图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: PC928J00000F
  • 制造商: Sharp Microelectronics
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

PC928J00000F产品简介:

ICGOO电子元器件商城为您提供PC928J00000F由Sharp Microelectronics设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 PC928J00000F价格参考。Sharp MicroelectronicsPC928J00000F封装/规格:隔离器 - 栅极驱动器, 400mA Gate Driver Optical Coupling 4000Vrms 1 Channel 14-SMT。您可以下载PC928J00000F参考资料、Datasheet数据手册功能说明书,资料中有PC928J00000F 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

隔离器

描述

OPTOISO 4KV GATE DRIVER 14SMT高速光耦合器 PC924L0NSZ0F w/ SC Protection

产品分类

隔离器 - 栅极驱动器

品牌

Sharp Microelectronics

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

光耦合器/光电耦合器,高速光耦合器,Sharp Microelectronics PC928J00000FOPIC™

数据手册

http://www.sharpsma.com/webfm_send/1125

产品型号

PC928J00000F

PulseWidthDistortion(Max)

-

上升/下降时间(典型值)

200ns, 200ns

上升时间

0.5 us

下降时间

0.5 us

不同If时的传播延迟高-低

100µs @ 10mA

产品目录绘图

产品目录页面

点击此处下载产品Datasheet

产品种类

高速光耦合器

传播延迟tpLH/tpHL(最大值)

2µs, 2µs

供应商器件封装

14-SMT

共模瞬态抗扰度(最小值)

1.5kV/µs

其它名称

425-2209-5

包装

管件

商标

Sharp Microelectronics

安装类型

表面贴装

封装/外壳

14-SOIC(0.256",6.50mm 宽)

封装/箱体

PDIP-14 Gull Wing

工作温度

-25°C ~ 80°C

工厂包装数量

500

技术

光学耦合

数据速率

-

最大功率耗散

550 mW

最大反向二极管电压

6 V

最大工作温度

+ 80 C

最大正向二极管电压

1.4 V

最小工作温度

- 25 C

标准包装

50

每芯片的通道数量

1 Channel

电压-正向(Vf)(典型值)

1.2V

电压-电源

15 V ~ 30 V

电压-隔离

4000Vrms

电流-DC正向(If)

25mA

电流-峰值输出

400mA

电流-输出/通道

100mA

电流-输出高,低

-

绝缘电压

4000 Vrms

脉宽失真(最大)

-

认可

UR

输入类型

DC

输出类型

推挽式/图腾柱

输出设备

Photo IC

通道数

1

推荐商品

型号:TLP350H(F)

品牌:Toshiba Semiconductor and Storage

产品名称:隔离器

获取报价

型号:SI8261AAD-C-IM

品牌:Silicon Labs

产品名称:隔离器

获取报价

型号:SI8261AAC-C-IP

品牌:Silicon Labs

产品名称:隔离器

获取报价

型号:SI8232BB-B-IS1R

品牌:Silicon Labs

产品名称:隔离器

获取报价

型号:FOD3182SD

品牌:ON Semiconductor

产品名称:隔离器

获取报价

型号:SI8233BB-C-IMR

品牌:Silicon Labs

产品名称:隔离器

获取报价

型号:SI8233BB-D-ISR

品牌:Silicon Labs

产品名称:隔离器

获取报价

型号:FOD3150S

品牌:ON Semiconductor

产品名称:隔离器

获取报价

样品试用

万种样品免费试用

去申请
PC928J00000F 相关产品

HCPL-3180-360

品牌:Broadcom Limited

价格:

FOD8321R2V

品牌:ON Semiconductor

价格:

SI8233BD-C-IS

品牌:Silicon Labs

价格:

FOD3120TV

品牌:ON Semiconductor

价格:¥4.18-¥10.51

SI8261ABD-C-IS

品牌:Silicon Labs

价格:

SI8233BB-D-ISR

品牌:Silicon Labs

价格:

ACPL-J313-500E

品牌:Broadcom Limited

价格:

