图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: OPA357AIDBVT
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

OPA357AIDBVT产品简介:

ICGOO电子元器件商城为您提供OPA357AIDBVT由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 OPA357AIDBVT价格参考。Texas InstrumentsOPA357AIDBVT封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 电压反馈 放大器 1 电路 满摆幅 SOT-23-6。您可以下载OPA357AIDBVT参考资料、Datasheet数据手册功能说明书,资料中有OPA357AIDBVT 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

250MHz

产品目录

集成电路 (IC)半导体

描述

IC OPAMP VFB 100MHZ RRO SOT23-6高速运算放大器 250MHz R-to-R I/O Single CMOS

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Texas Instruments

产品手册

http://www.ti.com/litv/sbos235e

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,高速运算放大器,Texas Instruments OPA357AIDBVT-

数据手册

点击此处下载产品Datasheet

产品型号

OPA357AIDBVT

产品

Voltage Feedback Amplifier

产品目录页面

点击此处下载产品Datasheet

产品种类

高速运算放大器

供应商器件封装

SOT-23-6

共模抑制比—最小值

56 dB

其它名称

296-13009-1

包装

剪切带 (CT)

压摆率

150 V/µs

商标

Texas Instruments

增益带宽生成

100 MHz

增益带宽积

100MHz

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

SOT-23-6

封装/箱体

SOT-23-6

工作温度

-40°C ~ 125°C

工作电源电压

5.5 V

工厂包装数量

250

拓扑结构

Voltage Feedback

放大器类型

电压反馈

最大工作温度

+ 125 C

最小工作温度

- 40 C

标准包装

1

电压-电源,单/双 (±)

2.5 V ~ 5.5 V, ±1.25 V ~ 2.75 V

电压-输入失调

2mV

电压增益dB

110 dB

电流-电源

4.9mA

电流-输入偏置

3pA

电流-输出/通道

100mA

电源电压-最大

5.5 V

电源电压-最小

2.7 V

电源电流

6 mA

电路数

1

稳定时间

30 ns

系列

OPA357

设计资源

http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176

转换速度

150 V/us

输入补偿电压

8 mV

输出类型

满摆幅

通道数量

1 Channel

推荐商品

型号:LT1167IN8#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:TS321AID

品牌:STMicroelectronics

产品名称:集成电路(IC)

获取报价

型号:MAX4354EUD+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:TLV2452CDGKR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:AD797ARZ-REEL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:KA258AD

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:OPA2237EA/2K5G4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MAX4400AUK+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
OPA357AIDBVT 相关产品

SE5534ANG

品牌:ON Semiconductor

价格:

AD8062ARZ-RL

品牌:Analog Devices Inc.

价格:

TLV2462AQDRG4Q1

品牌:Texas Instruments

价格:

LMP8602QMMX/NOPB

品牌:Texas Instruments

价格:¥12.71-¥25.92

LT1014AMJ

品牌:Linear Technology/Analog Devices

价格:

TLV2450CP

品牌:Texas Instruments

价格:¥7.95-¥17.99

AD8661ARZ-REEL

品牌:Analog Devices Inc.

价格:

MCP6141T-I/MS

品牌:Microchip Technology

价格:

PDF Datasheet 数据手册内容提取

Product Order Technical Tools & Support & Folder Now Documents Software Community OPA357,OPA2357 SBOS235F–MARCH2002–REVISEDAPRIL2018 OPAx357 250-MHz, Rail-to-Rail I/O, CMOS Operational Amplifier With Shutdown 1 Features 3 Description • Unity-GainBandwidth:250MHz The OPA357 series of high-speed, voltage-feedback 1 CMOS operational amplifiers is designed for video • WideBandwidth:100-MHzGBW and other applications requiring wide bandwidth. • HighSlewRate:150V/µs These devices are unity-gain stable and can drive • LowNoise:6.5nV/√Hz large output currents. Differential gain is 0.02% and differential phase is 0.09°. Quiescent current is only • Rail-to-RailI/O 4.9mAperchannel. • HighOutputCurrent: >100mA The OPA357 series of op amps is optimized for • ExcellentVideoPerformance: operation on single or dual supplies as low as 2.5 V – DifferentialGain:0.02%,DifferentialPhase: (±1.25 V) and up to 5.5 V (±2.75 V). Common-mode 0.09° input range extends beyond the supplies. The output – 0.1-dBGainFlatness:40MHz swing is within 100 mV of the rails, supporting wide dynamicrange. • LowInputBiasCurrent:3pA • QuiescentCurrent:4.9mA The single version (OPA357) comes in the miniature SOT23-6 package. The dual version (OPA2357) is • ThermalShutdown offeredintheVSSOP-10package. • SupplyRange:2.5Vto5.5V The dual version features completely independent • ShutdownI <6 µA Q circuitry for lowest crosstalk and freedom from • MicroSIZEPackage interaction. Both versions are specified over the • CreateaCustomDesignUsingtheOPA357 With extended–40°Cto+125°Ctemperaturerange. theWEBENCH®PowerDesigner DeviceInformation(1) 2 Applications PARTNUMBER PACKAGE BODYSIZE(NOM) OPA357 SOT23(6) 2.90mm×1.60mm • VideoProcessing OPA2357 VSSOP(10) 3.00mm×3.00mm • Ultrasound (1) For all available packages, see the orderable addendum at • OpticalNetworking,TunableLasers theendofthedatasheet. • PhotodiodeTransimpedanceAmplifiers • ActiveFilters • High-SpeedIntegrators • Analog-to-Digital(A/D)ConverterInputBuffers • Digital-to-Analog(D/A)ConverterOutput Amplifiers • BarcodeScanners • Communications SimplifiedSchematic V+ -V IN OPA357 V OUT +V IN V- Enable 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

