图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: OPA827AIDGKT
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

OPA827AIDGKT产品简介:

ICGOO电子元器件商城为您提供OPA827AIDGKT由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 OPA827AIDGKT价格参考。Texas InstrumentsOPA827AIDGKT封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, J-FET Amplifier 1 Circuit 8-VSSOP。您可以下载OPA827AIDGKT参考资料、Datasheet数据手册功能说明书,资料中有OPA827AIDGKT 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP JFET 22MHZ 8VSSOP运算放大器 - 运放 Low-Noise,High-Prec JFET-Input Op Amp

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Texas Instruments

产品手册

http://www.ti.com/litv/sbos376h

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,运算放大器 - 运放,Texas Instruments OPA827AIDGKT-

数据手册

点击此处下载产品Datasheet

产品型号

OPA827AIDGKT

产品目录页面

点击此处下载产品Datasheet

产品种类

运算放大器 - 运放

供应商器件封装

8-VSSOP

共模抑制比—最小值

104 dB

关闭

No Shutdown

其它名称

296-24280-2

包装

带卷 (TR)

单位重量

26 mg

压摆率

28 V/µs

双重电源电压

+/- 5 V, +/- 9 V, +/- 12 V, +/- 15 V

商标

Texas Instruments

增益带宽生成

22 MHz

增益带宽积

22MHz

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

8-TSSOP,8-MSOP(0.118",3.00mm 宽)

封装/箱体

VSSOP-8

工作温度

-40°C ~ 125°C

工作电源电压

8 V to 36 V, +/- 4 V to +/- 18 V

工厂包装数量

250

放大器类型

J-FET

最大双重电源电压

+/- 18 V

最大工作温度

+ 125 C

最小双重电源电压

+/- 4 V

最小工作温度

- 40 C

标准包装

250

电压-电源,单/双 (±)

8 V ~ 36 V, ±4 V ~ 18 V

电压-输入失调

75µV

电流-电源

4.8mA

电流-输入偏置

15pA

电流-输出/通道

30mA

电源电流

4.8 mA

电路数

1

系列

OPA827

设计资源

http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176

转换速度

28 V/us

输入偏压电流—最大

10 pA

输入参考电压噪声

4 nV

输入补偿电压

150 uV

输出电流

30 mA

输出类型

-

通道数量

1 Channel

推荐商品

型号:THS4151ID

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TLC2264IN

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TLE2061IDR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LMP7717MA/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:OPA2277PA

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:EL5171IS

品牌:Renesas Electronics America Inc.

产品名称:集成电路(IC)

获取报价

型号:LT1797IS5#TRM

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:TLV2254AQDR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
OPA827AIDGKT 相关产品

MC33172DT

品牌:STMicroelectronics

价格:

LM7322MM/NOPB

品牌:Texas Instruments

价格:

TLV4111IDGNRG4

品牌:Texas Instruments

价格:

MCP6024-I/P

品牌:Microchip Technology

价格:

ADA4665-2ARZ-R7

品牌:Analog Devices Inc.

价格:

MAX4494ASA+T

品牌:Maxim Integrated

价格:

ADA4897-1ARJZ-R7

品牌:Analog Devices Inc.

价格:

MAX4231AXT-T

品牌:Maxim Integrated

价格:

PDF Datasheet 数据手册内容提取

Product Sample & Technical Tools & Support & Folder Buy Documents Software Community OPA827 SBOS376I–NOVEMBER2006–REVISEDJULY2016 OPA827 Low-Noise, High-Precision, JFET-Input Operational Amplifier 1 Features 3 Description • InputVoltageNoiseDensity: The OPA827 series of JFET operational amplifiers 1 combine outstanding DC precision with excellent AC 4nV/√Hzat1kHz performance. These amplifiers offer low offset voltage • InputVoltageNoise: (150 µV, maximum), very low drift over temperature 0.1Hzto10Hz:250nVPP (0.5 µV/°C, typical), low-bias current (3 pA, typical), • InputBiasCurrent:10pA(Maximum) and very low 0.1-Hz to 10-Hz noise (250 nV , PP typical). The device operates over a wide supply • InputOffsetVoltage:150µV(Maximum) voltage range, ±4 V to ±18 V on a low supply current • InputOffsetDrift:2µV/°C(Maximum) (4.8mA/Ch,typical). • GainBandwidth:22MHz Excellent AC characteristics, such as a 22-MHz gain • SlewRate:28V/µs bandwidth product (GBW), a slew rate of 28 V/µs, • QuiescentCurrent:4.8mA/Ch and precision DC characteristics make the OPA827 • WideSupplyRange:±4Vto ±18V series well-suited for a wide range of applications including 16-bit to 18-bit mixed signal systems, • Packages:8-PinSOICand8-PinVSSOP transimpedance (I/V-conversion) amplifiers, filters, precision ±10-V front ends, and professional audio 2 Applications applications. • ADCDrivers The OPA827 is available in both 8-pin SOIC and 8- • DACOutputBuffers pin VSSOP surface-mount packages, and is specified • TestEquipment from –40°Cto125°C. • MedicalEquipment DeviceInformation(1) • PLLFilters PARTNUMBER PACKAGE BODYSIZE(NOM) • SeismicApplications SOIC(8) 4.90mm×3.91mm • TransimpedanceAmplifiers OPA827 VSSOP(8) 3.00mm×3.00mm • Integrators (1) For all available packages, see the orderable addendum at • ActiveFilters theendofthedatasheet. InputVoltageNoiseDensityvsFrequency 0.1-Hzto10-HzNoise 100 V =±18V S z) H √ V/ n y ( Densit 10 nV/div se 50 oi N e g a olt V 1 0.1 1 10 100 1k 1100kk Time (1s/div) Frequency (Hz) 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

OPA827 SBOS376I–NOVEMBER2006–REVISEDJULY2016 www.ti.com Table of Contents 1 Features.................................................................. 1 8 ApplicationandImplementation........................ 21 2 Applications........................................................... 1 8.1 ApplicationInformation............................................21 3 Description............................................................. 1 8.2 TypicalApplication..................................................21 4 RevisionHistory..................................................... 2 8.3 SystemExamples ..................................................22 5 PinConfigurationandFunctions......................... 4 9 PowerSupplyRecommendations...................... 24 6 Specifications......................................................... 5 10 Layout................................................................... 25 6.1 AbsoluteMaximumRatings......................................5 10.1 LayoutGuidelines.................................................25 6.2 ESDRatings..............................................................5 10.2 LayoutExample....................................................25 6.3 RecommendedOperatingConditions.......................5 11 DeviceandDocumentationSupport................. 26 6.4 ThermalInformation..................................................5 11.1 DeviceSupport......................................................26 6.5 ElectricalCharacteristics...........................................6 11.2 DocumentationSupport........................................26 6.6 TypicalCharacteristics..............................................8 11.3 ReceivingNotificationofDocumentationUpdates26 7 DetailedDescription............................................ 15 11.4 CommunityResource............................................26 7.1 Overview.................................................................15 11.5 Trademarks...........................................................26 7.2 FunctionalBlockDiagram.......................................15 11.6 ElectrostaticDischargeCaution............................26 7.3 FeatureDescription.................................................15 11.7 Glossary................................................................26 7.4 DeviceFunctionalModes........................................20 12 Mechanical,Packaging,andOrderable Information........................................................... 27 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionH(May2012)toRevisionI Page • AddedESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,ApplicationandImplementation section,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentationSupportsection,and Mechanical,Packaging,andOrderableInformationsection ................................................................................................. 1 • DeletedPackage/OrderingInformationtable,seePOAattheendofthedatasheet............................................................ 4 • ChangedvaluesintheThermalInformationtabletoalignwithJEDECstandards................................................................ 5 ChangesfromRevisionG(February2012)toRevisionH Page • UpdatedFigure3.................................................................................................................................................................... 8 • UpdatedFigure4.................................................................................................................................................................... 8 ChangesfromRevisionF(March2009)toRevisionG Page • ChangedInputbiascurrentandInputoffsetdriftFeaturesbullets........................................................................................ 1 • ChangedproductstatusfromMixedStatustoProductionData............................................................................................ 1 • ChangeddescriptionofamplifierdriftandbiascurrentinfirstparagraphofDescriptionsection.......................................... 1 • Deletedhighgrade(OPA827I)optionandfootnote2fromPackage/OrderingInformationtable.......................................... 4 • Deletedhighgrade(OPA827I)optionfromElectricalCharacteristicstable........................................................................... 6 • ChangedOffsetVoltage,InputOffsetVoltageDriftparametertypicalandmaximumspecificationsinElectrical Characteristicstable............................................................................................................................................................... 6 • ChangedInputBiasCurrentsectionspecificationsinElectricalCharacteristicstable........................................................... 6 • Changed-40°Cto+85°CInputBiasCurrentparameterunit................................................................................................. 6 • AddedFrequencyResponse,SlewRateparameterminimumspecificationtoElectricalCharacteristicstable....................6 • AddedOutput,Short-CircuitCurrentparameterminimumspecificationtoElectricalCharacteristicstable........................... 7 • UpdatedFigure7.................................................................................................................................................................... 8 • UpdatedFigure8.................................................................................................................................................................... 8 2 SubmitDocumentationFeedback Copyright©2006–2016,TexasInstrumentsIncorporated ProductFolderLinks:OPA827

OPA827 www.ti.com SBOS376I–NOVEMBER2006–REVISEDJULY2016 • UpdatedFigure9.................................................................................................................................................................... 8 • UpdatedFigure11.................................................................................................................................................................. 8 • UpdatedFigure12.................................................................................................................................................................. 8 • UpdatedFigure14.................................................................................................................................................................. 9 Copyright©2006–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:OPA827

OPA827 SBOS376I–NOVEMBER2006–REVISEDJULY2016 www.ti.com 5 Pin Configuration and Functions DandDGKPackages 8-PinSOICandVSSOP TopView (1) (1) NC 1 8 NC -In 2 7 V+ +In 3 6 Out V- 4 5 NC(1) (1) NCdenotesnointernalconnection. PinFunctions PIN I/O DESCRIPTION NO. NAME +IN 3 I Noninvertinginput –IN 2 I Invertinginput NC 1,5,8 — Nointernalconnection(canbeleftfloating) OUT 6 O Output V+ 7 — Positivepowersupply V– 4 — Negativepowersupply 4 SubmitDocumentationFeedback Copyright©2006–2016,TexasInstrumentsIncorporated ProductFolderLinks:OPA827

OPA827 www.ti.com SBOS376I–NOVEMBER2006–REVISEDJULY2016 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN MAX UNIT Supplyvoltage,VS=(V+)–(V–) 40 V Inputvoltage(2) (V–)–0.5 (V+)+0.5 V Inputcurrent(2) ±10 mA Differentialinputvoltage ±VS V Outputshort-circuit(3) Continuous Operatingtemperature,TA –55 150 °C Junctiontemperature,TJ 150 °C Storagetemperature,Tstg –65 150 °C (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) Inputterminalsarediode-clampedtothepower-supplyrails.Inputsignalsthatcanswingmorethan0.5Vbeyondthesupplyrailsmust becurrent-limitedto10mAorless. (3) Short-circuittoV /2(groundinsymmetricaldual-supplysetups). S 6.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±4000 V Electrostaticdischarge V (ESD) Charged-devicemodel(CDM),perJEDECspecificationJESD22-C101(2) ±1000 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 6.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT V Supplyvoltage ±4 ±18 V S T Specifiedtemperature –40 125 °C A 6.4 Thermal Information OPA827 THERMALMETRIC(1) D(SOIC) DGK(VSSOP) UNIT 8PINS 8PINS R Junction-to-ambientthermalresistance 160 180 °C/W θJA R Junction-to-case(top)thermalresistance 75 55 °C/W θJC(top) R Junction-to-boardthermalresistance 60 130 °C/W θJB ψ Junction-to-topcharacterizationparameter 9 — °C/W JT ψ Junction-to-boardcharacterizationparameter 50 120 °C/W JB R Junction-to-case(bottom)thermalresistance — — °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report. Copyright©2006–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:OPA827

OPA827 SBOS376I–NOVEMBER2006–REVISEDJULY2016 www.ti.com 6.5 Electrical Characteristics atV =±4Vto±18V,T =25°C,R =10kΩconnectedtomidsupply,andV =V =midsupply(unlessotherwisenoted) S A L CM OUT PARAMETER TESTCONDITIONS MIN TYP MAX UNIT OFFSETVOLTAGE VOS Inputoffsetvoltage VS=±15V,VCM=0V 75 150 µV dVOS/dT Inputoffsetvoltagedrift TA=–40°Cto125°C 0.1 2 µV/°C Inputoffsetvoltagevspower 0.2 1 PSRR µV/V supply TA=–40°Cto125°C 3 INPUTBIASCURRENT ±3 ±10 pA IB Inputbiascurrent TA=–40°Cto85°C ±500 pA TA=–40°Cto125°C ±5 nA IOS InputOffsetCurrent ±3 ±10 pA NOISE InputVoltageNoise: f=0.1Hzto10Hz,VS=±18V,VCM=0V 250 nVPP en f=1kHz,VS=±18V,VCM=0V 4 InputVoltageNoiseDensity nV/√Hz f=10kHz,VS=±18V,VCM=0V 3.8 in Inputcurrentnoisedensity f=1kHz,VS=±18V,VCM=0V 2.2 fA/√Hz INPUTVOLTAGERANGE Common-modevoltage VCM range (V–)+3 (V+)–3 V (V−)+3V≤VCM≤(V+)−3V,VS<10V 104 114 (V−)+3V≤VCM≤(V+)−3V,VS≥10V 114 126 CMRR Craotimomon-moderejection (TVA−=)+–430°VC≤toVC1M25≤°C(V+)−3V,VS<10V 100 dB (V−)+3V≤VCM≤(V+)−3V,VS≥10V 110 TA=–40°Cto125°C INPUTIMPEDANCE Differential 1013∥9 Ω∥pF Common-mode 1013 ∥9 Ω∥pF OPEN-LOOPGAIN (V–)+3V≤VO≤(V+)–3V,RL=1kΩ 120 126 AOL Open-loopvoltagegain (V–)+3V≤VO≤(V+)–3V,RL=1kΩ 114 dB TA=–40°Cto125°C FREQUENCYRESPONSE GBW Gain-bandwidthproduct G=+1 22 MHz SR Slewrate G=–1 20 28 V/µs ±0.01%,10-Vstep,G=–1,CL=100pF 550 ns tS Settlingtime 0.00075%(16-bit),10-Vstep,G=–1, 850 ns CL=100pF Overloadrecoverytime Gain=–10 150 ns TotalHarmonicDistortion+ G=+1,f=1kHz 0.00004% THD+N Noise VO=3VRMS,RL=600Ω –128 dB 6 SubmitDocumentationFeedback Copyright©2006–2016,TexasInstrumentsIncorporated ProductFolderLinks:OPA827

OPA827 www.ti.com SBOS376I–NOVEMBER2006–REVISEDJULY2016 Electrical Characteristics (continued) atV =±4Vto±18V,T =25°C,R =10kΩconnectedtomidsupply,andV =V =midsupply(unlessotherwisenoted) S A L CM OUT PARAMETER TESTCONDITIONS MIN TYP MAX UNIT OUTPUT RL=1kΩ,AOL>120dB (V–)+3 (V+)–3 Voltageoutputswing RL=1kΩ,AOL>114dB (V–)+3 (V+)–3 V TA=–40°Cto125°C IOUT Outputcurrent |VS–VOUT|<3V 30 mA ISC Short-circuitcurrent ±55 ±65 mA CLOAD Capacitiveloaddrive SeeTypicalCharacteristics Open-loopoutput ZO impedance SeeTypicalCharacteristics POWERSUPPLY VS Specifiedvoltage ±4 ±18 V Quiescentcurrent IOUT=0A 4.8 5.2 IQ (peramplifier) TA=–40°Cto125°C 6 mA Copyright©2006–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:OPA827

OPA827 SBOS376I–NOVEMBER2006–REVISEDJULY2016 www.ti.com 6.6 Typical Characteristics AtT =25°C,V =±18V,R =10kΩconnectedtomidsupply,andV =V =midsupply,unlessotherwisenoted. A S L CM OUT 100 100 )z H Ösity (nV/ moise (V) 10 VPP n N e De 10 age 1 e Nois ut Volt VRMS g p 0.1 a n olt I Noise Bandwidth: 0.1Hz V to indicated frequency. 1 0.01 0.1 1 10 100 1k 1100kk 1 10 100 1k 10k 100k 1M 10M Frequency (Hz) Bandwidth (Hz) Figure1.InputVoltageNoiseDensityvsFrequency Figure2.IntegratedInputVoltageNoisevsBandwidth 0.01 0.01 VS = – 15V RL = 600W VOUT = 3VRMS 0.001 G = 10 0.001 %) %) N ( N ( + + HD HD G = 1 T 0.0001 G = 1 T 0.0001 VS = – 15V RL = 600 W f = 1 kHz G = 10 0.00001 0.00001 20 100 1k 10k 20k 10m 100m 1 10 20 Frequency (Hz) Voltage (Vrms) G000 G001 Figure3.TotalHarmonicDistortion+NoiseRatio Figure4.TotalHarmonicDistortion+NoiseRatio vsFrequency vsAmplitude V =±15V S n 50nV/div Populatio Time (1s/div) 150 135 120 105-90 -75-60 -45 -30 -15 0 15 30 45 60 75 90 105 120 135 150 - - - - Offset Voltage (mV) Figure5.0.1-Hzto10-HzNoise Figure6.OffsetVoltageProductionDistribution 8 SubmitDocumentationFeedback Copyright©2006–2016,TexasInstrumentsIncorporated ProductFolderLinks:OPA827

OPA827 www.ti.com SBOS376I–NOVEMBER2006–REVISEDJULY2016 Typical Characteristics (continued) AtT =25°C,V =±18V,R =10kΩconnectedtomidsupply,andV =V =midsupply,unlessotherwisenoted. A S L CM OUT 25 250 V = 8V 10Typical Units Shown 200 S %) 20 150 ers ( 100 mplifi 15 V) 50 A m ge of 10 V(OS -500 a ent -100 c e 5 P -150 -200 0 001122334455667788991111223344556677889922 -250 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 Offset Voltage Drift (µV/°C) V (V) G001 CM Figure7.OffsetVoltageDriftProductionDistribution Figure8.OffsetVoltagevsCommon-ModeVoltage 250 15 200 VS= 36V 10Typical Units Shown 10 5 150 0 -5 100 -10 (V)mOS 500 mShift (V) ----12235050 V -50 S O -35 V -100 -40 -45 -150 -50 -200 -55 -60 VS=±15V 20 Typical Units Shown -250 -65 3 8 13 18 23 28 33 0 50 100 150 200 250 300 V (V) Time (s) CM Figure9.OffsetVoltagevsCommon-ModeVoltage Figure10.V Warmup OS 250 10 200 VS=±15V 8 -+IIBB 150 6 A) 100 p 4 V(V)mOS -55000 SpecifiedTemperature Range Bias Current ( −202 -100 ut −4 p -150 In −6 -200 −8 -250 −10 -75 -50 -25 0 25 50 75 100 125 150 4 6 8 10 12 14 16 18 Temperature (°C) Supply Voltage (V) G002 Figure11.OffsetVoltagevsTemperature Figure12.InputBiasCurrentandOffsetCurrent vsSupplyVoltage Copyright©2006–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:OPA827

OPA827 SBOS376I–NOVEMBER2006–REVISEDJULY2016 www.ti.com Typical Characteristics (continued) AtT =25°C,V =±18V,R =10kΩconnectedtomidsupply,andV =V =midsupply,unlessotherwisenoted. A S L CM OUT 20 12000 - IB 1150 Specified Common-Mode A) 10000 +IOISB 5 Voltage Range nt (p 8000 (pA) 0 Unit 1 Curre 6000 IB -5 Unit 3 Bias -10 Unit 2 nput 4000 I -15 2000 -20 0 -18 -15 -12 -9 -6 -3 0 3 6 9 12 15 18 −50 −25 0 25 50 75 100 125 150 V (V) Temperature (°C) CM G002 Figure13.InputBiasCurrentvsCommon-ModeVoltage Figure14.InputBiasCurrentvsTemperature 0.05 6.0 10 Typical Units Shown 0 -0.05 5.5 VS=±18V -0.10 )Am -0.15 A) 5.0 V =±5V hS(tfiQ--00..2205 I(mQ 4.5 S I -0.30 -0.35 4.0 -0.40 -0.45 3.5 0 50 100 150 200 250 300 -75 -50 -25 0 25 50 75 100 125 150 Time (s) Temperature (°C) Figure15.NormalizedQuiescentCurrentvsTime Figure16.QuiescentCurrentvsTemperature 5.00 5 V =±5V 4 S 4.95 -55°C 3 4.90 -40°C V) 2 4.85 g ( 1 I(mA)Q 44..8705 utput Swin -01 +150°+C125°C+85°C+2-54°C0°C O -2 4.70 -55°C -3 4.65 -4 4.60 -5 8 13 18 23 28 33 38 20 30 40 50 60 70 73 V (V) Output Current (mA) S Figure17.QuiescentCurrentvsSupplyVoltage Figure18.OutputVoltageSwingvsOutputCurrent 10 SubmitDocumentationFeedback Copyright©2006–2016,TexasInstrumentsIncorporated ProductFolderLinks:OPA827

OPA827 www.ti.com SBOS376I–NOVEMBER2006–REVISEDJULY2016 Typical Characteristics (continued) AtT =25°C,V =±18V,R =10kΩconnectedtomidsupply,andV =V =midsupply,unlessotherwisenoted. A S L CM OUT 16 180 V =±18V Referred to Input 12 S 160 Positive 140 8 V) 120 g ( 4 B) ut Swin 0 +150°C+125°C +85°C +25°C -40°C -55°C SRR (d 10800 Negative Outp -4 P 60 -8 40 -12 20 -16 0 48 53 58 63 68 73 0.1 1 10 100 1k 10k 100k 1M 10M 100M Output Current (mA) Frequency (Hz) Figure19.OutputVoltageSwingvsOutputCurrent Figure20.Power-SupplyRejectionRatiovsFrequency 140 0.30 V ³10V S 120 0.25 dB) 100 V/V) 0.20 RR ( 80 R (m M R C S 0.15 60 P 0.10 40 20 0.05 0.1 1 10 100 1k 10k 100k 1M 10M 100M -75 -50 -25 0 25 50 75 100 125 150 Frequency (Hz) Temperature (°C) Figure21.Common-ModeRejectionRatiovsFrequency Figure22.Power-SupplyRejectionRatiovsTemperature 1.6 140 0 1.4 120 1.2 100 -45 1.0 CMRR (V/Vm) 000...864 Gain (dB) 864000 Phase -90 Phase ()° 0.2 20 -135 0.0 -0.2 0 Gain -0.4 -20 -180 -75 -50 -25 0 25 50 75 100 125 150 1 10 100 1k 10k 100k 1M 10M 100M Temperature (°C) Frequency (Hz) Figure23.Common-ModeRejectionRatiovsTemperature Figure24.Open-LoopGainandPhasevsFrequency Copyright©2006–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:OPA827

OPA827 SBOS376I–NOVEMBER2006–REVISEDJULY2016 www.ti.com Typical Characteristics (continued) AtT =25°C,V =±18V,R =10kΩconnectedtomidsupply,andV =V =midsupply,unlessotherwisenoted. A S L CM OUT 50 1.2 G = +101 RL= 1kW 40 1.0 30 G = +11 B) 20 V) 0.8 Gain (d 100 G = +1 A(mV/OL 0.6 -10 0.4 -20 -30 0.2 100 1k 10k 100k 1M 10M 100M -75 -50 -25 0 25 50 75 100 125 150 Frequency (Hz) TTeemmppeerraattuurree ((°°CC)) Figure25.Closed-LoopGainvsFrequency Figure26.Open-LoopGainvsTemperature 1000 70 )O 100mV Output Step G = +1 Z 60 e ( c n a 50 ed 100 %) Output Imp vershoot ( 4300 G =-1 p 10 O oo 20 L n- pe 10 O 1 0 100 1k 10k 100k 1M 10M 100M 0 100 200 300 400 500 600 700 800 900 1000 Frequency (Hz) Capacitive Load (pF) Figure27.Open-LoopOutputImpedancevsFrequency Figure28.Small-SignalOvershootvsCapacitiveLoad G =-10 V Output OUT V/div V/div 0V 5 +18V 5 10kW OPA827 VIN 1kW Output OPA827 VOUT -18V VIN 3S7inVeP PWave (±18.5V) 0.5ms/div Time (0.5ms/div) Figure29.NoPhaseReversal Figure30.PositiveOverloadRecovery 12 SubmitDocumentationFeedback Copyright©2006–2016,TexasInstrumentsIncorporated ProductFolderLinks:OPA827

OPA827 www.ti.com SBOS376I–NOVEMBER2006–REVISEDJULY2016 Typical Characteristics (continued) AtT =25°C,V =±18V,R =10kΩconnectedtomidsupply,andV =V =midsupply,unlessotherwisenoted. A S L CM OUT G =-10 G = +1 R = 1kW L V C = 100pF IN L v V/div 0V mV/di +18V 5 0 10kW 2 OPA827 1kW OPA827 VOUT -18V RL CL VIN V OUT Time (0.5ms/div) Time (0.1ms/div) Figure31.NegativeOverloadRecovery Figure32.Small-SignalStepResponse 5.C61pF v mV/di 1RkW1 1RkW2 V/div 0 2 2 +18V OPA827 G = +1 G =-1 -18V CL RL= 1kW CL= 100pF CL= 100pF Time (0.1ms/div) Time (0.5ms/div) Figure33.Small-SignalStepResponse Figure34.Large-SignalStepResponse 1.0 0.010 0.8 0.008 0.6 0.006 e (mV) 0.4 16-Bit 0.004 FroD 2V/div m Final Valu -00..202 S(±e1t/t2lin LgSB = 00-0.0.00022 m Final Valu Fro -0.4 ±0.00075%) -0.004 e (% D -0.6 -0.006 ) G =-1 -0.8 -0.008 C = 100pF L -1.0 -0.010 0 100 200 300 400 500 600 700 800 900 1000 Time (0.5ms/div) Time (ns) 10V ,C =100pF PP L Figure35.Large-SignalStepResponse Figure36.Large-SignalPositiveSettlingTime Copyright©2006–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:OPA827

OPA827 SBOS376I–NOVEMBER2006–REVISEDJULY2016 www.ti.com Typical Characteristics (continued) AtT =25°C,V =±18V,R =10kΩconnectedtomidsupply,andV =V =midsupply,unlessotherwisenoted. A S L CM OUT 1.0 0.010 1.0 0.010 0.8 0.008 0.8 0.008 0.6 0.006 0.6 0.006 DFrom Final Value (mV) ---00000.....420246 1S(±±60e1-.t0B/t2l0iin t0Lg7S5B% =) 000---000..00...0000000042246 From Final Value (%)DDFrom Final Value (mV) ---00000.....420246 1S(±±60e1-.t0B/t2l0iin t0Lg7S5B% =) 000---000..00...0000000042246 From Final Value (%)D -0.8 -0.008 -0.8 -0.008 -1.0 -0.010 -1.0 -0.010 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 Time (ns) Time (ns) 10V ,C =10pF 10V ,C =100pF PP L PP L Figure37.Large-SignalPositiveSettlingTime Figure38.Large-SignalNegativeSettlingTime 1.0 0.010 80 Sourcing 0.8 0.008 60 0.6 0.006 al Value (mV) 00..420 1S6e-tBtliintg 000..000042 From FinaD (mA) 42000 From Fin --00..24 (±±01.0/20 0L7S5B% =) --00..000024 l Value (% ISC --2400 D -0.6 -0.006 ) -0.8 -0.008 -60 Sinking -1.0 -0.010 -80 0 100 200 300 400 500 600 700 800 900 1000 -75 -25 25 75 125 175 Time (ns) Temperature (°C) 10V ,C =10pF PP L Figure39.Large-SignalNegativeSettlingTime Figure40.Short-CircuitCurrentvsTemperature 14 SubmitDocumentationFeedback Copyright©2006–2016,TexasInstrumentsIncorporated ProductFolderLinks:OPA827

OPA827 www.ti.com SBOS376I–NOVEMBER2006–REVISEDJULY2016 7 Detailed Description 7.1 Overview The OPA827 is a unity-gain stable, precision operational amplifier with very low noise, input bias current, and input offset voltage. Applications with noisy or high-impedance power supplies require decoupling capacitors placedclosetothedevicepins.Inmostcases,0.1-µFcapacitorsareadequate. 7.2 Functional Block Diagram V+ IN+ IN- OUT V- Copyright © 2016,Texas Instruments Incorporated 7.3 Feature Description The OPA827 is a precision JFET amplifier with low input offset voltage, low input offset voltage drift and low noise. High impedance inputs make the OPA827 ideal for high source impedance applications and transimpedanceapplications. 7.3.1 OperatingVoltage The OPA827 series of op amps can be used with single or dual supplies from an operating range of V = 8 V (±4 V) and up to V = 36 V (±18 V). This device does not require symmetrical supplies; it only requires S S aminimumsupplyvoltageof8V.Supplyvoltageshigherthan40V(±20V)canpermanentlydamagethedevice; seeAbsoluteMaximumRatings.Keyparametersarespecifiedovertheoperatingtemperaturerange,T =–40°C A to 125°C. Key parameters that vary over the supply voltage or temperature range are shown in Typical Characteristicsofthisdatasheet. 7.3.2 NoisePerformance Figure 41 shows the total circuit noise for varying source impedances with the operational amplifier in a unity- gain configuration (with no feedback resistor network and therefore no additional noise contributions). The OPA827 (GBW = 22 MHz) and OPA211 (GBW = 80 MHz) are both shown in this example with total circuit noise calculated. The op amp itself contributes both a voltage noise component and a current noise component. The voltage noise is commonly modeled as a time-varying component of the offset voltage. The current noise is modeled as the time-varying component of the input bias current and reacts with the source resistance to create a voltage component of noise. Therefore, the lowest noise op amp for a given application depends on the source impedance. For low source impedance, current noise is negligible, and voltage noise generally dominates. The OPA827familyhasbothlowvoltagenoiseandlowercurrentnoisebecauseoftheFETinputoftheopamp.Very low current noise allows for excellent noise performance with source impedances greater than 10 kΩ. OPA211 has lower voltage noise and higher current noise. The low voltage noise makes the OPA211 a better choice for low source impedances (less than 2 kΩ). For high source impedance, current noise may dominate, and makes theOPA827seriesamplifierthebetterchoice. Copyright©2006–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:OPA827

OPA827 SBOS376I–NOVEMBER2006–REVISEDJULY2016 www.ti.com Feature Description (continued) TheequationinFigure41showsthecalculationofthetotalcircuitnoise,withtheseparameters: • e =voltagenoise n • i =currentnoise n • R =sourceimpedance S • k=Boltzmann'sconstant=1.38× 10–23J/K • T=temperatureinkelvins Formoredetailsoncalculatingnoise,seeBasicNoiseCalculations. 10k O E nsity, 1k EO OPA211 De RS al ctr pe 100 S e s oi OPA827 N Resistor Noise e 10 g a otl V 2 2 2 E = e + (i R ) + 4kTR O n n S S 1 100 1k 10k 100k 1M Source Resistance, R (W) S Figure41. NoisePerformanceoftheOPA827andOPA211 inUnity-GainBufferConfiguration 7.3.3 BasicNoiseCalculations Low-noise circuit design requires careful analysis of all noise sources. External noise sources can dominate in manycases;considertheeffectofsourceresistanceontheoverallnoiseperformanceoftheopamp.Totalnoise ofthecircuitistheroot-sum-squarecombinationofallnoisecomponents. The resistive portion of the source impedance produces thermal noise proportional to the square root of the resistance. This function is plotted in Figure 41. The source impedance is usually fixed; consequently, select the opampandthefeedbackresistorstominimizetherespectivecontributionstothetotalnoise. Figure 42 illustrates both noninverting (A) and inverting (B) op amp circuit configurations with gain. In circuit configurations with gain, the feedback network resistors also contribute noise. The current noise of the op amp reactswiththefeedbackresistorstocreateadditionalnoisecomponents. Thefeedbackresistorvaluescangenerallybechosentomakethesenoisesourcesnegligible. NOTE Low-impedance feedback resistors load the output of the amplifier. The equations for total noiseareshownforbothconfigurationsshowninbothconfigurationsinFigure42. 16 SubmitDocumentationFeedback Copyright©2006–2016,TexasInstrumentsIncorporated ProductFolderLinks:OPA827

OPA827 www.ti.com SBOS376I–NOVEMBER2006–REVISEDJULY2016 Feature Description (continued) A) Noise in Noninverting Gain Configuration R Noise at the output: 2 2 2 R R R E 2= 1 + 2 e2+ e2+ e2+ (iR)2+ e 2+ (iR )2 1 + 2 1 O R n 1 2 n 2 S n S R 1 1 E O R Where e =Ö4kTR ´ 1 + 2 = thermal noise of R S S R S 1 R S R e =Ö4kTR ´ 2 = thermal noise of R 1 1 R 1 V 1 S e =Ö4kTR = thermal noise of R 2 2 2 B) Noise in Inverting Gain Configuration Noise at the output: R 2 2 R R E 2= 1 + 2 e2+ e2+ e2+ (iR)2+ e 2 1 O R + R n 1 2 n 2 S 1 S E RS O Where e =Ö4kTR ´ R2 = thermal noise of R S S R + R S 1 S V S R e =Ö4kTR ´ 2 = thermal noise of R 1 1 R + R 1 1 S e =Ö4kTR = thermal noise of R 2 2 2 For the OPA827 series op amps at 1kHz, e = 4nV/ÖHzand i = 2.2fA/ÖHz. n n Copyright © 2016,Texas Instruments Incorporated Figure42. NoiseCalculationinGainConfigurations 7.3.4 TotalHarmonicDistortionMeasurements The OPA827 series op amps have excellent distortion characteristics. THD + Noise is below 0.0001% (G=+1,V =3V )throughouttheaudiofrequencyrange,20Hzto20kHz,witha600-Ωload(seeFigure3). O RMS The distortion produced by the OPA827 series is below the measurement limit of many commercially available testers. However, a special test circuit (illustrated in Figure 43) can be used to extend the measurement capabilities. Opampdistortioncanbeconsideredaninternalerrorsourcethatcanbereferredtotheinput.Figure43showsa circuit that causes the op amp distortion to be 101 times greater than that distortion normally produced by the op amp. The addition of R to the otherwise standard noninverting amplifier configuration alters the feedback factor 3 or noise gain of the circuit. The closed-loop gain is unchanged, but the feedback available for error correction is reducedbyafactorof101,thusextendingtheresolutionby101. NOTE the input signal and load applied to the op amp are the same as with conventional feedback without R . The value of R must be kept small to minimize its effect on the 3 3 distortionmeasurements. Copyright©2006–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:OPA827

OPA827 SBOS376I–NOVEMBER2006–REVISEDJULY2016 www.ti.com Feature Description (continued) Thevalidityofthistechniquecanbeverifiedbyduplicatingmeasurementsathighgainandhighfrequencywhere the distortion is within the measurement capability of the test equipment. Measurements for this data sheet were made with an Audio Precision System Two distortion and noise analyzer, which greatly simplifies such repetitive measurements. This measurement technique, however, can be performed with manual distortion measurement instruments. R R 1 2 SIGNAL DISTORTION GAIN GAIN R1 R2 R3 1 101 ¥ 1kW 10W R R3 OPA827 VO= 3VRMS 11 101 100W 1kW 11W Signal Gain = 1+ 2 R 1 R Distortion Gain = 1+ 2 R II R 1 3 Generator Analyzer Output Input Audio Precision R SystemTwo(1) 60L0W with PC Controller NOTE: (1) Measurement BW = 80kHz. Copyright © 2016,Texas Instruments Incorporated Figure43. DistortionTestCircuit 7.3.5 CapacitiveLoadandStability The combination of gain bandwidth product (GBW) and near constant open-loop output impedance (Z ) over O frequency gives the OPA827 the ability to drive large capacitive loads. Figure 44 shows the OPA827 connected in a buffer configuration (G = +1) while driving a 2.2-µF ceramic capacitor (with an ESR value of approximately 0 Ω). The small overshoot and fast settling time are results of good phase margin. This feature provides superior performance compared to the competition. Figure 44 and Figure 45 were taken without any resistive load in paralleltoshortentheringingtime. In Figure 45, the OPA827 is driving a 2.2-µF tantalum capacitor. A relatively small ESR that is internal to the capacitor additionally improves phase margin and provides an output waveform with no ringing and minimal overshoot.Figure45showsastablesystemthatcanbeusedinalmostanyapplication. Capacitive load drive depends on the gain and overshoot requirements of the application. Capacitive loads limit the bandwidth of the amplifier. Increasing the gain enhances the ability of the amplifier to drive greater capacitive loads(seeFigure28). 7.3.6 Phase-ReversalProtection The OPA827 family has internal phase-reversal protection. Many FET-input op amps exhibit a phase reversal when the input is driven beyond its linear common-mode range. This condition is most often encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into the opposite rail. The input circuitry of the OPA827 prevents phase reversal with excessive common-modevoltage;instead,theoutputlimitsintotheappropriaterail(seeFigure29). 18 SubmitDocumentationFeedback Copyright©2006–2016,TexasInstrumentsIncorporated ProductFolderLinks:OPA827

OPA827 www.ti.com SBOS376I–NOVEMBER2006–REVISEDJULY2016 Feature Description (continued) v V/di VIN m 0 0 1 v V/di VOUT m 0 5 20ms/div Figure44. OPA827Driving2.2-µFCeramicCapacitor v V/di VIN m 0 0 1 v di V V/ OUT m 0 5 20ms/div Figure45. OPA827Driving2.2-µFTantalumCapacitor 7.3.7 TransimpedanceAmplifier The gain bandwidth, low voltage noise, and current noise of the OPA827 series make them ideal wide bandwidth transimpedance amplifiers in a photo-conductive application. High transimpedance gains with feedback resistors greater than 100 kΩ benefit from the low input current noise (2.2 fA/Hz) of the JFET input. Low voltage noise is important because photodiode capacitance causes the effective noise gain in the circuit to increase at high frequencies. Total input capacitance of the circuit limits the overall gain bandwidth of the amplifier and is addressedbelow.Figure46showsaphotodiodetransimpedanceapplication. 7.3.7.1 KeyTransimpedancePoints • The total input capacitance (C ) consists of the photodiode junction capacitance, and both the common- TOT modeanddifferentialinputcapacitanceoftheoperationalamplifier. • Thedesiredtransimpedancegain,V =I R . OUT D F • TheUnityGainBandwidthProduct(UGBW)(22MHzfortheOPA827). With these three variables set, the feedback capacitor value (C ) can be calculated to ensure stability. C is F STRAY theparasiticcapacitanceofthePCBandpassivecomponents,whichisapproximately0.5pF. Toensure45° phasemargin,theminimalamountoffeedbackcapacitancecanbecalculatedusingEquation1. ( 1 ) ( ) C 1+ 1+(8pC R UGBW F 4pR UGBW TOT F F (1) Copyright©2006–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:OPA827

OPA827 SBOS376I–NOVEMBER2006–REVISEDJULY2016 www.ti.com Feature Description (continued) Bandwidth(f )canbecalculatedusingEquation2. –3dB UGBW f = Hz -3dB 2pR (C ) F TOT (2) These equations result in maximum transimpedance bandwidth. For additional information, refer to Compensate TransimpedanceAmplifiersIntuitively,availablefordownloadatwww.ti.com. (1) C F < 1pF R F 1MW (2) C STRAY +V S OPA827 V = I R OUT D F I C D TOT -V S NOTES:(1) C is optional to prevent gain peaking. F (2) C is the stray capacitance of R STRAY F (typically, 2pF for a surface-mount resistor). Copyright © 2016,Texas Instruments Incorporated Figure46. TransimpedanceAmplifier V+ IN+ IN- OUT V- Copyright © 2016,Texas Instruments Incorporated Figure47. EquivalentSchematic(Single-Channel) 7.4 Device Functional Modes The OPA827 has a single functional mode and is operational when the power-supply voltage is greater than 4 V (±2V).ThemaximumpowersupplyvoltagefortheOPA827is36V(±18V). 20 SubmitDocumentationFeedback Copyright©2006–2016,TexasInstrumentsIncorporated ProductFolderLinks:OPA827

OPA827 www.ti.com SBOS376I–NOVEMBER2006–REVISEDJULY2016 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information The OPA827 is a unity-gain stable, operational amplifier with very low noise, input bias current, and input offset voltage. Applications with noisy or high-impedance power supplies require decoupling capacitors placed close to the device pins. In most cases, 0.1-µF capacitors are adequate. Designers can easily take advantage of the low- noise characteristics of JFET amplifiers while also interfacing to modern, single-supply, precision data converters. 8.2 Typical Application R4 C5 2.94 k(cid:13)(cid:3) 1 nF – R1 R3 Output 590 (cid:13)(cid:3) 499 (cid:13)(cid:3) + Input OPA140 C2 39 nF Copyright © 2016, Texas Instruments Incorporated Figure48. 25-kHzLow-PassFilter 8.2.1 DesignRequirements Low-pass filters are commonly employed in signal processing applications to reduce noise and prevent aliasing. The OPA827 is ideally suited to construct high-speed, high-precision active filters. Figure 48 shows a second- order,low-passfiltercommonlyencounteredinsignalprocessingapplications. Usethefollowingparametersforthisdesignexample: • Gain=5V/V(invertinggain) • Low-passcutofffrequency=25kHz • Second-orderChebyshevfilterresponsewith3-dBgainpeakinginthepassband 8.2.2 DetailedDesignProcedure The infinite-gain multiple-feedback circuit for a low-pass network function is shown in. Use Equation 3 to calculatethevoltagetransferfunction. Output (cid:16)1RR C C (cid:11)s(cid:12) 1 3 2 5 Input s2(cid:14)(cid:11)s C (cid:12)(cid:11)1R (cid:14)1R (cid:14)1R (cid:12)(cid:14)1R R C C 2 1 3 4 3 4 2 5 (3) This circuit produces a signal inversion. For this circuit, the gain at DC and the low-pass cutoff frequency are calculatedbyEquation4. R Gain 4 R 1 1 f (cid:11)1R R C C (cid:12) C 3 4 2 5 2S (4) Copyright©2006–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:OPA827

OPA827 SBOS376I–NOVEMBER2006–REVISEDJULY2016 www.ti.com Typical Application (continued) Software tools are readily available to simplify filter design. WEBENCH® Filter Designer is a simple, powerful, and easy-to-use active filter design program. WEBENCH® Filter Designer lets you create optimized filter designs usingaselectionofTIoperationalamplifiersandpassivecomponentsfromTI'svendorpartners. Available as a web based tool from the WEBENCH Design Center, WEBENCH Filter Designer allows you to design,optimize,andsimulatecompletemultistageactivefiltersolutionswithinminutes. 8.2.3 ApplicationCurve 20 0 b) d n ( -20 ai G -40 -60 100 1k 10k 100k 1M Frequency (Hz) Figure49. OPA827Second-Order,25-kHz,Chebyshev,Low-PassFilter 8.3 System Examples The OPA827 is well-suited for phase-lock loop (PLL) applications because of the low voltage offset, low noise, and wide gain bandwidth. Figure 50 illustrates an example of the OPA827 in this application. The first amplifier (OPA827) provides the loop low-pass, active filter function, while the second amplifier (OPA211) serves as a scaling amplifier. This second stage amplifies the DC error voltage to the appropriate level before it is applied to thevoltage-controlledoscillator(VCO). Operational amplifiers used in PLL applications are often required to have low voltage offset. As with other DC levels generated in the loop, a voltage offset applied to the VCO is interpreted as a phase error. An operational amplifier with inherently low voltage offset helps reduce this source of error. Also, any noise produced by the operational amplifiers modulates the voltage applied to the VCO and limits the spectral purity of the oscillator output. The VCO generates noise-related, random phase variations of its own, but this characteristic becomes worse when the input voltage source noise is included. This noise appears as random sideband energy that can limit system performance. The very low flicker noise (1/f) and current noise (In) of the OPA827 help to minimize theoperationalamplifiercontributiontothephasenoise. 22 SubmitDocumentationFeedback Copyright©2006–2016,TexasInstrumentsIncorporated ProductFolderLinks:OPA827

OPA827 www.ti.com SBOS376I–NOVEMBER2006–REVISEDJULY2016 System Examples (continued) Offset Voltage Generator (FrequencyAdjustment) Scaling Amplifier Low-Pass Filter Current Source Input Signal Phase Dector OPA827 Output Signal OPA211 VCO Current Source LevelAdjustment and BufferAmplifier Divider 1/N Copyright © 2016,Texas Instruments Incorporated Figure50. PLLApplication 8.3.1 OPA827UsedasanI/VConverter The OPA827 series of operation amplifiers have low current noise and offset voltage that make these devices a great choice for an I/V converter. DAC8811 is a single-channel, current output, 16-bit digital-to-analog converter (DAC). The I terminal of the DAC is held at a virtual GND potential by the use of the OPA827 as an external OUT I/V converter op amp. The R-2R ladder is connected to an external reference input (V ) that determines the REF DAC full-scale current. The external reference voltage can vary in a range of –15 V to 15 V, thus providing bipolar I current operation. By using the OPA827 as an external I/V converter in conjunction with the internal OUT DAC8811R resistor,outputvoltagerangesof –V to+V canbegenerated. FB REF REF When using an external I/V converter and the DAC8811 R resistor, the DAC output voltage is given by FB Equation5. -V ´CODE V = REF OUT 65536 (5) NOTE CODEisthedigitalinputintotheDAC. The DAC output impedance as seen looking into the I terminal changes versus code. The low offset voltage OUT oftheOPA827minimizestheerrorpropagatedfromtheDAC. For a current-to-voltage design (see Figure 51), the DAC8811 I pin and the inverting node of the OPA827 OUT must be as short as possible and adhere to good PCB layout design. For each code change on the output of the DAC, there is a step function. If the parasitic capacitance is excessive at the inverting node, then gain peaking is possible.Forcircuitstability,twocompensationcapacitors,C andC (4pFto20pFtypical)canbeaddedtothe 1 2 design. Some applications require full four-quadrant multiplying capabilities or a bipolar output swing. As shown in Figure 51, the OPA827 is added as a summing amp and has a gain of 2x that widens the output span to 20 V. A four-quadrant multiplying circuit is implemented by using a 10-V offset of the reference voltage to bias the OPA827. Copyright©2006–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:OPA827

OPA827 SBOS376I–NOVEMBER2006–REVISEDJULY2016 www.ti.com System Examples (continued) 10kW 10kW C 2 V 5kW DD RFB C OPA827 VOUT 1 V REF +10V DAC8811 IOUT OPA827 GND -10V£VOUT£+10V Copyright © 2016,Texas Instruments Incorporated Figure51. I/VConverter 9 Power Supply Recommendations TheOPA827isspecifiedforoperationfrom4Vto36V(±2Vto ±18V);manyspecificationsapplyfrom–40°Cto 125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presentedintheAbsoluteMaximumRatings. CAUTION Supply voltages larger than 40 V can permanently damage the device; see the AbsoluteMaximumRatings. Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high- impedancepowersupplies.Formoredetailedinformationonbypasscapacitorplacement,seeLayout. 24 SubmitDocumentationFeedback Copyright©2006–2016,TexasInstrumentsIncorporated ProductFolderLinks:OPA827

OPA827 www.ti.com SBOS376I–NOVEMBER2006–REVISEDJULY2016 10 Layout 10.1 Layout Guidelines Forbestoperationalperformanceofthedevice,usegoodPCBlayoutpractices,including: • Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sourceslocaltotheanalogcircuitry. – Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single- supplyapplications. • Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separatedigitalandanaloggroundspayingattentiontotheflowofthegroundcurrent. • To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much betterasopposedtoinparallelwiththenoisytrace. • Place the external components as close to the device as possible. As illustrated in Figure 52, keeping RF andRGclosetotheinvertinginputminimizesparasiticcapacitance. • Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitivepartofthecircuit. • Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduceleakagecurrentsfromnearbytracesthatareatdifferentpotentials. • Forbestperformance,TIrecommendscleaningthePCBfollowingboardassembly. • Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic package. Following any aqueous PCB cleaning process, TI recommends baking the PCB assembly to remove moisture introduced into the device packaging during the cleaning process. A low temperature,postcleaningbakeat85°Cfor30minutesissufficientformostcircumstances. 10.2 Layout Example Place components Run the input traces close to device and to as far away from each other to reduce the supply lines parasitic errors VS+ as possible RF N/C N/C RG GND –IN V+ GND VIN +IN OUTPUT V– N/C Use low-ESR, ceramic bypass capacitor Use low-ESR, GND VS– VOUT ceramic bypass Ground (GND) plane on another layer capacitor Figure52. OperationalAmplifierBoardLayoutforNoninvertingConfiguration Copyright©2006–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 ProductFolderLinks:OPA827

OPA827 SBOS376I–NOVEMBER2006–REVISEDJULY2016 www.ti.com 11 Device and Documentation Support 11.1 Device Support 11.1.1 Third-PartyProductsDisclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONEORINCOMBINATIONWITHANYTIPRODUCTORSERVICE. 11.1.2 DevelopmentSupport Fordevelopmentsupportseethefollowing: • WEBENCH®FilterDesigner • OPA211 • DAC8811 11.2 Documentation Support 11.2.1 RelatedDocumentation Forrelateddocumentationseethefollowing: CompensateTransimpedanceAmplifiersIntuitively (SBOA055) 11.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed.Forchangedetails,reviewtherevisionhistoryincludedinanyreviseddocument. 11.4 Community Resource The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 11.5 Trademarks E2EisatrademarkofTexasInstruments. WEBENCHisaregisteredtrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 11.6 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 11.7 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 26 SubmitDocumentationFeedback Copyright©2006–2016,TexasInstrumentsIncorporated ProductFolderLinks:OPA827

OPA827 www.ti.com SBOS376I–NOVEMBER2006–REVISEDJULY2016 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2006–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 27 ProductFolderLinks:OPA827

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) OPA827AID ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA & no Sb/Br) 827 A OPA827AIDG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA & no Sb/Br) 827 A OPA827AIDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS NIPDAU | NIPDAUAG Level-2-260C-1 YEAR -40 to 125 NSP & no Sb/Br) OPA827AIDGKT ACTIVE VSSOP DGK 8 250 Green (RoHS NIPDAU | NIPDAUAG Level-2-260C-1 YEAR -40 to 125 NSP & no Sb/Br) OPA827AIDR ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA & no Sb/Br) 827 A OPA827AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA & no Sb/Br) 827 A (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 28-Jun-2016 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) OPA827AIDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 OPA827AIDGKT VSSOP DGK 8 250 180.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 OPA827AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 28-Jun-2016 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) OPA827AIDGKR VSSOP DGK 8 2500 367.0 367.0 35.0 OPA827AIDGKT VSSOP DGK 8 250 210.0 185.0 35.0 OPA827AIDR SOIC D 8 2500 367.0 367.0 35.0 PackMaterials-Page2

PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

None

None

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated