图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: OPA350UA
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

OPA350UA产品简介:

ICGOO电子元器件商城为您提供OPA350UA由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 OPA350UA价格参考¥10.04-¥20.47。Texas InstrumentsOPA350UA封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 1 电路 满摆幅 8-SOIC。您可以下载OPA350UA参考资料、Datasheet数据手册功能说明书,资料中有OPA350UA 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP GP 38MHZ RRO 8SOIC高速运算放大器 Hi-Spd Single-Sply Rail-to-Rail

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Texas Instruments

产品手册

http://www.ti.com/litv/sbos099c

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,高速运算放大器,Texas Instruments OPA350UAMicroAmplifier™

数据手册

点击此处下载产品Datasheet

产品型号

OPA350UA

产品目录页面

点击此处下载产品Datasheet

产品种类

高速运算放大器

供应商器件封装

8-SOIC

共模抑制比—最小值

66 dB

包装

管件

单位重量

76 mg

压摆率

22 V/µs

商标

Texas Instruments

增益带宽生成

38 MHz

增益带宽积

38MHz

安装类型

表面贴装

安装风格

SMD/SMT

封装

Tube

封装/外壳

8-SOIC(0.154",3.90mm 宽)

封装/箱体

SOIC-8

工作温度

-40°C ~ 85°C

工作电源电压

5.5 V

工厂包装数量

75

放大器类型

通用

最大工作温度

+ 85 C

最小工作温度

- 40 C

标准包装

75

电压-电源,单/双 (±)

2.5 V ~ 5.5 V

电压-输入失调

150µV

电压增益dB

122 dB

电流-电源

5.2mA

电流-输入偏置

0.5pA

电流-输出/通道

40mA

电源电压-最大

5.5 V

电源电压-最小

2.7 V

电源电流

7.5 mA

电路数

1

系列

OPA350

设计资源

http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176

转换速度

22 V/us

输入补偿电压

0.5 mV

输出类型

满摆幅

通道数量

1 Channel

推荐商品

型号:AD8275BRMZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:LMP7717MAX/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:OPA241UA

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:ADN2890ACPZ-RL

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:THS3091DDAG3

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:OPA4244EA/250

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LMC6442AIM/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MC33502DG

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
OPA350UA 相关产品

AMC1200BDUBR

品牌:Texas Instruments

价格:¥25.00-¥31.25

BU7265G-TR

品牌:Rohm Semiconductor

价格:¥1.44-¥1.44

MAX4489ASA+

品牌:Maxim Integrated

价格:

AD8639ARZ-REEL

品牌:Analog Devices Inc.

价格:

TLV271CDBVT

品牌:Texas Instruments

价格:¥6.58-¥7.26

TC7652CPD

品牌:Microchip Technology

价格:

AD8139ACPZ-REEL7

品牌:Analog Devices Inc.

价格:¥63.87-¥63.87

LT1169CS8#PBF

品牌:Linear Technology/Analog Devices

价格:

PDF Datasheet 数据手册内容提取

Product Sample & Technical Tools & Support & Reference Folder Buy Documents Software Community Design OPA350,OPA2350,OPA4350 SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 OPAx350 High-Speed, Single-Supply, Rail-to-Rail Operational Amplifiers MicroAmplifier Series 1 Features 3 Description • Rail-to-RailInput The OPA350 series of rail-to-rail CMOS operational 1 amplifiers are optimized for low voltage, single-supply • Rail-to-RailOutput(Within10mV) operation. Rail-to-rail input and output, low noise (5 • WideBandwidth:38MHz nV/√Hz),andhighspeedoperation(38MHz,22V/μs) • HighSlewRate:22V/μs make the amplifiers ideal for driving sampling Analog- to-Digital (A/D) converters. They are also suited for • LowNoise:5nV/√Hz cell phone PA control loops and video processing • LowTHD+Noise:0.0006% (75-Ω drive capability), as well as audio and general • Unity-GainStable purpose applications. Single, dual, and quad versions have identical specifications for maximum design • MicroSizePackages flexibility. • Single,Dual,andQuad The OPA350 series operates on a single supply as 2 Applications low as 2.5 V, with an input common-mode voltage range that extends 300 mV below ground and 300 • CellPhonePAControlLoops mV above the positive supply. Output voltage swing • DrivingA/DConverters is to within 10 mV of the supply rails, with a 10-kΩ load. Dual and quad designs feature completely • VideoProcessing independent circuitry for lowest crosstalk and • DataAcquisition freedomfrominteraction. • ProcessControls The single (OPA350) and dual (OPA2350) come in • AudioProcessing the miniature MSOP-8 surface mount, SO-8 surface • Communications mount, and DIP-8 packages. The quad (OPA4350) • ActiveFilters packages are in the space-saving SSOP-16 surface mount and SO-14 surface mount. All are specified • TestEquipment from −40°C to 85°C and operate from −55°C to 150°C. OPAx350HarmonicDistortion 1 DeviceInformation(1) (−40dBc) G=1 V =2.5V PARTNUMBER PACKAGE BODYSIZE(NOM) O PP R =600Ω %) 0.1 L MSOP(8) 3.00mm×3.00mm ( (−60dBc) n OPA350 SOIC(8) 3.91mm×4.90mm o orti PDIP(8) 6.35mm×9.81mm st 0.01 Di (−80dBc) MSOP(8) 3.00mm×3.00mm c ni mo OPA2350 SOIC(8) 3.91mm×4.90mm ar 0.001 H PDIP(8) 6.35mm×9.81mm (−100dBc) 3rd−Harmonic 2nd−Harmonic SSOP(16) 3.90mm×4.90mm OPA4350 0.0001 SOIC(14) 3.91mm×8.65mm (−120dBc)1k 10k 100k 1M (1) For all available packages, see the orderable addendum at Frequency(Hz) theendofthedatasheet. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

OPA350,OPA2350,OPA4350 SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 www.ti.com Table of Contents 1 Features.................................................................. 1 7.4 DeviceFunctionalModes........................................17 2 Applications........................................................... 1 8 ApplicationandImplementation........................ 18 3 Description............................................................. 1 8.1 ApplicationInformation............................................18 4 RevisionHistory..................................................... 2 8.2 TypicalApplications................................................18 5 PinConfigurationandFunctions......................... 3 9 PowerSupplyRecommendations...................... 22 6 Specifications......................................................... 4 10 Layout................................................................... 22 6.1 AbsoluteMaximumRatings......................................4 10.1 LayoutGuidelines.................................................22 6.2 ESDRatings ............................................................4 10.2 LayoutExample....................................................23 6.3 RecommendedOperatingConditions.......................4 11 DeviceandDocumentationSupport................. 24 6.4 ThermalInformation:OPA350andOPA2350...........5 11.1 DeviceSupport ....................................................24 6.5 ThermalInformation:OPA4350................................5 11.2 DocumentationSupport .......................................24 6.6 ElectricalCharacteristics...........................................6 11.3 RelatedLinks........................................................24 6.7 TypicalCharacteristics..............................................8 11.4 CommunityResources..........................................25 7 DetailedDescription............................................ 12 11.5 Trademarks...........................................................25 7.1 Overview.................................................................12 11.6 ElectrostaticDischargeCaution............................25 7.2 FunctionalBlockDiagram.......................................12 11.7 Glossary................................................................25 7.3 FeatureDescription.................................................12 12 Mechanical,Packaging,andOrderable Information........................................................... 25 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionC(January2005)toRevisionD Page • AddedESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,ApplicationandImplementation section,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentationSupportsection,and Mechanical,Packaging,andOrderableInformationsection. ................................................................................................ 1 2 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 www.ti.com SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 5 Pin Configuration and Functions DPackage OPA350:P,D,andDGKPackages 14-PinSOIC 8-PinPDIP,SOIC,andVSSOP TopView TopView OutA 1 14 OutD NC 1 8 NC −InA 2 13 −InD A D −In 2 7 V+ +InA 3 12 +InD +In 3 6 Output V+ 4 11 V− V− 4 5 NC +InB 5 10 +InC B C −InB 6 9 −InC OPA2350:P,D,andDGKPackages OutB 7 8 OutC 8-PinPDIP,SOIC,andVSSOP TopView DBQPackage OutA 1 8 V+ 16-PinSSOP −InA 2 A 7 OutB TopView +InA 3 B 6 −InB − 4 5 +InB OutA 1 16 OutD −InA 2 15 −InD A D +InA 3 14 +InD +V 4 13 −V +InB 5 12 +InC B C −InB 6 11 −InC OutB 7 10 OutC NC 8 9 NC PinFunctions PIN OPA350 OPA2350 OPA4350SO-14 OPA4350SSOP I/O DESCRIPTION NAME NO. NO. NO. NO. NC 1,5,8 — — 8,9 — Nointernalconnection –In 2 — — — I Invertinginput +In 3 — — — I Noninvertinginput V– 4 4 11 13 I Negativepowersupply Output 6 — — — O Output V+ 7 8 4 4 I Positivepowersupply OutA — 1 1 1 O OutputchannelA –InA — 2 2 2 I InvertinginputchannelA +InA — 3 3 3 I NoninvertinginputchannelA +InB — 5 5 5 I NoninvertinginputchannelB –InB — 6 6 6 I InvertinginputchannelB OutB — 7 7 7 O OutputchannelB OutC — — 8 10 O OutputchannelC –InC — — 9 11 I InvertinginputchannelC +InC — — 10 12 I NoninvertinginputchannelC +InD — — 12 14 I NoninvertinginputchannelD –InD — — 13 15 I InvertinginputchannelD OutD — — 14 16 O OutputchannelD Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted) (1) MIN MAX UNIT Supplyvoltage 7 V Voltage (V−)−0.3 (V+)+0.3 V Signalinputterminals(2) Current 10 mA Openshortcircuitcurrent(3) Continuous Operatingtemperature –55 150 °C Leadtemperature(soldering,10s) 300 °C Junctiontemperature 150 °C T Storagetemperature –55 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) Inputterminalsarediode-clampedtothepower-supplyrails.Inputsignalsthatcanswingmorethan0.3Vbeyondthesupplyrailsshould becurrent-limitedto10mAorless. (3) Short-circuittoground,oneamplifierperpackage. 6.2 ESD Ratings VALUE UNIT OPA350,OPA2350,OPA4350(ALLPACKAGETYPES) V Electrostaticdischarge Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±1000 V (ESD) OPA350,OPA2350,OPA4350(SOICPACKAGESONLY) Charged-devicemodel(CDM),perJEDECspecificationJESD22- V(ESD) Electrostaticdischarge C101(2) ±1500 V (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 6.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT Powersupplyvoltage,(V+)-(V-) 2.7(±1.35) 5(±2.5) 5.5(±2.75) V Specifiedtemperature –40 25 85 °C Operatingtemperature –55 25 150 °C 4 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 www.ti.com SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 6.4 Thermal Information: OPA350 and OPA2350 OPA350,OPA2350 THERMALMETRIC(1) DGK(VSSOP) P(PDIP) D(SOIC) UNIT 8PINS 8PINS 8PINS R Junction-to-ambientthermalresistance 169.2 53.1 140.1 °C/W θJA R Junction-to-case(top)thermalresistance 62.8 42.5 89.8 °C/W θJC(top) R Junction-to-boardthermalresistance 89.8 30.3 80.6 °C/W θJB ψ Junction-to-topcharacterizationparameter 7.5 19.7 28.7 °C/W JT ψ Junction-to-boardcharacterizationparameter 88.2 30.2 80.1 °C/W JB R Junction-to-case(bottom)thermalresistance N/A N/A N/A °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheICPackageThermalMetricsapplicationreport,SPRA953. 6.5 Thermal Information: OPA4350 OPA4350 THERMALMETRIC(1) D(SOIC) DBQ(SSOP) UNIT 14PINS 16PINS R Junction-to-ambientthermalresistance 83.8 115.8 °C/W θJA R Junction-to-case(top)thermalresistance 70.7 67 °C/W θJC(top) R Junction-to-boardthermalresistance 59.5 58.3 °C/W θJB ψ Junction-to-topcharacterizationparameter 11.6 19.9 °C/W JT ψ Junction-to-boardcharacterizationparameter 37.7 57.9 °C/W JB R Junction-to-case(bottom)thermalresistance N/A N/A °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report,SPRA953. Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 www.ti.com 6.6 Electrical Characteristics V =2.7Vto5.5V;AllspecificationsatT =25°C,R =1kΩconnectedtoV /2andV =V /2,unlessotherwisenoted. S A L S OUT S PARAMETER TESTCONDITIONS MIN TYP(1) MAX UNIT OFFSETVOLTAGE VS=5V ±150 ±500 µV VOS Inputoffsetvoltage T85A°=C−40°Cto ±1 mV vsTemperature TA=–40°Cto85°C ±4 μV/°C vsPower-supply 40 150 PSRR rejectionratio VS=2.7Vto5.5V,VCM=0V 175 µV/V Channelseparation(dual,quad) DC 0.15 µV/V INPUTBIASCURRENT ±0.5 ±10 IB Inputbiascurrent pA vsTemperature SeeTypicalCharacteristics IOS Inputoffsetcurrent ±0.5 ±10 pA NOISE Inputvoltagenoise,f=100Hzto400kHz 4 μVrms en Inputvoltagenoisedensity,f=10kHz 7 nV/√Hz Inputcurrentnoisedensity,f=100kHz 5 nV/√Hz in Currentnoisedensity,f=10kHz 4 fA/√Hz INPUTVOLTAGERANGE VCM Common-modevoltagerange TA=−40°Cto85°C –0.1 (V+)+0.1 V VS=2.7V,−0.1V<VCM<2.8V 66 84 CMRR Common-moderejectionratio VS=5.5V,−0.1V<VCM<5.6V 74 90 dB TA=−40°Cto85°C, 74 VS=5.5V,−0.1V<VCM<5.6V INPUTIMPEDANCE Differential 1013||2.5 Ω||pF Common-mode 1013||6.5 Ω||pF OPEN-LOOPGAIN RL=10kΩ,50mV<VO<(V+)–50mV 100 122 Open-loopvoltage RL=10kΩ,50mV<VO<(V+)–50mV 100 AOL gain T85A°=C–40°Cto RL=1kΩ,200mV<VO<(V+)–200mV 100 120 dB RL=1kΩ,200mV<VO<(V+)–200mV 100 FREQUENCYRESPONSE(CL=100pF) GBW Gain-bandwidthproduct G=1 38 MHz SR Slewrate G=1 22 V/µs 0.1% 0.22 Settlingtime G=±1,2-VStep µs 0.01% 0.5 Overloadrecoverytime VIN×G=VS 0.1 µs THD+N Totalharmonicdistortion+noise RL=600Ω,VO=2.5VPP(2),G=1,f=1kHz 0.0006% Differentialgainerror G=2,RL=600Ω,VO=1.4V(3) 0.17% Differentialphaseerror G=2,RL=600Ω,VO=1.4V(3) 0.17 ° OUTPUT RL=10kΩ,AOL≥100dB 10 50 Voltageoutputswing VOUT fromrail(4) TA=–40°Cto RL=10kΩ,AOL≥100dB 50 mV 85°C RL=1kΩ,AOL≥100dB 25 200 IOUT Outputcurrent ±40(5) mA ISC shortcircuitcurrent ±80 mA CLOAD Capacitiveloaddrive SeeTypicalCharacteristics (1) V =5V S (2) V =0.25Vto2.75V OUT (3) NTSCsignalgeneratorused.SeeFigure31fortestcircuit. (4) Outputvoltageswingsaremeasuredbetweentheoutputandpowersupplyrails. (5) SeeFigure17. 6 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 www.ti.com SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 Electrical Characteristics (continued) V =2.7Vto5.5V;AllspecificationsatT =25°C,R =1kΩconnectedtoV /2andV =V /2,unlessotherwisenoted. S A L S OUT S PARAMETER TESTCONDITIONS MIN TYP(1) MAX UNIT POWERSUPPLY VS Operatingvoltagerange TA=−40°Cto85°C 2.7 5.5 V Minimumoperatingvoltage 2.5 V 5.2 7.5 Quiescentcurrent IQ (peramplifier) TA=–40°Cto IO=0 8.5 mA 85°C TEMPERATURERANGE Specifiedrange –40 85 °C Operatingrange –55 150 °C Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 www.ti.com 6.7 Typical Characteristics AllspecificationsatT =25°C,V =5V,andR =1kΩconnectedtoV /2,unlessotherwisenoted. A S L S 160 0 100 140 90 PSRR 120 −45 80 Voltage Gain (dB)186400000 G φ −−91035Phas)e( SRR,CMRR(dB) 7654300000 VCM=(V−CS0M.=1RV+R5toV5.1V) P 20 20 0 −180 10 0.1 1 10 100 1k 10k 100k 1M 10M 100M 0 Frequency(Hz) 10 100 1k 10k 100k 1M 10M Frequency(Hz) Figure1.Open-LoopGainandPhasevsFrequency Figure2.PowerSupplyandCommon-ModeRejectionRatio vsFrequency 100k 10k 140 130 Hz) 10k CurrentNoise 1k z) (dB) 120 √ √H n (nV 1k 100 (fA atio 110 Noise 100 VoltageNoise 10 Noise Separ 100 Voltage 10 1 Current Channel 9800 70 Dualandquaddevices. 1 0.1 60 10 100 1k 10k 100k 1M 10M 10 100 1k 10k 100k 1M 10M Frequency(Hz) Frequency(Hz) Figure3.InputVoltageandCurrentNoiseSpectralDensity Figure4.ChannelSeparationvsFrequency vsFrequency 1 1 R =600Ω (−40dBc) G=1 L V =2.5V O PP R =600Ω 0.1 G=100,3VPP(VO=1Vto4V) %) 0.1 L ( (−60dBc) n THD+N(%) 0.01 IGGnp==ut11,0g3,o3VeVsPPPthP(rV(oVOuOg=h=1t1VraVtnotso4it4VioV)n)region monicDistortio (−80d0B.0c1) 0.001 ar 0.001 H (−100dBc) 3rd−Harmonic G=1,2.5V (V =0.25Vto2.75V) PP O 2nd−Harmonic InputdoesNOTgothroughtransitionregion 0.0001 0.0001 10 100 1k 10k 100k (−120dBc)1k 10k 100k 1M Frequency(Hz) Frequency(Hz) Figure5.TotalHarmonicDistortion+NoisevsFrequency Figure6.HarmonicDistortion+NoisevsFrequency 8 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 www.ti.com SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 Typical Characteristics (continued) AllspecificationsatT =25°C,V =5V,andR =1kΩconnectedtoV /2,unlessotherwisenoted. A S L S 0.5 130 G=2 Phase VO=1.4V DifferentialGain(%)Differenti)alPhase(° 000...432 Gain NSeTeSCFigSuigrena6lfGorenteesrtactoirrcuit. Open−LoopGain(dB) 111122550 RL=10kΩ RRLL==16k0Ω0Ω 0.1 0 110 0 100 200 300 400 500 600 700 800 900 1000 −75 −50 −25 0 25 50 75 100 125 ResistiveLoad(Ω) Temperature( °C) Figure7.DifferentialGainandPhasevsResistiveLoad Figure8.Open-LoopGainvsTemperature 100 110 40 CMRR,V =5.5V S 35 (V =−0.1Vto+5.6V) CM 90 100 30 s) NegativeSlewRate CMRR(dB) 80 (VCCMM=R−R0,.V1VS=to2+.72V.8V) 90 PSRR(dB) µwRate(V/ 221505 PositiveSlewRate PSRR Sle 70 80 10 5 60 70 0 −75 −50 −25 0 25 50 75 100 125 −75 −50 −25 0 25 50 75 100 125 Temperature( °C) Temperature( °C) Figure9.Common-ModeandPower-SupplyRejectionRatio Figure10.SlewRatevsTemperature vsTemperature 7.0 100 6.0 +ISC PerAmplifier 6.5 90 5.5 A) mA) A) QuiescentCurrent(m 6554....0505 −ISC IQ 87650000 hort−CircuitCurrent( QuiescentCurrent(m 544...500 4.0 40 S 3.5 3.5 30 3.0 −75 −50 −25 0 25 50 75 100 125 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Temperature( °C) SupplyVoltage(V) Figure11.QuiescentCurrentandshortcircuitCurrentvs Figure12.QuiescentCurrentvsSupplyVoltage Temperature Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 www.ti.com Typical Characteristics (continued) AllspecificationsatT =25°C,V =5V,andR =1kΩconnectedtoV /2,unlessotherwisenoted. A S L S 1k 1.5 A) 100 A) 1.0 p p ( ( nt nt e e Curr 10 Curr 0.5 as as Bi Bi put 1 put 0.0 n n I I 0.1 −0.5 −75 −50 −25 0 25 50 75 100 125 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Temperature(°C) Common−ModeVoltage(V) Figure13.InputBiasCurrentvsTemperature Figure14.InputBiasCurrentvsInputCommon-Mode Voltage 100 6 V =5.5V S Maximumoutput voltagewithout 10 5 slewrate−induced Ω) )P distortion. ( 1 VP 4 mpedance 0.1 G=100 Voltage( 3 VS=2.7V utputI 0.01 G=10 Output 2 O 0.001 G=1 1 0.0001 0 1 10 100 1k 10k 100k 1M 10M 100M 100k 1M 10M 100M Frequency(Hz) Frequency(Hz) Figure15.Closed-LoopOutputImpedancevsFrequency Figure16.MaximumOutputVoltagevsFrequency V+ 140 I =250µA I =2.5mA OUT OUT 130 (V+)−1 oltage(V) (V+)−2 D(i+ne1cp2lue5dn°Cidninggcloonsecdir−culoito−pc5o5gn°afCiignu)rpaetirofonr+m25an°Cce pGain(dB) 111120000 IOUT=4.2mA putV (V−)+2 maybedegradedinshadedregion. −Loo 90 Out +125°C +25°C −55°C Open 80 (V−)+1 70 (V−) 60 0 ±10 ±20 ±30 ±40 0 20 40 60 80 100 120 140 160 180 200 OutputCurrent(mA) OutputVoltageSwingfromRails(mV) Figure17.OutputVoltageSwingvsOutputCurrent Figure18.Open-LoopGainvsOutputVoltageSwing 10 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 www.ti.com SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 Typical Characteristics (continued) AllspecificationsatT =25°C,V =5V,andR =1kΩconnectedtoV /2,unlessotherwisenoted. A S L S 18 20 Typicaldistributionof Typicalproduction 16 packagedunits. 18 distributionof %) 14 %) 16 packagedunits. mplifiers( 1120 plifiers( 1142 ofA 8 Am 10 Percent 64 ercentof 86 P 4 2 2 0 000 0000000000000000 0 0505 050505 5050505050 −504−4−3−−302−2−1−1−− 112233445 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 OffsetVoltage(µV) OffsetVoltageDrift(µV/°C) Figure19.OffsetVoltageProductionDistribution Figure20.OffsetVoltageDriftProductionDistribution 80 10 70 G=1 60 0.01% %) 50 µs)( ot( G= −1 me ho 40 Ti 1 Overs 30 ettling S 20 G=±10 10 0.1% 0 0.1 10 100 1k 10k 100k 1M −1 −10 −100 LoadCapacitance(pF) Closed−LoopGain(V/V) Figure21.Small-SignalOvershootvsLoadCapacitance Figure22.SettlingTimevsClosed-LoopGain v di v mV/ V/di 0 1 5 100ns/div 200ns/div Figure23.Small-SignalStepResponse Figure24.Large-SignalStepResponse C =100pF C =100pF L L Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 www.ti.com 7 Detailed Description 7.1 Overview The OPA350 series rail-to-rail CMOS operational amplifiers are optimized for low voltage, single-supply operation. Rail-to-rail input and output, low noise (5 nV/√Hz), and high speed operation (38 MHz, 22 V/μs) make theamplifiersidealfordrivingsamplingAnalog-to-Digital(A/D)converters.TheyarealsosuitedforcellphonePA control loops and video processing (75-Ω drive capability), as well as audio and general purpose applications. Single,dual,andquadversionshaveidenticalspecificationsformaximumdesignflexibility. 7.2 Functional Block Diagram V+ Reference Current VIN+ VIN- VBIAS1 Class AB Control V O Circuitry V BIAS2 V- (Ground) 7.3 Feature Description The OPA350 series of operational amplifiers (op amps) are fabricated on a state-of-the-art 0.6 micron CMOS process. They are unity-gain stable and suitable for a wide range of general purpose applications. Rail-to-rail input and output make them ideal for driving sampling A/D converters. They are also suited for controlling the output power in cell phones. These applications often require high speed and low noise. In addition, the OPA350 seriesoffersalow-costsolutionforgeneral-purposeandconsumervideoapplications(75-Ωdrivecapability). Excellent AC performance makes the OPA350 series suited for audio applications. Their bandwidth, slew rate, low noise (5 nV/√Hz), low THD (0.0006%), and small package options are ideal for these applications. The class ABoutputstageiscapableofdriving600-Ω loadsconnectedtoanypointbetweenV+andground. Rail-to-rail input and output swing significantly increases dynamic range, especially in low voltage supply applications. Figure 25 shows the input and output waveforms for the OPA350 in unity-gain configuration. Operation is from a single 5-V supply with a 1-kΩ load connected to V /2. The input is a 5 V sinusoid. Output S PP voltageswingisapproximately4.95V . PP Powersupplypinsshouldbebypassedwith0.01-μFceramiccapacitors. 12 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 www.ti.com SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 Feature Description (continued) V =+5,G=+1,R =1kΩ S L 5V V IN v di 0 V/ 5 5V 2 1. V OUT 0 Figure25. Rail-to-RailInputandOutput 7.3.1 OperatingVoltage OPA350 series operational amplifiers are fully specified from 2.7 V to 5.5 V. Supply voltage may range from 2.5 V to 5.5 V. Parameters are tested over the specified supply range: a feature of the OPA350 series. In addition, many specifications apply from −40°C to 85°C. Most behavior remains virtually unchanged throughout the full operating voltage range. Parameters that vary significantly with operating voltage or temperature are shown in TypicalCharacteristics. 7.3.2 Rail-to-RailInput The tested input common-mode voltage range of the OPA350 series extends 100 mV beyond the supply rails. This is achieved with a complementary input stage: an N-channel input-differential pair in parallel with a P- channel differential pair, as shown in Figure 26. The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 1.8 V to 100 mV above the positive supply, while the P-channel pair is on for inputs from100mVbelowthenegativesupplytoapproximately(V+) – 1.8V.Thereisasmalltransitionregion,typically (V+) – 2 V to (V+) – 1.6 V, in which both pairs are on. This 400-mV transition region can vary ±400 mV with process variation. Thus, the transition region (both input stages on) can range from (V+) – 2.4 V to (V+) – 2 V on thelowend,upto(V+)– 1.6Vto(V+) –1.2Vonthehighend. Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 www.ti.com Feature Description (continued) V+ Reference Current VIN+ VIN− VBIAS1 ClassAB Control V O Circuitry V BIAS2 V− (Ground) Figure26. SimplifiedSchematic OPA350 series operational amplifiers are laser-trimmed to reduce offset voltage difference between the N- channel and P-channel input stages, resulting in improved common-mode rejection and a smooth transition between the N-channel pair and the P-channel pair. However, within the 400-mV transition region PSRR, CMRR, offsetvoltage,offsetdrift,andTHDmaybedegradedcomparedtooperationoutsidethisregion. A double-folded cascode adds the signal from the two input pairs and presents a differential signal to the class AB output stage. Normally, input bias current is approximately 500 fA. However, large inputs (greater than 300 mVbeyondthesupplyrails)canturnontheinputprotectiondiodes,causingexcessivecurrenttoflowinoroutof the input pins. Momentary voltages greater than 300 mV beyond the power supply can be tolerated if the current on the input pins is limited to 10 mA. This is easily accomplished with an input resistor, as shown in Figure 27. Manyinputsignalsareinherentlycurrent-limitedtolessthan10mA;therefore,alimitingresistorisnotrequired. V+ I OVERLOAD 10mAmax OPAx350 VOUT V IN 5kΩ Figure27. InputCurrentProtectionforVoltagesExceedingtheSupplyVoltage 7.3.3 Rail-to-RailOutput A class AB output stage with common-source transistors achieves rail-to-rail output. For light resistive loads (>10 kΩ),theoutputvoltageswingistypicallytenmillivoltsfromthesupplyrails.Withheavierresistiveloads(600 Ω to 10 kΩ), the output can swing to within a few tens of millivolts from the supply rails and maintain high open-loop gain.SeeFigure17andFigure18formoreinformation. 14 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 www.ti.com SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 Feature Description (continued) 7.3.4 CapacitiveLoadandStability OPA350 series operational amplifiers can drive a wide range of capacitive loads. However, all operational amplifiers under certain conditions may become unstable. operational amplifier configuration, gain, and load value are just a few of the factors to consider when determining stability. An operational amplifier in unity-gain configuration is the most susceptible to the effects of capacitive load. The capacitive load reacts with the output impedance of the operational amplifier, along with any additional load resistance, to create a pole in the small- signalresponsethatdegradesthephasemargin. In unity gain, OPA350 series operational amplifiers perform well with large capacitive loads. Increasing gain enhances the ability of the amplifier to drive more capacitance. Figure 21 shows performance with a 1-kΩ resistiveload.Increasingloadresistanceimprovescapacitiveloaddrivecapability. 7.3.5 DrivingA/DConverters OPA350 series operational amplifiers are optimized for driving medium speed (up to 500 kHz) sampling A/D converters, and also offer excellent performance for higher speed converters. The OPA350 series provides an effective means of buffering the input capacitance of the A/D and resulting charge injection while providing signal gain. Figure 28 shows the OPA350 driving an ADS7861. The ADS7861 is a dual, 500 kHz, 12-bit sampling converter in the tiny SSOP-24 package. When used with the miniature package options of the OPA350 series, the combination is ideal for space-limited applications. For further information, consult the ADS7861 data sheet, Dual, 500kSPS, 12-Bit, 2 + 2 Channel, Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTER (SBAS110). Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 www.ti.com Feature Description (continued) C B1 2kΩ 2kΩ +5V 2 4 1/4 1 OPA4350 3 V B1 0.1µF 0.1µF IN C B0 24 13 2kΩ 2kΩ +VD +VA 2 23 CHB1+ SERIALDATAA 3 22 6 CHB1− SERIALDATAB 1/4 7 4 21 CHB0+ BUSY OPA4350 5 V B0 5 20 IN CHB0− CLOCK 6 19 CA1 CHA1+ CS Serial 7 CHA1− ADS7861 RD 18 Interface 2kΩ 2kΩ 8 17 CHA0+ CONVST 9 16 CHA0− A0 9 10 15 1/4 8 REF M0 IN OPA4350 10 11 14 VINA1 REFOUT M1 C DGND AGND A0 1 12 2kΩ 2kΩ 12 1/4 14 OPA4350 13 V A0 IN 11 V =0Vto2.45Vfor0Vto4.9Voutput. IN ChooseC ,C ,C ,C tofilterhighfrequencynoise. B1 B0 A1 A0 Figure28. OPA4350DrivingSamplingA/DConverter 7.3.6 OutputImpedance The low-frequency open-loop output impedance of the common-source output stage of the OPA350 is approximately 1 kΩ. When the operational amplifier is connected with feedback, this value is reduced significantly by the loop gain of the operational amplifier. For example, with 122 dB of open-loop gain, the output impedance is reduced in unity-gain to less than 0.001 Ω. For each decade rise in the closed-loop gain, the loop gain is reduced by the same amount which results in a ten-fold increase in effective output impedance (see Figure15). At higher frequencies, the output impedance rises as the open-loop gain of the operational amplifier drops. However, at these frequencies the output also becomes capacitive due to parasitic capacitance. This prevents the output impedance from becoming too high, which can cause stability problems when driving capacitive loads. TheOPA350hasexcellentcapacitiveloaddrivecapabilityforanoperationalamplifierwithitsbandwidth. 16 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 www.ti.com SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 7.4 Device Functional Modes The OPAx350 has a single functional mode and is operational when the power-supply voltage is greater than 2.7V(±1.35V).ThemaximumpowersupplyvoltagefortheOPAx350is5.5V(±2.75V). Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information Low pass filters are commonly employed in signal processing applications to reduce noise and prevent aliasing. The OPAx350 are ideally suited to construct high speed, high precision active filters. Figure 29 illustrates a secondorderlowpassfiltercommonlyencounteredinsignalprocessingapplications. 8.2 Typical Applications 8.2.1 SecondOrderLowPassFilter R4 C5 2.94 k(cid:13)(cid:3) 1 nF – R1 R3 Output 590 (cid:13)(cid:3) 499 (cid:13)(cid:3) + Input OPAx350 C2 39 nF Figure29. SecondOrderLowPassFilter 8.2.1.1 DesignRequirements Usethefollowingparametersforthisdesignexample: • Gain=5V/V(invertinggain). • Lowpasscutofffrequency=25kHz. • SecondorderChebyshevfilterresponsewith3-dBgainpeakinginthepassband. 8.2.1.2 DetailedDesignProcedure The infinite-gain multiple-feedback circuit for a low-pass network function is shown in Equation 1. Use Equation 2 tocalculatethevoltagetransferfunction. Output (cid:16)1RR C C (cid:11)s(cid:12) 1 3 2 5 Input s2(cid:14)(cid:11)s C (cid:12)(cid:11)1R (cid:14)1R (cid:14)1R (cid:12)(cid:14)1R R C C 2 1 3 4 3 4 2 5 (1) This circuit produces a signal inversion. For this circuit the gain at DC and the low pass cutoff frequency can be calculatedusingEquation2. R Gain 4 R 1 1 f (cid:11)1R R C C (cid:12) C 3 4 2 5 2S (2) Software tools are readily available to simplify filter design. WEBENCH® Filter Designer is a simple, powerful, and easy-to-use active filter design program. The WEBENCH Filter Designer lets you create optimized filter designs using a selection of TI operational amplifiers and passive components from TI's vendor partners. Available as a web based tool from the WEBENCH® Design Center, WEBENCH® Filter Designer allows you to design,optimize,andsimulatecompletemulti-stageactivefiltersolutionswithinminutes. 18 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 www.ti.com SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 Typical Applications (continued) 8.2.1.3 ApplicationCurve 20 0 b) d n ( -20 ai G -40 -60 100 1k 10k 100k 1M Frequency (Hz) Figure30. OPAx3502ndOrder25-kHz,Chebyshev,Low-PassFilter 8.2.2 Single-SupplyVideoLineDriver Figure 31 shows a circuit for a single supply, G = 2 composite video line driver. The synchronized outputs of a composite video line driver extend below ground. As shown, the input to the operational amplifier should be AC- coupled and shifted positively to provide adequate signal swing to account for these negative signals in a single- supplyconfiguration. The input is terminated with a 75-Ω resistor and AC-coupled with a 47-μF capacitor to a voltage divider that provides the DC bias point to the input. In Figure 31, this point is approximately (V−) + 1.7 V. Setting the optimal bias point requires some understanding of the nature of composite video signals. For best performance, avoid the distortion caused by the transition region of the complementary input stage of the OPA350. See the discussionofrail-to-railinputinRail-to-RailInput. R R G F 1kΩ 1kΩ C +5V C 1 4 220µF 0.1µF + 0.1µF 10µF 2 7 C 5 1000µF R Cable 6 OUT OPA350 V C OUT 2 47µF R Video 3 L In 4 R R 1 2 75Ω 5kΩ +5V(pin7) R R 3 4 5kΩ 5kΩ C 3 10µF Figure31. Single-SupplyVideoLineDriver Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 www.ti.com Typical Applications (continued) 8.2.3 AddingaFeedbackCapacitortoImproveResponse For optimum settling time and stability with high-impedance feedback networks, it may be necessary to add a feedback capacitor across the feedback resistor, R , as shown in Figure 32. This capacitor compensates for the F zero created by the feedback network impedance and the input capacitance of the OPA350 (and any parasitic layoutcapacitance).Theeffectbecomesmoresignificantwithhigherimpedancenetworks. C F R R IN F V IN V+ C IN R • C =R • C IN IN F F OPA350 V OUT C L C IN WhereC isequaltotheOPA350’sinput IN capacitance(approximately9pF)plusany parasiticlayoutcapacitance. Figure32. FeedbackCapacitorImprovesDynamicPerformance A variable capacitor can be used for the feedback capacitor, because input capacitance may vary between operational amplifiers and layout capacitance is difficult to determine. For the circuit shown in Figure 32, the value of the variable feedback capacitor should be chosen so that the input resistance times the input capacitance of the OPA350 (typically 9 pF) plus the estimated parasitic layout capacitance equals the feedback capacitortimesthefeedbackresistor: R ×C =R ×C IN IN F F where • C isequaltotheinputcapacitanceoftheOPA350(sumofdifferentialandcommon-mode)plusthelayout IN capacitance. (3) Thecapacitorcanbevarieduntiloptimumperformanceisobtained. 8.2.4 TwoOp-AmpInstrumentationAmplifierWithImprovedHigh-FrequencyCommon-ModeRejection The OPAx350 is well suited for high input impedance applications such as an instrumentation amplifier. The two amplifier configuration shown in Figure 33 rejects any common mode signals and senses the small differential input voltage developed by the resistive bridge. The voltage reference sets the output to 2.5 V when the differential signal developed by the bridge is zero. The high common mode rejection versus frequency response of the OPAx350, rejects and common mode noise that may be coupled into the bridge circuit from the bridge excitationsource.ThegainofthecircuitisdeterminedbyR accordingtotheequationshowninFigure33. G 20 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 www.ti.com SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 Typical Applications (continued) +5V 50kΩ (2.5V) 8 R REF1004−2.5 G 4 R R 1 2 100kΩ 25kΩ +5V R R 3 4 25kΩ 100kΩ 1/2 OPA2350 1/2 OPA2350 VO R L 10kΩ 200kΩ G=5+ R G Figure33. TwoOp-AmpInstrumentationAmplifierWithImprovedHigh-FrequencyCommon-Mode RejectionSchematic 8.2.5 10-kHzHigh-PassFilter High-pass filters are used to reject DC signals and low-frequency time varying signals such as drift versus temperature.Figure34illustratesahigh-passfilterwitha10kHzlow-frequencycutofffrequency. R 1 10.5kΩ +2.5V C C 1 2 1830pF 270pF OPA350 V OUT VIN RL 20kΩ R 2 49.9kΩ −2.5V Figure34. 10-kHzHigh-PassFilter Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 www.ti.com 9 Power Supply Recommendations The OPAx350 are specified for operation from 2.7 V to 5.5 V (±1.35 V to ±2.75 V); many specifications apply from –40°C to 85°C. Parameters that can exhibit significant variance with regard to operating voltage or temperaturearepresentedintheTypicalCharacteristics. 10 Layout 10.1 Layout Guidelines Forbestoperationalperformanceofthedevice,usegoodPCBlayoutpractices,including: • Noise can propagate into analog circuitry through the power pins of the circuit as a whole and operational amplifier itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance powersourceslocaltotheanalogcircuitry. – Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single- supplyapplications. • Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds paying attention to the flow of the ground current. For more detailed information,seeCircuitBoardLayoutTechniques (SLOA089). • To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much betterasopposedtoinparallelwiththenoisytrace. • Place the external components as close to the device as possible. As illustrated in Figure 35, keeping RF andRGclosetotheinvertinginputminimizesparasiticcapacitance. • Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitivepartofthecircuit. • Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduceleakagecurrentsfromnearbytracesthatareatdifferentpotentials. • CleaningthePCBfollowingboardassemblyisrecommendedforbestperformance. • Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended to remove moisture introduced into the device packaging during the cleaning process. A lowtemperature,postcleaningbakeat85°Cfor30minutesissufficientformostcircumstances. 22 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 www.ti.com SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 10.2 Layout Example VIN + RG VOUT RF (Schematic Representation) Place components Run the input traces close to device and to as far away from each other to reduce the supply lines parasitic errors VS+ RF as possible N/C N/C RG GND –IN V+ GND VIN +IN OUTPUT V– N/C Use low-ESR, ceramic bypass capacitor Use low-ESR, GND VS– VOUT ceramic bypass Ground (GND) plane on another layer capacitor Figure35. OperationalAmplifierBoardLayoutforNoninvertingConfiguration Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 www.ti.com 11 Device and Documentation Support 11.1 Device Support 11.1.1 DevelopmentSupport 11.1.1.1 TINA-TI™(FreeSoftwareDownload) TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI™ is a free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range of both passive and active models. TINA-TI provides all the conventional DC, transient, and frequency domainanalysisofSPICE,aswellasadditionaldesigncapabilities. Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select inputwaveformsandprobecircuitnodes,voltages,andwaveforms,creatingadynamicquick-starttool. WEBENCH® Filter Designer is a simple, powerful, and easy-to-use active filter design program. The WEBENCH Filter Designer lets you create optimized filter designs using a selection of TI operational amplifiers and passive components from TI's vendor partners. Available as a web based tool from the WEBENCH® Design Center, WEBENCH® Filter Designer allows you to design, optimize, and simulate complete multi-stage active filter solutionswithinminutes. NOTE These files require that either the TINA software (from DesignSoft™) or TINA-TI software beinstalled.DownloadthefreeTINA-TIsoftwarefromtheTINA-TIfolder. 11.1.1.2 TIPrecisionDesigns TheOPA350isfeaturedinseveralTIPrecisionDesigns,availableonlineat http://www.ti.com/ww/en/analog/precision-designs/. TI Precision Designs are analog solutions created by TI’s precision analog applications experts and offer the theory of operation, component selection, simulation, completePCBschematicandlayout,billofmaterials,andmeasuredperformanceofmanyusefulcircuits. 11.2 Documentation Support 11.2.1 RelatedDocumentation Forrelateddocumentationseethefollowing: • CircuitBoardLayoutTechniques,SLOA089 • OpAmpsforEveryone,SLOD006 • CompensateTransimpedanceAmplifiersIntuitively,SBOS055 • NoiseAnalysisforHighSpeedopAmps,SBOA066 11.3 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table1.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY OPA350 Clickhere Clickhere Clickhere Clickhere Clickhere OPA2350 Clickhere Clickhere Clickhere Clickhere Clickhere OPA4350 Clickhere Clickhere Clickhere Clickhere Clickhere 24 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA350 OPA2350 OPA4350

OPA350,OPA2350,OPA4350 www.ti.com SBOS099D–SEPTEMBER2000–REVISEDDECEMBER2015 11.4 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 11.5 Trademarks TINA-TI,E2EaretrademarksofTexasInstruments. TINA,DesignSoftaretrademarksofDesignSoft,Inc. Allothertrademarksarethepropertyoftheirrespectiveowners. 11.6 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 11.7 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 ProductFolderLinks:OPA350 OPA2350 OPA4350

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) OPA2350EA/250 ACTIVE VSSOP DGK 8 250 Green (RoHS NIPDAUAG Level-2-260C-1 YEAR -40 to 85 D50 & no Sb/Br) OPA2350EA/250G4 ACTIVE VSSOP DGK 8 250 Green (RoHS NIPDAUAG Level-2-260C-1 YEAR -40 to 85 D50 & no Sb/Br) OPA2350EA/2K5 ACTIVE VSSOP DGK 8 2500 Green (RoHS NIPDAUAG Level-2-260C-1 YEAR -40 to 85 D50 & no Sb/Br) OPA2350EA/2K5G4 ACTIVE VSSOP DGK 8 2500 Green (RoHS NIPDAUAG Level-2-260C-1 YEAR -40 to 85 D50 & no Sb/Br) OPA2350UA ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA & no Sb/Br) 2350UA OPA2350UA/2K5 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA & no Sb/Br) 2350UA OPA2350UA/2K5G4 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA & no Sb/Br) 2350UA OPA2350UAG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA & no Sb/Br) 2350UA OPA350EA/250 ACTIVE VSSOP DGK 8 250 Green (RoHS NIPDAUAG Level-2-260C-1 YEAR -40 to 85 C50 & no Sb/Br) OPA350EA/250G4 ACTIVE VSSOP DGK 8 250 Green (RoHS NIPDAUAG Level-2-260C-1 YEAR -40 to 85 C50 & no Sb/Br) OPA350EA/2K5 ACTIVE VSSOP DGK 8 2500 Green (RoHS NIPDAUAG Level-2-260C-1 YEAR -40 to 85 C50 & no Sb/Br) OPA350PA ACTIVE PDIP P 8 50 Green (RoHS NIPDAU N / A for Pkg Type -40 to 85 OPA350PA & no Sb/Br) OPA350UA ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA & no Sb/Br) 350UA OPA350UA/2K5 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA & no Sb/Br) 350UA OPA350UA/2K5G4 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA & no Sb/Br) 350UA OPA350UAG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA & no Sb/Br) 350UA OPA4350EA/250 ACTIVE SSOP DBQ 16 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR OPA & no Sb/Br) 4350EA Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) OPA4350EA/2K5 ACTIVE SSOP DBQ 16 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA & no Sb/Br) 4350EA OPA4350UA ACTIVE SOIC D 14 50 Green (RoHS NIPDAU Level-2-260C-1 YEAR OPA4350UA & no Sb/Br) OPA4350UA/2K5 ACTIVE SOIC D 14 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR OPA4350UA & no Sb/Br) OPA4350UA/2K5G4 ACTIVE SOIC D 14 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR OPA4350UA & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. Addendum-Page 2

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 3

PACKAGE MATERIALS INFORMATION www.ti.com 12-Jan-2018 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) OPA2350EA/250 VSSOP DGK 8 250 180.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 OPA2350EA/2K5 VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 OPA350EA/250 VSSOP DGK 8 250 180.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 OPA350EA/2K5 VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 OPA350UA/2K5 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 OPA4350EA/250 SSOP DBQ 16 250 180.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 OPA4350EA/2K5 SSOP DBQ 16 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 OPA4350UA/2K5 SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 12-Jan-2018 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) OPA2350EA/250 VSSOP DGK 8 250 210.0 185.0 35.0 OPA2350EA/2K5 VSSOP DGK 8 2500 367.0 367.0 35.0 OPA350EA/250 VSSOP DGK 8 250 210.0 185.0 35.0 OPA350EA/2K5 VSSOP DGK 8 2500 367.0 367.0 35.0 OPA350UA/2K5 SOIC D 8 2500 367.0 367.0 35.0 OPA4350EA/250 SSOP DBQ 16 250 210.0 185.0 35.0 OPA4350EA/2K5 SSOP DBQ 16 2500 367.0 367.0 35.0 OPA4350UA/2K5 SOIC D 14 2500 367.0 367.0 38.0 PackMaterials-Page2

None

None

PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

None

PACKAGE OUTLINE DBQ0016A SSOP - 1.75 mm max height SCALE 2.800 SHRINK SMALL-OUTLINE PACKAGE C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 14X .0250 [0.635] 16 1 2X .189-.197 .175 [4.81-5.00] [4.45] NOTE 3 8 9 16X .008-.012 B .150-.157 [0.21-0.30] .069 MAX [3.81-3.98] [1.75] NOTE 4 .007 [0.17] C A B .005-.010 TYP [0.13-0.25] SEE DETAIL A .010 [0.25] GAGE PLANE .004-.010 0 - 8 [0.11-0.25] .016-.035 [0.41-0.88] DETAIL A (.041 ) TYPICAL [1.04] 4214846/A 03/2014 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 inch, per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MO-137, variation AB. www.ti.com

EXAMPLE BOARD LAYOUT DBQ0016A SSOP - 1.75 mm max height SHRINK SMALL-OUTLINE PACKAGE 16X (.063) [1.6] SYMM SEE DETAILS 1 16 16X (.016 ) [0.41] 14X (.0250 ) [0.635] 8 9 (.213) [5.4] LAND PATTERN EXAMPLE SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL .002 MAX .002 MIN [0.05] [0.05] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214846/A 03/2014 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN DBQ0016A SSOP - 1.75 mm max height SHRINK SMALL-OUTLINE PACKAGE 16X (.063) [1.6] SYMM 1 16 16X (.016 ) [0.41] SYMM 14X (.0250 ) [0.635] 8 9 (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.127 MM] THICK STENCIL SCALE:8X 4214846/A 03/2014 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

None

None

None

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated