Compiler • MPLAB X IDE compatibility uses the assembler to produce its object file. The assembler generates relocatable object files that can 31.3 MPASM Assembler then be archived or linked with other relocatable object files and archives to create an executable file. Notable The MPASM Assembler is a full-featured, universal features of the assembler include: macro assembler for PIC10/12/16/18 MCUs. • Support for the entire device instruction set The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX • Support for fixed-point and floating-point data files, MAP files to detail memory usage and symbol • Command-line interface reference, absolute LST files that contain source lines • Rich directive set and generated machine code, and COFF files for • Flexible macro language debugging. • MPLAB X IDE compatibility The MPASM Assembler features include: • Integration into MPLAB X IDE projects • User-defined macros to streamline assembly code • Conditional assembly for multipurpose source files • Directives that allow complete control over the assembly process DS60001156J-page 348  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 31.6 MPLAB X SIM Software Simulator 31.8 MPLAB ICD 3 In-Circuit Debugger System The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulat- The MPLAB ICD 3 In-Circuit Debugger System is ing the PIC MCUs and dsPIC DSCs on an instruction Microchip’s most cost-effective, high-speed hardware level. On any given instruction, the data areas can be debugger/programmer for Microchip Flash DSC and examined or modified and stimuli can be applied from MCU devices. It debugs and programs PIC Flash a comprehensive stimulus controller. Registers can be microcontrollers and dsPIC DSCs with the powerful, logged to files for further run-time analysis. The trace yet easy-to-use graphical user interface of the MPLAB buffer and logic analyzer display extend the power of IDE. the simulator to record and track program execution, The MPLAB ICD 3 In-Circuit Debugger probe is actions on I/O, most peripherals and internal registers. connected to the design engineer’s PC using a high- The MPLAB X SIM Software Simulator fully supports speed USB 2.0 interface and is connected to the target symbolic debugging using the MPLAB XCCompilers, with a connector compatible with the MPLAB ICD 2 or and the MPASM and MPLAB Assemblers. The soft- MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 ware simulator offers the flexibility to develop and supports all MPLAB ICD 2 headers. debug code outside of the hardware laboratory envi- ronment, making it an excellent, economical software 31.9 PICkit 3 In-Circuit Debugger/ development tool. Programmer 31.7 MPLAB REAL ICE In-Circuit The MPLAB PICkit 3 allows debugging and program- Emulator System ming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user The MPLAB REAL ICE In-Circuit Emulator System is interface of the MPLAB IDE. The MPLAB PICkit 3 is Microchip’s next generation high-speed emulator for connected to the design engineer’s PC using a full- Microchip Flash DSC and MCU devices. It debugs and speed USB interface and can be connected to the tar- programs all 8, 16 and 32-bit MCU, and DSC devices get via a Microchip debug (RJ-11) connector (compati- with the easy-to-use, powerful graphical user interface of ble with MPLAB ICD 3 and MPLAB REAL ICE). The the MPLAB X IDE. connector uses two device I/O pins and the Reset line The emulator is connected to the design engineer’s to implement in-circuit debugging and In-Circuit Serial PC using a high-speed USB 2.0 interface and is Programming™ (ICSP™). connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) 31.10 MPLAB PM3 Device Programmer or with the new high-speed, noise tolerant, Low- The MPLAB PM3 Device Programmer is a universal, Voltage Differential Signal (LVDS) interconnection CE compliant device programmer with programmable (CAT5). voltage verification at VDDMIN and VDDMAX for The emulator is field upgradable through future firmware maximum reliability. It features a large LCD display downloads in MPLAB X IDE. MPLAB REAL ICE offers (128 x 64) for menus and error messages, and a mod- significant advantages over competitive emulators ular, detachable socket assembly to support various including full-speed emulation, run-time variable package types. The ICSP cable assembly is included watches, trace analysis, complex breakpoints, logic as a standard item. In Stand-Alone mode, the MPLAB probes, a ruggedized probe interface and long (up to PM3 Device Programmer can read, verify and program three meters) interconnection cables. PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.  2009-2016 Microchip Technology Inc. DS60001156J-page 349

PIC32MX5XX/6XX/7XX 31.11 Demonstration/Development 31.12 Third-Party Development Tools Boards, Evaluation Kits, and Microchip also offers a great collection of tools from Starter Kits third-party vendors. These tools are carefully selected to offer good value and unique functionality. A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC • Device Programmers and Gang Programmers DSCs allows quick application development on fully from companies, such as SoftLog and CCS functional systems. Most boards include prototyping • Software Tools from companies, such as Gimpel areas for adding custom circuitry and provide applica- and Trace Systems tion firmware and source code for examination and • Protocol Analyzers from companies, such as modification. Saleae and Total Phase The boards support a variety of features, including LEDs, • Demonstration Boards from companies, such as temperature sensors, switches, speakers, RS-232 MikroElektronika, Digilent® and Olimex interfaces, LCD displays, potentiometers and additional • Embedded Ethernet Solutions from companies, EEPROM memory. such as EZ Web Lynx, WIZnet and IPLogika® The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications. In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstra- tion software for analog filter design, KEELOQ® security ICs, CAN, IrDA®, PowerSmart battery management, SEEVAL® evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more. Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board. Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits. DS60001156J-page 350  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 32.0 ELECTRICAL CHARACTERISTICS This section provides an overview of the PIC32MX5XX/6XX/7XX electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available. Absolute maximum ratings for the PIC32MX5XX/6XX/7XX devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied. Absolute Maximum Ratings (See Note 1) Ambient temperature under bias.............................................................................................................-40°C to +105°C Storage temperature.............................................................................................................................. -65°C to +150°C Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V Voltage on any pin that is not 5V tolerant, with respect to VSS (Note 3).........................................-0.3V to (VDD + 0.3V) Voltage on any 5V tolerant pin with respect to VSS when VDD  2.3V (Note 3)........................................ -0.3V to +5.5V Voltage on any 5V tolerant pin with respect to VSS when VDD < 2.3V (Note 3)........................................ -0.3V to +3.6V Voltage on VBUS with respect to VSS ....................................................................................................... -0.3V to +5.5V Maximum current out of VSS pin(s).......................................................................................................................300 mA Maximum current into VDD pin(s) (Note 2)............................................................................................................300 mA Maximum output current sunk by any I/O pin..........................................................................................................25 mA Maximum output current sourced by any I/O pin....................................................................................................25 mA Maximum current sunk by all ports.......................................................................................................................200 mA Maximum current sourced by all ports (Note 2)....................................................................................................200 mA Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. 2: Maximum allowable current is a function of device maximum power dissipation (see Table32-2). 3: See the “Device Pin Tables” section for the 5V tolerant pins.  2009-2016 Microchip Technology Inc. DS60001156J-page 351

PIC32MX5XX/6XX/7XX 32.1 DC Characteristics TABLE 32-1: OPERATING MIPS VS. VOLTAGE Max. Frequency VDD Range Temp. Range Characteristic (in Volts)(1) (in °C) PIC32MX5XX/6XX/7XX DC5 2.3-3.6V -40°C to +85°C 80 MHz DC5b 2.3-3.6V -40°C to +105°C 80 MHz Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table32-10 for BOR values. TABLE 32-2: THERMAL OPERATING CONDITIONS Rating Symbol Min. Typical Max. Unit Industrial Temperature Devices Operating Junction Temperature Range TJ -40 — +125 °C Operating Ambient Temperature Range TA -40 — +85 °C V-Temp Temperature Devices Operating Junction Temperature Range TJ -40 — +140 °C Operating Ambient Temperature Range TA -40 — +105 °C Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – S IOH) PD PINT + PI/O W I/O Pin Power Dissipation: I/O = S (({VDD – VOH} x IOH) + S (VOL x IOL)) Maximum Allowed Power Dissipation PDMAX (TJ – TA)/JA W TABLE 32-3: THERMAL PACKAGING CHARACTERISTICS See Characteristics Symbol Typical Max. Unit Note Package Thermal Resistance, 121-Pin TFBGA (10x10x1.1 mm) JA 40 — °C/W 1 Package Thermal Resistance, 100-Pin TQFP (14x14x1 mm) JA 43 — °C/W 1 Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm) JA 43 — °C/W 1 Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm) JA 47 — °C/W 1 Package Thermal Resistance, 64-Pin QFN (9x9x0.9 mm) JA 28 — °C/W 1 Package Thermal Resistance, 124-Pin VTLA (9x9x0.9 mm) JA 21 — °C/W 1 Note 1: Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations. DS60001156J-page 352  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 32-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics Min. Typical Max. Units Conditions No. Operating Voltage DC10 VDD Supply Voltage 2.3 — 3.6 V — DC12 VDR RAM Data Retention Voltage(1) 1.75 — — V — DC16 VPOR VDD Start Voltage to Ensure 1.75 — 2.1 V — Internal Power-on Reset Signal DC17 SVDD VDD Rise Rate to Ensure 0.00005 — 0.115 V/s — Internal Power-on Reset Signal Note 1: This is the limit to which VDD can be lowered without losing RAM data. 2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table32-10 for BOR values.  2009-2016 Microchip Technology Inc. DS60001156J-page 353

PIC32MX5XX/6XX/7XX TABLE 32-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Typical(3) Max. Units Conditions No. Operating Current (IDD)(1,2,4) for PIC32MX575/675/695/775/795 Family Devices -40ºC, DC20 6 9 +25ºC, Code executing from Flash mA +85ºC — 4 MHz DC20b 7 10 +105ºC DC20a 4 — Code executing from SRAM — DC21 37 40 Code executing from Flash mA — — 25 MHz DC21a 25 — Code executing from SRAM DC22 64 70 Code executing from Flash mA — — 60 MHz DC22a 61 — Code executing from SRAM -40ºC, DC23 85 98 +25ºC, Code executing from Flash mA +85ºC — 80 MHz DC23b 90 120 +105ºC DC23a 85 — Code executing from SRAM — DC25a 125 150 µA — +25°C 3.3V LPRC (31 kHz) Note 1: A device’s IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption. 2: The test conditions for IDD measurements are as follows: • Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required) • OSC2/CLKO is configured as an I/O input pin • USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8 • CPU, program Flash, and SRAM data memory are operational, program Flash memory Wait states=111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1 • No peripheral modules are operating, (ON bit = 0) • WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled • All I/O pins are configured as inputs and pulled to VSS • MCLR = VDD • CPU executing while(1) statement from Flash • RTCC and JTAG are disabled 3: Data in “Typical” column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested. 4: All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing. DS60001156J-page 354  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 32-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Typical(3) Max. Units Conditions No. Operating Current (IDD)(1,2) for PIC32MX534/564/664/764 Family Devices -40ºC, DC20c 6 9 +25ºC, Code executing from Flash mA +85ºC — 4 MHz DC20d 7 10 +105ºC DC20e 2 — Code executing from SRAM — DC21b 19 32 Code executing from Flash 25 MHz mA — — DC21c 14 — Code executing from SRAM (Note 4) DC22b 31 50 Code executing from Flash 60 MHz mA — — DC22c 29 — Code executing from SRAM (Note 4) -40ºC, DC23c 39 65 +25ºC, Code executing from Flash mA +85ºC — 80 MHz DC23d 49 70 +105ºC DC23e 39 — Code executing from SRAM — LPRC (31 kHz) DC25b 100 150 µA — +25°C 3.3V (Note 4) Note 1: A device’s IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption. 2: The test conditions for IDD measurements are as follows: • Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required) • OSC2/CLKO is configured as an I/O input pin • USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8 • CPU, program Flash, and SRAM data memory are operational, program Flash memory Wait states=111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1 • No peripheral modules are operating, (ON bit = 0) • WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled • All I/O pins are configured as inputs and pulled to VSS • MCLR = VDD • CPU executing while(1) statement from Flash • RTCC and JTAG are disabled 3: Data in “Typical” column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested. 4: All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.  2009-2016 Microchip Technology Inc. DS60001156J-page 355

PIC32MX5XX/6XX/7XX TABLE 32-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Parameter Typical(2) Max. Units Conditions No. Idle Current (IIDLE)(1,3) for PIC32MX575/675/695/775/795 Family Devices DC30 4.5 6.5 -40ºC, +25ºC, +85ºC mA — 4 MHz DC30b 5 7 +105°C DC31 13 15 mA -40ºC, +25ºC, +85ºC — 25 MHz DC32 28 30 mA -40ºC, +25ºC, +85ºC — 60 MHz DC33 36 42 mA -40ºC, +25ºC, +85ºC — 80 MHz DC33b 39 45 mA +105°C DC34 40 -40°C DC34a 75 +25°C — µA 2.3V DC34b 800 +85°C DC34c 1000 +105°C DC35 35 -40°C DC35a 65 +25°C — µA 3.3V LPRC (31 kHz) DC35b 600 +85°C DC35c 800 +105°C DC36 43 -40°C DC36a 106 +25°C — µA 3.6V DC36b 800 +85°C DC36c 1000 +105°C Note 1: The test conditions for IIDLE current measurements are as follows: • Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required) • OSC2/CLKO is configured as an I/O input pin • USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8 • CPU is in Idle mode, program Flash memory Wait states = 111, Program Cache and Prefetch are dis- abled and SRAM data memory Wait states = 1 • No peripheral modules are operating, (ON bit = 0) • WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled • All I/O pins are configured as inputs and pulled to VSS • MCLR = VDD • RTCC and JTAG are disabled 2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: This parameter is characterized, but not tested in manufacturing. 4: All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing. DS60001156J-page 356  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 32-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) (CONTINUED) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Parameter Typical(2) Max. Units Conditions No. Idle Current (IIDLE)(1) for PIC32MX534/564/664/764 Family Devices DC30a 1.5 5 -40ºC, +25ºC, +85ºC — 4 MHz DC30c 3.5 6 mA +105ºC DC31a 7 11 -40ºC, +25ºC, +85ºC — 25 MHz (Note 3) DC32a 13 20 mA -40ºC, +25ºC, +85ºC — 60 MHz (Note 3) DC33a 17 25 -40ºC, +25ºC, +85ºC mA — 80 MHz DC33c 20 27 +105ºC DC34c 40 -40°C DC34d 75 +25°C — µA 2.3V DC34e 800 +85°C DC34f 1000 +105ºC DC35c 30 -40°C DC35d 55 +25°C LPRC (31 kHz) — µA 3.3V DC35e 230 +85°C (Note 3) DC35f 800 +105ºC DC36c 43 -40°C DC36d 106 +25°C — µA 3.6V DC36e 800 +85°C DC36f 1000 +105ºC Note 1: The test conditions for IIDLE current measurements are as follows: • Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required) • OSC2/CLKO is configured as an I/O input pin • USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8 • CPU is in Idle mode, program Flash memory Wait states = 111, Program Cache and Prefetch are dis- abled and SRAM data memory Wait states = 1 • No peripheral modules are operating, (ON bit = 0) • WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled • All I/O pins are configured as inputs and pulled to VSS • MCLR = VDD • RTCC and JTAG are disabled 2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: This parameter is characterized, but not tested in manufacturing. 4: All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.  2009-2016 Microchip Technology Inc. DS60001156J-page 357

PIC32MX5XX/6XX/7XX TABLE 32-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Typical(2) Max. Units Conditions No. Power-Down Current (IPD)(1) for PIC32MX575/675/695/775/795 Family Devices DC40 10 40 -40°C DC40a 36 100 +25°C 2.3V Base Power-Down Current (Note 6) DC40b 400 720 +85°C DC40h 900 1800 +105°C DC40c 41 120 +25°C 3.3V Base Power-Down Current A DC40d 22 80 -40°C DC40e 42 120 +25°C DC40g 315 400(5) +70°C 3.6V Base Power-Down Current (Note 6) DC40f 410 800 +85°C DC40i 1000 2000 +105°C Module Differential Current for PIC32MX575/675/695/775/795 Family Devices DC41 — 10 2.3V Watchdog Timer Current: IWDT (Notes 3,6) DC41a 5 — A — 3.3V Watchdog Timer Current: IWDT (Note 3) DC41b — 20 3.6V Watchdog Timer Current: IWDT (Note 3,6) DC42 — 40 2.3V RTCC + Timer1 w/32 kHz Crystal: IRTCC (Notes 3,6) DC42a 23 — A — 3.3V RTCC + Timer1 w/32 kHz Crystal: IRTCC (Note 3) DC42b — 50 3.6V RTCC + Timer1 w/32 kHz Crystal: IRTCC (Note 3,6) DC43 — 1300 2.5V ADC: IADC (Notes 3,4,6) DC43a 1100 — A — 3.3V ADC: IADC (Notes 3,4) DC43b — 1300 3.6V ADC: IADC (Notes 3,4,6) Note 1: The test conditions for IPD current measurements are as follows: • Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required) • OSC2/CLKO is configured as an I/O input pin • USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8 • CPU is in Sleep mode, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1 • No peripheral modules are operating, (ON bit = 0) • WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled • All I/O pins are configured as inputs and pulled to VSS • MCLR = VDD • RTCC and JTAG are disabled 2: Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: The  current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled. 5: Data is characterized at +70°C and not tested. Parameter is for design guidance only. 6: This parameter is characterized, but not tested in manufacturing. DS60001156J-page 358  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 32-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Typical(2) Max. Units Conditions No. Power-Down Current (IPD)(1) for PIC32MX534/564/664/764 Family Devices DC40g 12 40 -40°C DC40h 20 120 +25°C 2.3V Base Power-Down Current (Note 6) DC40i 210 600 +85°C DC40o 400 1000 +105°C DC40j 20 120 +25°C 3.3V Base Power-Down Current A DC40k 15 80 -40°C DC40l 20 120 +25°C DC40m 113 350(5) +70°C 3.6V Base Power-Down Current DC40n 220 650 +85°C DC40p 500 1000 +105°C Module Differential Current for PIC32MX534/564/664/764 Family Devices DC41c — 10 2.5V Watchdog Timer Current: IWDT (Notes 3,6) DC41d 5 — A — 3.3V Watchdog Timer Current: IWDT (Note 3) DC41e — 20 3.6V Watchdog Timer Current: IWDT (Note 3) DC42c — 40 2.5V RTCC + Timer1 w/32 kHz Crystal: IRTCC (Notes 3,6) DC42d 23 — A — 3.3V RTCC + Timer1 w/32 kHz Crystal: IRTCC (Note 3) DC42e — 50 3.6V RTCC + Timer1 w/32 kHz Crystal: IRTCC (Note 3) DC43c — 1300 2.5V ADC: IADC (Notes 3,4,6) DC43d 1100 — A — 3.3V ADC: IADC (Notes 3,4) DC43e — 1300 3.6V ADC: IADC (Notes 3,4) Note 1: The test conditions for IPD current measurements are as follows: • Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required) • OSC2/CLKO is configured as an I/O input pin • USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8 • CPU is in Sleep mode, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1 • No peripheral modules are operating, (ON bit = 0) • WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled • All I/O pins are configured as inputs and pulled to VSS • MCLR = VDD • RTCC and JTAG are disabled 2: Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: The  current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled. 5: Data is characterized at +70°C and not tested. Parameter is for design guidance only. 6: This parameter is characterized, but not tested in manufacturing.  2009-2016 Microchip Technology Inc. DS60001156J-page 359

PIC32MX5XX/6XX/7XX TABLE 32-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics Min. Typical(1) Max. Units Conditions No. VIL Input Low Voltage DI10 I/O Pins: with TTL Buffer VSS — 0.15VDD V with Schmitt Trigger Buffer VSS — 0.2VDD V DI15 MCLR(2) VSS — 0.2VDD V DI16 OSC1 (XT mode) VSS — 0.2VDD V (Note 4) DI17 OSC1 (HS mode) VSS — 0.2VDD V (Note 4) DI18 SDAx, SCLx VSS — 0.3VDD V SMBus disabled (Note 4) DI19 SDAx, SCLx VSS — 0.8 V SMBus enabled (Note 4) VIH Input High Voltage DI20 I/O Pins not 5V-tolerant(5) 0.65VDD — VDD V (Note 4,6) I/O Pins 5V-tolerant with 0.25 VDD + 0.8V — 5.5 V (Note 4,6) PMP(5) I/O Pins 5V-tolerant(5) 0.65VDD — 5.5 V DI28 SDAx, SCLx 0.65VDD — 5.5 V SMBus disabled (Note 4,6) DI29 SDAx, SCLx 2.1 — 5.5 V SMBus enabled, 2.3V  VPIN  5.5 (Note 4,6) DI30 ICNPU Change Notification — — -50 A VDD = 3.3V, VPIN = VSS Pull-up Current (Note 3,6) DI31 ICNPD Change Notification — 50 — µA VDD = 3.3V, VPIN = VDD Pull-down Current(4) Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. 3: Negative current is defined as current sourced by the pin. 4: This parameter is characterized, but not tested in manufacturing. 5: See the “Device Pin Tables” section for the 5V-tolerant pins. 6: The VIH specification is only in relation to externally applied inputs and not with respect to the user-select- able pull-ups. Externally applied high impedance or open drain input signals utilizing the PIC32 internal pull- ups are guaranteed to be recognized as a logic “high” internally to the PIC32 device, provided that the external load does not exceed the maximum value of ICNPU. 7: VIL source < (VSS - 0.3). Characterized but not tested. 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only. 9: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any “positive” input injection current. 10: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS - 0.3)). 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted pro- vided the “absolute instantaneous” sum of the input injection currents from all pins do not exceed the speci- fied limit. If Note 7, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 8, IICH = ((IICH source - (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (VSS - 0.3)  VSOURCE  (VDD + 0.3), injec- tion current = 0. DS60001156J-page 360  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 32-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics Min. Typical(1) Max. Units Conditions No. IIL Input Leakage Current(3) DI50 I/O Ports — — +1 A VSS  VPIN  VDD, Pin at high-impedance DI51 Analog Input Pins — — +1 A VSS  VPIN  VDD, Pin at high-impedance DI55 MCLR(2) — — +1 A VSS VPIN VDD DI56 OSC1 — — +1 A VSS VPIN VDD, XT and HS modes This parameter applies to all pins, with the Input Low Injection exception of RB10. DI60a IICL 0 — -5(7,10) mA Current Maximum IICH current for this exception is 0mA. This parameter applies to all pins, with the exception of all 5V toler- Input High Injection DI60b IICH 0 — +5(8,9,10) mA ant pins, SOSCI, and Current RB10. Maximum IICH current for these exceptions is 0 mA. DI60c IICT Total Input Injection -20(11) — +20(11) mA Absolute instantaneous Current (sum of all I/O sum of all ± input and control pins) injection currents from all I/O pins (| IICL + | IICH |)  IICT Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. 3: Negative current is defined as current sourced by the pin. 4: This parameter is characterized, but not tested in manufacturing. 5: See the “Device Pin Tables” section for the 5V-tolerant pins. 6: The VIH specification is only in relation to externally applied inputs and not with respect to the user-select- able pull-ups. Externally applied high impedance or open drain input signals utilizing the PIC32 internal pull- ups are guaranteed to be recognized as a logic “high” internally to the PIC32 device, provided that the external load does not exceed the maximum value of ICNPU. 7: VIL source < (VSS - 0.3). Characterized but not tested. 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only. 9: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any “positive” input injection current. 10: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS - 0.3)). 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted pro- vided the “absolute instantaneous” sum of the input injection currents from all pins do not exceed the speci- fied limit. If Note 7, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 8, IICH = ((IICH source - (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (VSS - 0.3)  VSOURCE  (VDD + 0.3), injec- tion current = 0.  2009-2016 Microchip Technology Inc. DS60001156J-page 361

PIC32MX5XX/6XX/7XX TABLE 32-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-temp Param. Symbol Characteristic Min. Typ. Max. Units Conditions Output Low Voltage I/O Pins: 4x Sink Driver Pins - All I/O — — 0.4 V IOL  10 mA, VDD = 3.3V output pins not defined as 8x DO10 VOL Sink Driver pins Output Low Voltage I/O Pins: — — 0.4 V IOL  15 mA, VDD = 3.3V 8x Sink Driver Pins - RC15 Output High Voltage I/O Pins: 4x Source Driver Pins - All I/O 2.4 — — V IOH  -10 mA, VDD = 3.3V output pins not defined as 8x DO20 VOH Source Driver pins Output High Voltage I/O Pins: 2.4 — — V IOH  -15 mA, VDD = 3.3V 8x Source Driver Pins - RC15 Output High Voltage 1.5(1) — — IOH  -14 mA, VDD = 3.3V I/O Pins: 4x Source Driver Pins - All I/O 2.0(1) — — V IOH  -12 mA, VDD = 3.3V output pins not defined as 8x Sink Driver pins 3.0(1) — — IOH  -7 mA, VDD = 3.3V DO20A VOH1 Output High Voltage 1.5(1) — — IOH  -22 mA, VDD = 3.3V I/O Pins: 8x Source Driver Pins - RC15 2.0(1) — — V IOH  -18 mA, VDD = 3.3V 3.0(1) — — IOH  -10 mA, VDD = 3.3V Note 1: Parameters are characterized, but not tested. 2: This driver pin only applies to devices with less than 64 pins. 3: This driver pin only applies to devices with 64 pins. TABLE 32-10: ELECTRICAL CHARACTERISTICS: BOR Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics Min.(1) Typical Max. Units Conditions No. BO10 VBOR BOR Event on VDD transition 2.0 — 2.3 V — high-to-low (Note 2) Note 1: Parameters are for design guidance only and are not tested in manufacturing. 2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. DS60001156J-page 362  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 32-11: DC CHARACTERISTICS: PROGRAM MEMORY(3) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics Min. Typ.(1) Max. Units Conditions No. D130 EP Cell Endurance 1000 — — E/W — D130a EP Cell Endurance 20,000 — — E/W See Note 5 D131 VPR VDD for Read 2.3 — 3.6 V — D132 VPEW VDD for Erase or Write 3.0 — 3.6 V — D132a VPEW VDD for Erase or Write 2.3 — 3.6 V See Note 5 D134 TRETD Characteristic Retention 20 — — Year Provided no other specifications are violated D135 IDDP Supply Current during — 10 — mA — Programming D138 TWW Word Write Cycle Time(4) — 411 — FRC Cycles — D136 TRW Row Write Cycle Time(2,4) — 26067 — FRC Cycles — D137 TPE Page Erase Cycle Time(4) — 201060 — FRC Cycles — D139 TCE Chip Erase Cycle Time(4) — 804652 — FRC Cycles — Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. 2: The minimum SYSCLK for row programming is 4 MHz. Care should be taken to minimize bus activities during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default Arbitration mode is mode 1 (CPU has lowest priority). 3: Refer to “PIC32 Flash Programming Specification” (DS60001145) for operating conditions during programming and erase cycles. 4: This parameter depends on the FRC accuracy (see Table32-19) and the FRC tuning values (see Register8-2). 5: This parameter only applies to PIC32MX534/564/664/764 devices. TABLE 32-12: PROGRAM FLASH MEMORY WAIT STATE CHARACTERISTICS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Required Flash Wait States SYSCLK Units Comments 0 Wait State 0 to 30 MHz — 1 Wait State 31 to 60 2 Wait States 61 to 80  2009-2016 Microchip Technology Inc. DS60001156J-page 363

PIC32MX5XX/6XX/7XX TABLE 32-13: COMPARATOR SPECIFICATIONS Standard Operating Conditions (see Note 3): 2.3V to 3.6V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics Min. Typical Max. Units Comments No. D300 VIOFF Input Offset Voltage — ±7.5 ±25 mV AVDD = VDD, AVSS = VSS D301 VICM Input Common Mode Voltage 0 — VDD V AVDD = VDD, AVSS = VSS (Note 2) D302 CMRR Common Mode Rejection Ratio 55 — — dB Max VICM = (VDD - 1)V (Note 2) D303 TRESP Response Time — 150 400 ns AVDD = VDD, AVSS = VSS (Notes 1, 2) D304 ON2OV Comparator Enabled to Output — — 10 s Comparator module is Valid configured before setting the comparator ON bit (Note 2) D305 IVREF Internal Voltage Reference 0.57 0.6 0.63 V For devices without BGSEL<1:0> 1.14 1.2 1.26 V BGSEL<1:0> = 00 0.57 0.6 0.63 V BGSEL<1:0> = 01 Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from VSS to VDD. 2: These parameters are characterized but not tested. 3: The Comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized. DS60001156J-page 364  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX T ABLE 32-14: VOLTAGE REFERENCE SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics Min. Typical Max. Units Comments No. D312 TSET Internal 4-bit DAC — — 10 µs See Note 1 Comparator Reference Settling time. D313 DACREFH CVREF Input Voltage AVSS — AVDD V CVRSRC with CVRSS = 0 Reference Range VREF- — VREF+ V CVRSRC with CVRSS = 1 D314 DVREF CVREF Programmable 0 — 0.625 x V 0 to 0.625 DACREFH with Output Range DACREFH DACREFH/24 step size 0.25 x — 0.719 x V 0.25 x DACREFH to 0.719 DACREFH DACREFH DACREFH with DACREFH/32 step size D315 DACRES Resolution — — DACREFH/ CVRCON<CVRR> = 1 24 — — DACREFH/ CVRCON<CVRR> = 0 32 D316 DACACC Absolute Accuracy(2) — — 1/4 LSB DACREFH/24, CVRCON<CVRR> = 1 — — 1/2 LSB DACREFH/32, CVRCON<CVRR> = 0 Note 1: Settling time measured while CVRR = 1 and CVR<3:0> transitions from ‘0000’ to ‘1111’. This parameter is characterized, but not tested in manufacturing. 2: These parameters are characterized but not tested. TABLE 32-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) DC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics Min. Typical Max. Units Comments No. D321 CEFC External Filter Capacitor Value 8 10 — F Capacitor must be low series resistance (1 ohm) D322 TPWRT Power-up Timer Period — 64 — ms —  2009-2016 Microchip Technology Inc. DS60001156J-page 365

PIC32MX5XX/6XX/7XX 32.2 AC Characteristics and Timing Parameters The information contained in this section defines PIC32MX5XX/6XX/7XX AC characteristics and timing parameters. FIGURE 32-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS Load Condition 1 – for all pins except OSC2 Load Condition 2 – for OSC2 VDD/2 RL Pin CL VSS CL Pin RL = 464 CL = 50 pF for all pins VSS 50 pF for OSC2 pin (EC mode) TABLE 32-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics Min. Typical(1) Max. Units Conditions No. DO50 Cosco OSC2 pin — — 15 pF In XT and HS modes when an external crystal is used to drive OSC1 DO56 CIO All I/O pins and OSC2 — — 50 pF In EC mode DO58 CB SCLx, SDAx — — 400 pF In I2C mode Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. FIGURE 32-2: EXTERNAL CLOCK TIMING OS20 OS30 OS31 OSC1 OS30 OS31 DS60001156J-page 366  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 32-17: EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics Min. Typical(1) Max. Units Conditions No. OS10 FOSC External CLKI Frequency DC — 50 MHz EC (Note 4) (External clocks only allowed 4 — 50 MHz ECPLL (Note 3) in EC and ECPLL modes) OS11 Oscillator Crystal Frequency 3 — 10 MHz XT (Note 4) OS12 4 — 10 MHz XTPLL (Notes 3,4) OS13 10 — 25 MHz HS (Note 4) OS14 10 — 25 MHz HSPLL (Notes 3,4) OS15 32 32.768 100 kHz SOSC (Note 4) OS20 TOSC TOSC = 1/FOSC = TCY(2) — — — — See parameter OS10 for FOSC value OS30 TOSL, External Clock In (OSC1) 0.45 x TOSC — — ns EC (Note 4) TOSH High or Low Time OS31 TOSR, External Clock In (OSC1) — — 0.05 x TOSC ns EC (Note 4) TOSF Rise or Fall Time OS40 TOST Oscillator Start-up Timer Period — 1024 — TOSC (Note 4) (Only applies to HS, HSPLL, XT, XTPLL and SOSC Clock Oscillator modes) OS41 TFSCM Primary Clock Fail Safe — 2 — ms (Note 4) Time-out Period OS42 GM External Oscillator — 12 — mA/V VDD = 3.3V, Transconductance (Primary TA = +25°C Oscillator only) (Note 4) Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested. 2: Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. 3: PLL input requirements: 4 MHZ  FPLLIN  5 MHZ (use PLL prescaler to reduce FOSC). This parameter is characterized, but is only tested at 10 MHz at manufacturing. 4: This parameter is characterized, but not tested in manufacturing.  2009-2016 Microchip Technology Inc. DS60001156J-page 367

PIC32MX5XX/6XX/7XX TABLE 32-18: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.3V TO 3.6V) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics(1) Min. Typical Max. Units Conditions No. OS50 FPLLI PLL Voltage Controlled 3.92 — 5 MHz ECPLL, HSPLL, XTPLL, Oscillator (VCO) Input FRCPLL modes Frequency Range OS51 FSYS On-Chip VCO System 60 — 120 MHz — Frequency OS52 TLOCK PLL Start-up Time (Lock Time) — — 2 ms — OS53 DCLK CLKO Stability(2) -0.25 — +0.25 % Measured over 100 ms (Period Jitter or Cumulative) period Note 1: These parameters are characterized, but not tested in manufacturing. 2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula: D EffectiveJitter = -----------------------------C----L---K-------------------------- SYSCLK ---------------------------------------------------------- CommunicationClock For example, if SYSCLK = 80 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows: D D EffectiveJitter = -----C----L--K--- = -----C----L---K-- 80 2 ------ 20 TABLE 32-19: INTERNAL FRC ACCURACY Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Characteristics Min. Typical Max. Units Conditions No. Internal FRC Accuracy @ 8.00 MHz(1) for PIC32MX575/675/695/775/795 Family Devices F20a FRC -2 — +2 % — Internal FRC Accuracy @ 8.00 MHz(1) for PIC32MX534/564/664/764 Family Devices F20b FRC -0.9 — +0.9 % — Note 1: Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift. DS60001156J-page 368  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 32-20: INTERNAL RC ACCURACY Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Characteristics Min. Typical Max. Units Conditions No. LPRC @ 31.25 kHz(1) F21 LPRC -15 — +15 % — Note 1: Change of LPRC frequency as VDD changes. FIGURE 32-3: I/O TIMING CHARACTERISTICS I/O Pin (Input) DI35 DI40 I/O Pin (Output) DO31 DO32 Note: Refer to Figure32-1 for load conditions. TABLE 32-21: I/O TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics(2) Min. Typical(1) Max. Units Conditions No. DO31 TIOR Port Output Rise Time — 5 15 ns VDD < 2.5V — 5 10 ns VDD > 2.5V DO32 TIOF Port Output Fall Time — 5 15 ns VDD < 2.5V — 5 10 ns VDD > 2.5V DI35 TINP INTx Pin High or Low Time 10 — — ns — DI40 TRBP CNx High or Low Time (input) 2 — — TSYSCLK — Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. 2: This parameter is characterized, but not tested in manufacturing.  2009-2016 Microchip Technology Inc. DS60001156J-page 369

PIC32MX5XX/6XX/7XX FIGURE 32-4: POWER-ON RESET TIMING CHARACTERISTICS Internal Voltage Regulator Enabled Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC) VDD VPOR (TSYSDLY) SY02 Power-up Sequence (Note 2) CPU Starts Fetching Code SY00 (TPU) (Note 1) Internal Voltage Regulator Enabled Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC) VDD VPOR (TSYSDLY) SY02 Power-up Sequence (Note 2) CPU Starts Fetching Code SY00 SY10 (TPU) (TOST) (Note 1) Note 1: The power-up period will be extended if the power-up sequence completes before the device exits from BOR (VDD < VDDMIN). 2: Includes interval voltage regulator stabilization delay. DS60001156J-page 370  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX FIGURE 32-5: EXTERNAL RESET TIMING CHARACTERISTICS Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC) MCLR TMCLR (SY20) BOR TBOR (TSYSDLY) (SY30) SY02 Reset Sequence CPU Starts Fetching Code Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC) (TSYSDLY) SY02 Reset Sequence CPU Starts Fetching Code TOST (SY10) TABLE 32-22: RESETS TIMING Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions No. SY00 TPU Power-up Period — 400 600 s -40°C to +85°C Internal Voltage Regulator Enabled SY02 TSYSDLY System Delay Period: — 1 µs + — — -40°C to +85°C Time Required to Reload Device 8 SYSCLK Configuration Fuses plus SYSCLK cycles Delay before First instruction is Fetched. SY20 TMCLR MCLR Pulse Width (low) — 2 — s -40°C to +85°C SY30 TBOR BOR Pulse Width (low) — 1 — s -40°C to +85°C Note 1: These parameters are characterized, but not tested in manufacturing. 2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.  2009-2016 Microchip Technology Inc. DS60001156J-page 371

PIC32MX5XX/6XX/7XX FIGURE 32-6: TIMER1, 2, 3, 4, 5 EXTERNAL CLOCK TIMING CHARACTERISTICS TxCK Tx10 Tx11 Tx15 Tx20 OS60 TMRx Note: Refer to Figure32-1 for load conditions. TABLE 32-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics(2) Min. Typical Max. Units Conditions No. TA10 TTXH TxCK Synchronous, [(12.5ns or 1 TPB)/N] — — ns Must also meet High Time with prescaler + 25ns parameter TA15 Asynchronous, 10 — — ns — with prescaler TA11 TTXL TxCK Synchronous, [(12.5ns or 1 TPB)/N] — — ns Must also meet Low Time with prescaler + 25ns parameter TA15 Asynchronous, 10 — — ns — with prescaler TA15 TTXP TxCK Synchronous, [(Greater of 25ns or — — ns VDD > 2.7V Input Period with prescaler 2 TPB)/N] + 30ns [(Greater of 25ns or — — ns VDD < 2.7V 2 TPB)/N] + 50ns Asynchronous, 20 — — ns VDD > 2.7V with prescaler (Note 3) 50 — — ns VDD < 2.7V (Note 3) OS60 FT1 SOSC1/T1CK Oscillator 32 — 100 kHz — Input Frequency Range (oscillator enabled by setting TCS bit (T1CON<1>)) TA20 TCKEXTMRL Delay from External TxCK — — 1 TPB — Clock Edge to Timer Increment Note 1: Timer1 is a Type A. 2: This parameter is characterized, but not tested in manufacturing. 3: N = Prescale Value (1, 8, 64, 256). DS60001156J-page 372  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 32-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics(1) Min. Max. Units Conditions No. TB10 TTXH TxCK Synchronous, with [(12.5ns or 1 TPB)/N] — ns Must also meet N = prescale High Time prescaler + 25ns parameter value TB15 (1, 2, 4, 8, TB11 TTXL TxCK Synchronous, with [(12.5ns or 1 TPB)/N] — ns Must also meet 16, 32, 64, Low Time prescaler + 25ns parameter 256) TB15 TB15 TTXP TxCK Synchronous, with [(Greater of [(25ns or — ns VDD > 2.7V Input prescaler 2 TPB)/N] + 30ns Period [(Greater of [(25ns or — ns VDD < 2.7V 2 TPB)/N] + 50ns TB20 TCKEXTMRL Delay from External TxCK — 1 TPB — Clock Edge to Timer Increment Note 1: These parameters are characterized, but not tested in manufacturing.  2009-2016 Microchip Technology Inc. DS60001156J-page 373

PIC32MX5XX/6XX/7XX FIGURE 32-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS ICx IC10 IC11 IC15 Note: Refer to Figure32-1 for load conditions. TABLE 32-25: INPUT CAPTURE MODULE TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics(1) Min. Max. Units Conditions No. IC10 TCCL ICx Input Low Time [(12.5ns or 1 TPB)/N] — ns Must also N = prescale + 25ns meet value (1, 4, 16) parameter IC15. IC11 TCCH ICx Input High Time [(12.5ns or 1 TPB)/N] — ns Must also + 25ns meet parameter IC15. IC15 TCCP ICx Input Period [(25ns or 2 TPB)/N] — ns — + 50ns Note 1: These parameters are characterized, but not tested in manufacturing. FIGURE 32-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS OCx (Output Compare or PWM mode) OC11 OC10 Note: Refer to Figure32-1 for load conditions. TABLE 32-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions No. OC10 TCCF OCx Output Fall Time — — — ns See parameter DO32 OC11 TCCR OCx Output Rise Time — — — ns See parameter DO31 Note 1: These parameters are characterized, but not tested in manufacturing. 2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. DS60001156J-page 374  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX FIGURE 32-9: OCx/PWM MODULE TIMING CHARACTERISTICS OC20 OCFA/OCFB OC15 OCx OCx is tri-stated Note: Refer to Figure32-1 for load conditions. TABLE 32-27: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param Symbol Characteristics(1) Min Typical(2) Max Units Conditions No. OC15 TFD Fault Input to PWM I/O Change — — 50 ns — OC20 TFLT Fault Input Pulse Width 50 — — ns — Note 1: These parameters are characterized, but not tested in manufacturing. 2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.  2009-2016 Microchip Technology Inc. DS60001156J-page 375

PIC32MX5XX/6XX/7XX FIGURE 32-10: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS SCKx (CKP = 0) SP11 SP10 SP21 SP20 SCKx (CKP = 1) SP35 SP20 SP21 SDOx MSb Bit 14 - - - - - -1 LSb SP31 SP30 SDIx MSb In Bit 14 - - - -1 LSb In SP40 SP41 Note: Refer to Figure32-1 for load conditions. TABLE 32-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions No. SP10 TSCL SCKx Output Low Time(3) TSCK/2 — — ns — SP11 TSCH SCKx Output High Time(3) TSCK/2 — — ns — SP20 TSCF SCKx Output Fall Time(4) — — — ns See parameter DO32 SP21 TSCR SCKx Output Rise Time(4) — — — ns See parameter DO31 SP30 TDOF SDOx Data Output Fall Time(4) — — — ns See parameter DO32 SP31 TDOR SDOx Data Output Rise — — — ns See parameter DO31 Time(4) SP35 TSCH2DOV, SDOx Data Output Valid after — — 15 ns VDD > 2.7V TSCL2DOV SCKx Edge — — 20 ns VDD < 2.7V SP40 TDIV2SCH, Setup Time of SDIx Data Input 10 — — ns — TDIV2SCL to SCKx Edge SP41 TSCH2DIL, Hold Time of SDIx Data Input 10 — — ns — TSCL2DIL to SCKx Edge Note 1: These parameters are characterized, but not tested in manufacturing. 2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification. 4: Assumes 50 pF load on all SPIx pins. DS60001156J-page 376  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX FIGURE 32-11: SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS SP36 SCKX (CKP = 0) SP11 SP10 SP21 SP20 SCKX (CKP = 1) SP35 SP20 SP21 SDOX MSb Bit 14 - - - - - -1 LSb SP30,SP31 SDIX MSb In Bit 14 - - - -1 LSb In SP40 SP41 Note: Refer to Figure32-1 for load conditions. TABLE 32-29: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics(1) Min. Typ.(2) Max. Units Conditions No. SP10 TSCL SCKx Output Low Time(3) TSCK/2 — — ns — SP11 TSCH SCKx Output High Time(3) TSCK/2 — — ns — SP20 TSCF SCKx Output Fall Time(4) — — — ns See parameter DO32 SP21 TSCR SCKx Output Rise Time(4) — — — ns See parameter DO31 SP30 TDOF SDOx Data Output Fall Time(4) — — — ns See parameter DO32 SP31 TDOR SDOx Data Output Rise Time(4) — — — ns See parameter DO31 SP35 TSCH2DOV, SDOx Data Output Valid after — — 15 ns VDD > 2.7V TSCL2DOV SCKx Edge — — 20 ns VDD < 2.7V SP36 TDOV2SC, SDOx Data Output Setup to 15 — — ns — TDOV2SCL First SCKx Edge SP40 TDIV2SCH, Setup Time of SDIx Data Input to 15 — — ns VDD > 2.7V TDIV2SCL SCKx Edge 20 — — ns VDD < 2.7V SP41 TSCH2DIL, Hold Time of SDIx Data Input 15 — — ns VDD > 2.7V TSCL2DIL to SCKx Edge 20 — — ns VDD < 2.7V Note 1: These parameters are characterized, but not tested in manufacturing. 2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification. 4: Assumes 50 pF load on all SPIx pins.  2009-2016 Microchip Technology Inc. DS60001156J-page 377

PIC32MX5XX/6XX/7XX FIGURE 32-12: SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS SSX SP50 SP52 SCKX (CKP = 0) SP71 SP70 SP73 SP72 SCKX (CKP = 1) SP35 SP72 SP73 SDOX MSb Bit 14 - - - - - -1 LSb SP30,SP31 SP51 SDIX MSb In Bit 14 - - - -1 LSb In SP40 SP41 Note: Refer to Figure32-1 for load conditions. TABLE 32-30: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics(1) Min. Typ.(2) Max. Units Conditions No. SP70 TSCL SCKx Input Low Time(3) TSCK/2 — — ns — SP71 TSCH SCKx Input High Time(3) TSCK/2 — — ns — SP72 TSCF SCKx Input Fall Time — — — ns See parameter DO32 SP73 TSCR SCKx Input Rise Time — — — ns See parameter DO31 SP30 TDOF SDOx Data Output Fall Time(4) — — — ns See parameter DO32 SP31 TDOR SDOx Data Output Rise Time(4) — — — ns See parameter DO31 SP35 TSCH2DOV, SDOx Data Output Valid after — — 15 ns VDD > 2.7V TSCL2DOV SCKx Edge — — 20 ns VDD < 2.7V SP40 TDIV2SCH, Setup Time of SDIx Data Input 10 — — ns — TDIV2SCL to SCKx Edge SP41 TSCH2DIL, Hold Time of SDIx Data Input 10 — — ns — TSCL2DIL to SCKx Edge SP50 TSSL2SCH, SSx  to SCKx  or SCKx Input 175 — — ns — TSSL2SCL SP51 TSSH2DOZ SSx  to SDOx Output 5 — 25 ns — High-Impedance(3) SP52 TSCH2SSH SSx after SCKx Edge TSCK + 20 — — ns — TSCL2SSH Note 1: These parameters are characterized, but not tested in manufacturing. 2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: The minimum clock period for SCKx is 40 ns. 4: Assumes 50 pF load on all SPIx pins. DS60001156J-page 378  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX FIGURE 32-13: SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS SP60 SSx SP52 SP50 SCKx (CKP = 0) SP71 SP70 SP73 SP72 SCKx (CKP = 1) SP35 SP72 SP73 SDOx MSb Bit 14 - - - - - -1 LSb SP30,SP31 SP51 SSDDIIx MSb In Bit 14 - - - -1 LSb In SP40 SP41 Note: Refer to Figure32-1 for load conditions. TABLE 32-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions No. SP70 TSCL SCKx Input Low Time(3) TSCK/2 — — ns — SP71 TSCH SCKx Input High Time(3) TSCK/2 — — ns — SP72 TSCF SCKx Input Fall Time — 5 10 ns — SP73 TSCR SCKx Input Rise Time — 5 10 ns — SP30 TDOF SDOx Data Output Fall Time(4) — — — ns See parameter DO32 SP31 TDOR SDOx Data Output Rise Time(4) — — — ns See parameter DO31 SP35 TSCH2DOV, SDOx Data Output Valid after — — 20 ns VDD > 2.7V TSCL2DOV SCKx Edge — — 30 ns VDD < 2.7V SP40 TDIV2SCH, Setup Time of SDIx Data Input 10 — — ns — TDIV2SCL to SCKx Edge SP41 TSCH2DIL, Hold Time of SDIx Data Input 10 — — ns — TSCL2DIL to SCKx Edge SP50 TSSL2SCH, SSx  to SCKx  or SCKx  Input 175 — — ns — TSSL2SCL Note 1: These parameters are characterized, but not tested in manufacturing. 2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: The minimum clock period for SCKx is 40 ns. 4: Assumes 50 pF load on all SPIx pins.  2009-2016 Microchip Technology Inc. DS60001156J-page 379

PIC32MX5XX/6XX/7XX TABLE 32-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions No. SP51 TSSH2DOZ SSx  to SDOX Output 5 — 25 ns — High-Impedance(4) SP52 TSCH2SSH SSx  after SCKx Edge TSCK + — — ns — TSCL2SSH 20 SP60 TSSL2DOV SDOx Data Output Valid after — — 25 ns — SSx Edge Note 1: These parameters are characterized, but not tested in manufacturing. 2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: The minimum clock period for SCKx is 40 ns. 4: Assumes 50 pF load on all SPIx pins. DS60001156J-page 380  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX FIGURE 32-14: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE) SCLx IM31 IM34 IM30 IM33 SDAx Start Stop Condition Condition Note: Refer to Figure32-1 for load conditions. FIGURE 32-15: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE) IM20 IM11 IM21 IM10 SCLx IM11 IM26 IM10 IM25 IM33 SDAx In IM40 IM40 IM45 SDAx Out Note: Refer to Figure32-1 for load conditions.  2009-2016 Microchip Technology Inc. DS60001156J-page 381

PIC32MX5XX/6XX/7XX TABLE 32-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics Min.(1) Max. Units Conditions No. IM10 TLO:SCL Clock Low Time 100 kHz mode TPB * (BRG + 2) — s — 400 kHz mode TPB * (BRG + 2) — s — 1 MHz mode(2) TPB * (BRG + 2) — s — IM11 THI:SCL Clock High Time 100 kHz mode TPB * (BRG + 2) — s — 400 kHz mode TPB * (BRG + 2) — s — 1 MHz mode(2) TPB * (BRG + 2) — s — IM20 TF:SCL SDAx and SCLx 100 kHz mode — 300 ns CB is specified to be Fall Time 400 kHz mode 20 + 0.1 CB 300 ns from 10 to 400 pF 1 MHz mode(2) — 100 ns IM21 TR:SCL SDAx and SCLx 100 kHz mode — 1000 ns CB is specified to be Rise Time 400 kHz mode 20 + 0.1 CB 300 ns from 10 to 400 pF 1 MHz mode(2) — 300 ns IM25 TSU:DAT Data Input 100 kHz mode 250 — ns — Setup Time 400 kHz mode 100 — ns 1 MHz mode(2) 100 — ns IM26 THD:DAT Data Input 100 kHz mode 0 — s — Hold Time 400 kHz mode 0 0.9 s 1 MHz mode(2) 0 0.3 s IM30 TSU:STA Start Condition 100 kHz mode TPB * (BRG + 2) — ns Only relevant for Setup Time Repeated Start 400 kHz mode TPB * (BRG + 2) — ns condition 1 MHz mode(2) TPB * (BRG + 2) — ns IM31 THD:STA Start Condition 100 kHz mode TPB * (BRG + 2) — ns After this period, the Hold Time first clock pulse is 400 kHz mode TPB * (BRG + 2) — ns generated 1 MHz mode(2) TPB * (BRG + 2) — ns IM33 TSU:STO Stop Condition 100 kHz mode TPB * (BRG + 2) — ns — Setup Time 400 kHz mode TPB * (BRG + 2) — ns 1 MHz mode(2) TPB * (BRG + 2) — ns IM34 THD:STO Stop Condition 100 kHz mode TPB * (BRG + 2) — ns — Hold Time 400 kHz mode TPB * (BRG + 2) — ns 1 MHz mode(2) TPB * (BRG + 2) — ns IM40 TAA:SCL Output Valid from 100 kHz mode — 3500 ns — Clock 400 kHz mode — 1000 ns — 1 MHz mode(2) — 350 ns — IM45 TBF:SDA Bus Free Time 100 kHz mode 4.7 — s The amount of time the 400 kHz mode 1.3 — s bus must be free before a new 1 MHz mode(2) 0.5 — s transmission can start IM50 CB Bus Capacitive Loading — 400 pF — IM51 TPGD Pulse Gobbler Delay(3) 52 312 ns — Note 1: BRG is the value of the I2C Baud Rate Generator. 2: Maximum pin capacitance = 10 pF for all I2Cx pins (only for 1 MHz mode). 3: The typical value for this parameter is 104 ns. DS60001156J-page 382  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX FIGURE 32-16: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE) SCLx IS31 IS34 IS30 IS33 SDAx Start Stop Condition Condition Note: Refer to Figure32-1 for load conditions. FIGURE 32-17: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE) IS20 IS11 IS21 IS10 SCLx IS30 IS26 IS31 IS25 IS33 SDAx In IS40 IS40 IS45 SDAx Out Note: Refer to Figure32-1 for load conditions.  2009-2016 Microchip Technology Inc. DS60001156J-page 383

PIC32MX5XX/6XX/7XX TABLE 32-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics Min. Max. Units Conditions No. IS10 TLO:SCL Clock Low Time 100 kHz mode 4.7 — s PBCLK must operate at a minimum of 800 kHz 400 kHz mode 1.3 — s PBCLK must operate at a minimum of 3.2 MHz 1 MHz mode(1) 0.5 — s — IS11 THI:SCL Clock High Time 100 kHz mode 4.0 — s PBCLK must operate at a minimum of 800 kHz 400 kHz mode 0.6 — s PBCLK must operate at a minimum of 3.2 MHz 1 MHz mode(1) 0.5 — s — IS20 TF:SCL SDAx and SCLx 100 kHz mode — 300 ns CB is specified to be from Fall Time 400 kHz mode 20 + 0.1 CB 300 ns 10 to 400 pF 1 MHz mode(1) — 100 ns IS21 TR:SCL SDAx and SCLx 100 kHz mode — 1000 ns CB is specified to be from Rise Time 400 kHz mode 20 + 0.1 CB 300 ns 10 to 400 pF 1 MHz mode(1) — 300 ns IS25 TSU:DAT Data Input 100 kHz mode 250 — ns — Setup Time 400 kHz mode 100 — ns 1 MHz mode(1) 100 — ns IS26 THD:DAT Data Input 100 kHz mode 0 — ns — Hold Time 400 kHz mode 0 0.9 s 1 MHz mode(1) 0 0.3 s IS30 TSU:STA Start Condition 100 kHz mode 4700 — ns Only relevant for Repeated Setup Time 400 kHz mode 600 — ns Start condition 1 MHz mode(1) 250 — ns IS31 THD:STA Start Condition 100 kHz mode 4000 — ns After this period, the first Hold Time 400 kHz mode 600 — ns clock pulse is generated 1 MHz mode(1) 250 — ns IS33 TSU:STO Stop Condition 100 kHz mode 4000 — ns — Setup Time 400 kHz mode 600 — ns 1 MHz mode(1) 600 — ns IS34 THD:STO Stop Condition 100 kHz mode 4000 — ns — Hold Time 400 kHz mode 600 — ns 1 MHz mode(1) 250 ns IS40 TAA:SCL Output Valid from 100 kHz mode 0 3500 ns — Clock 400 kHz mode 0 1000 ns 1 MHz mode(1) 0 350 ns IS45 TBF:SDA Bus Free Time 100 kHz mode 4.7 — s The amount of time the bus 400 kHz mode 1.3 — s must be free before a new transmission can start 1 MHz mode(1) 0.5 — s IS50 CB Bus Capacitive Loading — 400 pF — Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (only for 1 MHz mode). DS60001156J-page 384  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX FIGURE 32-18: CAN MODULE I/O TIMING CHARACTERISTICS CiTx Pin Old Value New Value (output) CA10 CA11 CiRx Pin (input) CA20 TABLE 32-34: CAN MODULE I/O TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param Symbol Characteristic(1) Min Typ(2) Max Units Conditions No. CA10 TioF Port Output Fall Time — — — ns See parameter DO32 CA11 TioR Port Output Rise Time — — — ns See parameter DO31 CA20 Tcwf Pulse Width to Trigger 700 — — ns — CAN Wake-up Filter Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.  2009-2016 Microchip Technology Inc. DS60001156J-page 385

PIC32MX5XX/6XX/7XX TABLE 32-35: ETHERNET MODULE SPECIFICATIONS Standard Operating Conditions (see Note 1): 2.9V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Characteristic Min. Typical Max. Units Conditions No. MIIM Timing Requirements ET1 MDC Duty Cycle 40 — 60 % — ET2 MDC Period 400 — — ns — ET3 MDIO Output Setup and Hold 10 — 10 ns See Figure32-19 ET4 MDIO Input Setup and Hold 0 — 300 ns See Figure32-20 MII Timing Requirements ET5 TX Clock Frequency — 25 — MHz — ET6 TX Clock Duty Cycle 35 — 65 % — ET7 ETXDx, ETEN, ETXERR Output Delay 0 — 25 ns See Figure32-21 ET8 RX Clock Frequency — 25 — MHz — ET9 RX Clock Duty Cycle 35 — 65 % — ET10 ERXDx, ERXDV, ERXERR Setup and Hold 10 — 30 ns See Figure32-22 RMII Timing Requirements ET11 Reference Clock Frequency — 50 — MHz — ET12 Reference Clock Duty Cycle 35 — 65 % — ET13 ETXDx, ETEN, Setup and Hold 2 — 4 ns — ET14 ERXDx, ERXDV, ERXERR Setup and Hold 2 — 4 ns — Note 1: The Ethernet module is functional at VBORMIN < VDD < 2.9V, but with degraded performance. Unless other- wise stated, module functionality is tested, but not characterized. FIGURE 32-19: MDIO SOURCED BY THE PIC32 DEVICE VIHMIN MDC VILMAX VIHMIN MDIO VILMAX ET3 (Hold) (Setup) ET3 FIGURE 32-20: MDIO SOURCED BY THE PHY VIHMIN MDC VILMAX VIHMIN MDIO VILMAX ET4 DS60001156J-page 386  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX FIGURE 32-21: TRANSMIT SIGNAL TIMING RELATIONSHIPS AT THE MII VIHMIN VILMAX TX Clock VIHMIN ETXD<3:0>, VILMAX ETEN, ETXERR ET7 FIGURE 32-22: RECEIVE SIGNAL TIMING RELATIONSHIPS AT THE MII VIHMIN RX Clock VILMAX VIHMIN ERXD<3:0>, VILMAX ERXDV, ERXERR (Setup) ET10 ET10 (Hold)  2009-2016 Microchip Technology Inc. DS60001156J-page 387

PIC32MX5XX/6XX/7XX TABLE 32-36: ADC MODULE SPECIFICATIONS Standard Operating Conditions (see Note 5): 2.5V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics Min. Typical Max. Units Conditions No. Device Supply AD01 AVDD Module VDD Supply Greater of — Lesser of V VDD – 0.3 VDD + 0.3 — or 2.5 or 3.6 AD02 AVSS Module VSS Supply VSS — VSS + 0.3 V — Reference Inputs AD05 VREFH Reference Voltage High AVSS + 2.0 — AVDD V (Note 1) AD05a 2.5 — 3.6 V VREFH = AVDD (Note 3) AD06 VREFL Reference Voltage Low AVSS — VREFH – 2.0 V (Note 1) AD07 VREF Absolute Reference 2.0 — AVDD V (Note 3) Voltage (VREFH – VREFL) AD08 IREF Current Drain — 250 400 A ADC operating AD08a — — 3 A ADC off Analog Input AD12 VINH-VINL Full-Scale Input Span VREFL — VREFH V — AD13 VINL Absolute VINL Input AVSS – 0.3 — AVDD/2 V — Voltage AD14 VIN Absolute Input Voltage AVSS – 0.3 — AVDD + 0.3 V — AD15 Leakage Current — ±0.001 ±0.610 A VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V Source Impedance = 10 k AD17 RIN Recommended — — 5K  (Note 1) Impedance of Analog Voltage Source ADC Accuracy – Measurements with External VREF+/VREF- AD20c Nr Resolution 10 data bits bits — AD21c INL Integral Nonlinearity > -1 — < 1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V AD22c DNL Differential Nonlinearity > -1 — < 1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2) AD23c GERR Gain Error > -1 — < 1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V AD24c EOFF Offset Error > -1 — < 1 LSb VINL = AVSS = 0V, AVDD = 3.3V AD25c — Monotonicity — — — — Guaranteed Note 1: These parameters are not characterized or tested in manufacturing. 2: With no missing codes. 3: These parameters are characterized, but not tested in manufacturing. 4: Characterized with a 1 kHz sine wave. 5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized. DS60001156J-page 388  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 32-36: ADC MODULE SPECIFICATIONS (CONTINUED) Standard Operating Conditions (see Note 5): 2.5V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics Min. Typical Max. Units Conditions No. ADC Accuracy – Measurements with Internal VREF+/VREF- AD20d Nr Resolution 10 data bits bits (Note 3) AD21d INL Integral Nonlinearity > -1 — < 1 LSb VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3) AD22d DNL Differential Nonlinearity > -1 — < 1 LSb VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Notes 2,3) AD23d GERR Gain Error > -4 — < 4 LSb VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3) AD24d EOFF Offset Error > -2 — < 2 LSb VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3) AD25d — Monotonicity — — — — Guaranteed Dynamic Performance AD31b SINAD Signal to Noise and 55 58.5 — dB (Notes 3,4) Distortion AD34b ENOB Effective Number of Bits 9.0 9.5 — bits (Notes 3,4) Note 1: These parameters are not characterized or tested in manufacturing. 2: With no missing codes. 3: These parameters are characterized, but not tested in manufacturing. 4: Characterized with a 1 kHz sine wave. 5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.  2009-2016 Microchip Technology Inc. DS60001156J-page 389

PIC32MX5XX/6XX/7XX TABLE 32-37: 10-BIT ADC CONVERSION RATE PARAMETERS Standard Operating Conditions (see Note 3): 2.5V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C TA  +105°C for V-Temp Sampling ADC Speed(2) TAD Time RS VDD ADC Channels Configuration Minimum Maximum Minimum 1 Msps to 65 ns 132 ns 500 3.0V to 3.6V 400 ksps(1) VREF- VREF+ ANx CHX S&H ADC Up to 400 ksps 200 ns 200 ns 5.0 k 2.5V to 3.6V VREF- VREF+ or or AVSS AVDD ANx CHX S&H ADC ANx or VREF- Note 1: External VREF- and VREF+ pins must be used for correct operation. 2: These parameters are characterized, but not tested in manufacturing. 3: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized. DS60001156J-page 390  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 32-38: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS Standard Operating Conditions (see Note 4): 2.5V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics Min. Typical(1) Max. Units Conditions No. Clock Parameters AD50 TAD Analog-to-Digital Clock Period(2) 65 — — ns See Table32-37 Conversion Rate AD55 TCONV Conversion Time — 12 TAD — — — AD56 FCNV Throughput Rate — — 1000 ksps AVDD = 3.0V to 3.6V (Sampling Speed) — — 400 ksps AVDD = 2.5V to 3.6V AD57 TSAMP Sample Time 1 TAD — — — TSAMP must be  132 ns Timing Parameters AD60 TPCS Conversion Start from Sample — 1.0 TAD — — Auto-Convert Trigger Trigger(3) (SSRC<2:0> = 111) not selected AD61 TPSS Sample Start from Setting 0.5 TAD — 1.5 TAD — — Sample (SAMP) bit AD62 TCSS Conversion Completion to — 0.5 TAD — — — Sample Start (ASAM = 1)(3) AD63 TDPU Time to Stabilize Analog Stage — — 2 s — from Analog-to-Digital Off to Analog-to-Digital On(3) Note 1: These parameters are characterized, but not tested in manufacturing. 2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures. 3: Characterized by design but not tested. 4: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.  2009-2016 Microchip Technology Inc. DS60001156J-page 391

PIC32MX5XX/6XX/7XX FIGURE 32-23: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM=0, SSRC<2:0>=000) AD50 ADCLK Instruction Execution Set SAMP Clear SAMP SAMP ch0_dischrg ch0_samp eoc AD61 AD60 TSAMP AD55 AD55 CONV ADxIF Buffer(0) Buffer(1) 1 2 3 4 5 6 7 8 5 6 7 8 1 – Software sets ADxCON. SAMP to start sampling. 2 – Sampling starts after discharge period. TSAMP is described in Section 17. “10-bit A/D Converter” (DS60001104) of the “PIC32 Family Reference Manual”. 3 – Software clears ADxCON. SAMP to start conversion. 4 – Sampling ends, conversion sequence starts. 5 – Convert bit 9. 6 – Convert bit 8. 7 – Convert bit 0. 8 – One TAD for end of conversion. DS60001156J-page 392  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX FIGURE 32-24: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM=1, SSRC<2:0>=111, SAMC<4:0>=00001) AD50 ADCLK Instruction Execution Set ADON SAMP ch0_dischrg ch0_samp eoc TSAMP TSAMP AD55 AD55 TCONV CONV ADxIF Buffer(0) Buffer(1) 1 2 3 4 5 6 7 3 4 5 6 8 3 4 1 – Software sets ADxCON. ADON to start AD operation. 5 – Convert bit 0. 2 – Sampling starts after discharge period. 6 – One TAD for end of conversion. TSAMP is described in Section 17. “10-bit A/D Converter” (DS60001104) of the “PIC32 Family Reference Manual. 7 – Begin conversion of next channel. 3 – Convert bit 9. 8 – Sample for time specified by SAMC<4:0>. 4 – Convert bit 8.  2009-2016 Microchip Technology Inc. DS60001156J-page 393

PIC32MX5XX/6XX/7XX FIGURE 32-25: PARALLEL SLAVE PORT TIMING CS PS5 RD PS6 WR PS4 PS7 PMD<7:0> PS1 PS3 PS2 TABLE 32-39: PARALLEL SLAVE PORT REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics(1) Min. Typical Max. Units Conditions No. PS1 TdtV2wrH Data In Valid before WR or CS 20 — — ns — Inactive (setup time) PS2 TwrH2dtI WR or CS Inactive to Data-In 40 — — ns — Invalid (hold time) PS3 TrdL2dtV RD and CS Active to Data-Out — — 60 ns — Valid PS4 TrdH2dtI RD Activeor CS Inactive to 0 — 10 ns — Data-Out Invalid PS5 Tcs CS Active Time TPB + 40 — — ns — PS6 TWR WR Active Time TPB + 25 — — ns — PS7 TRD RD Active Time TPB + 25 — — ns — Note 1: These parameters are characterized, but not tested in manufacturing. DS60001156J-page 394  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX FIGURE 32-26: PARALLEL MASTER PORT READ TIMING DIAGRAM TPB TPB TPB TPB TPB TPB TPB TPB PB Clock PM4 PMA<13:18> Address PM6 PMD<7:0> AAdddrdersess<s7<:70:>0> DDaatata PM2 PM7 PM3 PMRD PM5 PMWR PM1 PMALL/PMALH PMCS<2:1> TABLE 32-40: PARALLEL MASTER PORT READ TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics(1) Min. Typical Max. Units Conditions No. PM1 TLAT PMALL/PMALH Pulse Width — 1 TPB — — — PM2 TADSU Address Out Valid to PMALL/ — 2 TPB — — — PMALH Invalid (address setup time) PM3 TADHOLD PMALL/PMALH Invalid to Address — 1 TPB — — — Out Invalid (address hold time) PM4 TAHOLD PMRD Inactive to Address Out 5 — — ns — Invalid (address hold time) PM5 TRD PMRD Pulse Width — 1 TPB — — — PM6 TDSU PMRD or PMENB Active to Data In 15 — — ns — Valid (data setup time) PM7 TDHOLD PMRD or PMENB Inactive to Data 1 TPBCLK — — ns PMP PBCLK In Invalid (data hold time) Note 1: These parameters are characterized, but not tested in manufacturing.  2009-2016 Microchip Technology Inc. DS60001156J-page 395

PIC32MX5XX/6XX/7XX FIGURE 32-27: PARALLEL MASTER PORT WRITE TIMING DIAGRAM TPB TPB TPB TPB TPB TPB TPB TPB PB Clock PMA<13:18> Address PM2 + PM3 PMD<7:0> Address<7:0> Data PM12 PM13 PMRD PM11 PMWR PM1 PMALL/PMALH PMCS<2:1> TABLE 32-41: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics(1) Min. Typical Max. Units Conditions No. PM11 TWR PMWR Pulse Width — 1 TPB — — — PM12 TDVSU Data Out Valid before PMWR or — 2 TPB — — — PMENB goes Inactive (data setup time) PM13 TDVHOLD PMWR or PMEMB Invalid to Data — 1 TPB — — — Out Invalid (data hold time) Note 1: These parameters are characterized, but not tested in manufacturing. DS60001156J-page 396  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE 32-42: USB OTG ELECTRICAL SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Characteristics(1) Min. Typical Max. Units Conditions No. USB313 VUSB3V3 USB Voltage 3.0 — 3.6 V Voltage on VUSB3V3 must be in this range for proper USB operation USB315 VILUSB Input Low Voltage for USB Buffer — — 0.8 V — USB316 VIHUSB Input High Voltage for USB Buffer 2.0 — — V — USB318 VDIFS Differential Input Sensitivity — — 0.2 V The difference between D+ and D- must exceed this value while VCM is met USB319 VCM Differential Common Mode Range 0.8 — 2.5 V — USB320 ZOUT Driver Output Impedance 28.0 — 44.0  — USB321 VOL Voltage Output Low 0.0 — 0.3 V 1.425 k load connected to VUSB3V3 USB322 VOH Voltage Output High 2.8 — 3.6 V 14.25 k load connected to ground Note 1: These parameters are characterized, but not tested in manufacturing.  2009-2016 Microchip Technology Inc. DS60001156J-page 397

PIC32MX5XX/6XX/7XX FIGURE 32-28: EJTAG TIMING CHARACTERISTICS T TCKcyc T T TCKhigh TCKlow T rf TCK T rf TMS TDI TTsetup TThold Trf T rf TDO T TRST*low TTDOout TTDOzstate TRST* Defined Undefined T rf TABLE 32-43: EJTAG TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +105°C for V-Temp Param. Symbol Description(1) Min. Max. Units Conditions No. EJ1 TTCKCYC TCK Cycle Time 25 — ns — EJ2 TTCKHIGH TCK High Time 10 — ns — EJ3 TTCKLOW TCK Low Time 10 — ns — EJ4 TTSETUP TAP Signals Setup Time Before 5 — ns — Rising TCK EJ5 TTHOLD TAP Signals Hold Time After 3 — ns — Rising TCK EJ6 TTDOOUT TDO Output Delay Time from — 5 ns — Falling TCK EJ7 TTDOZSTATE TDO 3-State Delay Time from — 5 ns — Falling TCK EJ8 TTRSTLOW TRST Low Time 25 — ns — EJ9 TRF TAP Signals Rise/Fall Time, All — — ns — Input and Output Note 1: These parameters are characterized, but not tested in manufacturing. DS60001156J-page 398  2009-2016 Microchip Technology Inc.

 33.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS 2 0 0 9 Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes -20 only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating 1 6 range (e.g., outside specified power supply range) and therefore, outside the warranted range. M ic ro c FIGURE 33-1: VOH – 4x DRIVER PINS FIGURE 33-3: VOL – 4x DRIVER PINS h ip T ech --00..005500 VVOOHH ((VV)) VVOOLL(cid:3)(cid:3)((VV)) n 00..005500 olog --00..004455 3.6V 00..004455 3.6V y --00..004400 In 3.3V 00..004400 3.3V c --00..003355 . 00..003355 --00..003300 3V 3V IOH(A)IOH(A) ----0000....000022225050 IOH(A)IOH(A) 000000......000000223223050050 -0.015 Absolute Maximum 00..001155 Absolute Maximum -0.010 0.010 -0.005 0.005 0.000 0.000 P 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 I C FIGURE 33-2: VOH – 8x DRIVER PINS FIGURE 33-4: VOL – 8x DRIVER PINS 3 88XX 2 VVOOHH(cid:3)(cid:3)((VV)) VVOOLL(cid:3)(cid:3)((VV)) M --00..008800 00..008800 3.6V 3.6V X --00..007700 00..007700 3.3V 3.3V 5 --00..006600 00..006600 3V X --00..005500 3V 00..005500 A)A) A)A) X H(H( --00..004400 H(H( 00..004400 / DS IOIO -00.003300 IOIO 00..003300 6 600 -0.020 Absolute Maximum 00.002200 Absolute Maximum X 0 X 1 156 -0.010 0.010 / J-p 0.000 0.000 7 a X ge 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 3 X 9 9

PIC32MX5XX/6XX/7XX NOTES: DS60001156J-page 400  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 34.0 PACKAGING INFORMATION 34.1 Package Marking Information 64-Lead TQFP (10x10x1 mm) Example XXXXXXXXXX PIC32MX575F XXXXXXXXXX 512H-80I/PT XXXXXXXXXX e3 YYWWNNN 0510017 100-Lead TQFP (14x14x1 mm) Example XXXXXXXXXXXX PIC32MX575F XXXXXXXXXXXX 512L-80I/PFe3 YYWWNNN 0510017 100-Lead TQFP (12x12x1 mm) Example XXXXXXXXXXXX PIC32MX575F XXXXXXXXXXXX 512L-80I/PT e3 YYWWNNN 0510017 Legend: XX...X Customer-specific information Y Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week ‘01’) NNN Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) * This package is Pb-free. The Pb-free JEDEC designator ( e)3 can be found on the outer packaging for this package. Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.  2009-2016 Microchip Technology Inc. DS60001156J-page 401

PIC32MX5XX/6XX/7XX 34.1 Package Marking Information (Continued) 64-Lead QFN (9x9x0.9 mm) Example XXXXXXXXXX PIC32MX575F XXXXXXXXXX 512H-80I/MR XXXXXXXXXX e3 YYWWNNN 0510017 121-Lead TFBGA (10x10x1.1 mm) Example XXXXXXXXXX PIC32MX575F XXXXXXXXXX 512H-80I/BG XXXXXXXXXX e3 YYWWNNN 0510017 124-Lead VTLA (9x9x0.9 mm) Example XXXXXXXXXX PIC32MX795F XXXXXXXXXX 512L-80I/TL XXXXXXXXXX e3 YYWWNNN 0510017 Legend: XX...X Customer-specific information Y Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week ‘01’) NNN Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) * This package is Pb-free. The Pb-free JEDEC designator ( e)3 can be found on the outer packaging for this package. Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. DS60001156J-page 402  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 34.2 Package Details The following sections give the technical details of the packages. 64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D D1 D1/2 D NOTE 2 E1/2 A B E1 E A A SEE DETAIL 1 N 4X N/4 TIPS 0.20 C A-B D 1 3 2 4X NOTE 1 0.20 H A-B D TOP VIEW A2 A C 0.05 SEATING PLANE A1 64 X b 0.08 C 0.08 C A-B D e SIDE VIEW Microchip Technology Drawing C04-085C Sheet 1 of 2  2009-2016 Microchip Technology Inc. DS60001156J-page 403

PIC32MX5XX/6XX/7XX 64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging H c (cid:69) L (cid:84) (L1) X=A—B OR D SECTION A-A X e/2 DETAIL 1 Units MILLIMETERS Dimension Limits MIN NOM MAX Number of Leads N 64 Lead Pitch e 0.50 BSC Overall Height A - - 1.20 Molded Package Thickness A2 0.95 1.00 1.05 Standoff A1 0.05 - 0.15 Foot Length L 0.45 0.60 0.75 Footprint L1 1.00 REF Foot Angle (cid:73) 0° 3.5° 7° Overall Width E 12.00 BSC Overall Length D 12.00 BSC Molded Package Width E1 10.00 BSC Molded Package Length D1 10.00 BSC Lead Thickness c 0.09 - 0.20 Lead Width b 0.17 0.22 0.27 Mold Draft Angle Top (cid:68) 11° 12° 13° Notes: Mold Draft Angle Bottom (cid:69) 11° 12° 13° 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Chamfers at corners are optional; size may vary. 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side. 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-085C Sheet 2 of 2 DS60001156J-page 404  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging  2009-2016 Microchip Technology Inc. DS60001156J-page 405

PIC32MX5XX/6XX/7XX (cid:2)(cid:3)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:15)(cid:9)(cid:16)(cid:17)(cid:14)(cid:18)(cid:9)(cid:19)(cid:20)(cid:7)(cid:8)(cid:9)(cid:21)(cid:11)(cid:7)(cid:13)(cid:22)(cid:7)(cid:15)(cid:23)(cid:9)(cid:24)(cid:10)(cid:21)(cid:25)(cid:9)(cid:26)(cid:9)(cid:2)(cid:27)(cid:28)(cid:2)(cid:27)(cid:28)(cid:2)(cid:9)(cid:29)(cid:29)(cid:9)(cid:30)(cid:31)(cid:8) !(cid:9)"#(cid:3)(cid:3)(cid:9)(cid:29)(cid:29)(cid:9)$(cid:16)(cid:19)(cid:21)(cid:10)% &(cid:31)(cid:13)(cid:6)’ 3(cid:22)(cid:21)(cid:14)%(cid:23)(cid:13)(cid:14)&(cid:22) %(cid:14)(cid:20)!(cid:21)(cid:21)(cid:13)(cid:25)%(cid:14)(cid:10)(cid:11)(cid:20)4(cid:11)(cid:12)(cid:13)(cid:14)"(cid:21)(cid:11))(cid:19)(cid:25)(cid:12) ’(cid:14)(cid:10)(cid:26)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:23)(cid:13)(cid:14)(cid:18)(cid:19)(cid:20)(cid:21)(cid:22)(cid:20)(cid:23)(cid:19)(cid:10)(cid:14)(cid:30)(cid:11)(cid:20)4(cid:11)(cid:12)(cid:19)(cid:25)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:20)(cid:19)$(cid:19)(cid:20)(cid:11)%(cid:19)(cid:22)(cid:25)(cid:14)(cid:26)(cid:22)(cid:20)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:23)%%(cid:10)255)))(cid:29)&(cid:19)(cid:20)(cid:21)(cid:22)(cid:20)(cid:23)(cid:19)(cid:10)(cid:29)(cid:20)(cid:22)&5(cid:10)(cid:11)(cid:20)4(cid:11)(cid:12)(cid:19)(cid:25)(cid:12) D D1 e E1 E b N α NOTE1 123 NOTE2 A φ c A2 β A1 L L1 6(cid:25)(cid:19)% (cid:18)(cid:28)77(cid:28)(cid:18).(cid:24).(cid:8)(cid:3) (cid:2)(cid:19)&(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)(cid:14)7(cid:19)&(cid:19)% (cid:18)(cid:28)8 89(cid:18) (cid:18)(cid:7): 8!&((cid:13)(cid:21)(cid:14)(cid:22)$(cid:14)7(cid:13)(cid:11)" 8 (cid:15)(cid:4)(cid:4) 7(cid:13)(cid:11)"(cid:14)(cid:30)(cid:19)%(cid:20)(cid:23) (cid:13) (cid:4)(cid:29)/(cid:4)(cid:14)1(cid:3)* 9(cid:31)(cid:13)(cid:21)(cid:11)(cid:26)(cid:26)(cid:14);(cid:13)(cid:19)(cid:12)(cid:23)% (cid:7) < < (cid:15)(cid:29)(cid:16)(cid:4) (cid:18)(cid:22)(cid:26)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:20)4(cid:11)(cid:12)(cid:13)(cid:14)(cid:24)(cid:23)(cid:19)(cid:20)4(cid:25)(cid:13) (cid:7)(cid:16) (cid:4)(cid:29)(cid:6)/ (cid:15)(cid:29)(cid:4)(cid:4) (cid:15)(cid:29)(cid:4)/ (cid:3)%(cid:11)(cid:25)"(cid:22)$$(cid:14)(cid:14) (cid:7)(cid:15) (cid:4)(cid:29)(cid:4)/ < (cid:4)(cid:29)(cid:15)/ 3(cid:22)(cid:22)%(cid:14)7(cid:13)(cid:25)(cid:12)%(cid:23) 7 (cid:4)(cid:29)(cid:5)/ (cid:4)(cid:29)=(cid:4) (cid:4)(cid:29)(cid:17)/ 3(cid:22)(cid:22)%(cid:10)(cid:21)(cid:19)(cid:25)% 7(cid:15) (cid:15)(cid:29)(cid:4)(cid:4)(cid:14)(cid:8).3 3(cid:22)(cid:22)%(cid:14)(cid:7)(cid:25)(cid:12)(cid:26)(cid:13) (cid:3) (cid:4)> -(cid:29)/> (cid:17)> 9(cid:31)(cid:13)(cid:21)(cid:11)(cid:26)(cid:26)(cid:14)?(cid:19)"%(cid:23) . (cid:15)=(cid:29)(cid:4)(cid:4)(cid:14)1(cid:3)* 9(cid:31)(cid:13)(cid:21)(cid:11)(cid:26)(cid:26)(cid:14)7(cid:13)(cid:25)(cid:12)%(cid:23) (cid:2) (cid:15)=(cid:29)(cid:4)(cid:4)(cid:14)1(cid:3)* (cid:18)(cid:22)(cid:26)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:20)4(cid:11)(cid:12)(cid:13)(cid:14)?(cid:19)"%(cid:23) .(cid:15) (cid:15)(cid:5)(cid:29)(cid:4)(cid:4)(cid:14)1(cid:3)* (cid:18)(cid:22)(cid:26)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:20)4(cid:11)(cid:12)(cid:13)(cid:14)7(cid:13)(cid:25)(cid:12)%(cid:23) (cid:2)(cid:15) (cid:15)(cid:5)(cid:29)(cid:4)(cid:4)(cid:14)1(cid:3)* 7(cid:13)(cid:11)"(cid:14)(cid:24)(cid:23)(cid:19)(cid:20)4(cid:25)(cid:13) (cid:20) (cid:4)(cid:29)(cid:4)(cid:6) < (cid:4)(cid:29)(cid:16)(cid:4) 7(cid:13)(cid:11)"(cid:14)?(cid:19)"%(cid:23) ( (cid:4)(cid:29)(cid:15)(cid:17) (cid:4)(cid:29)(cid:16)(cid:16) (cid:4)(cid:29)(cid:16)(cid:17) (cid:18)(cid:22)(cid:26)"(cid:14)(cid:2)(cid:21)(cid:11)$%(cid:14)(cid:7)(cid:25)(cid:12)(cid:26)(cid:13)(cid:14)(cid:24)(cid:22)(cid:10) (cid:4) (cid:15)(cid:15)> (cid:15)(cid:16)> (cid:15)-> (cid:18)(cid:22)(cid:26)"(cid:14)(cid:2)(cid:21)(cid:11)$%(cid:14)(cid:7)(cid:25)(cid:12)(cid:26)(cid:13)(cid:14)1(cid:22)%%(cid:22)& (cid:5) (cid:15)(cid:15)> (cid:15)(cid:16)> (cid:15)-> &(cid:31)(cid:13)(cid:6)(cid:12)’ (cid:15)(cid:29) (cid:30)(cid:19)(cid:25)(cid:14)(cid:15)(cid:14)(cid:31)(cid:19) !(cid:11)(cid:26)(cid:14)(cid:19)(cid:25)"(cid:13)#(cid:14)$(cid:13)(cid:11)%!(cid:21)(cid:13)(cid:14)&(cid:11)(cid:27)(cid:14)(cid:31)(cid:11)(cid:21)(cid:27)’(cid:14)(!%(cid:14)&! %(cid:14)((cid:13)(cid:14)(cid:26)(cid:22)(cid:20)(cid:11)%(cid:13)"(cid:14))(cid:19)%(cid:23)(cid:19)(cid:25)(cid:14)%(cid:23)(cid:13)(cid:14)(cid:23)(cid:11)%(cid:20)(cid:23)(cid:13)"(cid:14)(cid:11)(cid:21)(cid:13)(cid:11)(cid:29) (cid:16)(cid:29) *(cid:23)(cid:11)&$(cid:13)(cid:21) (cid:14)(cid:11)%(cid:14)(cid:20)(cid:22)(cid:21)(cid:25)(cid:13)(cid:21) (cid:14)(cid:11)(cid:21)(cid:13)(cid:14)(cid:22)(cid:10)%(cid:19)(cid:22)(cid:25)(cid:11)(cid:26)+(cid:14) (cid:19),(cid:13)(cid:14)&(cid:11)(cid:27)(cid:14)(cid:31)(cid:11)(cid:21)(cid:27)(cid:29) -(cid:29) (cid:2)(cid:19)&(cid:13)(cid:25) (cid:19)(cid:22)(cid:25) (cid:14)(cid:2)(cid:15)(cid:14)(cid:11)(cid:25)"(cid:14).(cid:15)(cid:14)"(cid:22)(cid:14)(cid:25)(cid:22)%(cid:14)(cid:19)(cid:25)(cid:20)(cid:26)!"(cid:13)(cid:14)&(cid:22)(cid:26)"(cid:14)$(cid:26)(cid:11) (cid:23)(cid:14)(cid:22)(cid:21)(cid:14)(cid:10)(cid:21)(cid:22)%(cid:21)! (cid:19)(cid:22)(cid:25) (cid:29)(cid:14)(cid:18)(cid:22)(cid:26)"(cid:14)$(cid:26)(cid:11) (cid:23)(cid:14)(cid:22)(cid:21)(cid:14)(cid:10)(cid:21)(cid:22)%(cid:21)! (cid:19)(cid:22)(cid:25) (cid:14) (cid:23)(cid:11)(cid:26)(cid:26)(cid:14)(cid:25)(cid:22)%(cid:14)(cid:13)#(cid:20)(cid:13)(cid:13)"(cid:14)(cid:4)(cid:29)(cid:16)/(cid:14)&&(cid:14)(cid:10)(cid:13)(cid:21)(cid:14) (cid:19)"(cid:13)(cid:29) (cid:5)(cid:29) (cid:2)(cid:19)&(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)(cid:19)(cid:25)(cid:12)(cid:14)(cid:11)(cid:25)"(cid:14)%(cid:22)(cid:26)(cid:13)(cid:21)(cid:11)(cid:25)(cid:20)(cid:19)(cid:25)(cid:12)(cid:14)(cid:10)(cid:13)(cid:21)(cid:14)(cid:7)(cid:3)(cid:18).(cid:14)0(cid:15)(cid:5)(cid:29)/(cid:18)(cid:29) 1(cid:3)*2 1(cid:11) (cid:19)(cid:20)(cid:14)(cid:2)(cid:19)&(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)(cid:29)(cid:14)(cid:24)(cid:23)(cid:13)(cid:22)(cid:21)(cid:13)%(cid:19)(cid:20)(cid:11)(cid:26)(cid:26)(cid:27)(cid:14)(cid:13)#(cid:11)(cid:20)%(cid:14)(cid:31)(cid:11)(cid:26)!(cid:13)(cid:14) (cid:23)(cid:22))(cid:25)(cid:14))(cid:19)%(cid:23)(cid:22)!%(cid:14)%(cid:22)(cid:26)(cid:13)(cid:21)(cid:11)(cid:25)(cid:20)(cid:13) (cid:29) (cid:8).32 (cid:8)(cid:13)$(cid:13)(cid:21)(cid:13)(cid:25)(cid:20)(cid:13)(cid:14)(cid:2)(cid:19)&(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)’(cid:14)! !(cid:11)(cid:26)(cid:26)(cid:27)(cid:14))(cid:19)%(cid:23)(cid:22)!%(cid:14)%(cid:22)(cid:26)(cid:13)(cid:21)(cid:11)(cid:25)(cid:20)(cid:13)’(cid:14)$(cid:22)(cid:21)(cid:14)(cid:19)(cid:25)$(cid:22)(cid:21)&(cid:11)%(cid:19)(cid:22)(cid:25)(cid:14)(cid:10)!(cid:21)(cid:10)(cid:22) (cid:13) (cid:14)(cid:22)(cid:25)(cid:26)(cid:27)(cid:29) (cid:18)(cid:19)(cid:20)(cid:21)(cid:22)(cid:20)(cid:23)(cid:19)(cid:10)(cid:24)(cid:13)(cid:20)(cid:23)(cid:25)(cid:22)(cid:26)(cid:22)(cid:12)(cid:27)(cid:2)(cid:21)(cid:11))(cid:19)(cid:25)(cid:12)*(cid:4)(cid:5)(cid:9)(cid:15)(cid:15)(cid:4)1 DS60001156J-page 406  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging  2009-2016 Microchip Technology Inc. DS60001156J-page 407

PIC32MX5XX/6XX/7XX (cid:2)(cid:3)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:7)(cid:12)(cid:13)(cid:14)(cid:15)(cid:9)(cid:16)(cid:17)(cid:14)(cid:18)(cid:9)(cid:19)(cid:20)(cid:7)(cid:8)(cid:9)(cid:21)(cid:11)(cid:7)(cid:13)(cid:22)(cid:7)(cid:15)(cid:23)(cid:9)(cid:24)(cid:10)(cid:16)(cid:25)(cid:9)(cid:26)(cid:9)(cid:2)"(cid:28)(cid:2)"(cid:28)(cid:2)(cid:9)(cid:29)(cid:29)(cid:9)(cid:30)(cid:31)(cid:8) !(cid:9)"#(cid:3)(cid:3)(cid:9)(cid:29)(cid:29)(cid:9)$(cid:16)(cid:19)(cid:21)(cid:10)% &(cid:31)(cid:13)(cid:6)’ 3(cid:22)(cid:21)(cid:14)%(cid:23)(cid:13)(cid:14)&(cid:22) %(cid:14)(cid:20)!(cid:21)(cid:21)(cid:13)(cid:25)%(cid:14)(cid:10)(cid:11)(cid:20)4(cid:11)(cid:12)(cid:13)(cid:14)"(cid:21)(cid:11))(cid:19)(cid:25)(cid:12) ’(cid:14)(cid:10)(cid:26)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:23)(cid:13)(cid:14)(cid:18)(cid:19)(cid:20)(cid:21)(cid:22)(cid:20)(cid:23)(cid:19)(cid:10)(cid:14)(cid:30)(cid:11)(cid:20)4(cid:11)(cid:12)(cid:19)(cid:25)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:20)(cid:19)$(cid:19)(cid:20)(cid:11)%(cid:19)(cid:22)(cid:25)(cid:14)(cid:26)(cid:22)(cid:20)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:23)%%(cid:10)255)))(cid:29)&(cid:19)(cid:20)(cid:21)(cid:22)(cid:20)(cid:23)(cid:19)(cid:10)(cid:29)(cid:20)(cid:22)&5(cid:10)(cid:11)(cid:20)4(cid:11)(cid:12)(cid:19)(cid:25)(cid:12) D D1 e E E1 N b NOTE1 123 NOTE2 α c A φ β L A1 L1 A2 6(cid:25)(cid:19)% (cid:18)(cid:28)77(cid:28)(cid:18).(cid:24).(cid:8)(cid:3) (cid:2)(cid:19)&(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)(cid:14)7(cid:19)&(cid:19)% (cid:18)(cid:28)8 89(cid:18) (cid:18)(cid:7): 8!&((cid:13)(cid:21)(cid:14)(cid:22)$(cid:14)7(cid:13)(cid:11)" 8 (cid:15)(cid:4)(cid:4) 7(cid:13)(cid:11)"(cid:14)(cid:30)(cid:19)%(cid:20)(cid:23) (cid:13) (cid:4)(cid:29)(cid:5)(cid:4)(cid:14)1(cid:3)* 9(cid:31)(cid:13)(cid:21)(cid:11)(cid:26)(cid:26)(cid:14);(cid:13)(cid:19)(cid:12)(cid:23)% (cid:7) < < (cid:15)(cid:29)(cid:16)(cid:4) (cid:18)(cid:22)(cid:26)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:20)4(cid:11)(cid:12)(cid:13)(cid:14)(cid:24)(cid:23)(cid:19)(cid:20)4(cid:25)(cid:13) (cid:7)(cid:16) (cid:4)(cid:29)(cid:6)/ (cid:15)(cid:29)(cid:4)(cid:4) (cid:15)(cid:29)(cid:4)/ (cid:3)%(cid:11)(cid:25)"(cid:22)$$(cid:14)(cid:14) (cid:7)(cid:15) (cid:4)(cid:29)(cid:4)/ < (cid:4)(cid:29)(cid:15)/ 3(cid:22)(cid:22)%(cid:14)7(cid:13)(cid:25)(cid:12)%(cid:23) 7 (cid:4)(cid:29)(cid:5)/ (cid:4)(cid:29)=(cid:4) (cid:4)(cid:29)(cid:17)/ 3(cid:22)(cid:22)%(cid:10)(cid:21)(cid:19)(cid:25)% 7(cid:15) (cid:15)(cid:29)(cid:4)(cid:4)(cid:14)(cid:8).3 3(cid:22)(cid:22)%(cid:14)(cid:7)(cid:25)(cid:12)(cid:26)(cid:13) (cid:3) (cid:4)> -(cid:29)/> (cid:17)> 9(cid:31)(cid:13)(cid:21)(cid:11)(cid:26)(cid:26)(cid:14)?(cid:19)"%(cid:23) . (cid:15)(cid:5)(cid:29)(cid:4)(cid:4)(cid:14)1(cid:3)* 9(cid:31)(cid:13)(cid:21)(cid:11)(cid:26)(cid:26)(cid:14)7(cid:13)(cid:25)(cid:12)%(cid:23) (cid:2) (cid:15)(cid:5)(cid:29)(cid:4)(cid:4)(cid:14)1(cid:3)* (cid:18)(cid:22)(cid:26)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:20)4(cid:11)(cid:12)(cid:13)(cid:14)?(cid:19)"%(cid:23) .(cid:15) (cid:15)(cid:16)(cid:29)(cid:4)(cid:4)(cid:14)1(cid:3)* (cid:18)(cid:22)(cid:26)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:20)4(cid:11)(cid:12)(cid:13)(cid:14)7(cid:13)(cid:25)(cid:12)%(cid:23) (cid:2)(cid:15) (cid:15)(cid:16)(cid:29)(cid:4)(cid:4)(cid:14)1(cid:3)* 7(cid:13)(cid:11)"(cid:14)(cid:24)(cid:23)(cid:19)(cid:20)4(cid:25)(cid:13) (cid:20) (cid:4)(cid:29)(cid:4)(cid:6) < (cid:4)(cid:29)(cid:16)(cid:4) 7(cid:13)(cid:11)"(cid:14)?(cid:19)"%(cid:23) ( (cid:4)(cid:29)(cid:15)- (cid:4)(cid:29)(cid:15)@ (cid:4)(cid:29)(cid:16)- (cid:18)(cid:22)(cid:26)"(cid:14)(cid:2)(cid:21)(cid:11)$%(cid:14)(cid:7)(cid:25)(cid:12)(cid:26)(cid:13)(cid:14)(cid:24)(cid:22)(cid:10) (cid:4) (cid:15)(cid:15)> (cid:15)(cid:16)> (cid:15)-> (cid:18)(cid:22)(cid:26)"(cid:14)(cid:2)(cid:21)(cid:11)$%(cid:14)(cid:7)(cid:25)(cid:12)(cid:26)(cid:13)(cid:14)1(cid:22)%%(cid:22)& (cid:5) (cid:15)(cid:15)> (cid:15)(cid:16)> (cid:15)-> &(cid:31)(cid:13)(cid:6)(cid:12)’ (cid:15)(cid:29) (cid:30)(cid:19)(cid:25)(cid:14)(cid:15)(cid:14)(cid:31)(cid:19) !(cid:11)(cid:26)(cid:14)(cid:19)(cid:25)"(cid:13)#(cid:14)$(cid:13)(cid:11)%!(cid:21)(cid:13)(cid:14)&(cid:11)(cid:27)(cid:14)(cid:31)(cid:11)(cid:21)(cid:27)’(cid:14)(!%(cid:14)&! %(cid:14)((cid:13)(cid:14)(cid:26)(cid:22)(cid:20)(cid:11)%(cid:13)"(cid:14))(cid:19)%(cid:23)(cid:19)(cid:25)(cid:14)%(cid:23)(cid:13)(cid:14)(cid:23)(cid:11)%(cid:20)(cid:23)(cid:13)"(cid:14)(cid:11)(cid:21)(cid:13)(cid:11)(cid:29) (cid:16)(cid:29) *(cid:23)(cid:11)&$(cid:13)(cid:21) (cid:14)(cid:11)%(cid:14)(cid:20)(cid:22)(cid:21)(cid:25)(cid:13)(cid:21) (cid:14)(cid:11)(cid:21)(cid:13)(cid:14)(cid:22)(cid:10)%(cid:19)(cid:22)(cid:25)(cid:11)(cid:26)+(cid:14) (cid:19),(cid:13)(cid:14)&(cid:11)(cid:27)(cid:14)(cid:31)(cid:11)(cid:21)(cid:27)(cid:29) -(cid:29) (cid:2)(cid:19)&(cid:13)(cid:25) (cid:19)(cid:22)(cid:25) (cid:14)(cid:2)(cid:15)(cid:14)(cid:11)(cid:25)"(cid:14).(cid:15)(cid:14)"(cid:22)(cid:14)(cid:25)(cid:22)%(cid:14)(cid:19)(cid:25)(cid:20)(cid:26)!"(cid:13)(cid:14)&(cid:22)(cid:26)"(cid:14)$(cid:26)(cid:11) (cid:23)(cid:14)(cid:22)(cid:21)(cid:14)(cid:10)(cid:21)(cid:22)%(cid:21)! (cid:19)(cid:22)(cid:25) (cid:29)(cid:14)(cid:18)(cid:22)(cid:26)"(cid:14)$(cid:26)(cid:11) (cid:23)(cid:14)(cid:22)(cid:21)(cid:14)(cid:10)(cid:21)(cid:22)%(cid:21)! (cid:19)(cid:22)(cid:25) (cid:14) (cid:23)(cid:11)(cid:26)(cid:26)(cid:14)(cid:25)(cid:22)%(cid:14)(cid:13)#(cid:20)(cid:13)(cid:13)"(cid:14)(cid:4)(cid:29)(cid:16)/(cid:14)&&(cid:14)(cid:10)(cid:13)(cid:21)(cid:14) (cid:19)"(cid:13)(cid:29) (cid:5)(cid:29) (cid:2)(cid:19)&(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)(cid:19)(cid:25)(cid:12)(cid:14)(cid:11)(cid:25)"(cid:14)%(cid:22)(cid:26)(cid:13)(cid:21)(cid:11)(cid:25)(cid:20)(cid:19)(cid:25)(cid:12)(cid:14)(cid:10)(cid:13)(cid:21)(cid:14)(cid:7)(cid:3)(cid:18).(cid:14)0(cid:15)(cid:5)(cid:29)/(cid:18)(cid:29) 1(cid:3)*2 1(cid:11) (cid:19)(cid:20)(cid:14)(cid:2)(cid:19)&(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)(cid:29)(cid:14)(cid:24)(cid:23)(cid:13)(cid:22)(cid:21)(cid:13)%(cid:19)(cid:20)(cid:11)(cid:26)(cid:26)(cid:27)(cid:14)(cid:13)#(cid:11)(cid:20)%(cid:14)(cid:31)(cid:11)(cid:26)!(cid:13)(cid:14) (cid:23)(cid:22))(cid:25)(cid:14))(cid:19)%(cid:23)(cid:22)!%(cid:14)%(cid:22)(cid:26)(cid:13)(cid:21)(cid:11)(cid:25)(cid:20)(cid:13) (cid:29) (cid:8).32 (cid:8)(cid:13)$(cid:13)(cid:21)(cid:13)(cid:25)(cid:20)(cid:13)(cid:14)(cid:2)(cid:19)&(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)’(cid:14)! !(cid:11)(cid:26)(cid:26)(cid:27)(cid:14))(cid:19)%(cid:23)(cid:22)!%(cid:14)%(cid:22)(cid:26)(cid:13)(cid:21)(cid:11)(cid:25)(cid:20)(cid:13)’(cid:14)$(cid:22)(cid:21)(cid:14)(cid:19)(cid:25)$(cid:22)(cid:21)&(cid:11)%(cid:19)(cid:22)(cid:25)(cid:14)(cid:10)!(cid:21)(cid:10)(cid:22) (cid:13) (cid:14)(cid:22)(cid:25)(cid:26)(cid:27)(cid:29) (cid:18)(cid:19)(cid:20)(cid:21)(cid:22)(cid:20)(cid:23)(cid:19)(cid:10)(cid:24)(cid:13)(cid:20)(cid:23)(cid:25)(cid:22)(cid:26)(cid:22)(cid:12)(cid:27)(cid:2)(cid:21)(cid:11))(cid:19)(cid:25)(cid:12)*(cid:4)(cid:5)(cid:9)(cid:15)(cid:4)(cid:4)1 DS60001156J-page 408  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging  2009-2016 Microchip Technology Inc. DS60001156J-page 409

PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS60001156J-page 410  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging  2009-2016 Microchip Technology Inc. DS60001156J-page 411

PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS60001156J-page 412  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX 121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D A B NOTE 1 E (DATUM B) (DATUM A) 2X 0.10 C 2X 0.10 C TOP VIEW A DETAIL A A1 SIDE VIEW D1 e L K J H G F E1 E D C B DETAIL B A e BOTTOM VIEW Microchip Technology Drawing C04-148 Rev F Sheet 1 of 2  2009-2016 Microchip Technology Inc. DS60001156J-page 413

PIC32MX5XX/6XX/7XX 121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging C 0.10 C DETAIL A NX Øb 0.15 C A B 0.08 C DETAIL B Units MILLIMETERS Dimension Limits MIN NOM MAX Number of Contacts N 121 Contact Pitch e 0.80 BSC Overall Height A 1.00 1.10 1.20 Ball Height A1 0.25 0.30 0.35 Overall Width E 10.00 BSC Array Width E1 8.00 BSC Overall Length D 10.00 BSC Array Length D1 8.00 BSC Contact Diameter b 0.35 0.40 0.45 Notes: 1. Ball A1 visual index feature may vary, but must be located within the hatched area. 2. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. 3. The outer rows and colums of balls are located with respect to datums A and B. 4. Ball interface to package body: 0.37mm nominal diameter. Microchip Technology Drawing C04-148 Rev F Sheet 2 of 2 DS60001156J-page 414  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX  2009-2016 Microchip Technology Inc. DS60001156J-page 415

PIC32MX5XX/6XX/7XX DS60001156J-page 416  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX  2009-2016 Microchip Technology Inc. DS60001156J-page 417

PIC32MX5XX/6XX/7XX 124-Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging E E/2 X1 G4 X2 G3 E T2C2 G1 G5 X4 G2 SILK SCREEN W3 W2 C1 RECOMMENDED LAND PATTERN Units MILLIMETERS Dimension Limits MIN NOM MAX Contact Pitch E 0.50 BSC Pad Clearance G1 0.20 Pad Clearance G2 0.20 Pad Clearance G3 0.20 Pad Clearance G4 0.20 Contact to Center Pad Clearance (X4) G5 0.30 Optional Center Pad Width T2 6.60 Optional Center Pad Length W2 6.60 Optional Center Pad Chamfer (X4) W3 0.10 Contact Pad Spacing C1 8.50 Contact Pad Spacing C2 8.50 Contact Pad Width (X124) X1 0.30 Contact Pad Length (X124) X2 0.30 Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2193A DS60001156J-page 418  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX APPENDIX A: MIGRATING FROM PIC32MX3XX/4XX TO PIC32MX5XX/6XX/7XX DEVICES This appendix provides an overview of considerations For example, to clear a UART receive interrupt, the for migrating from PIC32MX3XX/4XX devices to the user application must first read the UART Receive PIC32MX5XX/6XX/7XX family of devices. The code register to clear the interrupt condition and then clear developed for the PIC32MX3XX/4XX devices can be the associated UxIF flag to clear the pending UART ported to the PIC32MX5XX/6XX/7XX devices after interrupt. In other words, the UxIF flag cannot be making the appropriate changes outlined below. cleared by software until the UART Receive register is read. A.1 DMA TableA-1 outlines the peripherals and associated interrupts that are implemented differently on PIC32MX5XX/6XX/7XX devices do not support PIC32MX5XX/6XX/7XX versus PIC32MX3XX/4XX stopping DMA transfers in Idle mode. devices. A.2 Interrupts In addition, on the SPI module, the IRQ numbers for the receive done interrupts were changed from 25 to 24 PIC32MX5XX/6XX/7XX devices have persistent and the transfer done interrupts were changed from 24 interrupts for some of the peripheral modules. This to 25. means that the interrupt condition for these peripherals must be cleared before the interrupt flag can be cleared. TABLE A-1: PIC32MX3XX/4XX VERSUS PIC32MX5XX/6XX/7XX INTERRUPT IMPLEMENTATION DIFFERENCES Module Interrupt Implementation Input Capture To clear an interrupt source, read the Buffer Result (ICxBUF) register to obtain the number of capture results in the buffer that are below the interrupt threshold (specified by ICI<1:0> bits). SPI Receive and transmit interrupts are controlled by the SRXISEL<1:0> and STXISEL<1:0> bits, respectively. To clear an interrupt source, data must be written to, or read from, the SPIxBUF register to obtain the number of data to receive/transmit below the level specified by the SRXISEL<1:0> and STXISEL<1:0> bits. UART TX interrupt will be generated as soon as the UART module is enabled. Receive and transmit interrupts are controlled by the URXISEL<1:0> and UTXISEL<1:0> bits, respectively. To clear an interrupt source, data must be read from, or written to, the UxRXREG or UxTXREG registers to obtain the number of data to receive/transmit below the level specified by the URXISEL<1:0> and UTXISEL<1:0> bits. ADC All samples must be read from the result registers (ADC1BUFx) to clear the interrupt source. PMP To clear an interrupt source, read the Parallel Master Port Data Input/Output (PMDIN/PMDOUT) register.  2009-2016 Microchip Technology Inc. DS60001156J-page 419

PIC32MX5XX/6XX/7XX APPENDIX B: REVISION HISTORY Revision A (August 2009) This is the initial released version of this document. Revision B (November 2009) The revision includes the following global update: Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits. Other major changes are referenced by their respective chapter/section in TableB-1. TABLE B-1: MAJOR SECTION UPDATES Section Name Update Description “High-Performance, USB, CAN and Added the following devices: Ethernet 32-bit Flash - PIC32MX575F256L Microcontrollers” - PIC32MX695F512L - PIC32MX695F512H The 100-pin TQFP pin diagrams have been updated to reflect the current pin name locations (see the “Pin Diagrams” section). Added the 121-pin Ball Grid Array (XBGA) pin diagram. Updated Table1: “PIC32 USB and CAN – Features” Added the following tables: - Table4: “Pin Names: PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L and PIC32MX575F512L Devices” - Table5: “Pin Names: PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L and PIC32MX695F512L Devices” - Table6: “Pin Names: PIC32MX775F256L, PIC32MX775F512L and PIC32MX795F512L Devices” Updated the following pins as 5V tolerant: - 64-pin QFN: Pin 36 (D-/RG3) and Pin 37 (D+/RG2) - 64-pin TQFP: Pin 36 (D-/RG3) and Pin 37 (D+/RG2) - 100-pin TQFP: Pin 56 (D-/RG3) and Pin 57 (D+/RG2) 1.0“Guidelines for Getting Started Removed the last sentence of 1.3.1“Internal Regulator Mode”. with 32-bit Microcontrollers” Removed Section 2.3.2 “External Regulator Mode” DS60001156J-page 420  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE B-1: MAJOR SECTION UPDATES (CONTINUED) Section Name Update Description 4.0“Memory Organization” Updated all register tables to include the Virtual Address and All Resets columns. Updated the title of Figure4-4 to include the PIC32MX575F256L device. Updated the title of Figure4-6 to include the PIC32MX695F512L and PIC32MX695F512H devices. Also changed PIC32MX795F512L to PIC32MX795F512H. Updated the title of Table4-3 to include the PIC32MX695F512H device. Updated the title of Table4-5 to include the PIC32MX575F5256L device. Updated the title of Table4-6 to include the PIC32MX695F512L device. Reversed the order of Table4-11 and Table4-12. Reversed the order of Table4-14 and Table4-15. Updated the title of Table4-15 to include the PIC32MX575F256L and PIC32MX695F512L devices. Updated the title of Table4-45 to include the PIC32MX575F256L device. Updated the title of Table4-47 to include the PIC32MX695F512H and PIC32MX695F512L devices. 1.0“I/O Ports” Updated the second paragraph of 1.1.2“Digital Inputs” and removed Table 12-1. 22.0“10-bit Analog-to-Digital Updated the ADC Conversion Clock Period Block Diagram (see Figure22-2). Converter (ADC)” 1.0“Special Features” Removed references to the ENVREG pin in 1.3“On-Chip Voltage Regulator”. Updated the first sentence of 1.3.1“On-Chip Regulator and POR” and 1.3.2“On-Chip Regulator and BOR”. Updated the Connections for the On-Chip Regulator (see Figure1-2). 1.0“Electrical Characteristics” Updated the Absolute Maximum Ratings and added Note 3. Added Thermal Packaging Characteristics for the 121-pin XBGA package (see Table1-3). Updated the Operating Current (IDD) DC Characteristics (see Table1-5). Updated the Idle Current (IIDLE) DC Characteristics (see Table1-6). Updated the Power-Down Current (IPD) DC Characteristics (see Table1-7). Removed Note 1 from the Program Flash Memory Wait State Characteristics (see Table1-12). Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics, changing SP52 to SP35 between the MSb and Bit 14 on SDOx (see Figure1- 13). 1.0“Packaging Information” Added the 121-pin XBGA package marking information and package details. “Product Identification System” Added the definition for BG (121-lead 10x10x1.1 mm, XBGA). Added the definition for Speed.  2009-2016 Microchip Technology Inc. DS60001156J-page 421

PIC32MX5XX/6XX/7XX Revision C (February 2010) The revision includes the following updates, as described in TableB-2: TABLE B-2: MAJOR SECTION UPDATES Section Name Update Description “High-Performance, USB, CAN Added the following devices: and Ethernet 32-bit Flash • PIC32MX675F256H Microcontrollers” • PIC32MX775F256H • PIC32MX775F512H • PIC32MX675F256L • PIC32MX775F256L • PIC32MX775F512L Added the following pins: • EREFCLK • ECRSDV • AEREFCLK • AECRSDV Added the EREFCLK and ECRSDV pins to Table5 and Table6. 1.0“Device Overview” Updated the pin number pinout I/O descriptions for the following pin names in Table1-1: • SCL3 • SCL5 • RTCC • C1OUT • SDA3 • SDA5 • CVREF- • C2IN- • SCL2 • TMS • CVREF+ • C2IN+ • SDA2 • TCK • CVREFOUT • C2OUT • SCL4 • TDI • C1IN- • PMA0 • SDA4 • TDO • C1IN+ • PMA1 Added the following pins to the Pinout I/O Descriptions table (Table1-1): • EREFCLK • ECRSDV • AEREFCLK • AECRSDV 4.0“Memory Organization” Added new devices and updated the virtual and physical memory map values in Figure4-4. Added new devices to Figure4-5. Added new devices to the following register maps: • Table4-3, Table4-4, Table4-6 and Table4-7 (Interrupt Register Maps) • Table4-12 (I2C2 Register Map) • Table4-15 (SPI1 Register Map) • Table4-24 through Table4-35 (PORTA-PORTG Register Maps) • Table4-36 and Table4-37 (Change Notice and Pull-up Register Maps) • Table4-45 (CAN1 Register Map) • Table4-46 (CAN2 Register Map) • Table4-47 (Ethernet Controller Register Map) Changed the bits named POSCMD to POSCMOD in Table4-42 (Device Configuration Word Summary). 1.0“Special Features” Changed all references of POSCMD to POSCMOD in the Device Configuration Word 1 register (see Register1-2). Appendix A:“Migrating from Added the new section Appendix. PIC32MX3XX/4XX to PIC32MX5XX/6XX/7XX Devices” DS60001156J-page 422  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX Revision D (May 2010) The revision includes the following updates, as described in TableB-3: TABLE B-3: MAJOR SECTION UPDATES Section Name Update Description “High-Performance, USB, CAN Updated the initial Flash memory range to 64K. and Ethernet 32-bit Flash Updated the initial SRAM memory range to 16K. Microcontrollers” Added the following devices (see Table1, Table2, Table3 and the Pin Diagrams): • PIC32MX534F064H • PIC32MX564F064H • PIC32MX664F064H • PIC32MX564F128H • PIC32MX664F128H • PIC32MX764F128H • PIC32MX534F064L • PIC32MX564F064L • PIC32MX664F064L • PIC32MX564F128L • PIC32MX664F128L • PIC32MX764F128L 4.0“Memory Organization” Added new Memory Maps (Figure4-1, Figure4-2 and Figure4-3). The bit named I2CSIF was changed to I2C1SIF and the bit named I2CBIF was changed to I2C1BIF in the Interrupt Register Map tables (Table4-2, Table4-3, Table4-4, Table4-5, Table4-6 and Table4-7) Added the following devices to the Interrupt Register Map (Table4-2): • PIC32MX534F064H • PIC32MX564F064H • PIC32MX564F128H Added the following devices to the Interrupt Register Map (Table4-3): • PIC32MX664F064H • PIC32MX664F128H Added the following device to the Interrupt Register Map (Table4-4): • PIC32MX764F128H Added the following devices to the Interrupt Register Map (Table4-5): • PIC32MX534F064L • PIC32MX564F064L • PIC32MX564F128L Added the following devices to the Interrupt Register Map (Table4-6): • PIC32MX664F064L • PIC32MX664F128L Added the following device to the Interrupt Register Map (Table4-7): • PIC32MX764F128L  2009-2016 Microchip Technology Inc. DS60001156J-page 423

PIC32MX5XX/6XX/7XX TABLE B-3: MAJOR SECTION UPDATES (CONTINUED) Section Name Update Description 4.0“Memory Organization” Made the following bit name changes in the I2C1, I2C3, I2C4 and I2C5 Register (Continued) Map (Table4-11): • I2C3BRG SFR: I2C1BRG was changed to I2C3BRG • I2C4BRG SFR: I2C1BRG was changed to I2C4BRG • I2C5BRG SFR: I2C1BRG was changed to I2C5BRG • I2C4TRN SFR: I2CT1DATA was changed to I2CT2ADATA • I2C4RCV SFR: I2CR2DATA was changed to I2CR2ADATA • I2C5TRN SFR: I2CT1DATA was changed to I2CT3ADATA • I2C5RCV SFR: I2CR1DATA was changed to I2CR3ADATA Added the RTSMD bit and UEN<1:0> bits to the UART1A, UART1B, UART2A, UART2B, UART3A and UART3B Register Map (Table4-13) Added the SIDL bit to the DMA Global Register Map (Table4-17). Changed the CM bit to CMR in the System Control Register Map (Table4-23). Added the following devices to the I2C2, SPI1, PORTA, PORTC, PORTD, PORTE, PORTF, PORTG, Change Notice and Pull-up Register Maps (Table4-12, Table4-14, Table4-24, Table4-27, Table4-29, Table4-31, Table4-33, Table4-35 and Table4-36): • PIC32MX534F064L • PIC32MX564F064L • PIC32MX564F128L • PIC32MX664F064L • PIC32MX664F128L • PIC32MX764F128L Added the following devices to the PORTC, PORTD, PORTE, PORTF, PORTG, Change Notice and Pull-up Register Maps (Table4-26, Table4-28, Table4-30, Table4-32, Table4-34 and Table4-37): • PIC32MX534F064H • PIC32MX564F064H • PIC32MX564F128H • PIC32MX664F064H • PIC32MX664F128H • PIC32MX764F128H Added the following devices to the CAN1 Register Map (Table4-45): • PIC32MX534F064H • PIC32MX564F064H • PIC32MX564F128H • PIC32MX764F128H • PIC32MX534F064L • PIC32MX564F064L • PIC32MX564F128L • PIC32MX764F128L Added the following devices to the Ethernet Controller Register Map (Table4-47): • PIC32MX664F064H • PIC32MX664F128H • PIC32MX764F128H • PIC32MX664F064L • PIC32MX664F128L • PIC32MX764F128L DS60001156J-page 424  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE B-3: MAJOR SECTION UPDATES (CONTINUED) Section Name Update Description 1.0“Electrical Characteristics” Updated the Typical and Maximum DC Characteristics: Operating Current (IDD) in Table1-5. Updated the Typical and Maximum DC Characteristics: Idle Current (IIDLE) in Table1-6. Updated the Typical and Maximum DC Characteristics: Power-Down Current (IPD) in Table1-7. Added DC Characteristics: Program Memory parameters D130a and D132a in Table1-11. Added the Internal Voltage Reference parameter (D305) to the Comparator Specifications in Table1-13.  2009-2016 Microchip Technology Inc. DS60001156J-page 425

PIC32MX5XX/6XX/7XX Revision E (July 2010) Revision F (December 2010) Minor corrections were incorporated throughout the The revision includes the following global update: document. VCAP/VDDCORE has been changed to: VCAP/VCORE Other major changes are referenced by their respective chapter/section in TableB-4: TABLE B-4: SECTION UPDATES Section Name Update Description High-Performance, USB, CAN and Removed the following Analog Feature: FV tolerant input pins Ethernet 32-bit Flash Microcontrollers (digital pins only) Updated the term LIN 1.2 support as LIN support for the peripheral feature: Six UART modules with: RS-232, RS-485, and LIN support 1.0“Device Overview” Updated the value of 64-pin QFN/TQFP pin number for the following pin names: PMA0, PMA1 and ECRSDV 4.0“Memory Organization” The following register map tables were updated: • Table4-2: - Changed bits 24/8 to I2C5BIF in IFS1 - Changed bits 24/8-24/10 to SRIPL<2:0> in INTSTAT - Changed bits 25/9/-24/8 to U5IS<1:0> in IPC12 - Added note 2 • Table4-3 through Table4-7: - Changed bits 24/8-24/10 to SRIPL<2:0> in INTSTAT - Changed bits 25/9-24/8 to U5IS<1:0> in IPC12 • Table4-3: - Changed bits 24/8 to I2C5BIF in IFS1 - Added note 2 • Table4-4: - Changed bits 24/8 to I2C5BIF in IFS1 - Changed bits 24/8 to I2C5BIE in IEC1 - Added note 2 references • Table4-5: - Changed bits 24/8 to I2C5BIF in IFS1 - Changed bits 24/8 to I2C5BIE in IEC1 - Added note 2 references • Table4-6: - Changed bit 24/8 to I2C5BIF in IFS1 - Updated the bit value of bit 24/8 as I2C5BIE for the IEC1 register. - Added note 2 • Table4-7: - Changed bit 25/9 to I2C5SIF in IFS1 - Changed bit 24/8 as I2C5BIF in IFS1 - Changed bit 25/9 as I2C5SIE in IEC1 - Changed bit 24/8 as I2C5BIE in IEC1 - Added note 2 references • Added note 2 to Table4-8 • Updated the All Resets values for the following registers in Table4-11: I2C3CON, I2C4CON, I2C5CON and I2C1CON. • Updated the All Resets values for the I2C2CON register in Table4-12 DS60001156J-page 426  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX TABLE B-4: SECTION UPDATES (CONTINUED) Section Name Update Description 4.0“Memory Organization” • Table4-13: (Continued) - Changed register U4RG to U1BRG - Changed register U5RG to U3BRG - Changed register U6RG to U2BRG • Table4-14: - Updated the All Resets values for the following registers: SPI3STAT, SPI2STAT and SPI4STAT • Table4-15: Updated the All Resets values for the SPI1STAT register • Table4-17: Added note 2 • Table4-19: Added note 2 • Table4-20: Updated the All Resets values for the CM1CON and CM2CON registers • Table4-21: - Updated the All Resets values as 0000 for the CVRCON register - Updated note 2 • Table4-38: Updated the All Resets values for the PMSTAT register • Table4-40: Updated the All Resets values for the CHECON and CHETAG registers • Table4-42: Updated the bit value of bit 29/13 as ‘—’ for the DEVCFG3 register • Table4-44: - Updated the note references in the entire table - Changed existing note 1 to note 4 - Added notes 1, 2 and 3 - Changed bits 23/7 in U1PWRC to UACTPND - Changed register U1DDR to U1ADDR - Changed register U4DTP1 to U1BDTP1 - Changed register U4DTP2 to U1BDTP2 - Changed register U4DTP3 to U1BDTP3 • Table4-45: - Updated the All Resets values for the C1CON and C1VEC registers - Changed bits 30/14 in C1CON to FRZ - Changed bits 27/11 in C1CON to CANBUSY - Changed bits 22/6-16/0 in C1VEC to ICODE<6:0> - Changed bits 22/6-16/0 in C1TREC to RERRCNT<7:0> - Changed bits 31/15-24/8 in C1TREC to TERRCNT<7:0> • Table4-46: - Updated the All Resets values for the C2CON and C2VEC registers - Changed bits 30/14 in C1CON to FRZ - Changed bits 27/11 in C1CON to CANBUSY - Changed bits 22/6-16/0 in C1VEC register to ICODE<6:0> - Changed bits 22/6-16/0 in C1TREC register to RERRCNT<7:0> - Changed bits 31/15-24/8 in C1TREC to TERRCNT<7:0>  2009-2016 Microchip Technology Inc. DS60001156J-page 427

PIC32MX5XX/6XX/7XX TABLE B-4: SECTION UPDATES (CONTINUED) Section Name Update Description 7.0“Interrupt Controller” • Updated the following Interrupt Sources in Table7-1: - Changed IC2AM – I2C4 Master Event to: IC4M – I2C4 Master Event - Changed IC3AM – I2C5 Master Event to: IC5M – I2C4 Master Event - Changed U1E – UART1A Error to: U1E – UART1 Error - Changed U4E – UART1B Error to: U4E – UART4 Error - Changed U1RX – UART1A Receiver to: U1RX – UART1 Receiver - Changed U4RX – UART1B Receiver to: U4RX – UART4 Receiver - Changed U1TX – UART1A Transmitter to: U1TX – UART1 Transmitter - Changed U4TX – UART1B Transmitter to: U4TX – UART4 Transmitter - Changed U6E – UART2B Error to: U6E – UART6 Error - Changed U6RX – UART2B Receiver to: U6RX – UART6 Receiver - Changed U6TX – UART2B Transmitter to: U6TX – UART6 Transmitter - Changed U5E – UART3B Error to: U5E – UART5 Error - Changed U5RX – UART3B Receiver to: U5RX – UART5 Receiver - Changed U5TX – UART3B Transmitter to: U5TX – UART5 Transmitter 1.0“Oscillator Configuration” Updated Figure1-1 1.0“Output Compare” Updated Figure1-1 1.0“Ethernet Controller” Added a note on using the Ethernet controller pins (see note above Table1-3) 1.0“Comparator Voltage Reference Updated the note in Figure1-1 (CVREF)” 1.0“Special Features” Updated the bit description for bit 10 in Register1-2 Added notes 1 and 2 to Register1-4 1.0“Electrical Characteristics” Updated the Absolute Maximum Ratings: • Voltage on any 5V tolerant pin with respect to VSS when VDD < 2.3V - 0.3V to +3.6V was updated • Voltage on VBUS with respect to VSS - 0.3V to +5.5V was added Updated the maximum value of DC16 as 2.1 in Table1-4 Updated the Typical values for the following parameters: DC20b, DC20c, DC21c, DC22c and DC23c (see Table1-5) Updated Table1-11: • Removed the following DC Characteristics: Programming temperature 0°C  TA  +70°C (25°C recommended) • Updated the Minimum value for the Parameter number D131 as 2.3 • Removed the Conditions for the following Parameter numbers: D130, D131, D132, D135, D136 and D137 • Updated the condition for the parameter number D130a and D132a Updated the Minimum, Typical and Maximum values for parameter D305 in Table1-13 Added note 2 to Table1-18 Updated the Minimum and Maximum values for parameter F20b (see Table1-19) Updated the following figures: • Figure1-4 • Figure1-9 • Figure1-22 • Figure1-23 Appendix A:“Migrating from Removed the A.3 Pin Assignments sub-section. PIC32MX3XX/4XX to PIC32MX5XX/ 6XX/7XX Devices” DS60001156J-page 428  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX Revision G (May 2011) This revision also includes minor typographical and formatting changes throughout the data sheet text. The revision includes the following global updates: Major updates are referenced by their respective • All references to VDDCORE/VCAP have been section in TableB-5. changed to: VCORE/VCAP • Added references to the new V-Temp temperature range: -40ºC to +105ºC TABLE B-5: MAJOR SECTION UPDATES Section Name Update Description High-Performance, USB, CAN and Removed the shading for all D- and D+ pins in all pin diagrams. Ethernet 32-bit Flash Microcontrollers 1.0“Device Overview” Updated the VBUS description in Table1-1. 1.0“Guidelines for Getting Started with Added “Alternatively, inputs can be reserved by connecting the pin 32-bit Microcontrollers” to Vss through a 1k to 10k resistor and configuring the pin as an input.”. 4.0“Memory Organization” Added Note 3 to the Interrupt Register Map tables (see Table4-2 through Table4-7. 22.0“10-bit Analog-to-Digital Converter Updated the ADC Conversion Clock Period Block Diagram (see (ADC)” Figure22-2). 1.0“Comparator Voltage Reference Updated the Comparator Voltage Reference Block Diagram (see (CVREF)” Figure1-1). 1.0“Special Features” Removed the second paragraph from 1.3.1“On-Chip Regulator and POR”. 1.0“Electrical Characteristics” Added the new V-Temp temperature range (-40ºC to +105ºC) to the heading of all specification tables. Updated the Ambient temperature under bias, updated the Voltage on any 5V tolerant pin with respect to VSS when VDD < 2.3V, and added Voltage on VBUS with respect to Vss in Absolute Maximum Ratings. Added the characteristic, DC5a to Operating MIPS vs. Voltage (see Table1-1). Updated or added the following parameters to the Operating Current (IDD) DC Characteristics: DC20, DC20b, DC23, and DC23b (see Table1- 5). Added the following parameters to the Idle Current (IIDLE) DC Characteristics: DC30b, DC33b, DC34c, DC35c, and DC36c (see Table1-6). Added the following parameters to the Power-down Current (IPD) DC Characteristics: DC40g, DC40h, DC40i, and DC41g, (see Table1-7). Added parameter IM51 and Note 3 to the I2Cx Bus Data Timing Requirements (Master Mode) (see Table1-32). Updated the 10-bit ADC Conversion Rate Parameters (see Table1-37). Updated parameter AD57 (TSAMP) in the Analog-to-Digital Conversion Timing Requirements (see Table1-38). 1.0“Packaging Information” Updated the 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] packing diagram. Product Identification System Added the new V-Temp (V) temperature information.  2009-2016 Microchip Technology Inc. DS60001156J-page 429

PIC32MX5XX/6XX/7XX Revision H (March 2013) • All occurrences of VUSB have been updated to: VUSB3V3 This revision includes the following global updates: This revision also includes minor typographical and • Where applicable, control register tables have formatting changes throughout the data sheet text. been added to the document All other significant changes are referenced by their • All references to VCORE were removed respective section in TableB-6. • All occurrences of XBGA have been updated to: TFBGA TABLE B-6: MAJOR SECTION UPDATES Section Name Update Description “32-bit Microcontrollers Updated Core features. (up to 512 KB Flash and 128 Added the VTLA to the Packages table. KB SRAM) with Graphics Added Note 5 to the Feature tables (see Table1, Table2, and Table3). Interface, USB, CAN, and Ethernet” Section2.0 “Guidelines for The Recommended Minimum Connection was updated (see Figure2-1). Getting Started with 32-bit MCUs” Section5.0 “Flash Program A note regarding Flash page size and row size was added. Memory” Section8.0 “Oscillator The RP resistor was added and Note 1 was updated in the Oscillator Diagram (see Configuration” Figure8-1). Section31.0 “Electrical Added Note 1 to Operating MIPS vs. Voltage (see Table31-1). Characteristics” Added the VTLA package to Thermal Packaging Characteristics (see Table31-3). Added Note 2 to DC Temperature and Voltage Specifications (see Table31-4). Updated Note 2 in the Operating Current DC Characteristics (see Table31-5). Updated Note 1 in the Idle Current DC Characteristics (see Table31-6). Updated Note 1 in the Power-Down Current DC Characteristics (see Table31-7). Updated the I/O Pin Output Specifications (see Table31-9). Added Note 2 to the BOR Electrical Characteristics (see Table31-10). Added Note 3 to the Comparator Specifications (see Table31-13). Parameter D320 (VCORE) was removed (see Table31-15). Updated the Minimum value for parameter OS50 (see Table31-18). Parameter SY01 (TPWRT) was removed (see Table31-22). Note 1 was added and the conditions for parameters ET3, ET4, ET7, and ET9 were updated in the Ethernet Module Specifications (see Table31-35). Added Note 6 to the ADC Module Specifications (see Table31-36). Added Note 3 to the 10-bit ADC Conversion Rate Parameter (see Table31-37). Added Note 4 to the Analog-to-Digital Conversion Timing Requirements (see Table31-38). The following figures were added: Figure 31-19:“MDIO Sourced by the PIC32 Device” Figure 31-21:“Transmit Signal Timing Relationships at the MII” Figure 31-22:“Receive Signal Timing Relationships at the MII” Section32.0 “DC and AC This new chapter was added. Device Characteristics Graphs” Section33.0 “Packaging Added the 124-lead VTLA package information (see Section 33.1“Package Information” Marking Information” and Section 33.2“Package Details”). “Product Identification Added the TL definition for VTLA packages. System” DS60001156J-page 430  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX Revision J (September 2016) This revision includes typographical and formatting updates throughout the data sheet text. In addition, all SFR Register maps were moved from the Memory chapter to their respective peripheral chapters. All other major updates are referenced by their respective section in TableB-7. TABLE B-7: MAJOR SECTION UPDATES Section Name Update Description “32-bit Microcontrollers (up to 512 Updated Communication Interfaces for LIN support to 2.1. KB Flash and 128 KB SRAM) with Updated Qualification and Class B Support to AEC-Q100 REVH. Graphics Interface, USB, CAN, and Ethernet” 2.0“Guidelines for Getting Started The Recommended Minimum Connection diagram was updated (see with 32-bit MCUs” Figure2-1). The Example of MCLR Pin Connections diagram was updated (see Figure2- 2). 2.11“EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations” was added. 4.0“Memory Organization” The SFR Memory Map was added (see Table4-1). 7.0“Interrupt Controller” The UART interrupt sources were updated in the Interrupt IRQ, Vector, and Bit location table (see Table7-1). 8.0“Oscillator Configuration” Updated the bit value definitions for the TUN<5:0> bits in the OCSTUN register (see Register8-2). 15.0“Watchdog Timer (WDT)” The content in this chapter was relocated from the Special Features chapter to its own chapter. 18.0“Serial Peripheral Interface The register map tables were combined (see Table18-1). (SPI)” 19.0“Inter-Integrated Circuit (I2C)” The register map tables were combined (see Table19-1). The PMADDR register was updated (see Register21-3). 21.0“Parallel Master Port (PMP)” The bit value definitions for the ADRMUX<1:0> and CSF<1:0> bits in the PMCON register were updated (see Register21-1). 29.0“Special Features” Removed the duplicate bit value definition for ‘010’ in the DEVCFG2 register (see Register29-3). Note 1 was added to the Programming, Debugging, and Trace Ports block diagram (see Figure29-2). The DDPCON register was relocated (see Register29-6). The Device ID, Revision, and Configuration Summary was updated (see Table29-2).  2009-2016 Microchip Technology Inc. DS60001156J-page 431

PIC32MX5XX/6XX/7XX TABLE B-7: MAJOR SECTION UPDATES (CONTINUED) Section Name Update Description 32.0“Electrical Characteristics” Note 4 in the Operating Current specification was updated (see Table32-5). Note 3 in the Idle Current specification was updated (see Table32-6). Note 6 references in the Power-Down Current specification were updated (see Table32-7). The Program Memory parameters, D135, D136, and D137, and Note 4 were updated (see Table32-11). The Voltage Reference Specifications were updated (see Table32-14). Parameter DO50 (Cosco) was added to the Capacitive Loading Requirements on Output Pins (see Table32-16). The EJTAG Timing Characteristics were updated (see Figure32-28). The maximum value for parameters ET13 and ET14 were updated in the Ethernet Module Specifications (see Table32-35). Parameter PM7 (TDHOLD) was updated (see Table32-40). 34.0“Packaging Information” Packaging diagrams were updated. Product Identification System The Speed and Program Memory Size were updated and Note 1 was added. DS60001156J-page 432  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX INDEX A Graphs and Tables...................................................399 DC Characteristics............................................................352 AC Characteristics............................................................366 I/O Pin Input Specifications......................................360 10-bit Conversion Rate Parameters..........................390 I/O Pin Output Specifications....................................362 ADC Specifications...................................................388 Analog-to-Digital Conversion Requirements.............391 Idle Current (IIDLE)....................................................356 EJTAG Timing Requirements...................................398 Power-Down Current (IPD)........................................358 Program Memory......................................................363 Ethernet....................................................................386 Temperature and Voltage Specifications..................353 Internal FRC Accuracy..............................................368 Development Support.......................................................347 Internal RC Accuracy................................................369 Direct Memory Access (DMA) Controller..........................111 OTG Electrical Specifications...................................397 Parallel Master Port Read Requirements.................395 E Parallel Master Port Write.........................................396 Electrical Characteristics..................................................351 Parallel Master Port Write Requirements..................396 AC.............................................................................366 Parallel Slave Port Requirements.............................394 Errata..................................................................................23 PLL Clock Timing......................................................368 Ethernet Controller............................................................279 Analog-to-Digital Converter (ADC)....................................231 ETHPMM0 (Ethernet Controller Pattern Match Mask 0)...289 B ETHPMM1 (Ethernet Controller Pattern Match Mask 1)...289 External Clock Block Diagrams Timer1 Timing Requirements...................................372 ADC1 Module............................................................231 Timer2, 3, 4, 5 Timing Requirements.......................373 Comparator I/O Operating Modes.............................323 Timing Requirements...............................................367 Comparator Voltage Reference................................327 Connections for On-Chip Voltage Regulator.............343 F Core and Peripheral Modules.....................................25 Flash Program Memory......................................................63 DMA..........................................................................111 RTSP Operation.........................................................63 Ethernet Controller....................................................279 I2C Circuit.................................................................196 I Input Capture............................................................181 I/O Ports...........................................................................157 Interrupt Controller......................................................73 Parallel I/O (PIO)......................................................158 JTAG Programming, Debugging and Trace Ports....343 Input Capture....................................................................181 MCU............................................................................41 Instruction Set...................................................................345 Output Compare Module...........................................185 Inter-Integrated Circuit (I2C).............................................195 PIC32 CAN Module...................................................241 Internal Voltage Reference Specifications........................365 PMP Pinout and Connections to External Devices...211 Internet Address...............................................................437 Prefetch Module........................................................101 Interrupt Controller..............................................................73 Reset System..............................................................69 IRG, Vector and Bit Location......................................74 RTCC........................................................................221 SPI Module...............................................................189 M Timer1.......................................................................167 MCU Timer2/3/4/5 (16-Bit).................................................171 Architecture Overview................................................42 Typical Multiplexed Port Structure............................157 Coprocessor 0 Registers............................................43 UART........................................................................203 Core Exception Types................................................44 WDT and Power-up Timer........................................177 EJTAG Debug Support...............................................45 Brown-out Reset (BOR) Power Management...................................................45 and On-Chip Voltage Regulator................................343 MCU Module.......................................................................41 C Memory Map.......................................................................52 Memory Maps.............................................48, 49, 50, 51, 53 C Compilers Memory Organization.........................................................47 MPLAB XC................................................................348 Layout.........................................................................47 Clock Diagram....................................................................95 Microchip Internet Web Site..............................................437 Comparator Migration Specifications............................................................364 PIC32MX3XX/4XX to PIC32MX5XX/6XX/7XX.........419 Comparator Module..........................................................323 MPASM Assembler...........................................................348 Comparator Voltage Reference (CVref.............................327 MPLAB Assembler, Linker, and Librarian.........................348 Configuration Bits..............................................................333 MPLAB ICD 3 In-Circuit Debugger System......................349 Controller Area Network (CAN).........................................241 MPLAB PM3 Device Programmer....................................349 CPU Module........................................................................37 MPLAB REAL ICE In-Circuit Emulator System................349 Customer Change Notification Service.............................437 MPLAB X Integrated Development Environment Software.... Customer Notification Service...........................................437 347 Customer Support.............................................................437 MPLINK Object Linker/MPLIB Object Librarian................348 D O DC and AC Characteristics Open-Drain Configuration.................................................158  2009-2016 Microchip Technology Inc. DS60001156J-page 433

PIC32MX5XX/6XX/7XX Oscillator Configuration.......................................................95 CiFLTCON4 (CAN Filter Control 4)..........................264 Output Compare................................................................185 CiFLTCON5 (CAN Filter Control 5)..........................266 CiFLTCON6 (CAN Filter Control 6)..........................268 P CiFLTCON7 (CAN Filter Control 7)..........................270 Packaging.........................................................................401 CiFSTAT (CAN FIFO Status)....................................253 Details.......................................................................403 CiINT (CAN Interrupt)...............................................250 Marking.....................................................................401 CiRXFn (CAN Acceptance Filter ‘n’).........................272 Parallel Master Port (PMP)...............................................211 CiRXMn (CAN Acceptance Filter Mask ‘n’)..............255 PIC32 Family USB Interface Diagram...............................134 CiRXOVF (CAN Receive FIFO Overflow Status).....254 PICkit 3 In-Circuit Debugger/Programmer........................349 CiTMR (CAN Timer).................................................254 Pinout I/O Descriptions (table)............................................26 CiTREC (CAN Transmit/Receive Error Count).........253 Power-on Reset (POR) CiVEC (CAN Interrupt Code)....................................252 and On-Chip Voltage Regulator................................343 CMSTAT (Comparator Control Register)..................326 Power-Saving Features.....................................................331 CMxCON (Comparator ’x’ Control)...........................325 CPU Halted Methods................................................331 CNCON (Change Notice Control).............................166 Operation..................................................................331 CVRCON (Comparator Voltage Reference Control) 329 with CPU Running.....................................................331 DCHxCON (DMA Channel ’x’ Control).....................124 Prefetch Cache.................................................................101 DCHxCPTR (DMA Channel ’x’ Cell Pointer).............131 Program Flash Memory DCHxCSIZ (DMA Channel ’x’ Cell-Size)..................131 Wait State Characteristics.........................................363 DCHxDAT (DMA Channel ’x’ Pattern Data)..............132 DCHxDPTR (Channel ’x’ Destination Pointer)..........130 R DCHxDSA (DMA Channel ’x’ Destination Real-Time Clock and Calendar (RTCC)............................221 Start Address)...................................................128 Register Maps.............................................................55–283 DCHxDSIZ (DMA Channel ’x’ Destination Size).......129 Registers DCHxECON (DMA Channel ’x’ Event Control).........125 AD1CHS (ADC Input Select)....................................239 DCHxINT (DMA Channel ’x’ Interrupt Control).........126 AD1CON1 (ADC Control 1)......................................235 DCHxSPTR (DMA Channel ’x’ Source Pointer)........130 AD1CON2 (ADC Control 2)......................................237 DCHxSSA (DMA Channel ’x’ Source Start Address)128 AD1CON3 (ADC Control 3)......................................238 DCHxSSIZ (DMA Channel ’x’ Source Size)..............129 AD1CSSL (ADC Input Scan Select).........................240 DCRCCON (DMA CRC Control)...............................121 ALRMDATE (Alarm Date Value)...............................230 DCRCDATA (DMA CRC Data).................................123 ALRMTIME (Alarm Time Value)...............................229 DCRCXOR (DMA CRCXOR Enable).......................123 BMXBOOTSZ (Boot Flash (IFM) Size).......................61 DDPCON (Debug Data Port Control).......................342 BMXCON (Bus Matrix Configuration).........................56 DEVCFG0 (Device Configuration Word 0.................335 BMXDKPBA (Data RAM Kernel Program DEVCFG1 (Device Configuration Word 1.................337 Base Address)....................................................57 DEVCFG2 (Device Configuration Word 2.................339 BMXDRMSZ (Data RAM Size)...................................60 DEVCFG3 (Device Configuration Word 3.................341 BMXDUDBA (Data RAM User Data Base Address)...58 DEVID (Device and Revision ID)..............................342 BMXDUPBA (Data RAM User Program DMAADDR (DMA Address)......................................120 Base Address)....................................................59 DMACON (DMA Controller Control).........................119 BMXPFMSZ (Program Flash (PFM) Size)..................61 DMASTAT (DMA Status)..........................................120 BMXPUPBA (Program Flash (PFM) User Program EMAC1CFG1 (Ethernet Controller MAC Configuration 1) Base Address)....................................................60 306 CHEACC (Cache Access)........................................104 EMAC1CFG2 (Ethernet Controller MAC Configuration 2) CHECON (Cache Control)........................................103 307 CHEHIT (Cache Hit Statistics)..................................109 EMAC1CLRT (Ethernet Controller MAC Collision Win- CHELRU (Cache LRU).............................................108 dow/Retry Limit)................................................311 CHEMIS (Cache Miss Statistics)..............................109 EMAC1IPGR (Ethernet Controller MAC Non-Back-to- CHEMSK (Cache TAG Mask)...................................106 Back Interpacket Gap)......................................310 CHETAG (Cache TAG).............................................105 EMAC1IPGT (Ethernet Controller MAC Back-to-Back In- CHEW0 (Cache Word 0)...........................................106 terpacket Gap)..................................................309 CHEW1 (Cache Word 1)...........................................107 EMAC1MADR (Ethernet Controller MAC MII Manage- CHEW2 (Cache Word 2)...........................................107 ment Address)..................................................317 CHEW3 (Cache Word 3)...........................................108 EMAC1MAXF (Ethernet Controller MAC Maximum CiCFG (CAN Baud Rate Configuration)....................248 Frame Length)..................................................312 CiCON (CAN Module Control)..................................246 EMAC1MCFG (Ethernet Controller MAC MII Manage- CiFIFOBA (CAN Message Buffer Base Address).....273 ment Configuration)..........................................315 CiFIFOCINn (CAN Module Message Index Register ‘n’) EMAC1MCMD (Ethernet Controller MAC MII Manage- 278 ment Command)...............................................316 CiFIFOCONn (CAN FIFO Control Register ‘n’).........274 EMAC1MIND (Ethernet Controller MAC MII Manage- CiFIFOINTn (CAN FIFO Interrupt Register ‘n’).........276 ment Indicators)................................................319 CiFIFOUAn (CAN FIFO User Address Register ‘n’)..278 EMAC1MRDD (Ethernet Controller MAC MII Manage- CiFLTCON0 (CAN Filter Control 0)...........................256 ment Read Data)..............................................318 CiFLTCON1 (CAN Filter Control 1)...........................258 EMAC1MWTD (Ethernet Controller MAC MII Manage- CiFLTCON2 (CAN Filter Control 2)...........................260 ment Write Data)..............................................318 CiFLTCON3 (CAN Filter Control 3)...........................262 DS60001156J-page 434  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX EMAC1SA0 (Ethernet Controller MAC Station Address RTCCON (RTC Control)...........................................223 0).......................................................................320 RTCDATE (RTC Date Value)...................................228 EMAC1SA1 (Ethernet Controller MAC Station Address RTCTIME (RTC Time Value)....................................227 1).......................................................................321 SPIxCON (SPI Control)............................................191 EMAC1SA2 (Ethernet Controller MAC Station Address SPIxSTAT (SPI Status)............................................193 2).......................................................................322 T1CON (Type A Timer Control)................................169 EMAC1SUPP (Ethernet Controller MAC PHY Support). TPTMR (Temporal Proximity Timer)...........................90 313 TxCON (Type B Timer Control)................................174 EMAC1TEST (Ethernet Controller MAC Test)..........314 U1ADDR (USB Address)..........................................150 ETHALGNERR (Ethernet Controller Alignment Errors U1BDTP1 (USB BDT Page 1)..................................152 Statistics)..........................................................305 U1BDTP2 (USB BDT Page 2)..................................153 ETHCON1 (Ethernet Controller Control 1)................284 U1BDTP3 (USB BDT Page 3)..................................153 ETHCON2 (Ethernet Controller Control 2)................286 U1CNFG1 (USB Configuration 1).............................154 ETHFCSERR (Ethernet Controller Frame Check Se- U1CON (USB Control)..............................................148 quence Error Statistics)....................................304 U1EIE (USB Error Interrupt Enable).........................146 ETHFRMRXOK (Ethernet Controller Frames Received U1EIR (USB Error Interrupt Status)..........................145 OK Statistics)....................................................303 U1EP0-U1EP15 (USB Endpoint Control).................155 ETHFRMTXOK (Ethernet Controller Frames Transmit- U1FRMH (USB Frame Number High)......................151 ted OK Statistics)..............................................300 U1FRML (USB Frame Number Low)........................150 ETHHT0 (Ethernet Controller Hash Table 0)............288 U1IE (USB Interrupt Enable)....................................144 ETHHT1 (Ethernet Controller Hash Table 1)............288 U1IR (USB Interrupt)................................................143 ETHIEN (Ethernet Controller Interrupt Enable).........294 U1OTGCON (USB OTG Control).............................141 ETHIRQ (Ethernet Controller Interrupt Request)......295 U1OTGIE (USB OTG Interrupt Enable)....................139 ETHMCOLFRM (Ethernet Controller Multiple Collision U1OTGIR (USB OTG Interrupt Status)....................138 Frames Statistics).............................................302 U1OTGSTAT (USB OTG Status).............................140 ETHPM0 (Ethernet Controller Pattern Match Offset)290 U1PWRC (USB Power Control)...............................142 ETHPMCS (Ethernet Controller Pattern Match Check- U1SOF (USB SOF Threshold).................................152 sum)..................................................................290 U1STAT (USB Status)..............................................147 ETHRXFC (Ethernet Controller Receive Filter Configura- U1TOK (USB Token)................................................151 tion)...................................................................291 UxMODE (UARTx Mode).........................................207 ETHRXOVFLOW (Ethernet Controller Receive Overflow UxSTA (UARTx Status and Control)........................209 Statistics)..........................................................299 WDTCON (Watchdog Timer Control).......................179 ETHRXST (Ethernet Controller RX Packet Descriptor Resets................................................................................69 Start Address)...................................................287 Revision History................................................................420 ETHRXWM (Ethernet Controller Receive Watermarks). RTCALRM (RTC ALARM Control)....................................225 293 S ETHSCOLFRM (Ethernet Controller Single Collision Frames Statistics).............................................301 Serial Peripheral Interface (SPI).......................................189 ETHSTAT (Ethernet Controller Status).....................297 Software Simulator (MPLAB X SIM).................................349 ETHTXST (Ethernet Controller TX Packet Descriptor Special Features...............................................................333 Start Address)...................................................287 T I2CxCON (I2C Control).............................................199 I2CxSTAT (I2C Status).............................................201 Timer1 Module..................................................................167 ICxCON (Input Capture ’x’ Control)..........................183 Timer2/3, Timer4/5 Modules.............................................171 IECx (Interrupt Enable Control)...................................91 Timing Diagrams IFSx (Interrupt Flag Status).........................................91 10-bit Analog-to-Digital Conversion (ASAM = 0, SS- INTCON (Interrupt Control).........................................89 RC<2:0> = 000)................................................392 INTSTAT (Interrupt Status).........................................90 10-bit Analog-to-Digital Conversion (ASAM = 1, SS- IPCx (Interrupt Priority Control)...................................92 RC<2:0> = 111, SAMC<4:0> = 00001)............393 NVMADDR (Flash Address).......................................66 CAN I/O....................................................................385 NVMCON (Programming Control)..............................65 EJTAG......................................................................398 NVMDATA (Flash Program Data)...............................67 External Clock..........................................................366 NVMKEY (Programming Unlock)................................66 I/O Characteristics....................................................369 NVMSRCADDR (Source Data Address).....................67 I2Cx Bus Data (Master Mode)..................................381 OCxCON (Output Compare ’x’ Control)....................187 I2Cx Bus Data (Slave Mode)....................................383 OSCCON (Oscillator Control).....................................97 I2Cx Bus Start/Stop Bits (Master Mode)...................381 OSCTUN (FRC Tuning)............................................100 I2Cx Bus Start/Stop Bits (Slave Mode).....................383 PFABT (Prefetch Cache Abort Statistics).................110 Input Capture (CAPx)...............................................374 PMADDR (Parallel Port Address).............................217 OCx/PWM.................................................................375 PMAEN (Parallel Port Pin Enable)............................218 Output Compare (OCx)............................................374 PMCON (Parallel Port Control).................................213 Parallel Master Port Read........................................395 PMMODE (Parallel Port Mode).................................215 Parallel Master Port Write.........................................396 PMSTAT (Parallel Port Status (Slave Modes only)...219 Parallel Slave Port....................................................394 RCON (Reset Control)................................................71 SPIx Master Mode (CKE = 0)...................................376 RSWRST (Software Reset)........................................72 SPIx Master Mode (CKE = 1)...................................377 SPIx Slave Mode (CKE = 0).....................................378  2009-2016 Microchip Technology Inc. DS60001156J-page 435

PIC32MX5XX/6XX/7XX SPIx Slave Mode (CKE = 1)......................................379 Timer1, 2, 3, 4, 5 External Clock...............................372 UART Reception.......................................................204 UART Transmission (8-bit or 9-bit Data)...................204 Timing Requirements CLKO and I/O...........................................................369 Timing Specifications CAN I/O Requirements.............................................385 I2Cx Bus Data Requirements (Master Mode)...........382 I2Cx Bus Data Requirements (Slave Mode).............384 Input Capture Requirements.....................................374 Output Compare Requirements................................374 Simple OCx/PWM Mode Requirements....................375 SPIx Master Mode (CKE = 0) Requirements............376 SPIx Master Mode (CKE = 1) Requirements............377 SPIx Slave Mode (CKE = 1) Requirements..............379 SPIx Slave Mode Requirements (CKE = 0)..............378 U UART................................................................................203 USB On-The-Go (OTG)....................................................133 V VCAP pin............................................................................343 Voltage Reference Specifications.....................................365 Voltage Regulator (On-Chip).............................................343 W Watchdog Timer (WDT)....................................................177 WWW Address..................................................................437 WWW, On-Line Support......................................................23 DS60001156J-page 436  2009-2016 Microchip Technology Inc.

PIC32MX5XX/6XX/7XX THE MICROCHIP WEB SITE CUSTOMER SUPPORT Microchip provides online support via our WWW site at Users of Microchip products can receive assistance www.microchip.com. This web site is used as a means through several channels: to make files and information easily available to • Distributor or Representative customers. Accessible by using your favorite Internet • Local Sales Office browser, the web site contains the following • Field Application Engineer (FAE) information: • Technical Support • Product Support – Data sheets and errata, application notes and sample programs, design Customers should contact their distributor, resources, user’s guides and hardware support representative or Field Application Engineer (FAE) for documents, latest software releases and archived support. Local sales offices are also available to help software customers. A listing of sales offices and locations is • General Technical Support – Frequently Asked included in the back of this document. Questions (FAQ), technical support requests, Technical support is available through the web site online discussion groups, Microchip consultant at: http://microchip.com/support program member listing • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.  2009-2016 Microchip Technology Inc. DS60001156J-page 437

PIC32MX5XX/6XX/7XX PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PIC32 MX 5XX F 512 H T - 80 I / PT - XXX Example: PIC32MX575F256H-80I/PT: Microchip Brand General purpose PIC32, 32-bit RISC MCU, Architecture 256KB program memory, Product Groups 64-pin, Industrial temperature, TQFP package. Flash Memory Family Program Memory Size (KB) Pin Count Tape and Reel Flag (if applicable) Speed (see Note 1) Temperature Range Package Pattern Flash Memory Family Architecture MX = 32-bit RISC MCU core Product Groups 5XX= General purpose microcontroller family 6XX= General purpose microcontroller family 7XX= General purpose microcontroller family Flash Memory Family F = Flash program memory Program Memory Size 64 =64K 128 =128K 256 =256K 512 =512K Pin Count H = 64-pin L = 100-pin, 121-pin, 124-pin Speed (see Note 1) Blank or 80 = 80 MHz Temperature Range I = -40°C to +85°C (Industrial) V = -40°C to +105°C (V-Temp) Package PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack) PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack) PF = 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack) MR = 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flat) BG = 121-Lead (10x10x1.1 mm) TFBGA (Plastic Thin Profile Ball Grid Array) TL = 124-Lead (9x9x0.9 mm) VTLA (Very Thin Leadless Array) Pattern Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample Note 1: This option is not available for PIC32MX534/564/664/764 devices.  2009-2016 Microchip Technology Inc. DS60001156J-page 438

Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device Trademarks applications and the like is provided only for your convenience The Microchip name and logo, the Microchip logo, AnyRate, and may be superseded by updates. It is your responsibility to dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, ensure that your application meets with your specifications. KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MICROCHIP MAKES NO REPRESENTATIONS OR MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, WARRANTIES OF ANY KIND WHETHER EXPRESS OR RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O IMPLIED, WRITTEN OR ORAL, STATUTORY OR are registered trademarks of Microchip Technology OTHERWISE, RELATED TO THE INFORMATION, Incorporated in the U.S.A. and other countries. INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR ClockWorks, The Embedded Control Solutions Company, FITNESS FOR PURPOSE. Microchip disclaims all liability ETHERSYNCH, Hyper Speed Control, HyperLight Load, arising from this information and its use. Use of Microchip IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are devices in life support and/or safety applications is entirely at registered trademarks of Microchip Technology Incorporated the buyer’s risk, and the buyer agrees to defend, indemnify and in the U.S.A. hold harmless Microchip from any and all damages, claims, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, suits, or expenses resulting from such use. No licenses are BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, conveyed, implicitly or otherwise, under any Microchip dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, intellectual property rights unless otherwise stated. EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Silicon Storage Technology is a registered trademark of Tempe, Arizona; Gresham, Oregon and design centers in California Microchip Technology Inc. in other countries. and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping GestIC is a registered trademarks of Microchip Technology devices, Serial EEPROMs, microperipherals, nonvolatile memory and Germany II GmbH & Co. KG, a subsidiary of Microchip analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. QUALITY MANAGEMENT SYSTEM © 2009-2016, Microchip Technology Incorporated, Printed in CERTIFIED BY DNV the U.S.A., All Rights Reserved. ISBN: 978-1-5224-0958-8 == ISO/TS 16949 ==  2009-2016 Microchip Technology Inc. DS60001156J-page 439

Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office Asia Pacific Office China - Xiamen Austria - Wels 2355 West Chandler Blvd. Suites 3707-14, 37th Floor Tel: 86-592-2388138 Tel: 43-7242-2244-39 Chandler, AZ 85224-6199 Tower 6, The Gateway Fax: 86-592-2388130 Fax: 43-7242-2244-393 Tel: 480-792-7200 Harbour City, Kowloon China - Zhuhai Denmark - Copenhagen Fax: 480-792-7277 Hong Kong Tel: 86-756-3210040 Tel: 45-4450-2828 Technical Support: Tel: 852-2943-5100 Fax: 86-756-3210049 Fax: 45-4485-2829 http://www.microchip.com/ Fax: 852-2401-3431 India - Bangalore France - Paris support Australia - Sydney Tel: 91-80-3090-4444 Tel: 33-1-69-53-63-20 Web Address: Tel: 61-2-9868-6733 Fax: 91-80-3090-4123 Fax: 33-1-69-30-90-79 www.microchip.com Fax: 61-2-9868-6755 India - New Delhi Germany - Dusseldorf Atlanta China - Beijing Tel: 91-11-4160-8631 Tel: 49-2129-3766400 Duluth, GA Tel: 86-10-8569-7000 Fax: 91-11-4160-8632 Germany - Karlsruhe Tel: 678-957-9614 Fax: 678-957-1455 Fax: 86-10-8528-2104 India - Pune Tel: 49-721-625370 China - Chengdu Tel: 91-20-3019-1500 Germany - Munich ATeul:s 5ti1n2, -T2X57-3370 Tel: 86-28-8665-5511 Japan - Osaka Tel: 49-89-627-144-0 Fax: 86-28-8665-7889 Tel: 81-6-6152-7160 Fax: 49-89-627-144-44 BWoessttobonrough, MA China - Chongqing Fax: 81-6-6152-9310 Italy - Milan Tel: 86-23-8980-9588 Japan - Tokyo Tel: 39-0331-742611 Tel: 774-760-0087 Fax: 86-23-8980-9500 Tel: 81-3-6880- 3770 Fax: 39-0331-466781 Fax: 774-760-0088 China - Dongguan Fax: 81-3-6880-3771 Italy - Venice CItahsiccaa,g IoL Tel: 86-769-8702-9880 Korea - Daegu Tel: 39-049-7625286 Tel: 630-285-0071 China - Guangzhou Tel: 82-53-744-4301 Netherlands - Drunen Fax: 630-285-0075 Tel: 86-20-8755-8029 Fax: 82-53-744-4302 Tel: 31-416-690399 China - Hangzhou Korea - Seoul Fax: 31-416-690340 Cleveland Independence, OH Tel: 86-571-8792-8115 Tel: 82-2-554-7200 Poland - Warsaw Tel: 216-447-0464 Fax: 86-571-8792-8116 Fax: 82-2-558-5932 or Tel: 48-22-3325737 Fax: 216-447-0643 China - Hong Kong SAR 82-2-558-5934 Spain - Madrid Dallas Tel: 852-2943-5100 Malaysia - Kuala Lumpur Tel: 34-91-708-08-90 Addison, TX Fax: 852-2401-3431 Tel: 60-3-6201-9857 Fax: 34-91-708-08-91 Tel: 972-818-7423 China - Nanjing Fax: 60-3-6201-9859 Sweden - Stockholm Fax: 972-818-2924 Tel: 86-25-8473-2460 Malaysia - Penang Tel: 46-8-5090-4654 Fax: 86-25-8473-2470 Tel: 60-4-227-8870 Detroit UK - Wokingham Novi, MI China - Qingdao Fax: 60-4-227-4068 Tel: 44-118-921-5800 Tel: 248-848-4000 Tel: 86-532-8502-7355 Philippines - Manila Fax: 44-118-921-5820 Fax: 86-532-8502-7205 Tel: 63-2-634-9065 Houston, TX Tel: 281-894-5983 China - Shanghai Fax: 63-2-634-9069 Tel: 86-21-5407-5533 Singapore Indianapolis Fax: 86-21-5407-5066 Tel: 65-6334-8870 Noblesville, IN Tel: 317-773-8323 China - Shenyang Fax: 65-6334-8850 Fax: 317-773-5453 Tel: 86-24-2334-2829 Taiwan - Hsin Chu Fax: 86-24-2334-2393 Tel: 886-3-5778-366 Los Angeles Mission Viejo, CA China - Shenzhen Fax: 886-3-5770-955 Tel: 949-462-9523 Tel: 86-755-8864-2200 Taiwan - Kaohsiung Fax: 949-462-9608 Fax: 86-755-8203-1760 Tel: 886-7-213-7828 New York, NY China - Wuhan Taiwan - Taipei Tel: 631-435-6000 Tel: 86-27-5980-5300 Tel: 886-2-2508-8600 Fax: 86-27-5980-5118 Fax: 886-2-2508-0102 San Jose, CA Tel: 408-735-9110 China - Xian Thailand - Bangkok Tel: 86-29-8833-7252 Tel: 66-2-694-1351 Canada - Toronto Fax: 86-29-8833-7256 Fax: 66-2-694-1350 Tel: 905-695-1980 Fax: 905-695-2078 06/23/16 DS60001156J-page 440  2009-2016 Microchip Technology Inc.

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: M icrochip: PIC32MX575F256H-80I/MR PIC32MX575F256H-80I/PT PIC32MX575F256HT-80I/MR PIC32MX575F256HT-80I/PT PIC32MX575F256L-80I/BG PIC32MX575F256L-80I/PT PIC32MX575F256LT-80I/BG PIC32MX575F256LT-80I/PT PIC32MX575F512H-80I/MR PIC32MX575F512H-80I/PT PIC32MX575F512HT-80I/MR PIC32MX575F512HT-80I/PT PIC32MX575F512L-80I/BG PIC32MX575F512L-80I/PT PIC32MX575F512LT-80I/BG PIC32MX575F512LT-80I/PT PIC32MX675F256H-80I/PT PIC32MX675F256HT-80I/PT PIC32MX675F256L-80I/PT PIC32MX675F256LT-80I/PT PIC32MX675F512H-80I/MR PIC32MX675F512H-80I/PT PIC32MX675F512HT-80I/MR PIC32MX675F512HT-80I/PT PIC32MX675F512L-80I/BG PIC32MX675F512L-80I/PT PIC32MX675F512LT-80I/BG PIC32MX675F512LT-80I/PT PIC32MX775F256H-80I/PT PIC32MX775F256HT-80I/PT PIC32MX775F256L-80I/PT PIC32MX775F256LT-80I/PT PIC32MX775F512H-80I/PT PIC32MX775F512HT-80I/PT PIC32MX775F512L-80I/PT PIC32MX775F512LT-80I/PT PIC32MX795F512H-80I/MR PIC32MX795F512H-80I/PT PIC32MX795F512HT-80I/MR PIC32MX795F512HT-80I/PT PIC32MX795F512L-80I/BG PIC32MX795F512L-80I/PT PIC32MX795F512LT-80I/BG PIC32MX795F512LT-80I/PT PIC32MX575F256L-80I/PF PIC32MX575F256LT-80I/PF PIC32MX575F512L-80I/PF PIC32MX575F512LT-80I/PF PIC32MX675F256H-80I/MR PIC32MX675F256HT-80I/MR PIC32MX675F256L-80I/BG PIC32MX675F256L-80I/PF PIC32MX675F256LT-80I/BG PIC32MX675F256LT-80I/PF PIC32MX675F512L-80I/PF PIC32MX675F512LT-80I/PF PIC32MX775F256H-80I/MR PIC32MX775F256HT-80I/MR PIC32MX775F256L-80I/BG PIC32MX775F256L-80I/PF PIC32MX775F256LT-80I/BG PIC32MX775F256LT-80I/PF PIC32MX775F512H-80I/MR PIC32MX775F512HT-80I/MR PIC32MX775F512L-80I/BG PIC32MX775F512L-80I/PF PIC32MX775F512LT-80I/BG PIC32MX775F512LT-80I/PF PIC32MX795F512L-80I/PF PIC32MX795F512LT-80I/PF PIC32MX695F512H-80I/MR PIC32MX695F512H-80I/PT PIC32MX695F512HT-80I/MR PIC32MX695F512HT-80I/PT PIC32MX695F512L-80I/BG PIC32MX695F512L-80I/PF PIC32MX695F512L-80I/PT PIC32MX695F512LT-80I/BG PIC32MX695F512LT-80I/PF PIC32MX695F512LT-80I/PT PIC32MX534F064H-I/MR PIC32MX534F064H-I/PT PIC32MX534F064HT-I/MR PIC32MX534F064HT-I/PT PIC32MX534F064L-I/BG PIC32MX534F064L-I/PF PIC32MX534F064L-I/PT PIC32MX534F064LT-I/BG PIC32MX534F064LT-I/PF PIC32MX534F064LT-I/PT PIC32MX564F064H-I/MR PIC32MX564F064H-I/PT PIC32MX564F064HT-I/MR PIC32MX564F064HT-I/PT PIC32MX564F064L-I/BG PIC32MX564F064L-I/PF PIC32MX564F064L-I/PT PIC32MX564F064LT-I/BG PIC32MX564F064LT-I/PF PIC32MX564F064LT-I/PT