PS9402-E3-AX

品牌:CEL

价格:¥35.30-¥63.23

PDF Datasheet 数据手册内容提取

PC928J00000F Series PC928J00000F Built-in Short Protection Circuit, Gate Drive SMD 14 pin Series ∗OPIC Photocoupler ■ Description ■ Agency approvals/Compliance PC928J00000F Series contains an IRED optically 1. Recognized by UL1577, file No. E64380 (as model coupled to an OPIC chip. No. PC928) It is packaged in a Mini-flat, Half pitch type (14 pin). 2. Approved by VDE, DIN EN60747-5-2(∗) (as an op- Input-output isolation voltage(rms) is 4.0kV. tion), file No. 94626 (as model No. PC928) 3. Package resin : UL flammability grade (94V-0) ■ Features (∗)DIN EN60747-5-2 : successor standard of DIN VDE0884 1. 14 pin Half lead pin pitch (Lead pitch=1.27 mm) package type 2. Double transfer mold package ■ Applications (Ideal for Flow Soldering) 1. Inverter 3. Built-in IGBT shortcircuit protector circuit 4. Built-in direct drive circuit for IGBT drive (Peak output current : I , I : MAX. 0.4 A) O1P O2P 5. High isolation voltage (V : 4.0 kV) iso(rms) 6. Lead-free and RoHS directive compliant ∗"OPIC"(Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and a signal-processing circuit integrated onto a single chip. NoticeThe content of data sheet is subject to change without prior notice. In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. Sheet No.: D2-A06202EN 1 Date Jun. 30. 2005 © SHARP Corporation

PC928J00000F Series ■ Internal Connection Diagram 14 13 12 11 10 9 8 1 Anode 8 FS 2 Anode 9 C IGBT protection 3 Cathode 10 GND circuit Interface 4 NC∗ 11 O2 5 NC∗ 12 O 1 Amp. 6 NC∗ 13 V CC 7 NC∗ 14 GND ∗ No. 4 to 7 pin shall be shorted in the device. 1 2 3 4 5 6 7 Voltage regulator ■ Truth table Input C input-output O output FS output 2 Low level High level High level ON High level Low level Low level At operating protection function Low level Low level High level OFF High level Low level High level ■ Outline Dimensions (Unit : mm) 1. SMT Gullwing Lead-Form [ex. PC928PJ0000F] 2. SMT Gullwing Lead-Form (VDE option) [ex. PC928PYJ000F] 1.27±0.25 1.27±0.25 14 8 14 8 SHARP PC928 5 mark "S" PC928 5 0. 0. ± ± 5 5 6. 4 6. Date code Date code 1 7 1 7 Primary side mark Primary side mark VDE Identification mark 9.22±0.5 7.62±0.3 9.22±0.5 7.62±0.3 5 5 0.5±5 0.1±26 0.2±35 0.5±5 0.1±26 0.2±35 3. 0. 0. 3. 0. 0. Epoxy resin Epoxy resin 0.6±0.1 0.6±0.1 1.0+−00. 4 1.0+−00. 4 1.0+−00. 4 1.0+−00. 4 10.0+−00 . 5 10.0+−00 . 5 Product mass : approx. 0.47g Product mass : approx. 0.47g Plating material : SnCu (Cu : TYP. 2%) Sheet No.: D2-A06202EN 2

PC928J00000F Series Date code (2 digit) 1st digit 2nd digit Year of production Month of production A.D. Mark A.D Mark Month Mark 1990 A 2002 P January 1 1991 B 2003 R February 2 1992 C 2004 S March 3 1993 D 2005 T April 4 1994 E 2006 U May 5 1995 F 2007 V June 6 1996 H 2008 W July 7 1997 J 2009 X August 8 1998 K 2010 A September 9 1999 L 2011 B October O 2000 M 2012 C November N · · 2001 N ·· ·· December D repeats in a 20 year cycle Country of origin Japan Rank mark There is no rank mark indicator. Sheet No.: D2-A06202EN 3

PC928J00000F Series ■ Absolute Maximum Ratings (unless otherwise specified T=T ) a opr Parameter Symbol Rating Unit ut *1Forward current IF 25 mA p n *2Reverse voltage V 6 V I R Supply voltage V 35 V CC O output current I 0.1 A 1 O1 *3O peak output current I 0.4 A 1 O1P O output current I 0.1 A 2 O2 *3O peak output current I 0.4 A ut 2 O2P utp O1 output voltage VO1 35 V O *4Power dissipation P 500 mW O Overcurrent detection voltage V V V C CC Overcurrent detection current I 30 mA C Error signal output voltage V V V FS CC Error signal output current I 20 mA FS *5Total power dissipation P 550 mW tot *6Isolation voltage V 4.0 kV iso (rms) Operating temperature T −25 to +80 ˚C opr Storage temperature T −55 to +125 ˚C stg *7Soldering temperature T 260 ˚C sol *1 The derating factors of a absolute maximum ratings due to ambient temperature are shown in Fig.15 *2 T =25˚C a *3 Pulse width≤0.15µs, Duty ratio : 0.01 *4.5 The derating factors of a absolute maximum ratings due to ambient temperature are shown in Fig.16 *6 AC for 1minute, 40 to 60%RH, T =25˚C, f=60Hz a *7 For 10s ■ Electro-optical Characteristics (unless otherwise specified T=T ) a opr Parameter Symbol Conditions*8 MIN. TYP. MAX. Unit V T=25˚C, I =20mA − 1.2 1.4 V Forward voltage F1 a F ut VF2 Ta=25˚C, IF=0.2mA 0.6 0.9 − V p n Reverse current I T=25˚C, V =4V − − 10 µA I R a R Terminal capacitance C T=25˚C, V=0, f=1kHz − 30 250 pF t a T=−10 to +60˚C 15 − 30 V Supply voltage V a CC − 15 − 24 V O1 Low level output voltage VO1L VCC1=12V, VCC2=−12V, IO1=0.1A, IF=10mA*9 − 0.2 0.4 VV O2 High level output voltage VO2H VCC=VO1=24V, IO2=−0.1A, IF=10mA *9 20 22 − V put O2 Low level output voltage VO2L VCC=24V, IO2=0.1A, IF=0 *9 − 1.2 2.0 V Out O1 leak current IO1L Ta=25˚C, VCC=VO1=35V, IF=0 *9 − − 500 µA High level supply current I Ta=25˚C, VCC=24V, IF=10mA *9 − 10 17 mA CCH VCC=VO1=24V, IF=10mA *9 − − 19 mA Low level supply current I Ta=25˚C, VCC=VO1=24V, IF=0 *9 − 11 18 mA CCL VCC=VO1=24V, IF=0 *9 − − 20 mA *8 It shall connect a by-pass capacitor of 0.01 µF or more between VCC (pin 13 ) and GND (pin, 10 , 14) near the device, when it measures the transfer characteristics and the output side characteristics. *9 FS=OPEN, V =0 C Sheet No.: D2-A06202EN 4

PC928J00000F Series (unless otherwise specified T=T ) a opr Parameter Symbol Conditions *10 MIN. TYP. MAX. Unit T=25˚C, V =V =24V, FS=OPEN, V =0 1.0 4.0 7.0 mA *11"Low→High" input threshold current IFLH Va CC=VOC1=C24OV1, FS=OPEN, VC=C0 0.6 − 10 mA Isolation resistance R T=25˚C, DC=500V, 40 to 60%RH 5×1010 1011 − Ω ISO a cs me "Low→High" propagation delay time tPLH Ta=25˚C, − 1.0 2.0 µs haracteristi Response ti RF"Haislileg thti→immeLeow" propagation delay time tPttHrfL V CRCG=F=VS4=O7O1Ω=P,2 EC4NVG=,, V3IF C=0=01000pmFA, −−− 001...220 002...550 µµµsss c er Instantaneous common mode Ta=25˚C, VCM=600V(p-p) nsf rejection voltage CMH IF=10mA, VCC=VO1=24V, −1.5 − − kV/µs Tra (High level output) ∆VO2H=2.0V, FS=OPEN, VC=0 Instantaneous common mode Ta=25˚C, VCM=600V(p-p) rejection voltage CML IF=0, VCC=VO1=24V, 1.5 − − kV/µs (Low level output) ∆V =2.0V, FS=OPEN, V =0 O2L C Overcurrentdetection *12 OOvovvleetarrccguuerr hrreeynnsttt eddreeettseeiccs ttwiiooinnd tvholtage VVCCHTIHS CGI=F= 3V1 0C00TCm0=aA=pVF2,O 5,R 1˚F=CGS2==44VO7ΩPEN VCC1−6.5 VC2C−6 VCC3−5.5 VV O "High→Low" propagation delay T=25˚C ut 2 t a − 4 10 µs p time at overcurrent protection PCOHL V =V =24V ut CC O1 ction o O2 Fall time at overcurrent protection tPCOtf RG=47IΩF=, 1C0Gm=A3 ,000pF, 2 5 − µs Prote Oat 2o "vHeirgchu→rreLnot wpr"o oteucttpiuotn voltage VOE RC=1 kFΩS=, COPP=E1N 000pF − − 2 V T=25˚C, I =10mA a F V =V =24V CC O1 Low level error signal voltage V − 0.2 0.4 V FSL I =10mA, R =47Ω FS G ut CG=3 000pF, C=OPEN p ut Ta=25˚C o gnal High level error signal current IFSH VCVC=V=O214=V24, VR, I=F4=71Ω0mA − − 100 µA si FS G r C =3 000pF, V =0 o G C r Er Error signal "High→Low" T=25˚C, V =V =24V t a CC O1 − 1 5 µs propagation delay time PCFHL I =10mA, R =1.8kΩ F FS R =47Ω, R =1kΩ G C Error signal output pulse width ∆t 20 35 − µs FS C =3 000pF, C =1 000pF G P *10 It shall connect a by-pass capacitor of 0.01 µF or more between VCC (pin 13 ) and GND (pin 10 , 14) near the device, when it measures the device, when it measures the overcurrent characteristics, Protection output characteristics, and Error signal output characteristics. *11 I represents forward current when output goes from "Low" to "High" FLH *12 V is the value of C (pin 9 ) voltage when output becomes from "High" to "Low" CTH Sheet No.: D2-A06202EN 5

PC928J00000F Series ■ Model Line-up Lead Form SMT Gullwing Sleeve Taping Package 50pcs/sleeve 1 000pcs/reel DIN EN60747-5-2 −−−−−− Approved −−−−−− Approved Model No. PC928J00000F PC928YJ0000F PC928PJ0000F PC928PYJ000F Please contact a local SHARP sales representative to inquire about production status. Sheet No.: D2-A06202EN 6

PC928J00000F Series Fig.1 Test Circuit for O Low Level Output Fig.2 Test Circuit for O High Level Output 1 2 Voltage Voltage 13 13 1 2 12 VCC1 1 2 12 I O2 V VO1L IO1 VCC 11 11 IF VCC2 IF V02H V 14 10 14 10 3 9 3 9 8 8 Fig.3 Test Circuit for O Low Level Output Fig.4 Test Circuit for O Leak Current 2 1 Voltage 13 13 A I O1L 1 2 12 1 2 12 V V CC CC 11 11 IF V VO2L IO2 IF 14 10 14 10 3 9 3 9 8 8 Fig.5 Test Circuit for "Low→High" Input Fig.6 Test Circuit for High Level / Low Level Threshold Current Supply Current 13 13 A I 1 2 12 1 2 12 CC V V CC CC 11 11 IF V VO2 IF variable 14 10 14 10 3 9 3 9 8 8 Sheet No.: D2-A06202EN 7

PC928J00000F Series Fig.7 Test Circuit for Instantaneous Common Fig.8 Test Circuit for Response Time Mode Rejection Voltage 13 13 1 2 12 1 2 12 SW A B 11 VCC tr=tf=0.01µs 11 RG VCC V VO2 VIN Pulse width 5µs V VOUT CG 14 10 Duty ratio 50% 14 10 3 9 3 9 8 8 + − V CM 50% VCM V waveform IN (peak) VCM waveform GND tPLH tPHL 90% CM , V waveform 50% SWH aOt 2A, IF=10mA VO2H VOUT waveform 10% ∆VO2L ∆VO2H tr tf CM, V waveform L O2 V SW at B, IF=0 GNO2DL Fig.9 Test Circuit for Overcurrent Detection Voltage, Fig.10 Test Circuit for O Output Voltage at 2 Overcurrent Detection Voltage Hysteresis Overcurrent Protection 13 13 1 2 12 1 2 12 RG VCC RG VCC 11 11 IF V VO2 CG IF V VO2 CG 14 10 14 10 V VCTH CP VC RC 3 9 3 9 8 8 Sheet No.: D2-A06202EN 8

PC928J00000F Series Fig.11 Test Circuit for O Low Level Fig.12 Test Circuit for High Level Error 1 Error Signal Voltage Signal Current 13 13 1 2 12 1 2 12 RG VCC RG VCC 11 11 IF CG IF CG 14 10 14 10 3 9 V 3 9 V I V FSL FS FS I 8 8 A FSH Fig.13 Test Circuit for O "High→Low" Propagation Fig.14 Error Signal "High→Low" propagation Delay 2 Delay Time at Overcurrent Protection, O Fall Time, Error Signal Output Pulse Width 2 Time at Overcurrent Protection 13 13 R 1 2 12 1 2 12 C RG VCC RG VCC tr=tf=0.01µs 11 tr=tf=0.01µs 11 VIN Pulse width 25µs V VOUT CG VIN Pulse width 25µs CG Duty ratio 25% 14 10 R Duty ratio 25% 14 10 C CP VOUT 3 9 3 9 V R FS 8 8 I (Input cFurrent) tpCOTF 90% 50% 10% V O2 (O2 output voltage) tpCOHL VOE 90% Error detection threshold voltage (V ) CTH 10% C (Detecting terminal) tpCFHL ∆tFS FS (Error signal output) 50% 50% Sheet No.: D2-A06202EN 9

PC928J00000F Series Fig.15 Forward Current vs. Ambient Fig.16 Power Dissipation vs. Ambient Temperature Temperature 60 600 Total power dissipation 550 50 500 W) Output side power dissipation ward current I (mA)F 432000 dissipation P, P (mtoto 432000000 For wer o P 10 100 0 0 −25 0 25 50 7580 100 125 −25 0 25 50 7580 100 125 Ambient temperature Ta (°C) Ambient temperature Ta (°C) Fig.17 Forward Current vs. Forward FFiigg..1188 ""LLooww→→HHiigghh"" RReellaattiivvee IInnppuutt TThhrreesshhoolldd Voltage CCuurrrreenntt vvss.. SSuuppppllyy VVoollttaaggee 1.6 Ta=25°C Ta=75°C H 100 50°C 25°C nt IFL 1.4 ard current I (mA)F 10 −200°°CC nput threshold curre 1.21 Value of VCC=24V assumes 1. orw ve i F ati el 0.8 R 1 0.6 0 0.5 1 1.5 2 2.5 3 3.5 15 18 21 24 27 30 Forward voltage V (V) Supply voltage V (V) F CC FFiigg..1199 ""LLooww→→HHiigghh"" RReellaattiivvee IInnppuutt TThhrreesshhoolldd Fig.20 O Low Level Output Voltage vs. 1 CCuurrrreenntt vvss.. AAmmbbiieenntt TTeemmppeerraattuurree O Output Current 1 1.3 1 Ta=25˚C VCC=24V V) VVCCCC12==1122VV ent IFLH 1.2 V (O1L IF=10mA urr ge 0.1 old c 1.1 volta put thresh 1 IFLH = 1 at Ta=25°C el output n v 0.01 ve i w le Relati 0.9 O lo1 0.8 0.001 −25 0 25 50 75 100 0.01 0.1 1 Ambient temperature Ta (°C) O1 output current IO1 (A) Sheet No.: D2-A06202EN 10

PC928J00000F Series Fig.21 O Low Level Output Voltage vs. Fig.22 O Leak Current vs. Ambient 1 1 Ambient Temperature Temperature 0.25 10−6 VVCCCC12==1−21V2V VIF=CC0=mVAO1=35V V) IF=10mA V (O1L 0.2 A) 10−7 utput voltage 0.15 IO1=0.1A current I (O1L 10−8 w level o 0.1 O leak 1 10−9 o O l1 0.05 0 10−10 −25 0 25 50 75 100 −25 0 25 50 75 100 Ambient temperature Ta (°C) Ambient temperature Ta (°C) Fig.23 O High Level Output Voltage Fig.24 O High Level Output Voltage vs. 2 2 vs. Supply Voltage Ambient Temperature 35 24 TIFa==1205m°CA VCC=24V V (V)O2H 30 IO2=−0.1A (V)O2H 23 IF=10mA ge 25 e V IO2=0A a g volt olta 22 −0.1A put 20 ut v vel out 15 el outp 21 e v gh l h le O hi2 10 O hig2 20 5 19 15 18 21 24 27 30 −25 0 25 50 75 100 Supply voltage VCC (V) Ambient temperature Ta (°C) Fig.25 O Low Level Output Voltage vs. Fig.26 O Low Level Output Voltage vs. 2 2 Output Current Ambient Temperature 10 1.3 V) VTaC=C2=52°4CV V) VIF=CC1=02m4AV (L (L 1.2 O2 O2 V V e 1 e g g olta olta 1.1 ut v ut v IO2=0.1A p p ut ut o o 1 el el v 0.1 v e e w l w l O lo2 O lo2 0.9 0.01 0.8 0.01 0.1 1 −25 0 25 50 75 100 Output current IO2 (A) Ambient temperature Ta (°C) Sheet No.: D2-A06202EN 11

PC928J00000F Series Fig.27 High Level Supply Current vs. Fig.28 Low Level Supply Current vs. Supply Voltage Supply Voltage 14 16 ) (mA IF=10mA Ta=−25°C mA) IF=0mA Ta=−25°C CH 12 (L 14 C C I C ent nt I urr 10 25°C rre 12 supply c 8 80°C upply cu 10 25°C vel el s 80°C e v gh l 6 w le 8 Hi o L 4 6 15 18 21 24 27 30 15 18 21 24 27 30 Supply voltage V (V) Supply voltage V (V) CC CC Fig.29 Propagation Delay Time vs. Fig.30 Propagation Delay Time vs. Forward Current Ambient Temperature 3.5 2.5 me t, t (s)µPHLPLH 2.352 tPLH TVRCaGGC===C2=43527 0°4ΩC0V0pF me t, t (s)µPHLPLH 1.52 VRICFGG=C==C1=43027 m04Ω0AV0pF Propagation delay ti 10..515 tPHL Propagation delay ti 0.51 ttPPLHHL 0 0 0 5 10 15 20 25 −25 0 25 50 75 100 Forward current IF (mA) Ambient temperature Ta (°C) Fig.31 Overcurrent Detecting Voltage vs. Fig.32 O Output Fall Time at Protection from Overcurrent/O "High-Low" 2 2 Ambient Temperature Propagation Delay Time at Protection from Overcurrent vs. Ambient Temperature 30 vercurrent detecting voltage V (V)CTH 211255050 VRICFGG=C==C1=43027 m04Ω0AV0pF utput fall time at protection from overcurrent t/PCOtfH-L" delay time at protection from overcurrent t (s)µPCOHL108642 VIRRCCFGGCP=C====C11=1430 2k7 m004ΩΩ00AV00ppFF ttPPCCOOtHfL O 0 O o2 "O2 0 −25 0 25 50 75 100 −25 0 25 50 75 100 Ambient temperature Ta (°C) Ambient temperature Ta (°C) Sheet No.: D2-A06202EN 12

PC928J00000F Series Fig.33 Error Signal "High-Low" Propagation Fig.34 O Output Voltage at Protection from 2 Delay Time vs. Ambient Temperature Overcurrent vs. Ambient Temperature s) 1.5 2 nal "H-L" propagation delay time t (µPCFHL 1000....2963 IRRRCVCFFGGCP=CS====C1=1=14301 2k7 m00.4ΩΩ800AVk00ΩppFF O output voltage at protection from 2overcurrent V (V)OE 0001111.......46812468 IRCRVCFGGCP=C====C11=1430 2k7 m004ΩΩ00AV00ppFF g si 0.2 Error 0−25 0 25 50 75 100 0−25 0 25 50 75 100 Ambient temperature Ta (°C) Ambient temperature Ta (°C) Fig.35 Low Level Error Signal Voltage vs. Fig.36 High Level Error Signal Current vs. Ambient Temperature Ambient Temperature 0.5 10-6 ow level error signal voltage V (V)FSL 0000....1234 IIRCVCFF=GG=SC===CO1=1430P027 m0Em4Ω0ANVA0pF High level error signal current I (A)FSH 1100--78 VIVRCVFGG=CFCS==C=1==4300227 m044Ω0VAV0pF L 0 10-9 −25 0 25 50 75 100 −25 0 25 50 75 100 Ambient temperature Ta (°C) Ambient temperature Ta (°C) Fig.37 Error Signal Output Pulse Width vs. Fig.38 Overcurrent Detecting Voltage vs. Ambient Temperature Supply Voltage 50 25 e width t (s)∆µFS 4300 IRRRCVCFFGGCP=CS====C1=1=14301 2k7 m00.4ΩΩ800AVk00ΩppFF oltage V (V)CTH 1250 VRRFCTICFSaGGCP=C======C121=1O4305 2k7 m0P0°4ΩΩ0C0EAV00NppFF Added resistance=0Ω uls g v p n put ecti ut 20 et 10 0.5kΩ o d al nt Error sign 10 Overcurre 5 11k.5ΩkΩ 0 0 −25 0 25 50 75 100 15 18 21 24 27 30 Ambient temperature Ta (°C) Supply voltage VCC (V) Sheet No.: D2-A06202EN 13

PC928J00000F Series Fig.39 Overcurrent Detecting Voltage - Supply Voltage Characteristics Test Circuit Anode VCC O I 1 F V e CC c Cathode F O2 RG stan 0 si 000 V RC ed re J0 C VO2 Add 8 2 9 PC FS CP CG VVC GND Fig.40 Example of The Application Circuit (IGBT Drive for Inverter) V CC Anode 0F R1 + VCC1=12V (+) 0 O1 Anode 00 O2 CB RG Cathode J0 RC pply 8 u TTL, micro computer, 92 C R2 D1 er s w etc. PC FS D2 R3 C + VCC2=12V Po p GND (−) To micro computer RFS PC817X etc. C FS • In order to stabilize the power supply line, we recommend to locate a bypass capacitor CB (0.01µF or more) between V and GND near photocoupler. CC • In order to stabilize the detecting voltage of pin-C, we recommend to locate a capacitor C (approximately P 1000pF) between pin-C and GND, and a resistor RC (approximately 1.0kΩ) between VCC and pin-C. However, the rise time of the detection voltage at Pin-C varies along with the time constants of C and R . P C So, please make sure the device works properly in actual conditions. • For the diode D, which is located between pin-C and collector of IGBT, we recommend to use a diode that has the withstand voltage characteristic equivalent to IGBT and also has little leak current. • In order to prevent the failure mode or breakdown of pin-C from V variation of IGBT, we recommend to CE locate a resistor R2 (approximately 10kΩ) and a diode D1 at near pin-C, and a resistor R3 (approximately 50kΩ) and a diode D2 at between pin-C and GND. This application circuit shows the general example of a circuit, and is not a design guarantee for right operation. Sheet No.: D2-A06202EN 14

PC928J00000F Series Fig.41 Operations of Shortcircuit Protector Circuit PC928J00000F VCC V 13 CC Anode 1 O Anode Constant voltage circuit 12 1 2 Tr. 1 Cathode 3 ace 11 O2 TTL, micro computer, etc. Amp. nterf Tr. 2 RG RC IGBT I V C Typ. 150kΩ C 9 IGBT protector circuit FS 8 C P GND 1410 V EE Feedback to primary side 1. Detection of increase in VCE(sat) of IGBT due to overcurrent by means of C terminal (pin 9 ) 2. Reduction of the IGBT gate voltage, and suppression of the collector current 3. Simultaneous output of signals to indicate the shortcircuit condition (FS signal) from FS terminal (pin 8 ) to the microcomputer 4. Judgement and processing by the microcomputer In the case of instantaneous shortcircuit, run continues. At fault, input to the photocoupler is cut off, and IGBT is turned OFF. Remarks : Please be aware that all data in the graph are just for reference and not for guarantee. Sheet No.: D2-A06202EN 15

PC928J00000F Series ■ Design Considerations ● Notes about static electricity Transistor of detector side in bipolar configuration may be damaged by static electricity due to its minute design. When handling these devices, general countermeasure against static electricity should be taken to avoid breakdown of devices or degradation of characteristics. ● Design guide In order to stabilize power supply line, we should certainly recommend to connect a by-pass capacitor of 0.01µF or more between VCC and GND near the device. We recommend to use approximately 1 000pF of capacitor between C-pin and GND in order to prevent miss operation by noise. In the case that capacitor is used approximately 1kΩ of resistance shall be recommended to use between V and C-pin However, the rise time of C-pin shall be changed by time constant of added CR, so that CC please use this device after confirmation. In case that some sudden big noise caused by voltage variation is provided between primary and secondary terminals of photocoupler some current caused by it is floating capacitance may be generated and result in false operation since current may go through IRED or current may change. If the photocoupler may be used under the circumstances where noise will be generated we recommend to use the bypass capacitors at the both ends of IRED. The detector which is used in this device, has parasitic diode between each pins and GND. There are cases that miss operation or destruction possibly may be occurred if electric potential of any pin becomes below GND level even for instant. Therefore it shall be recommended to design the circuit that electric potential of any pin does not become below GND level. This product is not designed against irradiation and incorporates non-coherent IRED. Sheet No.: D2-A06202EN 16

PC928J00000F Series ● Degradation In general, the emission of the IRED used in photocouplers will degrade over time. In the case of long term operation, please take the general IRED degradation (50% degradation over 5 years) into the design consideration. Please decide the input current which become 2 times of MAX. I . FLH ● Recommended Foot Print (reference) 9.0 7 2 1. 7 2 1. 7 2 1. 7 2 1. 7 2 1. 7 2 1. 8 0. 1.8 (Unit : mm) ✩ For additional design assistance, please review our corresponding Optoelectronic Application Notes. Sheet No.: D2-A06202EN 17

PC928J00000F Series ■ Manufacturing Guidelines ● Soldering Method Reflow Soldering: Reflow soldering should follow the temperature profile shown below. Soldering should not exceed the curve of temperature profile and time. Please don't solder more than twice. (˚C) 300 Terminal : 260˚C peak ( package surface : 250˚C peak) 200 Reflow 220˚C or more, 60s or less Preheat 100 150 to 180˚C, 120s or less 0 0 1 2 3 4 (min) Flow Soldering : Due to SHARP's double transfer mold construction submersion in flow solder bath is allowed under the below listed guidelines. Flow soldering should be completed below 260˚C and within 10s. Preheating is within the bounds of 100 to 150˚C and 30 to 80s. Please don't solder more than twice. Hand soldering Hand soldering should be completed within 3s when the point of solder iron is below 400˚C. Please don't solder more than twice. Other notices Please test the soldering method in actual condition and make sure the soldering works fine, since the impact on the junction between the device and PCB varies depending on the tooling and soldering conditions. Sheet No.: D2-A06202EN 18

PC928J00000F Series ● Cleaning instructions Solvent cleaning: Solvent temperature should be 45˚C or below Immersion time should be 3 minutes or less Ultrasonic cleaning: The impact on the device varies depending on the size of the cleaning bath, ultrasonic output, cleaning time, size of PCB and mounting method of the device. Therefore, please make sure the device withstands the ultrasonic cleaning in actual conditions in advance of mass production. Recommended solvent materials: Ethyl alcohol, Methyl alcohol and Isopropyl alcohol In case the other type of solvent materials are intended to be used, please make sure they work fine in actual using conditions since some materials may erode the packaging resin. ● Presence of ODC This product shall not contain the following materials. And they are not used in the production process for this product. Regulation substances : CFCs, Halon, Carbon tetrachloride, 1.1.1-Trichloroethane (Methylchloroform) Specific brominated flame retardants such as the PBBOs and PBBs are not used in this product at all. This product shall not contain the following materials banned in the RoHS Directive (2002/95/EC). •Lead, Mercury, Cadmium, Hexavalent chromium, Polybrominated biphenyls (PBB), Polybrominated diphenyl ethers (PBDE). Sheet No.: D2-A06202EN 19

PC928J00000F Series ■ Package specification ● Sleeve package Package materials Sleeve : HIPS (with anti-static material) Stopper : Styrene-Elastomer Package method MAX. 50 pcs. of products shall be packaged in a sleeve. Both ends shall be closed by tabbed and tabless stoppers. The product shall be arranged in the sleeve with its primary side mark on the tabless stopper side. MAX. 20 sleeves in one case. Sleeve outline dimensions 12.0 520±2 8 0. 1 8 5. 6.7 (Unit : mm) Sheet No.: D2-A06202EN 20

PC928J00000F Series ● Tape and Reel package Package materials Carrier tape : A-PET (with anti-static material) Cover tape : PET (three layer system) Reel : PS Carrier tape structure and Dimensions F D J E G I C B A H H .X K AM˚5 Dimensions List (Unit : mm) A B C D E F G 16.0±0.3 7.5±0.1 1.75±0.1 12.0±0.1 2.0±0.1 4.0±0.1 φ1.5+0.1 −0 H I J K 10.4±0.1 0.4±0.05 4.2±0.1 9.7±0.1 Reel structure and Dimensions e d g c Dimensions List (Unit : mm) a b c d 330 17.5±1.5 100±1.0 13±0.5 f e f g a b 23±1.0 2.0±0.5 2.0±0.5 Direction of product insertion Pull-out direction [Packing : 1 000pcs/reel] Sheet No.: D2-A06202EN 21

PC928J00000F Series ■ Important Notices · The circuit application examples in this publication are with equipment that requires higher reliability such as: provided to explain representative applications of --- Transportation control and safety equipment (i.e., SHARP devices and are not intended to guarantee any aircraft, trains, automobiles, etc.) circuit design or license any intellectual property rights. --- Traffic signals SHARP takes no responsibility for any problems --- Gas leakage sensor breakers related to any intellectual property right of a third party --- Alarm equipment resulting from the use of SHARP's devices. --- Various safety devices, etc. (iii) SHARP devices shall not be used for or in · Contact SHARP in order to obtain the latest device connection with equipment that requires an extremely specification sheets before using any SHARP device. high level of reliability and safety such as: SHARP reserves the right to make changes in the --- Space applications specifications, characteristics, data, materials, --- Telecommunication equipment [trunk lines] structure, and other contents described herein at any --- Nuclear power control equipment time without notice in order to improve design or --- Medical and other life support equipment (e.g., reliability. Manufacturing locations are also subject to scuba). change without notice. · If the SHARP devices listed in this publication fall · Observe the following points when using any devices within the scope of strategic products described in the in this publication. SHARP takes no responsibility for Foreign Exchange and Foreign Trade Law of Japan, it damage caused by improper use of the devices which is necessary to obtain approval to export such SHARP does not meet the conditions and absolute maximum devices. ratings to be used specified in the relevant specification sheet nor meet the following conditions: · This publication is the proprietary product of SHARP (i) The devices in this publication are designed for use and is copyrighted, with all rights reserved. Under the in general electronic equipment designs such as: copyright laws, no part of this publication may be --- Personal computers reproduced or transmitted in any form or by any --- Office automation equipment means, electronic or mechanical, for any purpose, in --- Telecommunication equipment [terminal] whole or in part, without the express written permission --- Test and measurement equipment of SHARP. Express written permission is also required --- Industrial control before any use of this publication may be made by a --- Audio visual equipment third party. --- Consumer electronics (ii) Measures such as fail-safe function and redundant · Contact and consult with a SHARP representative if design should be taken to ensure reliability and safety there are any questions about the contents of this when SHARP devices are used for or in connection publication. [E227] Sheet No.: D2-A06202EN 22