OPA357,OPA2357 SBOS235F–MARCH2002–REVISEDAPRIL2018 www.ti.com Table of Contents 1 Features.................................................................. 1 8 ApplicationandImplementation........................ 20 2 Applications........................................................... 1 8.1 ApplicationInformation............................................20 3 Description............................................................. 1 8.2 TypicalApplications ...............................................20 4 RevisionHistory..................................................... 2 9 PowerSupplyRecommendations...................... 26 5 PinConfigurationandFunctions......................... 3 9.1 PowerDissipation...................................................26 6 Specifications......................................................... 4 10 Layout................................................................... 26 6.1 AbsoluteMaximumRatings......................................4 10.1 LayoutGuidelines.................................................26 6.2 ESDRatings..............................................................4 10.2 LayoutExample....................................................26 6.3 RecommendedOperatingConditions.......................4 11 DeviceandDocumentationSupport................. 27 6.4 ThermalInformation..................................................4 11.1 DeviceSupport......................................................27 6.5 ElectricalCharacteristics:V =+2.7-Vto+5.5-V 11.2 DocumentationSupport........................................27 S Single-Supply.............................................................5 11.3 RelatedLinks........................................................27 6.6 TypicalCharacteristics..............................................7 11.4 ReceivingNotificationofDocumentationUpdates27 7 DetailedDescription............................................ 13 11.5 CommunityResources..........................................28 7.1 Overview.................................................................13 11.6 Trademarks...........................................................28 7.2 FunctionalBlockDiagram.......................................13 11.7 ElectrostaticDischargeCaution............................28 7.3 FeatureDescription.................................................14 11.8 Glossary................................................................28 7.4 DeviceFunctionalModes........................................19 12 Mechanical,Packaging,andOrderable Information........................................................... 28 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionE(May2009)toRevisionF Page • AddedDeviceInformationtable,PinFunctionstable,ESDRatingstable,RecommendedOperatingConditions table,ThermalInformationtable,Overviewsection,FunctionalBlockDiagramsection,FeatureDescriptionsection, DeviceFunctionalModessection,ApplicationandImplementationsection,PowerSupplyRecommendations section,Layoutsection,DeviceandDocumentationSupportsection,andMechanical,Packaging,andOrderable Informationsection ................................................................................................................................................................ 1 • ChangedMSOPtoVSSOPthroughoutdocument ................................................................................................................ 1 • DeletedDDApackage(SO-8PowerPAD)fromdocument ................................................................................................... 1 • ChangedMSOPtoVSSOPthroughoutdocument ................................................................................................................ 1 • AddedWEBENCHFeaturesbullet ........................................................................................................................................ 1 • DeletedOADIfromDBVpindrawing..................................................................................................................................... 3 • DeletedPackage/OrderingInformationtable......................................................................................................................... 4 • DeletedfootnotefromSignalinputpinsparameterinAbsoluteMaximumRatingstable...................................................... 4 • ChangedTemperatureRangesectionofElectricalCharacteristicstable:changedθ toR anddeletedSpecified JA θJA range,Operatingrange,andStoragerangeparameters....................................................................................................... 6 • AddedOPAx357ComparisonsectionandmovedOPAx357RelatedProductstabletothissectionfrompage1.............14 • DeletedfirstparagraphofPowerDissipationsection........................................................................................................... 26 • ChangedPCBLayouttitletoLayoutGuidelines.................................................................................................................. 26 • DeletedPowerPADThermallEnhancedPackageandPowerPADAssemblyProcesssections......................................... 26 • AddedCustomDesignWithWEBENCH®Toolssection..................................................................................................... 27 2 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 www.ti.com SBOS235F–MARCH2002–REVISEDAPRIL2018 5 Pin Configuration and Functions OPA357:DBVPackage OPA2357:DGSPackage 6-PinSOT-23 10-PinVSSOP TopView TopView Out 1 6 V+ OutA 1 10 V+ V- 2 5 Enable -InA 2 9 Out B A +In 3 4 -In +InA 3 8 -In B B V- 4 7 +In B EnableA 5 6 Enable B (1) Pin1oftheSOT23-6isdeterminedbyorientingthepackagemarkingasindicatedinthediagram. PinFunctions PIN DBV DGS I/O DESCRIPTION NAME (SOT-23) (VSSOP) Amplifierpowerdown. Enable 5 — — Low=disabled,high=normaloperation(pinmustbedriven). Amplifierpowerdown,channelA. EnableA — 5 — Low=disabled,high=normaloperation(pinmustbedriven). Amplifierpowerdown,channelB. EnableB — 6 — Low=disabled,high=normaloperation(pinmustbedriven). –In 4 — I Invertinginputpin –InA — 2 I Invertinginputpin,channelA –InB — 8 I Invertinginputpin,channelB +In 3 — I Noninvertinginputpin +InA — 3 I Noninvertinginputpin,channelA +InB — 7 I Noninvertinginputpin,channelB Out 1 — O Outputpin OutA — 1 O Outputpin,channelA OutB — 9 O Outputpin,channelB V– 2 4 — Negativepowersupply V+ 6 10 — Positivepowersupply Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 SBOS235F–MARCH2002–REVISEDAPRIL2018 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings(1) MIN MAX UNIT Supplyvoltage,V+toV− 7.5 V Voltage (V–)–0.5 (V+)+0.5 V Signalinputpins Current 10 mA Enableinput (V–)–0.5 (V+)+0.5 V Outputshort-circuit(2) Continuous Operatingtemperature –55 150 °C Junctiontemperature 150 °C Storagetemperature,T –65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) Short-circuittoground,oneamplifierperpackage. 6.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±2000 V Electrostaticdischarge V (ESD) Charged-devicemodel(CDM),perJEDECspecificationJESD22-C101(2) ±250 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 6.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT V Totalsupplyvoltage 5.5 V S T Ambienttemperature –40 25 125 °C A 6.4 Thermal Information OPA357 OPA2357 THERMALMETRIC(1) DBV(SOT-23) DGS(VSSOP) UNIT 6PINS 10PINS R Junction-to-ambientthermalresistance 166.4 171.3 °C/W θJA R Junction-to-case(top)thermalresistance 104.6 58.2 °C/W θJC(top) R Junction-to-boardthermalresistance 38.9 93.1 °C/W θJB ψ Junction-to-topcharacterizationparameter 23.6 6.8 °C/W JT ψ Junction-to-boardcharacterizationparameter 38.7 91.4 °C/W JB R Junction-to-case(bottom)thermalresistance — — °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report. 4 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 www.ti.com SBOS235F–MARCH2002–REVISEDAPRIL2018 6.5 Electrical Characteristics: V = +2.7-V to +5.5-V Single-Supply S atT =25°C,R =0Ω,R =1kΩ,andconnectedtoV /2(unlessotherwisenoted) A F L S PARAMETER TESTCONDITIONS MIN TYP MAX UNIT OFFSETVOLTAGE V =+5V ±2 ±8 S VOS Inputoffsetvoltage Specifiedtemperaturerange, mV ±10 T =–40°Cto+125°C A Specifiedtemperaturerange, dV /dT V vstemperature ±4 µV/°C OS OS T =–40°Cto+125°C A V =+2.7Vto+5.5V, S ±200 ±800 V =(V /2)–0.55V CM S PSRR Power-supplyrejectionratio µV/V Specifiedtemperaturerange, ±900 T =–40°Cto+125°C A INPUTBIASCURRENT I Inputbiascurrent 3 ±50 pA B I Inputoffsetcurrent ±1 ±50 pA OS NOISE e Inputvoltagenoisedensity f=1MHz 6.5 nV/√Hz n i Currentnoisedensity f=1MHz 50 fA/√Hz n INPUTVOLTAGERANGE V Common-modevoltagerange (V–)–0.1 (V+)+0.1 V CM V =+5.5V,–0.1V<V <+3.5V 66 80 S CM Specifiedtemperaturerange, 64 T =–40°Cto+125°C A CMRR Common-moderejectionratio dB V =+5.5V,–0.1V<V <+5.6V 56 68 S CM Specifiedtemperaturerange, 55 T =–40°Cto+125°C A INPUTIMPEDANCE Differential 1013||2 Ω||pF Common-mode 1013||2 Ω||pF OPEN-LOOPGAIN V =+5V,+0.3V<V <+4.7V 94 110 S O A Open-loopgain Specifiedtemperaturerange, dB OL T =–40°Cto+125°C,V =+5V, 90 A S +0.4V<V <+4.6V O FREQUENCYRESPONSE G=+1,V =100mV ,R =25Ω 250 O PP F f Small-signalbandwidth MHz −3dB G=+2,V =100mV 90 O PP GBP Gain-bandwidthproduct G=+10 100 MHz f Bandwidthfor0.1-dBgainflatness G=+2,V =100mV 40 MHz 0.1dB O PP V =+5V,G=+1,4-Vstep 150 S SR Slewrate V =+5V,G=+1,2-Vstep 130 V/µs S V =+3V,G=+1,2-Vstep 110 S G=+1,V =100mV ,10%to O PP 2 Rise-and-falltime 90% ns G=+1,V =2V ,10%to90% 11 O PP Settlingtime,0.1% V =+5V,G=+1,2-Voutputstep 30 ns S Settlingtime,0.01% 60 ns Overloadrecoverytime V ×gain=V 5 ns IN S G=+1,f=1MHz,V =2V , HD2 2nd-orderharmonicdistortion O PP –75 dBc R =200Ω,V =1.5V L CM G=+1,f=1MHz,V =2V , HD3 3rd-orderharmonicdistortion O PP –83 dBc R =200Ω,V =1.5V L CM Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 SBOS235F–MARCH2002–REVISEDAPRIL2018 www.ti.com Electrical Characteristics: V = +2.7-V to +5.5-V Single-Supply (continued) S atT =25°C,R =0Ω,R =1kΩ,andconnectedtoV /2(unlessotherwisenoted) A F L S PARAMETER TESTCONDITIONS MIN TYP MAX UNIT FREQUENCYRESPONSE(continued) Differentialgainerror NTSC,R =150Ω 0.02% L Differentialphaseerror NTSC,R =150Ω 0.09 Degrees L Channel-to-channelcrosstalk, f=5MHz –100 dB OPA2357 OUTPUT V =+5V,R =1kΩ,A >94dB 0.1 0.3 S L OL Voltageoutputswingfromrail Specifiedtemperaturerange, V T =–40°Cto+125°C,V =+5V, 0.4 A S R =1kΩ,A >90dB L OL V =+5V,single 100 I Outputcurrent(1)(2) S mA O V =+3V,dual 50 S Closed-loopoutputimpedance 0.05 Ω R Open-loopoutputresistance 35 Ω O POWERSUPPLY V Specifiedvoltagerange 2.7 5.5 V S Operatingvoltagerange 2.5to5.5 V V =+5V,enabled,I =0V 4.9 6 S O IQ Quiescentcurrent(peramplifier) Specifiedtemperaturerange, mA 7.5 T =–40°Cto+125°C A ENABLE,SHUTDOWNFUNCTION Disabled(logic−lowthreshold) 0.8 V Enabled(logic−highthreshold) 2 V Logicinputcurrent Logiclow 200 nA Turn-ontime 100 ns Turn-offtime 30 ns Offisolation G=+1,5MHz,R =10Ω 74 dB L Quiescentcurrent(peramplifier) 3.4 6 µA THERMALSHUTDOWN Shutdown 160 T Junctiontemperature °C J Resetfromshutdown 140 TEMPERATURERANGE SOT23-6 150 R Thermalresistance °C/W θJA VSSOP-10 150 (1) SeeFigure21andFigure23. (2) Specifiedbydesign. 6 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 www.ti.com SBOS235F–MARCH2002–REVISEDAPRIL2018 6.6 Typical Characteristics atT =25°C,V =5V,G=+1,R =0Ω,R =1kΩ,andconnectedtoV /2(unlessotherwisenoted) A S F L S 3 3 V = 0.1 V G = +1, V = 0.1 V , R = 604W O PP R = 25W O PP F 0 F 0 n (dB) -3 G = +2, RF= 604W n (dB) -3 ai G = +5, R = 604W ai G =-1 G F G d -6 d -6 e e aliz G = +10, RF= 604W aliz G =-5 G =-2 m -9 m -9 or or N N G =-10 -12 -12 -15 -15 100k 1M 10M 100M 1G 100k 1M 10M 100M 1G Frequency (Hz) Frequency (Hz) Figure1.NoninvertingSmall-SignalFrequencyResponse Figure2.InvertingSmall-SignalFrequencyResponse mV/div) mV/div) Output Voltage (40 Output Voltage (500 Time (20 ns/div) Time (20 ns/div) Figure3.NoninvertingSmall-SignalStepResponse Figure4.NoninvertingLarge-SignalStepResponse 0.5 V = 0.1 V O PP 0.4 div) Enabled 0.3 400 mV/ 43..55 age (V) ain (dB) 00..21 RGF == 2+51,W Output Voltage ( Disabled VOUT, 210...555 Disable Volt Normalized G ---000...0123 RGF= = 6 +024,W fIN= 5 MHz -0.4 -0.5 Time (200 ns/div) 100k 1M 10M 100M 1G Frequency (Hz) Figure5.Large-SignalDisable,EnableResponse Figure6.0.1-dBGainFlatness Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 SBOS235F–MARCH2002–REVISEDAPRIL2018 www.ti.com Typical Characteristics (continued) atT =25°C,V =5V,G=+1,R =0Ω,R =1kΩ,andconnectedtoV /2(unlessotherwisenoted) A S F L S -50 -50 G =-1 V = 2 V O PP f = 1 MHz f = 1 MHz Bc) -60 RL= 200W Bc) -60 RL= 200W d d n ( n ( ortio -70 ortio -70 2nd-Harmonic Dist 2nd-Harmonic Dist nic -80 nic -80 o o m m Har -90 Har -90 3rd-Harmonic 3rd-Harmonic -100 -100 0 1 2 3 4 1 10 Output Voltage (VPP) Gain (V/V) Figure7.HarmonicDistortionvsOutputVoltage Figure8.HarmonicDistortionvsNoninvertingGain -50 -50 V = 2 V G = +1 O PP f = 1 MHz V = 2 V O PP n (dBc) -60 RL= 200W n (dBc) -60 RVCLM= =2 010.5W V ortio -70 2nd-Harmonic ortio -70 2nd-Harmonic st st Di Di c -80 c -80 ni ni o o m 3rd-Harmonic m Har -90 Har -90 3rd-Harmonic -100 -100 1 10 100k 1M 10M Gain (V/V) Frequency (Hz) Figure9.HarmonicDistortionvsInvertingGain Figure10.HarmonicDistortionvsFrequency -50 10k G = +1 V = 2 V O PP dBc) -60 fV =C M1 =M 1H.5z V Hz),Hz) 1k nic Distortion ( --7800 2nd-Harmonic Öe Noise (nV/Önt Noise (fA/100 Voltage Noise Current Noise o ge Harm -90 3rd-Harmonic VoltaCurr 10 -100 1 100 1k 10 100 1k 10k 100k 1M 10M 100M RL(W) Frequency (Hz) Figure11.HarmonicDistortionvsLoadResistance Figure12.InputVoltageandCurrentNoiseSpectralDensity vsFrequency 8 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 www.ti.com SBOS235F–MARCH2002–REVISEDAPRIL2018 Typical Characteristics (continued) atT =25°C,V =5V,G=+1,R =0Ω,R =1kΩ,andconnectedtoV /2(unlessotherwisenoted) A S F L S 3 9 G = +1 n (dB) -03 GRVF === + 001.W1 V RL= 10 kW n (dB) 630 VROS== 00.W1 VPP CL= 100 pF ai O PP R = 1 kW ai d G -6 CL= 0 pF L d G -3 alize RL= 100W alize -6 CL= 47 pF m -9 m Nor R = 50W Nor -9 L -12 CL= 5.6 pF -12 -15 -15 100k 1M 10M 100M 1G 100k 1M 10M 100M 1G Frequency (Hz) Frequency (Hz) Figure13.FrequencyResponseforVariousR Figure14.FrequencyResponseforVariousC L L 160 3 G = +1 C = 5.6 pF, R = 0W 140 For 0.1-dB VO= 0.1 VPP L S Flatness 0 120 B) C = 47 pF, R = 140W 100 n (d -3 L S W() 80 d Gai -6 CL= 100 pF, RS= 120W RS ze 60 ali 40 VIN OPA357 RS VO Norm -9 VIN OPA357 RS VO CL 1 kW -12 CL 1 kW 20 0 -15 1 10 100 1k 100k 1M 10M 100M 1G Capacitive Load (pF) Frequency (Hz) Figure15.RecommendedR vsCapacitiveLoad Figure16.FrequencyResponsevsCapacitiveLoad S 100 180 160 CMRR 80 es) 140 RR (dB) 60 PSRR+ se (DegreGain (dB) 11208000 Phase R, PS 40 PSRR- p PhaLoop 60 CMR n-LooOpen- 4200 Gain 20 pe 0 O -20 0 -40 10k 100k 1M 10M 100M 1G 10 100 1k 10k 100k 1M 10M 100M 1G Frequency (Hz) Frequency (Hz) Figure17.Common-ModeRejectionRatioandPower- Figure18.Open-LoopGainandPhase SupplyRejectionRatiovsFrequency Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 SBOS235F–MARCH2002–REVISEDAPRIL2018 www.ti.com Typical Characteristics (continued) atT =25°C,V =5V,G=+1,R =0Ω,R =1kΩ,andconnectedtoV /2(unlessotherwisenoted) A S F L S 0.8 10k 0.7 s) 0.6 pA) 1k gree 0.5 ent ( De dP urr G/dP(%/ 00..43 ut Bias C100 d 0.2 np 10 I 0.1 dG 0 1 1 2 3 4 -55 -35 -15 5 25 45 65 85 105 125135 Number of 150-WLoads Temperature (°C) Figure19.CompositeVideodifferentialGainandPhase Figure20.InputBiasCurrentvsTemperature 3 7 6 V = 5 V S age (V) 2 ent (mA) 54 ut Volt +125°C +25°C -55°C y Curr 3 VS= 2.5 V utp 1 ppl O u 2 S 1 0 0 0 20 40 60 80 100 120 -55 -35 -15 5 25 45 65 85 105 125135 Output Current (mA) Temperature (°C) V =3V S Figure21.OutputVoltageSwingvsOutputCurrent Figure22.SupplyCurrentvsTemperature 5 4.5 V = 5.5 V 4.0 S 4 A) 3.5 oltage (V) 3 +125°C +25°C -55°C Current (m 32..05 VS= 5 V ut V 2 wn 2.0 p o Out utd 1.5 h 1 S 1.0 VS= 3 V VS= 2.5 V 0.5 0 0 0 25 50 75 100 125 150 175 200 -55 -35 -15 5 25 45 65 85 105 125135 Output Current (mA) Temperature (°C) V =5V S Figure23.OutputVoltageSwingvsOutputCurrent Figure24.ShutdownCurrentvsTemperature 10 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 www.ti.com SBOS235F–MARCH2002–REVISEDAPRIL2018 Typical Characteristics (continued) atT =25°C,V =5V,G=+1,R =0Ω,R =1kΩ,andconnectedtoV /2(unlessotherwisenoted) A S F L S 0 100 V = 0 DISABLE R = 10W -20 L W) 10 h (dB) -40 ance ( g d ou -60 pe 1 hr Forward m eedt -80 Reverse put I F ut O 0.1 OPA357 -100 Z O -120 0.01 100k 1M 10M 100M 1G 100k 1M 10M 100M 1G Frequency (Hz) Frequency (Hz) Figure25.DisableFeedthroughvsFrequency Figure26.Closed-LoopOutputImpedancevsFrequency 6 0.5 V = 5.5 V S 0.4 5 VO= 2 VPP 0.3 Maximum Output V)PP 4 Voltage Without %) 0.2 ge ( InduScleedw D-Risattoertion or ( 0.1 utput Volta 32 VS= 2.7 V Output Err --00..012 O -0.3 1 -0.4 0 -0.5 1 10 100 0 10 20 30 40 50 60 70 80 90 100 Frequency (MHz) Time (ns) Figure27.MaximumOutputVoltagevsFrequency Figure28.OutputSettlingTimeto0.1% 120 R = 1 kW L 110 B) d Gain (100 ation p ul o p o o L 90 P n- e p O 80 70 -55 -35 -15 5 25 45 65 85 105 125135 -8-7-6 -5 -4-3 -2 -1 0 1 2 3 4 5 6 7 8 Temperature (°C) Offset Voltage (mV) Figure29.Open-LoopGainvsTemperature Figure30.OffsetVoltageProductionDistribution Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 SBOS235F–MARCH2002–REVISEDAPRIL2018 www.ti.com Typical Characteristics (continued) atT =25°C,V =5V,G=+1,R =0Ω,R =1kΩ,andconnectedtoV /2(unlessotherwisenoted) A S F L S 100 0 B) -20 90 d R (dB) 80 Common-Mode Rejection Ratio eferred ( -40 R R PS ut- -60 CMRR, 70 Power-Supply Rejection Ratio stalk, Inp -80 OPA2357 60 Cros -100 50 -120 -55 -35 -15 5 25 45 65 85 105 125135 100k 1M 10M 100M 1G Temperature (°C) Frequency (Hz) Figure31.Common-ModeRejectionRatioandPower- Figure32.Channel-to-ChannelCrosstalk SupplyRejectionRatiovsTemperature 12 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 www.ti.com SBOS235F–MARCH2002–REVISEDAPRIL2018 7 Detailed Description 7.1 Overview The OPA357 is a CMOS, rail-to-rail I/O, high-speed, voltage-feedback operational amplifier designed for video, high-speed,andotherapplications.Thedeviceisavailableasasingleordualopamp. The amplifier features a 100-MHz gain bandwidth, and 150-V/µs slew rate, but is unity-gain stable and can be operatedasa+1-V/Vvoltagefollower. 7.2 Functional Block Diagram V+ Reference Current VIN+ VIN- VBIAS1 ClassAB Control V O Circuitry V BIAS2 V- (Ground) Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 SBOS235F–MARCH2002–REVISEDAPRIL2018 www.ti.com 7.3 Feature Description 7.3.1 OPAx357Comparison Table1listsseveralmembersofthedevicefamilythatincludestheOPAx357. Table1.OPAx357RelatedProducts PARTNUMBER FEATURED OPAx354 Non-shutdownversionofOPA357family OPAx355 200-MHzGBW,rail-to-railoutput,CMOS,shutdown OPAx356 200-MHzGBW,rail-to-railoutput,CMOS OPAx350,OPAx353 38-MHzGBW,rail-to-railinput/output,CMOS OPAx631 75-MHzBWG=2,rail-to-railoutput OPAx634 150-MHzBWG=2,rail-to-railoutput THS412x 100-MHzBW,differentialinput/output,3.3-Vsupply 7.3.2 OperatingVoltage The OPA357 is specified over a power-supply range of +2.7 V to +5.5 V (±1.35 V to ±2.75 V). However, the supply voltage can range from +2.5 V to +5.5 V (±1.25 V to ±2.75 V). Supply voltages higher than 7.5 V (absolutemaximum)canpermanentlydamagetheamplifier. ParametersthatvaryoversupplyvoltageortemperatureareshownintheTypicalCharacteristicssection. 7.3.3 EnableFunction The OPA357 enable function is implemented using a Schmitt trigger. The amplifier is enabled by applying a TTL high voltage level (referenced to V−) to the Enable pin. Conversely, a TTL low voltage level (referenced to V−) disables the amplifier, reducing its supply current from 4.9 mA to only 3.4 µA per amplifier. Independent Enable pins are available for each channel (dual version), providing maximum design flexibility. For portable battery- operated applications, this feature can be used to greatly reduce the average current and thereby extend battery life. TheEnableinputcanbemodeledasaCMOSinputgatewitha100-kΩpull-upresistortoV+.Connectthispinto avalidhighorlowvoltageordriven,notleftopencircuit. The enable time is 100 ns and the disable time is only 30 ns. This time allows the OPA357 to be operated as a gated amplifier, or to have its output multiplexed onto a common output bus. When disabled, the output assumes ahigh-impedancestate. 7.3.4 Rail-to-RailInput The specified input common-mode voltage range of the OPA357 extends 100 mV beyond the supply rails. This range is achieved with a complementary input stage—an N-channel input differential pair in parallel with a P- channel differential pair; see the Functional Block Diagram section. The N-channel pair is active for input voltages close to the positive rail, typically (V+) − 1.2 V to 100 mV above the positive supply, whereas the P- channel pair is on for inputs from 100 mV below the negative supply to approximately (V+) − 1.2 V. There is a small transition region, typically (V+) − 1.5 V to (V+) − 0.9 V, in which both pairs are on. This 600-mV transition region can vary ±500 mV with process variation. Thus, the transition region (both input stages on) can range from(V+)− 2.0Vto(V+)− 1.5Vonthelowend,upto(V+) −0.9Vto(V+) −0.4Vonthehighend. A double-folded cascode adds the signal from the two input pairs and presents a differential signal to the class ABoutputstage. 7.3.5 Rail-to-RailOutput A class AB output stage with common-source transistors is used to achieve rail-to-rail output. For high- impedance loads (> 200 Ω), the output voltage swing is typically 100 mV from the supply rails. With 10-Ω loads, ausefuloutputswingcanbeachievedwhilemaintaininghighopen-loopgain;seeFigure21andFigure23. 14 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 www.ti.com SBOS235F–MARCH2002–REVISEDAPRIL2018 7.3.6 OutputDrive The OPA357 output stage can supply a continuous output current of ±100 mA and still provide approximately 2.7 V of output swing on a 5-V supply, as shown in Figure 33. For maximum reliability, TI recommends running a continuous DC current in excess of ±100 mA; see Figure 21 and Figure 23. For supplying continuous output currentsgreaterthan±100mA,theOPA357canbeoperatedinparallelasshowninFigure34. The OPA357 provides peak currents up to 200 mA, which corresponds to the typical short-circuit current. Therefore, an on-chip thermal shutdown circuit is provided to protect the OPA357 from dangerously high junction temperatures. At 160°C, the protection circuit shuts down the amplifier. Normal operation resumes when the junctiontemperaturecoolstobelow140°C. R 2 1 kW + V 1 C - 5 V 1 50 pF 1mF R 1 10 kW V+ OPA357 R V- 3 +VIN 10 kW RSHUNT R 4 - 1 kW 1-V In = 100-mA Out, as Shown Laser Diode Figure33. LaserDiodeDriver R 2 10 kW C 1 200 pF +5 V 1mF R 1 100 kW R = 1W 5 OPA2357 R 3 100 kW + - R 2-V In = 200-mA R = 1W SHUNT 6 1W Out, as Shown OPA2357 R 4 10 kW Laser Diode Figure34. ParallelOperation Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 SBOS235F–MARCH2002–REVISEDAPRIL2018 www.ti.com 7.3.7 Video The OPA357 output stage is capable of driving standard back-terminated 75-Ω video cables, as shown in Figure 35. By back-terminating a transmission line, the cable does not exhibit a capacitive load to its driver. A properly back-terminated 75-Ω cable does not appear as capacitance; this cable presents only a 150-Ω resistive loadtotheOPA357output. +5 V Video In 75W Video 75W OPA357 Output +2.5 V To enable, connect to V+ or drive with logic. 604W 604W +2.5 V Figure35. Single-SupplyVideoLineDriver The OPA357 can be used as an amplifier for RGB graphic signals, which have a voltage of zero at the video blacklevel,byoffsettingandAC-couplingthesignal,asshowninFigure36. 604W +3 V + 1mF 10 nF V+ 604W Red(1) R1 OPA1/22357 75W Red 75W R2 V+ Green(1) R1 1/2 75W Green R2 604W OPA2357 75W 604W 604W +3 V + 1mF 10 nF V+ 604W Blue(1) R1 OPA357 75W Blue 75W R2 (1) Thesourcevideosignaloffsetis300mVabovegroundtoaccommodatetheopampswing-to-groundcapability. Figure36. RGBCableDriver 16 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 www.ti.com SBOS235F–MARCH2002–REVISEDAPRIL2018 7.3.8 WidebandVideoMultiplexing One common application for video speed amplifiers that include an Enable pin is to wire multiple amplifier outputs together, then select which one of several possible video inputs to source onto a single line. This simple wired-ORvideomultiplexercanbeeasilyimplementedusingtheOPA357,asshowninFigure37. +2.5 V + 1mF 10 nF A Signal 1 49.9W OPA357 + 1mF 10 nF -2.5 V 1 kW 49.9W V OUT 1 kW 49.9W +2.5 V + 1mF 10 nF B Signal 2 49.9W OPA357 + 1mF 10 nF -2.5 V 1 kW 1 kW HCO4 B ON Select A ON Figure37. MultiplexedOutput Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 SBOS235F–MARCH2002–REVISEDAPRIL2018 www.ti.com 7.3.9 DrivingAnalog-to-DigitalConverters The OPA357 series op amps offer 60 ns of settling time to 0.01%, making the series a good choice for driving high- and medium-speed sampling A/D converters and reference circuits. The OPA357 series provides an effective means of buffering the A/D converter input capacitance and resulting charge injection while providing signalgain. Figure 38 shows the OPA357 driving an A/D converter. With the OPA357 in an inverting configuration, a capacitor across the feedback resistor can be used to filter high-frequency noise in the signal, as shown in Figure38. +5 V 330 pF 5 kW 5 kW V IN V+ VREF 5 kW +In ADS7818,ADS7861, OPA357 orADS7864 12-BitA/D Converter +2.5 V 0.1mF -In GND NOTE: A/Dconverterinput=0VtoV . REF NOTE: V =0Vto–5Vfora0-Vto5-Voutput. IN Figure38. TheOPA357inInvertingConfigurationDrivinganA/DConverter 7.3.10 CapacitiveLoadandStability The OPA357 series of op amps can drive a wide range of capacitive loads. However, all op amps under certain conditions may become unstable. Op amp configuration, gain, and load value are just a few factors to consider when determining stability. An op amp in unity-gain configuration is most susceptible to the effects of capacitive loading. The capacitive load reacts with the op amp output resistance, along with any additional load resistance, tocreateapoleinthesmall-signalresponsethatdegradesthephasemargin;seeFigure14fordetails. The OPA357 topology enhances its ability to drive capacitive loads. In unity gain, these op amps perform well withlargecapacitiveloads.SeeFigure15fordetails. One method of improving capacitive load drive in the unity-gain configuration is to insert a 10-Ω to 20-Ω resistor in series with the output, as shown in Figure 39. This method significantly reduces ringing with large capacitive loads;seeFigure14.However,ifthereisaresistiveloadinparallelwiththecapacitiveload,R createsavoltage S divider. This process introduces a DC error at the output and slightly reduces output swing. This error can be insignificant.Forinstance,withR =10kΩandR =20 Ω,thereisonlyabouta0.2%errorattheoutput. L S V+ R S OPA357 V OUT V IN R C L L To enable, connect to V+ or drive with logic. Figure39. SeriesResistorinUnity-GainConfigurationImprovesCapacitiveLoadDrive 18 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 www.ti.com SBOS235F–MARCH2002–REVISEDAPRIL2018 7.3.11 WidebandTransimpedanceAmplifier Wide bandwidth, low input bias current, and low input voltage and current noise make the OPA357 an ideal wideband photodiode transimpedance amplifier for low-voltage single-supply applications. Low-voltage noise is important because photodiode capacitance causes the effective noise gain of the circuit to increase at high frequency. The key elements to a transimpedance design, as shown in Figure 40, are the expected diode capacitance (including the parasitic input common-mode and differential-mode input capacitance (2 + 2)pF for the OPA357), the desired transimpedance gain (R ), and the gain bandwidth product (GBP) for the OPA357 (100 MHz). With F thesethreevariablesset,thefeedbackcapacitorvalue(C )canbesettocontrolthefrequencyresponse. F C F <1 pF (prevents gain peaking) R F 10 MW +V l C OPA357 V D OUT To enable, connect to V+ or drive with logic. Figure40. TransimpedanceAmplifier Toachieveamaximallyflat2nd-orderButterworthfrequencyresponse,setthefeedbackpoleto: 1 GBP 2SR C 4SR C F F F D (1) Typicalsurface-mountresistorshaveaparasiticcapacitanceofapproximately0.2pFthatmustbedeductedfrom thecalculatedfeedbackcapacitancevalue. Bandwidthiscalculatedby: GBP f Hz (cid:16)3dB 2SR C F D (2) For even higher transimpedance bandwidth, the high-speed CMOS OPA355 (200-MHz GBW) or the OPA655 (400-MHzGBW)canbeused. 7.4 Device Functional Modes The OPAx357 family of devices is powered on when the supply is connected. The devices can be operated as single-supply operational amplifiers or dual-supply amplifiers depending on the application. The devices can also be used with asymmetrical supplies as long as the differential voltage (V– to V+) is at least 1.8 V and no greater than5.5V(forexample,whenV– issetto –3.5VandV+issetto1.5V). Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 SBOS235F–MARCH2002–REVISEDAPRIL2018 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information The OPAx357 family of devices is a CMOS, rail-to-rail I/O, high-speed, voltage-feedback operational amplifier designedforvideo,high-speed,andotherapplications.TheOPAx357familyofdevicesisavailableasasingleor dualop-amp. Theamplifierfeaturesa100-MHzgainbandwidth,and150-V/μsslewrate,butthedeviceisunity-gainstableand operatesasa1-V/Vvoltagefollower. 8.2 Typical Applications 8.2.1 TransimpedanceAmplifier Wide gain bandwidth, low input bias current, low input voltage, and current noise make the OPAx357 family of devices an ideal wideband photodiode transimpedance amplifier. Low-voltage noise is important because photodiode capacitance causes the effective noise gain of the circuit to increase at high frequency. The key elements to a transimpedance design, as shown in Figure 41, are the expected diode capacitance, (which include the parasitic input common-mode and differential-mode input capacitance) the desired transimpedance gain,andthegain-bandwidth(GBW)fortheOPAx357familyofdevices(20MHz).Withthesethreevariablesset, the feedback capacitor value is set to control the frequency response. Feedback capacitance includes the stray capacitance,whichis0.2pFforatypicalsurface-mountresistor. Figure41. Dual-SupplyTransimpedanceAmplifier 20 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 www.ti.com SBOS235F–MARCH2002–REVISEDAPRIL2018 Typical Applications (continued) 8.2.1.1 DesignRequirements Forthisdesignexample,usetheparameterslistedinTable2astheinputparameters. Table2.DesignParameters PARAMETER EXAMPLEVALUE Supplyvoltage,V 2.5V (V+) Supplyvoltage,V –2.5V (V-) C isoptionaltopreventgainpeaking.C includesthestraycapacitanceofR . (F) (F) (F) 8.2.1.2 DetailedDesignProcedure 8.2.1.2.1 CustomDesignWithWEBENCH®Tools ClickheretocreateacustomdesignusingtheOPA357devicewiththeWEBENCH® PowerDesigner. 1. Startbyenteringtheinputvoltage(V ),outputvoltage(V ),andoutputcurrent(I )requirements. IN OUT OUT 2. Optimizethedesignforkeyparameterssuchasefficiency,footprint,andcostusingtheoptimizerdial. 3. ComparethegenerateddesignwithotherpossiblesolutionsfromTexasInstruments. The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricingandcomponentavailability. Inmostcases,theseactionsareavailable: • Runelectricalsimulationstoseeimportantwaveformsandcircuitperformance • Runthermalsimulationstounderstandboardthermalperformance • ExportcustomizedschematicandlayoutintopopularCADformats • PrintPDFreportsforthedesign,andsharethedesignwithcolleagues GetmoreinformationaboutWEBENCHtoolsatwww.ti.com/WEBENCH. 8.2.1.2.2 OPAx357DesignProcedure To achieve a maximally-flat, second-order Butterworth frequency response, set the feedback pole using Equation3. (3) CalculatethebandwidthusingEquation4. (4) For other transimpedance bandwidths, consider the high-speed CMOS OPA380 (90-MHz GBW), OPA354 (100-MHz GBW), OPA300 (180-MHz GBW), OPA355 (200-MHz GBW), or OPA656 and OPA657 (400-MHz GBW). Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 SBOS235F–MARCH2002–REVISEDAPRIL2018 www.ti.com For single-supply applications, the +INx input can be biased with a positive DC voltage to allow the output to reach true zero when the photodiode is not exposed to any light, and respond without the added delay that results from coming out of the negative rail; Figure 42 shows this configuration. This bias voltage appears across thephotodiode,providingareversebiasforfasteroperation. 0.5 pF 100 k(cid:13)(cid:3) – OPAx357 VOUT + SFH213 13.7 k(cid:13)(cid:3) 1 (cid:29)F 280 (cid:13)(cid:3) 5 V Figure42. Single-SupplyTransimpedanceAmplifier Foradditionalinformation,seetheCompensateTransimpedanceAmplifiersIntuitively applicationbulletin. 8.2.1.2.2.1 OptimizingtheTransimpedanceCircuit Toachievethebestperformance,componentsmustbeselectedaccordingtothefollowingguidelines: 1. For lowest noise, select R to create the total required gain. Using a lower value for R and adding gain (F) (F) afterthetransimpedanceamplifiergenerallyproducespoorernoiseperformance.ThenoiseproducedbyR (F) increases with the square-root of R , whereas the signal increases linearly. Therefore, signal-to-noise ratio (F) improveswhenalltherequiredgainisplacedinthetransimpedancestage. 2. Minimize photodiode capacitance and stray capacitance at the summing junction (inverting input). This capacitance causes the voltage noise of the op amp to amplify (increasing amplification at high frequency). Using a low-noise voltage source to reverse-bias a photodiode reduce the capacitance. Smaller photodiodes havelowercapacitance.Useopticstoconcentratelightonasmallphotodiode. 3. Noise increases with increased bandwidth. Limit the circuit bandwidth to only the required bandwidth. Use a capacitoracrosstheR tolimitbandwidth,evenifacapacitornotrequiredforstability. (F) 4. Circuit board leakage degrades the performance of an otherwise well-designed amplifier. Clean the circuit board carefully. A circuit board guard trace that encircles the summing junction and is driven at the same voltagehelpscontrolleakage. 22 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 www.ti.com SBOS235F–MARCH2002–REVISEDAPRIL2018 8.2.1.3 ApplicationCurve Figure43. ACTransferFunction 8.2.2 High-ImpedanceSensorInterface Many sensors have high source impedances that can range up to 10 MΩ, or even higher. The output signal of sensors often must be amplified or otherwise conditioned by an amplifier. The input bias current of this amplifier canloadthesensoroutputandcauseavoltagedropacrossthesourceresistance,asshowninFigure44,where (V = V – I × R ). The last term, I × R , shows the voltage drop across R . To prevent errors (+INx) S (BIAS) (S) (BIAS) (S) (S) introduced to the system as a result of this voltage, use an op amp with low input bias current and high- impedance sensors. This low current keeps the error contribution by I × R less than the input voltage (BIAS) (S) noise of the amplifier, so that the amplifier does not become the dominant noise factor. The OPAx357 family of devices series of op amps feature low input bias current (typically 200 fA), and are therefore designed for such applications. R (S) 100 kΩ IIB V (+INx) V (V+) Device VO V(V–) R(F) R (G) Figure44. NoiseasaResultofI (BIAS) Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 SBOS235F–MARCH2002–REVISEDAPRIL2018 www.ti.com 8.2.3 DrivingADCs The OPAx357 op amps are designed for driving sampling analog-to-digital (A/D) converters with sampling speeds up to 1 MSPS. The zero-crossover distortion input stage topology allows the OPAx357 family of devices todriveA/DconverterswithoutdegradationofdifferentiallinearityandTHD. TheOPAx357familyofdevicescanbeusedtobuffertheA/Dconverterswitchedinputcapacitanceandresulting charge injection while providing signal gain. Figure 45 shows the OPAx357 family of devices configured to drive theADS8326. 5 V C1 100 nF 5 V R1(1) V(V+) 100Ω +INx OPAx357 ADS8326 V C3(1) 16-Bit (V–) 1 nF –INx 250kSPS V I 0 to 4.096 V REF IN Optional(2) 5 V R2 50 kΩ SD1 BAS40 –5 V REF3240 C2 4.096 V C4 100 nF 100 nF (1) Suggestedvalue;mayrequireadjustmentbasedonspecificapplication. (2) Single-supply applications lose a small number of A/D converter codes near ground as a result of op amp output swing limitation. If a negativepowersupplyisavailable,thissimplecircuitcreatesa–0.3-Vsupplytoallowoutputswingtotruegroundpotential. Figure45. DrivingtheADS8326 24 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 www.ti.com SBOS235F–MARCH2002–REVISEDAPRIL2018 8.2.4 ActiveFilter The OPAx357 family of devices is designed for active filter applications that require a wide bandwidth, fast slew rate, low-noise, single-supply operational amplifier. Figure 46 shows a 500-kHz, second-order, low-pass filter using the multiple-feedback (MFB) topology. The components are selected to provide a maximally-flat Butterworth response. Beyond the cutoff frequency, roll-off is –40 dB/dec. The Butterworth response is designed for applications requiring predictable gain characteristics, such as the antialiasing filter used in front of an A/D converter. One point to note when considering the MFB filter is that the output is inverted relative to the input. If this inversion is not required, or not desired, a noninverting output can be achieved through one of the following options: 1. Addinganinvertingamplifier 2. Addinganadditionalsecond-orderMFBstage 3. Usinganoninvertingfiltertopology,suchastheSallen-Key(seeFigure47). MFB and Sallen-Key, low-pass and high-pass filter synthesis is accomplished using TI’s FilterPro™ program. Thissoftwareisavailableasafreedownloadonwww.ti.com. R3 549Ω C2 150 pF V R1 R2 (V+) 549Ω 1.24 kΩ V I Device VO C1 1 nF V(V–) Figure46. Second-Order,Butterworth,500-kHz,Low-PassFilter 220 pF V (V+) 1.8kΩ 19.5kΩ 150 kΩ V=1 V I RMS 3.3 nF 47 pF Device VO V(V–) Figure47. OPAx357ConfiguredasaThree-Pole,20-kHz,Sallen-KeyFilter Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 SBOS235F–MARCH2002–REVISEDAPRIL2018 www.ti.com 9 Power Supply Recommendations 9.1 Power Dissipation For resistive loads, the maximum power dissipation occurs at a DC output voltage of one-half the power-supply voltage. Dissipation with AC signals is lower. The Power Amplifier Stress and Power Handling Limitations application note explains how to calculate or measure power dissipation with unusual signals and loads, and can be found at www.ti.com. Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate heat sink. For reliable operation, limit junction temperature to 150°C, maximum. To estimate the margin of safety in a complete design, increase the ambient temperature until the thermal protection is triggered at 160°C. The thermal protection should trigger more than 35°C above the maximum expected ambientconditionofyourapplication. 10 Layout 10.1 Layout Guidelines Use good high-frequency printed circuit board (PCB) layout techniques for the OPA357. Generous use of ground planes,shortanddirectsignaltraces,andasuitablebypasscapacitorlocatedattheV+pinassuresclean,stable operation.Largeareasofcopperalsoprovideameansofdissipatingheatthatisgeneratedinnormaloperation. Socketsaredefinitelynotrecommendedforusewithanyhigh-speedamplifier. A 10-nF ceramic bypass capacitor is the minimum recommended value; adding a 1-μF or larger tantalum capacitor in parallel can be beneficial when driving a low-resistance load. Providing adequate bypass capacitanceisessentialtoachievingverylowharmonicandintermodulationdistortion. 10.2 Layout Example Ground and power plane exist on inner layers Ground and power plane removed Place output resistors close from inner layers to output pins to minimize 1 6 parasitic capacitance Place bypass capacitors close to power pins Place bypass capacitors close to power pins 2 5 Power control (disable) pin + – Must be driven Place input resistor close to pin 4 Noninverting input 3 4 to minimize stray capacitance terminated in 50 (cid:159)(cid:3) Place feedback resistor on the bottom of PCB between pins 4 and 6 Remove GND and Power plane under pins 1 and 4 to minimize stray PCB capacitance Figure48. ExampleLayout 26 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 www.ti.com SBOS235F–MARCH2002–REVISEDAPRIL2018 11 Device and Documentation Support 11.1 Device Support 11.1.1 DevelopmentSupport 11.1.1.1 CustomDesignWithWEBENCH® Tools ClickheretocreateacustomdesignusingtheOPA357devicewiththeWEBENCH® PowerDesigner. 1. Startbyenteringtheinputvoltage(V ),outputvoltage(V ),andoutputcurrent(I )requirements. IN OUT OUT 2. Optimizethedesignforkeyparameterssuchasefficiency,footprint,andcostusingtheoptimizerdial. 3. ComparethegenerateddesignwithotherpossiblesolutionsfromTexasInstruments. The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricingandcomponentavailability. Inmostcases,theseactionsareavailable: • Runelectricalsimulationstoseeimportantwaveformsandcircuitperformance • Runthermalsimulationstounderstandboardthermalperformance • ExportcustomizedschematicandlayoutintopopularCADformats • PrintPDFreportsforthedesign,andsharethedesignwithcolleagues GetmoreinformationaboutWEBENCHtoolsatwww.ti.com/WEBENCH. 11.2 Documentation Support 11.2.1 RelatedDocumentation Forrelateddocumentationseethefollowing: • OPAx380Precision,High-SpeedTransimpedanceAmplifier • OPAx354250-MHz,Rail-to-RailI/O,CMOSOperationalAmplifiers • OPAx300Low-Noise,High-Speed,16-BitAccurate,CMOSOperationalAmplifier • OPAx355200MHz,CMOSOperationalAmplifierwithShutdown • OPA656Wideband,Unity-GainStable,FET-InputOperationalAmplifier • OPA6571.6-GHz,Low-Noise,FET-InputOperationalAmplifier • ADS832616-Bit,High-Speed,2.7Vto5.5VmicroPowerSamplingAnalog-to-DigitalConverter • FilterPro™ • CompensateTransimpedanceAmplifiersIntuitively • PowerAmplifierStressandPowerHandlingLimitations 11.3 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstoordernow. Table3.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER ORDERNOW DOCUMENTS SOFTWARE COMMUNITY OPA357 Clickhere Clickhere Clickhere Clickhere Clickhere OPA2357 Clickhere Clickhere Clickhere Clickhere Clickhere 11.4 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed.Forchangedetails,reviewtherevisionhistoryincludedinanyreviseddocument. Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 27 ProductFolderLinks:OPA357 OPA2357

OPA357,OPA2357 SBOS235F–MARCH2002–REVISEDAPRIL2018 www.ti.com 11.5 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 11.6 Trademarks FilterPro,E2EaretrademarksofTexasInstruments. WEBENCHisaregisteredtrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 11.7 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriateprecautions.Failuretoobserveproperhandlingandinstallationprocedurescancausedamage. ESDdamagecanrangefromsubtleperformancedegradationtocompletedevicefailure.Precisionintegratedcircuitsmaybemore susceptibletodamagebecauseverysmallparametricchangescouldcausethedevicenottomeetitspublishedspecifications. 11.8 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 28 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA357 OPA2357

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) OPA2357AIDGSR ACTIVE VSSOP DGS 10 2500 Green (RoHS NIPDAUAG Level-2-260C-1 YEAR -40 to 125 BBG & no Sb/Br) OPA2357AIDGST ACTIVE VSSOP DGS 10 250 Green (RoHS NIPDAUAG Level-2-260C-1 YEAR -40 to 125 BBG & no Sb/Br) OPA357AIDBVR ACTIVE SOT-23 DBV 6 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OADI & no Sb/Br) OPA357AIDBVT ACTIVE SOT-23 DBV 6 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OADI & no Sb/Br) OPA357AIDBVTG4 ACTIVE SOT-23 DBV 6 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OADI & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 10-Jul-2018 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) OPA2357AIDGSR VSSOP DGS 10 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 OPA2357AIDGST VSSOP DGS 10 250 180.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 OPA357AIDBVR SOT-23 DBV 6 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 OPA357AIDBVT SOT-23 DBV 6 250 179.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 OPA357AIDBVT SOT-23 DBV 6 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 10-Jul-2018 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) OPA2357AIDGSR VSSOP DGS 10 2500 367.0 367.0 35.0 OPA2357AIDGST VSSOP DGS 10 250 210.0 185.0 35.0 OPA357AIDBVR SOT-23 DBV 6 3000 445.0 220.0 345.0 OPA357AIDBVT SOT-23 DBV 6 250 195.0 200.0 45.0 OPA357AIDBVT SOT-23 DBV 6 250 445.0 220.0 345.0 PackMaterials-Page2

PACKAGE OUTLINE DGS0010A VSSOP - 1.1 mm max height SCALE 3.200 SMALL OUTLINE PACKAGE C 5.05 4.75 TYP SEATING PLANE A PIN 1 ID 0.1 C AREA 8X 0.5 10 1 3.1 2X 2.9 NOTE 3 2 5 6 0.27 10X 0.17 B 3.1 0.1 C A B 1.1 MAX 2.9 NOTE 4 0.23 TYP SEE DETAIL A 0.13 0.25 GAGE PLANE 0.15 0.7 0 - 8 0.05 0.4 DETAIL A TYPICAL 4221984/A 05/2015 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. 5. Reference JEDEC registration MO-187, variation BA. www.ti.com

EXAMPLE BOARD LAYOUT DGS0010A VSSOP - 1.1 mm max height SMALL OUTLINE PACKAGE 10X (1.45) 10X (0.3) SYMM (R0.05) TYP 1 10 SYMM 8X (0.5) 5 6 (4.4) LAND PATTERN EXAMPLE SCALE:10X SOOPLEDNEINRG MASK METAL MSOELTDAEL RU NMDAESRK SOOPLEDNEINRG MASK 0.05 MAX 0.05 MIN ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS NOT TO SCALE 4221984/A 05/2015 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN DGS0010A VSSOP - 1.1 mm max height SMALL OUTLINE PACKAGE 10X (1.45) SYMM (R0.05) TYP 10X (0.3) 1 10 SYMM 8X (0.5) 5 6 (4.4) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:10X 4221984/A 05/2015 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

PACKAGE OUTLINE DBV0006A SOT-23 - 1.45 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 3.0 2.6 0.1 C 1.75 1.45 B A 1.45 MAX PIN 1 INDEX AREA 1 6 2X 0.95 3.05 2.75 1.9 5 2 4 3 0.50 6X 0.25 0.15 0.2 C A B (1.1) TYP 0.00 0.25 GAGE PLANE 0.22 TYP 0.08 8 TYP 0.6 0 0.3 TYP SEATING PLANE 4214840/B 03/2018 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. 5. Refernce JEDEC MO-178. www.ti.com

EXAMPLE BOARD LAYOUT DBV0006A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 6X (1.1) 1 6X (0.6) 6 SYMM 2 5 2X (0.95) 3 4 (R0.05) TYP (2.6) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214840/B 03/2018 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN DBV0006A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 6X (1.1) 1 6X (0.6) 6 SYMM 2 5 2X(0.95) 3 4 (R0.05) TYP (2.6) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X 4214840/B 03/2018 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated