图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: OPA2354AIDDA
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

OPA2354AIDDA产品简介:

ICGOO电子元器件商城为您提供OPA2354AIDDA由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 OPA2354AIDDA价格参考¥11.04-¥22.61。Texas InstrumentsOPA2354AIDDA封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 电压反馈 放大器 2 电路 满摆幅 8-SO PowerPad。您可以下载OPA2354AIDDA参考资料、Datasheet数据手册功能说明书,资料中有OPA2354AIDDA 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

250MHz

产品目录

集成电路 (IC)半导体

描述

IC OPAMP VFB 100MHZ RRO 8SOPWR高速运算放大器 250MHz Rail-to-Rail I/O CMOS Quad

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Texas Instruments

产品手册

http://www.ti.com/litv/sbos233e

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,高速运算放大器,Texas Instruments OPA2354AIDDA-

数据手册

点击此处下载产品Datasheet

产品型号

OPA2354AIDDA

产品

Voltage Feedback Amplifier

产品目录页面

点击此处下载产品Datasheet

产品种类

高速运算放大器

供应商器件封装

8-SO PowerPad

共模抑制比—最小值

56 dB

其它名称

296-13784-5

包装

管件

压摆率

150 V/µs

商标

Texas Instruments

增益带宽生成

180 MHz

增益带宽积

100MHz

安装类型

表面贴装

安装风格

SMD/SMT

封装

Tube

封装/外壳

8-SOIC(0.154",3.90mm 宽)裸焊盘

封装/箱体

HSOP-8

工作温度

-40°C ~ 125°C

工作电源电压

3 V, 5 V

工厂包装数量

75

拓扑结构

Voltage Feedback

放大器类型

电压反馈

最大工作温度

+ 125 C

最小工作温度

- 40 C

标准包装

75

电压-电源,单/双 (±)

2.5 V ~ 5.5 V, ±1.25 V ~ 2.75 V

电压-输入失调

2mV

电压增益dB

110 dB

电流-电源

4.9mA

电流-输入偏置

3pA

电流-输出/通道

100mA

电源电压-最大

5.5 V

电源电压-最小

2.5 V

电路数

2

稳定时间

30 ns

系列

OPA2354

设计资源

http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176

转换速度

150 V/us

输入补偿电压

8 mV

输出类型

满摆幅

通道数量

2 Channel

推荐商品

型号:LMV824DE4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:AD8223ARMZ-RL

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:LT1991CDD#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:EL5203IYZ

品牌:Renesas Electronics America Inc.

产品名称:集成电路(IC)

获取报价

型号:TLC071IDGNR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:OPA2348AIDG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:INA132UG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MCP6V03T-E/SN

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
OPA2354AIDDA 相关产品

MCP6142-E/SN

品牌:Microchip Technology

价格:¥4.53-¥5.96

OPA2330AIDRG4

品牌:Texas Instruments

价格:

AD8042AR-REEL

品牌:Analog Devices Inc.

价格:¥46.37-¥46.37

MCP6232-E/MS

品牌:Microchip Technology

价格:

OPA846IDBVR

品牌:Texas Instruments

价格:¥13.84-¥28.22

TL064ID

品牌:STMicroelectronics

价格:¥1.25-¥6.34

ICL7611DCPA

品牌:Renesas Electronics America Inc.

价格:¥询价-¥询价

LM6132BIM/NOPB

品牌:Texas Instruments

价格:¥13.88-¥28.31

PDF Datasheet 数据手册内容提取

Product Order Technical Tools & Support & Reference Folder Now Documents Software Community Design OPA354,OPA2354,OPA4354 SBOS233G–MARCH2002–REVISEDAPRIL2018 OPAx354 250-MHz, Rail-to-Rail I/O, CMOS Operational Amplifiers 1 Features 3 Description • Unity-GainBandwidth:250MHz The OPAx354 series of high-speed, voltage-feedback 1 CMOS operational amplifiers are designed for video • WideBandwidth:100-MHzGBW and other applications requiring wide bandwidth. • HighSlewRate:150V/µs They are unity-gain stable and can drive large output • LowNoise:6.5nV√Hz currents. Differential gain is 0.02% and differential phase is 0.09°. Quiescent current is only 4.9 mA per • Rail-to-RailI/O channel. • HighOutputCurrent: >100mA The OPAx354 series of op amps are optimized for • ExcellentVideoPerformance: operation on single or dual supplies as low as 2.5 V – DifferentialGain:0.02%,DifferentialPhase: (±1.25 V) and up to 5.5 V (±2.75 V). Common-mode 0.09° input range extends beyond the supplies. The output – 0.1-dBGainFlatness:40MHz swing is within 100 mV of the rails, supporting wide dynamicrange. • LowInputBiasCurrent:3pA • QuiescentCurrent:4.9mA For applications requiring the full 100-mA continuous output current, single and dual 8-pin HSOP • ThermalShutdown PowerPADversionsareavailable. • SupplyRange:2.5Vto5.5V Thesingleversion(OPA354)isavailableinthetiny5- • MicroSIZEandPowerPAD™Packages pin SOT-23 and 8-pin HSOP PowerPAD packages. The dual version (OPA2354) comes in the miniature 2 Applications 8-pin VSSOP and 8-pin HSOP PowerPAD packages. • VideoProcessing The quad version (OPA4354) is offered in 14-pin TSSOPand14-pinSOICpackages. • Ultrasound • OpticalNetworking,TunableLasers Multichannel version features completely independent circuitry for lowest crosstalk and freedom from • PhotodiodeTransimpedanceAmps interaction. All features are specified over the • ActiveFilters extended–40°Cto+125°Ctemperaturerange. • High-SpeedIntegrators DeviceInformation(1) • Analog-to-Digital(A/D)ConverterInputBuffers PARTNUMBER PACKAGE BODYSIZE(NOM) • Digital-to-Analog(D/A)ConverterOutput HSOP(8) 4.89mm×3.90mm Amplifiers OPA354 SOT-23(5) 2.90mm×1.60mm • BarcodeScanners VSSOP(8) 3.00mm×3.00mm • Communications OPA2354 HSOP(8) 4.89mm×3.90mm SOIC(14) 8.65mm×3.91mm OPA4354 TSSOP(14) 5.00mm×4.40mm (1) For all available packages, see the orderable addendum at theendofthedatasheet. SimplifiedSchematic V+ (cid:16)IN OPA354 V OUT +IN V(cid:16) 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

OPA354,OPA2354,OPA4354 SBOS233G–MARCH2002–REVISEDAPRIL2018 www.ti.com Table of Contents 1 Features.................................................................. 1 8.4 DeviceFunctionalModes........................................21 2 Applications........................................................... 1 9 ApplicationandImplementation........................ 22 3 Description............................................................. 1 9.1 ApplicationInformation............................................22 4 RevisionHistory..................................................... 2 9.2 TypicalApplication .................................................22 5 DeviceComparisonTable..................................... 3 10 PowerSupplyRecommendations..................... 24 6 PinConfigurationandFunctions......................... 3 11 Layout................................................................... 24 11.1 LayoutGuidelines.................................................24 7 Specifications......................................................... 6 11.2 LayoutExample....................................................24 7.1 AbsoluteMaximumRatings......................................6 11.3 PowerDissipation.................................................24 7.2 ESDRatings..............................................................6 11.4 PowerPADThermally-EnhancedPackage...........25 7.3 RecommendedOperatingConditions.......................6 11.5 PowerPADAssemblyProcess..............................25 7.4 ThermalInformation:OPA354..................................7 12 DeviceandDocumentationSupport................. 27 7.5 ThermalInformation:OPA2354................................7 7.6 ThermalInformation:OPA4354................................7 12.1 DocumentationSupport .......................................27 7.7 ElectricalCharacteristics:V =2.7Vto5.5V(Single- 12.2 RelatedLinks........................................................27 S Supply)....................................................................... 8 12.3 ReceivingNotificationofDocumentationUpdates27 7.8 TypicalCharacteristics............................................11 12.4 CommunityResources..........................................27 8 DetailedDescription............................................ 16 12.5 Trademarks...........................................................27 8.1 Overview.................................................................16 12.6 ElectrostaticDischargeCaution............................27 8.2 FunctionalBlockDiagram.......................................16 12.7 Glossary................................................................28 8.3 FeatureDescription.................................................17 13 Mechanical,Packaging,andOrderable Information........................................................... 28 4 Revision History ChangesfromRevisionF(June2016)toRevisionG Page • DeletedtablenoteaboutinputpinsandinputsignalsfromAbsoluteMaximumRatingstable ............................................ 6 ChangesfromRevisionE(March2002)toRevisionF Page • AddedESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,ApplicationandImplementation section,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentationSupportsection,and Mechanical,Packaging,andOrderableInformationsection ................................................................................................. 1 • DeletedPackage/OrderingInformationtable,seePOAattheendofthedatasheet............................................................ 1 • RenamedOPAx354RelatedProductstabletoDeviceComparisonTable........................................................................... 3 2 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 www.ti.com SBOS233G–MARCH2002–REVISEDAPRIL2018 5 Device Comparison Table FEATURES PRODUCT ShutdownVersionofOPAx354Family OPAx357 200-MHzGBW,Rail-to-RailOutput,CMOS,Shutdown OPAx355 200-MHzGBW,Rail-to-RailOutput,CMOS OPAx356 38-MHzGBW,Rail-to-RailInput/Output,CMOS OPAx350/OPAx353 75-MHzBWG=2,Rail-to-RailOutput OPA2631 150-MHzBWG=2,Rail-to-RailOutput OPA2634 100-MHzBW,DifferentialInput/Output,3.3-VSupply THS412x 6 Pin Configuration and Functions OPA354DBVPackage 5-PinSOT-23 OPA354DDAPackage TopView 8-PinHSOP TopView OUT 1 5 V+ NC 1 8 NC V(cid:16) 2 (cid:16)IN 2 7 V+ +IN 3 4 (cid:16)IN +IN 3 6 OUT V(cid:16) 4 5 NC NC–nointernalconnection PowerPADmustbeconnectedtoV−orleft floating. PinFunctions:OPA354 PIN I/O DESCRIPTION NAME SOT-23 HSOP –IN 4 2 I Invertinginput +IN 3 3 I Noninvertinginput NC — 1,5,8 — Nointernalconnection(canbeleftfloating) OUT 1 6 O Output V– 2 4 — Negative(lowest)supply V+ 5 7 — Positive(highest)supply Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 SBOS233G–MARCH2002–REVISEDAPRIL2018 www.ti.com OPA2354DGKandDDAPackages 8-PinVSSOP,HSOP TopView OUT A 1 8 V+ (cid:16)IN A 2 7 OUT B A +IN A 3 6 (cid:16)IN B B V(cid:16) 4 5 +IN B (1) PowerPADmustbeconnectedtoV−orleftfloating. PinFunctions:OPA2354 PIN I/O DESCRIPTION NAME NO. –INA 2 I Invertinginput,channelA +INA 3 I Noninvertinginput,channelA –INB 6 I Invertinginput,channelB +INB 5 I Noninvertinginput,channelB OUTA 1 O Output,channelA OUTB 7 O Output,channelB V– 4 — Negative(lowest)supply V+ 8 — Positive(highest)supply 4 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 www.ti.com SBOS233G–MARCH2002–REVISEDAPRIL2018 OPA4354DandPWPackages 14-PinSOIC,TSSOP TopView OUT A 1 14 OUT D (cid:16)IN A 2 13 (cid:16)IN D A D +IN A 3 12 +IN D V+ 4 11 V(cid:16) +IN B 5 10 +IN C B C (cid:16)IN B 6 9 (cid:16)IN C OUT B 7 8 OUT C PinFunctions:OPA4354 PIN I/O DESCRIPTION NAME NO. –INA 2 I Invertinginput,channelA +INA 3 I Noninvertinginput,channelA –INB 6 I Invertinginput,channelB +INB 5 I Noninvertinginput,channelB –INC 9 I Invertinginput,channelC +INC 10 I Noninvertinginput,channelC –IND 13 I Invertinginput,channelD +IND 12 I Noninvertinginput,channelD OUTA 1 O Output,channelA OUTB 7 O Output,channelB OUTC 8 O Output,channelC OUTD 14 O Output,channelD V– 11 — Negative(lowest)supply V+ 4 — Positive(highest)supply Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 SBOS233G–MARCH2002–REVISEDAPRIL2018 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN MAX UNIT Supplyvoltage,V+toV− 7.5 Voltage V Signalinputterminals (V−)−(0.5) (V+)+0.5 Signalinputterminals –10 10 mA Current Outputshortcircuit(2) Continuous Operating,T –55 150 A Temperature Junction,T 150 °C J Storage,T –65 150 stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) Short-circuittoground,oneamplifierperpackage. 7.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±2000 V Electrostaticdischarge V (ESD) Charged-devicemodel(CDM),perJEDECspecificationJESD22-C101(2) ±250 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 7.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN MAX UNIT V Supplyvoltage,V–toV+ 2.5 5.5 V S Specifiedtemperature –40 125 °C 6 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 www.ti.com SBOS233G–MARCH2002–REVISEDAPRIL2018 7.4 Thermal Information: OPA354 OPA354 THERMALMETRIC(1) DBV(SOT-23) DDA(HSOP) UNIT 5PINS 8PINS R Junction-to-ambientthermalresistance 216.3 42.5 °C/W θJA R Junction-to-case(top)thermalresistance 84.3 54 °C/W θJC(top) R Junction-to-boardthermalresistance 43.1 26.5 °C/W θJB ψ Junction-to-topcharacterizationparameter 3.8 8 °C/W JT ψ Junction-to-boardcharacterizationparameter 42.3 26.4 °C/W JB R Junction-to-case(bottom)thermalresistance — 3.6 °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report. 7.5 Thermal Information: OPA2354 OPA2354 THERMALMETRIC(1) DDA(HSOP) DGK(VSSOP) UNIT 8PINS 8PINS R Junction-to-ambientthermalresistance 40.6 175.9 °C/W θJA R Junction-to-case(top)thermalresistance 46 67.8 °C/W θJC(top) R Junction-to-boardthermalresistance 20.7 97.1 °C/W θJB ψ Junction-to-topcharacterizationparameter 5.6 9.3 °C/W JT ψ Junction-to-boardcharacterizationparameter 20.6 95.5 °C/W JB R Junction-to-case(bottom)thermalresistance 2.5 — °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report. 7.6 Thermal Information: OPA4354 OPA4354 THERMALMETRIC(1) D(SOIC) PW(TSSOP) UNIT 14PINS 14PINS R Junction-to-ambientthermalresistance 83.8 92.6 °C/W θJA R Junction-to-case(top)thermalresistance 70.7 27.5 °C/W θJC(top) R Junction-to-boardthermalresistance 59.5 33.6 °C/W θJB ψ Junction-to-topcharacterizationparameter 11.6 1.9 °C/W JT ψ Junction-to-boardcharacterizationparameter 37.7 33.1 °C/W JB R Junction-to-case(bottom)thermalresistance — — °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report. Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 SBOS233G–MARCH2002–REVISEDAPRIL2018 www.ti.com 7.7 Electrical Characteristics: V = 2.7 V to 5.5 V (Single-Supply) S atT =25°C,R =0Ω,R =1kΩ,andconnectedtoV /2,(unlessotherwisenoted) A F L S PARAMETER TESTCONDITIONS MIN TYP MAX UNIT OFFSETVOLTAGE V =5V S ±2 ±8 T =25°C A V Inputoffsetvoltage mV OS V =5V, S ±10 T =−40°Cto+125°C A V =5V dV /dT Inputoffsetvoltagevstemperature S ±4 µV/°C OS T =−40°Cto+125°C A V =2.7Vto5.5V S ±200 ±800 V =(V /2)−0.55V CM S PSRR Inputoffsetvoltagevspowersupply V =2.7Vto5.5V µV/V S V =(V /2)−0.55V ±900 CM S atT =−40°Cto+125°C A INPUTBIASCURRENT I Inputbiascurrent 3 ±50 pA B I Inputoffsetcurrent ±1 ±50 pA OS NOISE e Inputvoltagenoisedensity f=1MHz 6.5 nV/√Hz n i Currentnoisedensity f=1MHz 50 fA/√Hz n INPUTVOLTAGERANGE V Common-modevoltage (V−)−0.1 (V+)+0.1 V CM V =5.5V S –0.1V<V <3.5V 66 80 CM T =25°C A V =5.5V S –0.1V<V <3.5V 64 CM T =−40°Cto+125°C A CMRR Common-moderejectionratio dB V =5.5V S –0.1V<V <5.6V 56 68 CM T =25°C A V =5.5V S –0.1V<V <5.6V 55 CM T =−40°Cto+125°C A INPUTIMPEDANCE Differential 1013||2 Ω||pF Common-mode 1013||2 Ω||pF OPEN-LOOPGAIN V =5.5V S 0.3V<V <4.7V 94 110 O T =25°C A A Open-loopgain dB OL V =5V S 0.4V<V <4.6V 90 O T =−40°Cto+125°C A FREQUENCYRESPONSE AtG=+1 V =100mV 250 O PP f−3dB Small-signalbandwidth RF=25Ω MHz AtG=+2 90 V =100mV O PP GBW Gain-bandwidthproduct G=+10 100 MHz AtG=+2 f Bandwidthfor0.1-dBgainflatness 40 MHz 0.1dB V =100mV O PP 8 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 www.ti.com SBOS233G–MARCH2002–REVISEDAPRIL2018 Electrical Characteristics: V = 2.7 V to 5.5 V (Single-Supply) (continued) S atT =25°C,R =0Ω,R =1kΩ,andconnectedtoV /2,(unlessotherwisenoted) A F L S PARAMETER TESTCONDITIONS MIN TYP MAX UNIT V =5V,G=+1,4-Vstep 150 S SR Slewrate V =5V,G=+1,2-Vstep 130 V/µs S V =3V,G=+1,2-Vstep 110 S AtG=+1 V =200mV 2 O PP Rise-and-falltime 10%to90% ns AtG=+1,V =2V ,10%to90% 11 O PP 0.1%,V =5V,G=+1 S 30 2-Voutputstep Settlingtime ns 0.01%,V =5V,G=+1 S 60 2-Voutputstep Overloadrecoverytime V ×Gain=V 5 ns IN S Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 SBOS233G–MARCH2002–REVISEDAPRIL2018 www.ti.com Electrical Characteristics: V = 2.7 V to 5.5 V (Single-Supply) (continued) S atT =25°C,R =0Ω,R =1kΩ,andconnectedtoV /2,(unlessotherwisenoted) A F L S PARAMETER TESTCONDITIONS MIN TYP MAX UNIT FREQUENCYRESPONSE(CONTINUED) AtG=+1,f=1MHz, Second V =2V –75 harmonic O PP R =200Ω,V =1.5V L CM Harmonicdistortion dBc AtG=+1,f=1MHz Thirdharmonic V =2V –83 O PP R =200Ω,V =1.5V L CM Differentialgainerror NTSC,R =150Ω 0.02% L Differentialphaseerror NTSC,R =150Ω 0.09 ° L Channel-to-channel OPA2354 f=5MHz –100 dB crosstalk OPA4354 –84 OUTPUT V =5V,R =1kΩ,A >94dB S L OL 0.1 0.3 T =25°C A Voltageoutputswingfromrail V V =5V,R =1kΩ,A >90dB S L OL 0.4 T =−40°Cto+125°C A I Outputcurrent,single,dual,quad(1)(2) V =5V 100 mA O S V =3V 50 mA S Closed-loopoutputimpedance f<100kHz 0.05 Ω R Open-loopoutputresistance 35 Ω O POWERSUPPLY Specifiedvoltage 2.7 5 V V S Operatingvoltage 2.5 5.5 T =25°C,V =5V(enabled) A S 4.9 6 IQ Quiescentcurrent(peramplifier) IO=0 mA T =–40°Cto+125°C 7.5 A THERMALSHUTDOWN:JUNCTIONTEMPERATURE Shutdown 160 °C Resetfromshutdown 140 °C THERMALRANGE Specified –40 125 °C Operating –55 150 °C Storage –65 150 °C (1) Seetypicalcharacteristiccurves,OutputVoltageSwingvsOutputCurrent(Figure20andFigure22). (2) Specifiedbydesign. 10 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 www.ti.com SBOS233G–MARCH2002–REVISEDAPRIL2018 7.8 Typical Characteristics atT =25°C,V =5V,G=+1,R =0Ω,R =1kΩ,andconnectedtoV /2,(unlessotherwisenoted) A S F L S 3 3 V = 0.1V G = +1 V = 0.1V , R = 604W O PP R = 25W O PP F 0 F 0 n (dB) -3 G = +2, RF= 604W n (dB) -3 ai G = +5, R = 604W ai G =-1 G F G d -6 d -6 e e aliz G = +10, RF= 604W aliz G =-5 G =-2 m -9 m -9 or or N N G =-10 -12 -12 -15 -15 100k 1M 10M 100M 1G 100k 1M 10M 100M 1G Frequency (Hz) Frequency (Hz) Figure1.NoninvertingSmall-SignalFrequencyResponse Figure2.InvertingSmall-SignalFrequencyResponse mV/div) mV/div) Output Voltage (40 Output Voltage (500 Time (20ns/div) Time (20ns/div) Figure3.NoninvertingSmall-SignalStepResponse Figure4.NoninvertingLarge-SignalStepResponse 0.5 -50 V = 0.1V 0.4 O PP G =-1 Gain (dB) 000...321 RGF == 2+51W ortion (dBc) --6700 fR =L =1M 2H00zW ed 0 Dist 2nd Harmonic ormaliz --00..21 monic -80 N -0.3 RG= = 6 +024W Har -90 F -0.4 3rd Harmonic -0.5 -100 100k 1M 10M 100M 1G 0 1 2 3 4 Frequency (Hz) Output Voltage (V ) PP Figure5.0.1-dBGainFlatness Figure6.HarmonicDistortionvsOutputVoltage Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 SBOS233G–MARCH2002–REVISEDAPRIL2018 www.ti.com Typical Characteristics (continued) atT =25°C,V =5V,G=+1,R =0Ω,R =1kΩ,andconnectedtoV /2,(unlessotherwisenoted) A S F L S -50 -50 V = 2V V = 2V O PP O PP f = 1MHz f = 1MHz Bc) -60 RL= 200W Bc) -60 RL= 200W d d n ( n ( ortio -70 2nd Harmonic ortio -70 2nd Harmonic st st Di Di c -80 c -80 ni ni o o 3rd Harmonic m m Har -90 Har -90 3rd Harmonic -100 -100 1 10 1 10 Gain (V/V) Gain (V/V) Figure7.HarmonicDistortionvsNoninvertingGain Figure8.HarmonicDistortionvsInvertingGain -50 -50 G = +1 G = +1 n (dBc) -60 VRVOCLM== = 22 01V0.P5WPV n (dBc) -60 VfV =OC M1=M= 2 H1V.zP5PV ortio -70 2nd Harmonic ortio -70 2nd Harmonic Dist Dist nic -80 nic -80 o o m m Har -90 3rd Harmonic Har -90 3rd Harmonic -100 -100 100k 1M 10M 100 1k Frequency (Hz) R (W) L Figure9.HarmonicDistortionvsFrequency Figure10.HarmonicDistortionvsLoadResistance 10k 3 R = 10kW L 0 ÖV/Hz),ÖA/)Hz 1k Voltage Noise Current Noise n (dB) -3 GRVF === + 001W.1V ge Noise (nent Noise (f100 malized Gai --69 COL= 0pF PP RRLL==110k0WW VoltaCurr 10 Nor RL=50W -12 1 -15 10 100 1k 10k 100k 1M 10M 100M 100k 1M 10M 100M 1G Frequency (Hz) Frequency (Hz) Figure11.InputVoltageandCurrentNoiseSpectralDensity Figure12.FrequencyResponseforVariousRLValues vsFrequency 12 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 www.ti.com SBOS233G–MARCH2002–REVISEDAPRIL2018 Typical Characteristics (continued) atT =25°C,V =5V,G=+1,R =0Ω,R =1kΩ,andconnectedtoV /2,(unlessotherwisenoted) A S F L S 9 160 G = +1 For 0.1dB 6 V = 0.1V 140 ROS= 0W PP CL= 100pF Flatness B) 3 120 d n ( 0 100 Gai W) d -3 ( 80 alize -6 CL= 47pF RS 60 m Nor -9 40 VIN OPA354 RS VO -12 CL= 5.6pF 20 CL 1kW -15 0 100k 1M 10M 100M 1G 1 10 100 1k Frequency (Hz) Capacitive Load (pF) Figure13.FrequencyResponseforVariousC Values Figure14.RecommendedR vsCapacitiveLoad L S 3 100 G = +1, C =5.6pF,R =0W L S 0 VO= 0.1VPP CMRR 80 Normalized Gain (dB) ---369 VIN OPA354 CLRCS=L 4=7p1F0,0RpFSV,=OR1S4=0W120W CMRR, PSRR (dB) 6400 PSPRSRR-R+ -12 CL 1kW 20 -15 0 100k 1M 10M 100M 1G 10k 100k 1M 10M 100M 1G Frequency (Hz) Frequency (Hz) Figure15.FrequencyResponsevsCapacitiveLoad Figure16.Common-ModeRejectionRatioandPower- SupplyRejectionRatiovsFrequency 180 0.8 160 0.7 s) 140 e Loop Phase (degreen-Loop Gain (dB) 112086400000 GPahianse G/dP(%/degrees) 0000....6543 dP en-Op 20 d 0.2 Op 0 -20 0.1 dG -40 0 10 100 1k 10k 100k 1M 10M 100M 1G 1 2 3 4 Frequency (Hz) Number of 150WLoads Figure17.Open-LoopGainandPhase Figure18.CompositeVideoDifferentialGainandPhase Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 SBOS233G–MARCH2002–REVISEDAPRIL2018 www.ti.com Typical Characteristics (continued) atT =25°C,V =5V,G=+1,R =0Ω,R =1kΩ,andconnectedtoV /2,(unlessotherwisenoted) A S F L S 10k 3 A) 1k Current (p100 oltage (V) 2 +125°C +25°C -55°C Bias put V ut Out 1 np 10 I 1 0 -55 -35 -15 5 25 45 65 85 105 125135 0 20 40 60 80 100 120 Temperature (°C) Output Current (mA) V =3V S Figure19.InputBiasCurrentvsTemperature Figure20.OutputVoltageSwingvsOutputCurrent 7 5 6 V = 5V 4 S mA) 5 V) ent ( 4 age ( 3 y Curr 3 VS= 2.5V ut Volt 2 +125°C +25°C -55°C ppl utp u 2 O S 1 1 0 0 -55 -35 -15 5 25 45 65 85 105 125135 0 25 50 75 100 125 150 175 200 Temperature (°C) Output Current (mA) V =5V S Figure21.SupplyCurrentvsTemperature Figure22.OutputVoltageSwingvsOutputCurrent 100 6 V = 5.5V S 5 We () 10 V)PP 4 MVaoxltiamguem w Oithuotpuutt mpedanc 1 Voltage ( 3 V = 2.7V InduScleedw DRiasttoer-tion Output I 0.1 OPA354 Output 2 S 1 Z O 0.01 0 100k 1M 10M 100M 1G 1 10 100 Frequency (Hz) Frequency (MHz) Figure23.Closed-LoopOutputImpedancevsFrequency Figure24.MaximumOutputVoltagevsFrequency 14 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 www.ti.com SBOS233G–MARCH2002–REVISEDAPRIL2018 Typical Characteristics (continued) atT =25°C,V =5V,G=+1,R =0Ω,R =1kΩ,andconnectedtoV /2,(unlessotherwisenoted) A S F L S 0.5 120 0.4 R = 1kW V = 2V L 0.3 O PP 110 B) Error (%) 00..210 p Gain (d100 put -0.1 Loo 90 ut n- O -0.2 pe O -0.3 80 -0.4 -0.5 70 0 10 20 30 40 50 60 70 80 90 100 -55 -35 -15 5 25 45 65 85 105 125135 Time (ns) Temperature (°C) Figure25.OutputSettlingTimeto0.1% Figure26.Open-LoopGainvsTemperature 100 90 B) d Common-Mode Rejection Ratio on R ( 80 Populati R, PSR 70 Power-Supply Rejection Ratio R M C 60 50 -8-7-6 -5 -4-3 -2 -1 0 1 2 3 4 5 6 7 8 -55 -35 -15 5 25 45 65 85 105 125135 Offset Voltage (mV) Temperature (°C) Figure27.OffsetVoltageProductionDistribution Figure28.Common-ModeRejectionRatioandPower- SupplyRejectionRatiovsTemperature 0 B) -20 d d ( erre -40 ef R OPA4354 ut- -60 p n k, I -80 OPA2354 al st s Cro -100 -120 100k 1M 10M 100M 1G Frequency (Hz) Figure29.Channel-to-ChannelCrosstalk Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 SBOS233G–MARCH2002–REVISEDAPRIL2018 www.ti.com 8 Detailed Description 8.1 Overview The OPAx354 is a CMOS, rail-to-rail I/O, high-speed, voltage-feedback operational amplifier designed for video, high-speed,andotherapplications.Itisavailableasasingle,dual,orquadopamp. The amplifier features a 100-MHz gain bandwidth, and 150-V/µs slew rate, but the amplifier is unity-gain stable andcanoperateasa1-V/Vvoltagefollower. 8.2 Functional Block Diagram V+ Reference Current V + V - IN IN VBIAS1 ClassAB Control V O Circuitry V BIAS2 V- (Ground) 16 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 www.ti.com SBOS233G–MARCH2002–REVISEDAPRIL2018 8.3 Feature Description 8.3.1 OperatingVoltage TheOPAx354isspecifiedoverapower-supplyrangeof2.7Vto5.5V(±1.35Vto ±2.75V).However,thesupply voltage may range from 2.5 V to 5.5 V (±1.25 V to ±2.75 V). Supply voltages higher than 7.5 V (absolute maximum)canpermanentlydamagetheamplifier. Parameters that vary over supply voltage or temperature are shown in the Typical Characteristics section of this datasheet. 8.3.2 Rail-to-RailInput The specified input common-mode voltage range of the OPAx354 extends 100 mV beyond the supply rails. This extended range is achieved with a complementary input stage: an N-channel input differential pair in parallel with a P-channel differential pair, as shown in the Functional Block Diagram. The N-channel pair is active for input voltagesclosetothepositiverail,typically(V+) − 1.2Vto100mVabovethepositivesupply,whiletheP-channel pair is on for inputs from 100 mV below the negative supply to approximately (V+) − 1.2 V. There is a small transition region, typically (V+) − 1.5 V to (V+) − 0.9 V, in which both pairs are on. This 600-mV transition region vary ±500 mV with process variation. Therefore, the transition region (both input stages on) range from (V+) − 2 Vto(V+)− 1.5Vonthelowend,upto(V+) −0.9Vto(V+) −0.4Vonthehighend. A double-folded cascode adds the signal from the two input pairs and presents a differential signal to the class ABoutputstage. 8.3.3 Rail-to-RailOutput AclassABoutputstagewithcommon-sourcetransistorsachievesrail-to-railoutput.Forhigh-impedanceloads(> 200Ω),theoutputvoltageswingistypically100mVfromthesupplyrails.With10-Ωloads,ausefuloutputswing isachievedwhilemaintaininghighopen-loopgain.Seethetypicalcharacteristiccurves, OutputVoltageSwingvs OutputCurrent(Figure20andFigure22). 8.3.4 OutputDrive The OPAx354 output stage supplies a continuous output current of ±100 mA and yet provide approximately 2.7 V of output swing on a 5-V supply, as shown in Figure 30. For maximum reliability, TI does not recommend running a continuous DC current in excess of ±100 mA. See the typical characteristic curves, Output Voltage Swing vs Output Current (Figure 20 and Figure 22). For supplying continuous output currents greater than ±100 mA,theOPAx354maybeoperatedinparallel,asshowninFigure31. R 1 N(cid:159)2 + V 1 C (cid:16) 5 V 1 50 pF 1 µF R 1 10 N(cid:159)(cid:3) V+ OPA354 R V(cid:16) 3 R +VIN 10 N(cid:159)(cid:3) SHU NT R 1 (cid:159) (cid:16) 4 1 V In = 100 mA 1 N(cid:159)(cid:3) Out, as shown Laser Diode Figure30. LaserDiodeDriver Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 SBOS233G–MARCH2002–REVISEDAPRIL2018 www.ti.com Feature Description (continued) The OPAx354 provides peak currents up to 200 mA, which corresponds to the typical short-circuit current. Therefore, an on-chip thermal shutdown circuit is provided to protect the OPAx354 from dangerously high junction temperatures. At 160°C, the protection circuit shuts down the amplifier. Normal operation resumes when thejunctiontemperaturecoolstobelow140°C. R 2 10 N(cid:159)(cid:3) C 1 200 pF 5 V 1 µF R 1 100 N(cid:159) R 5 1 (cid:159)(cid:3) OPA2354 R 3 100 N(cid:159) + (cid:16) 2o uVt, Ians = s 2h0o0w nmA 1R (cid:159)6 RSHUNT 1 (cid:159) OPA2354 R 4 10 N(cid:159) Laser Diode Figure31. ParallelOperation 8.3.5 Video The OPAx354 output stage is capable of driving standard back-terminated 75-Ω video cables, as shown in Figure 32. By back-terminating a transmission line, the output stage does not exhibit a capacitive load to the driver. A properly back-terminated 75-Ω cable does not appear as capacitance; the cable presents a 150-Ω resistiveloadtotheOPAx354output. 5 V Video In 75 (cid:159)(cid:3)(cid:3) Video 75 (cid:159) OPA354 Output 2.5 V 604 (cid:159) 604 (cid:159) 2.5 V Figure32. Single-SupplyVideoLineDriver The OPAx354 is used as an amplifier for RGB graphic signals, which feature a voltage of zero at the video black level,byoffsettingandAC-couplingthesignal.SeeFigure33. 18 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 www.ti.com SBOS233G–MARCH2002–REVISEDAPRIL2018 Feature Description (continued) 604 (cid:159)(cid:3) 3 V + 1 µF 10 nF V+ 604 (cid:159)(cid:3) 75 (cid:159)(cid:3) (1) R 1/2 Red Red 1 OPA2354 75 (cid:159)(cid:3) R 2 V+ (1) R Green 1 75 (cid:159)(cid:3) 1/2 Green R2 604 (cid:159)(cid:3) OPA2354 75 (cid:159)(cid:3) 604 (cid:159)(cid:3) 604 (cid:159)(cid:3) 3 V + 1 µF 10 nF V+ 604 (cid:159)(cid:3) 75 (cid:159)(cid:3) Blue(1) R1 OPA354 Blue 75 (cid:159)(cid:3) R 2 (1) Sourcevideosignaloffset300mVabovegroundtoaccommodateopampswing−to−groundcapability. Figure33. RGBCableDriver Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 SBOS233G–MARCH2002–REVISEDAPRIL2018 www.ti.com Feature Description (continued) 8.3.6 DrivingAnalog-to-Digitalconverters The OPAx354 series op amps offer 60 ns of settling time to 0.01%, making the series a good choice for driving high- and medium-speed sampling A/D converters and reference circuits. The OPAx354 series provide an effective means of buffering the A/D converter input capacitance and resulting charge injection while providing signal gain. For applications requiringhighDCaccuracy,theOPA350seriesisrecommended. Figure 34 shows the OPAx354 driving an A/D converter. With the OPAx354 in an inverting configuration, a capacitoracrossthefeedbackresistorisusedtofilterhigh-frequencynoiseinthesignal. 5 V 330 pF 5 N(cid:159)(cid:3) 5 N(cid:159)(cid:3) V IN V+ V REF +In ADS7816, ADS7861, OPA354 or ADS7864 2.5 V (cid:16)In 12-Bit A/D Converter GND V = 0 V to (cid:16)5 V for 0-V to 5-V output. IN A/Dconverterinput=0VtoV REF Figure34. TheOPAx354inInvertingConfigurationDrivingtheADS7816 8.3.7 CapacitiveLoadandStability The OPAx354 series op amps drives a wide range of capacitive loads. However, all op amps may become unstable under certain conditions. Op amp configuration, gain, and load value are just a few of the factors to consider when determining stability. An op amp in unity-gain configuration is most susceptible to the effects of capacitive loading. The capacitive load reacts with the device output resistance, along with any additional load resistance, to create a pole in the small-signal response that degrades the phase margin. See the Frequency ResponseforVariousC typicalcharacteristiccurve(Figure13)fordetails. L The OPAx354 topology enhances its ability to drive capacitive loads. In unity gain, these op amps perform well with large capacitive loads. See the Recommended R vs Capacitive Load (Figure 14) and Frequency Response S vsCapacitiveLoad(Figure15)typicalcharacteristiccurvesfordetails. One method of improving capacitive load drive in the unity-gain configuration is to insert a 10-Ω to 20-Ω resistor in series with the output, as shown in Figure 35. This configuration significantly reduces ringing with large capacitive loads; see the Frequency Response vs Capacitive Load typical characteristic curve (Figure 15). However, if there is a resistive load in parallel with the capacitive load, R creates a voltage divider. This voltage S divisionintroducesaDCerrorattheoutputandslightlyreducesoutputswing.Thiserrormaybeinsignificant.For instance,withR =10kΩandR =20 Ω,thereisanerrorofapproximately0.2%attheoutput. L S V+ R S OPA354 V OUT V IN R C L L Figure35. SeriesResistorinUnity-GainConfigurationImprovesCapacitiveLoadDrive 20 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 www.ti.com SBOS233G–MARCH2002–REVISEDAPRIL2018 Feature Description (continued) 8.3.8 WidebandTransimpedanceAmplifier Wide bandwidth, low input bias current, low input voltage, and current noise make the OPAx354 a preferred wideband photodiode transimpedance amplifier for low-voltage single-supply applications. Low-voltage noise is important because photodiode capacitance causes the effective noise gain of the circuit to increase at high frequency. The key elements to a transimpedance design (as shown in Figure 36) are the expected diode capacitance [including the parasitic input common-mode and differential-mode input capacitance (2 + 2) pF for the OPAx354], the desired transimpedance gain (R ), and the gain-bandwidth product (GBW) for the OPAx354 (100 MHz, F typical). With these three variables set, the feedback capacitor value (C ) may be set to control the frequency F response. C F < 1 pF (prevents gain peaking) R F 10 0(cid:159)(cid:3) +V O C OPA354 V D OUT Figure36. TransimpedanceAmplifier To achieve a maximally flat, second-order, Butterworth frequency response, the feedback pole must be set as showninEquation1: 1 GBP = 2pR C 4pR C F F F D (1) Typicalsurface-mountresistorshaveaparasiticcapacitanceofapproximately0.2pFthatmustbedeductedfrom thecalculatedfeedbackcapacitancevalue.BandwidthiscalculatedbyEquation2: GBP f = Hz -3dB 2pR C F D (2) For even higher transimpedance bandwidth, the high-speed CMOS OPA355 (200-MHz GBW) or the OPA655 (400-MHzGBW)maybeused. 8.4 Device Functional Modes TheOPAx354familyofdevicesispoweredonwhenthesupplyisconnected.Thedevicescanoperateassingle- supply operational amplifiers or dual-supply amplifiers depending on the application. The devices are used with asymmetrical supplies as long as the differential voltage (V– to V+) is at least 1.8 V and no greater than 5.5 V (example:V– setto –3.5VandV+setto1.5V). Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 SBOS233G–MARCH2002–REVISEDAPRIL2018 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 9.1 Application Information The OPAx354 family of devices is a CMOS, rail-to-rail I/O, high-speed, voltage-feedback operational amplifier designed for video, high-speed, and other applications. The OPAx354 family of devices is available as a single, dual, or quad op amp. The amplifier features a 100-MHz gain bandwidth, and 150-V/µs slew rate, but it is unity- gainstableandoperatesasa1-V/Vvoltagefollower. 9.2 Typical Application Wide gain bandwidth, low input bias current, low input voltage, and current noise make the OPAx354 family of devices an ideal wideband photodiode transimpedance amplifier. Low-voltage noise is important because photodiode capacitance causes the effective noise gain of the circuit to increase at high frequency. The key elements to a transimpedance design, as shown in Figure 37, are the expected diode capacitance, (which include the parasitic input common-mode and differential-mode input capacitance) the desired transimpedance gain,andthegain-bandwidth(GBW)fortheOPAx354familyofdevices(20MHz).Withthesethreevariablesset, the feedback capacitor value is set to control the frequency response. Feedback capacitance includes the stray capacitance,whichis0.2pFforatypicalsurface-mountresistor. Figure37. Dual-SupplyTransimpedanceAmplifier 9.2.1 DesignRequirements Forthisdesignexample,usetheparameterslistedinTable1astheinputparameters. Table1.DesignParameters PARAMETER EXAMPLEVALUE Supplyvoltage,V 2.5V (V+) Supplyvoltage,V –2.5V (V-) 22 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 www.ti.com SBOS233G–MARCH2002–REVISEDAPRIL2018 C isoptionaltopreventgainpeaking.C includesthestraycapacitanceofR . (F) (F) (F) 9.2.2 DetailedDesignProcedure To achieve a maximally-flat, second-order Butterworth frequency response, set the feedback pole using Equation3. (3) CalculatethebandwidthusingEquation4. (4) 9.2.2.1 OptimizingtheTransimpedanceCircuit Toachievethebestperformance,componentsmustbeselectedaccordingtothefollowingguidelines: 1.Forlowestnoise,selectR tocreatethetotalrequiredgain.UsingalowervalueforR andaddinggainafter (F) (F) the transimpedance amplifier generally produces poorer noise performance. The noise produced by R (F) increases with the square-root of R , whereas the signal increases linearly. Therefore, signal-to-noise ratio (F) improveswhenalltherequiredgainisplacedinthetransimpedancestage. 2. Minimize photodiode capacitance and stray capacitance at the summing junction (inverting input). This capacitancecausesthevoltagenoiseoftheopamptoamplify(increasingamplificationathighfrequency).Using a low-noise voltage source to reverse-bias a photodiode reduce the capacitance. Smaller photodiodes have lowercapacitance.Useopticstoconcentratelightonasmallphotodiode. 3. Noise increases with increased bandwidth. Limit the circuit bandwidth to only the required bandwidth. Use a capacitoracrosstheR tolimitbandwidth,evenifacapacitornotrequiredforstability. (F) 4. Circuit board leakage degrades the performance of an otherwise well-designed amplifier. Clean the circuit board carefully. A circuit board guard trace that encircles the summing junction and is driven at the same voltage helpscontrolleakage. 9.2.3 ApplicationCurve Figure38. ACTransferFunction Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 SBOS233G–MARCH2002–REVISEDAPRIL2018 www.ti.com 10 Power Supply Recommendations The OPAx354 family of devices is specified for operation from 2.5 V to 5.5 V (±1.25 to ±2.75 V); many specifications apply from –40°C to +125°C. Parameters that exhibit significant variance with regard to operating voltageortemperatureareshownTypicalCharacteristics. Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout Guidelinessection.. 11 Layout 11.1 Layout Guidelines Good high-frequency printed-circuit board (PCB) layout techniques must be employed for the OPAx354. Generous use of ground planes, short and direct signal traces, and a suitable bypass capacitor located at the V+ pin ensure clean, stable operation. Large areas of copper provides a means of dissipating heat that is generated innormaloperation. TIdoesnotrecommendusingsocketswithanyhigh-speedamplifier. A 10-nF ceramic bypass capacitor is the minimum recommended value; adding a 1-µF or larger tantalum capacitor in parallel is beneficial when driving a low-resistance load. Providing adequate bypass capacitance is essentialtoachievinglowharmonicandintermodulationdistortion. 11.2 Layout Example Figure39. OperationalAmplifierBoardLayoutforNoninvertingConfiguration 11.3 Power Dissipation Power dissipation depends on power-supply voltage, signal and load conditions. With DC signals, power dissipation is equal to the product of output current times the voltage across the conducting output transistor, V − V . Power dissipation is minimized by using the lowest possible power-supply voltage necessary to assure S O therequiredoutputvoltageswing. For resistive loads, the maximum power dissipation occurs at a DC output voltage of one-half the power-supply voltage. Dissipation with AC signals is lower. AB-039 Power Amplifier Stress and Power Handling Limitations explains how to calculate or measure power dissipation with unusual signals and loads See www.ti.com for more details. 24 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 www.ti.com SBOS233G–MARCH2002–REVISEDAPRIL2018 Power Dissipation (continued) Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate heat sink. For reliable operation, junction temperature must be limited to 150°C (maximum.) To estimate the margin of safety in a complete design, increase the ambient temperature until the thermal protection is triggered at 160°C. The thermal protection must trigger more than 35°C above the maximum expected ambient condition oftheapplication. 11.4 PowerPAD Thermally-Enhanced Package In addition to the regular 5-pin SOT-23 and 9-pin VSSOP packages, the single and dual versions of the OPAx354 also come in an 8-pin SOIC PowerPAD package. The 98-pin SO with PowerPAD is a standard size 8- pin SOIC package where the exposed leadframe on the bottom of the package is soldered directly to the PCB to create a low thermal resistance. This direct attachment enhances the OPAx354 power dissipation capability significantly, and eliminates the use of bulky heat sinks and slugs that are traditionally used in thermal packages. ThispackageiseasilymountedusingstandardPCBassemblytechniques. NOTE Because the 8-pin HSOP PowerPAD is pin-compatible with standard 8-pin SOIC packages, the OPA354 and OPA2354 can directly replace operational amplifiers in existing sockets. Soldering the PowerPAD to the PCB is always required, even with applications that have low power dissipation. This configuration provides the necessary thermalandmechanicalconnectionbetweentheleadframediepadandthePCB. The PowerPAD package is designed so that the leadframe die pad (or thermal pad) is exposed on the bottom of the device, as shown in Figure 40. This exposed die provides an extremely low thermal resistance (R ) path θJC between the die and the exterior of the package. The thermal pad on the bottom of the device can then be soldered directly to the PCB, using the PCB as a heat sink. In addition, plated-through holes (vias) provide a low thermalresistanceheatflowpathtothebacksideofthePCB. Leadframe (CopperAlloy) IC (Silicon) DieAttach (Epoxy) Leadframe Die Pad Mold Compound (Plastic) Exposed at Base of the Package (CopperAlloy) Figure40. SectionViewofaPowerPADPackage 11.5 PowerPAD Assembly Process The PowerPAD must be connected to the most negative supply voltage for the device, which is ground in single- supplyapplicationsandV−insplit-supplyapplications. Prepare the PCB with a top-side etch pattern, as shown in Figure 41. The exact land design may vary based on thespecificassemblyprocessrequirements.Theremustbeetchfortheleadsandetchforthethermalland. Place the recommended number of plated-through holes (or thermal vias) in the area of the thermal pad. These holes must be 13 mils (.013 in) in diameter. The holes are small so that solder wicking through the holes is not a problem during reflow. TI recommends a minimum of five holes for the 8-pin HSOP PowerPAD package, as showninFigure41. Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 SBOS233G–MARCH2002–REVISEDAPRIL2018 www.ti.com PowerPAD Assembly Process (continued) Thermal Land (Copper) OPTIONAL: Minimum Size Additional 4 vias outside 4.8mm x 3.8mm of thermal pad area but (189 mils x 150 mils) under the package. REQUIRED: Thermal pad area 2.286mm x 2.286mm (90 mils x 90 mils) with 5 vias (via diameter = 13 mils) Figure41. 8-PinPowerPADPCBEtchandViaPattern TI recommends, but does not require, placing a small number of additional holes under the package and outside the thermal pad area. These holes provide additional heat paths between the copper thermal land and the ground plane. The holes may be larger because the holes are not in the area to be soldered, so wicking is not a problem.ThistechniqueisshowninFigure41. Connect all holes, including those within the thermal pad area and outside the pad area, to the internal ground planeorotherinternalcopperplaneforsingle-supplyapplications,andtoV−forsplit-supplyapplications. When laying out these holes, do not use the typical web or spoke via connection methodology, as shown in Figure42.Webconnectionshaveahighthermalresistanceconnectionthatisusefulforslowingtheheattransfer during soldering operations. This feature makes soldering the vias that have ground plane connections easier. However, in this application, low thermal resistance is desired for the most efficient heat transfer. Therefore, the holes under the PowerPAD package must make connection to the internal ground plane with a complete connectionaroundtheentirecircumferenceoftheplated-throughhole. Solid Via Web or Spoke Via RECOMMENDED NOTRECOMMENDED (due to poor heat conduction) Figure42. ViaConnection The top-side solder mask must leave the pad connections and the thermal pad area exposed. The thermal pad area must leave the 13-mil holes exposed. The larger holes outside the thermal pad area may be covered with a soldermask. Applysolderpastetotheexposedthermalpadareaandallofthepackagepins. With these preparatory steps in place, the PowerPAD device is placed in position and run through the solder reflow operation as any standard surface-mount component. This preparation and processing results in a part thatisproperlyinstalled. For detailed information on the PowerPAD package, including thermal modeling considerations and repair procedures,seePowerPADThermallyEnhancedPackage onwww.ti.com. 26 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 www.ti.com SBOS233G–MARCH2002–REVISEDAPRIL2018 12 Device and Documentation Support 12.1 Documentation Support Forrelateddocumentationseethefollowing: • Texas Instruments, ADS8326 16-Bit, High-Speed, 2.7V to 5.5V microPower Sampling ANALOG-TO-DIGITAL CONVERTER • TexasInstruments,CircuitBoardLayoutTechniques • TexasInstruments,CompensateTransimpedanceAmplifiersIntuitively • TexasInstruments,FilterPro™User'sGuide • TexasInstruments,NoiseAnalysisforHigh-SpeedOpAmps • TexasInstruments,OPA380andOPA2380Precision,High-SpeedTransimpedanceAmplifier • Texas Instruments, OPA355, OPA2355, and OPA3355 200MHz, CMOS OPERATIONAL AMPLIFIER WITH SHUTDOWN • TexasInstruments,OPA656Wideband,Unity-GainStable,FET-InputOPERATIONALAMPLIFIER • TexasInstruments,POWERAMPLIFIERSTRESSANDPOWERHANDLINGLIMITATIONS • TexasInstruments,PowerPADThermallyEnhancedPackage 12.2 Related Links Table 2 lists quick access links. Categories include technical documents, support and community resources, toolsandsoftware,andquickaccesstosampleorbuy. Table2.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER ORDERNOW DOCUMENTS SOFTWARE COMMUNITY OPA354 Clickhere Clickhere Clickhere Clickhere Clickhere OPA2354 Clickhere Clickhere Clickhere Clickhere Clickhere OPA4354 Clickhere Clickhere Clickhere Clickhere Clickhere 12.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed.Forchangedetails,reviewtherevisionhistoryincludedinanyreviseddocument. 12.4 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 12.5 Trademarks PowerPAD,E2EaretrademarksofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 12.6 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. Copyright©2002–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 27 ProductFolderLinks:OPA354 OPA2354 OPA4354

OPA354,OPA2354,OPA4354 SBOS233G–MARCH2002–REVISEDAPRIL2018 www.ti.com 12.7 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 28 SubmitDocumentationFeedback Copyright©2002–2018,TexasInstrumentsIncorporated ProductFolderLinks:OPA354 OPA2354 OPA4354

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) OPA2354AIDDA ACTIVE SO PowerPAD DDA 8 75 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 OPA & no Sb/Br) 2354A OPA2354AIDDAG3 ACTIVE SO PowerPAD DDA 8 75 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 OPA & no Sb/Br) 2354A OPA2354AIDDAR ACTIVE SO PowerPAD DDA 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 OPA & no Sb/Br) 2354A OPA2354AIDDARG3 ACTIVE SO PowerPAD DDA 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 OPA & no Sb/Br) 2354A OPA2354AIDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS NIPDAUAG Level-2-260C-1 YEAR -40 to 125 OACI & no Sb/Br) OPA2354AIDGKT ACTIVE VSSOP DGK 8 250 Green (RoHS NIPDAUAG Level-2-260C-1 YEAR -40 to 125 OACI & no Sb/Br) OPA2354AIDGKTG4 ACTIVE VSSOP DGK 8 250 Green (RoHS NIPDAUAG Level-2-260C-1 YEAR -40 to 125 OACI & no Sb/Br) OPA354AIDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OABI & no Sb/Br) OPA354AIDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OABI & no Sb/Br) OPA354AIDBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OABI & no Sb/Br) OPA354AIDDA ACTIVE SO PowerPAD DDA 8 75 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 OPA & no Sb/Br) 354A OPA354AIDDAG3 ACTIVE SO PowerPAD DDA 8 75 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 OPA & no Sb/Br) 354A OPA354AIDDAR ACTIVE SO PowerPAD DDA 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 OPA & no Sb/Br) 354A OPA4354AID ACTIVE SOIC D 14 50 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA4354A & no Sb/Br) OPA4354AIDR ACTIVE SOIC D 14 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA4354A & no Sb/Br) OPA4354AIPWR ACTIVE TSSOP PW 14 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA & no Sb/Br) 4354A OPA4354AIPWRG4 ACTIVE TSSOP PW 14 2500 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA & no Sb/Br) 4354A Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) OPA4354AIPWT ACTIVE TSSOP PW 14 250 Green (RoHS NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA & no Sb/Br) 4354A (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF OPA4354 : •Automotive: OPA4354-Q1 Addendum-Page 2

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 NOTE: Qualified Version Definitions: •Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 3

PACKAGE MATERIALS INFORMATION www.ti.com 24-Apr-2020 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) OPA2354AIDDAR SO DDA 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 Power PAD OPA2354AIDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 OPA2354AIDGKT VSSOP DGK 8 250 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 OPA354AIDBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 OPA354AIDBVT SOT-23 DBV 5 250 178.0 9.0 3.3 3.2 1.4 4.0 8.0 Q3 OPA354AIDDAR SO DDA 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 Power PAD OPA4354AIDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 OPA4354AIPWR TSSOP PW 14 2500 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 OPA4354AIPWT TSSOP PW 14 250 180.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 24-Apr-2020 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) OPA2354AIDDAR SOPowerPAD DDA 8 2500 367.0 367.0 35.0 OPA2354AIDGKR VSSOP DGK 8 2500 366.0 364.0 50.0 OPA2354AIDGKT VSSOP DGK 8 250 366.0 364.0 50.0 OPA354AIDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 OPA354AIDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 OPA354AIDDAR SOPowerPAD DDA 8 2500 367.0 367.0 35.0 OPA4354AIDR SOIC D 14 2500 367.0 367.0 38.0 OPA4354AIPWR TSSOP PW 14 2500 367.0 367.0 35.0 OPA4354AIPWT TSSOP PW 14 250 210.0 185.0 35.0 PackMaterials-Page2

PACKAGE OUTLINE DBV0005A SOT-23 - 1.45 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 3.0 2.6 0.1 C 1.75 1.45 1.45 B A 0.90 PIN 1 INDEX AREA 1 5 2X 0.95 3.05 2.75 1.9 1.9 2 4 3 0.5 5X 0.3 0.15 0.2 C A B (1.1) TYP 0.00 0.25 GAGE PLANE 0.22 TYP 0.08 8 TYP 0.6 0 0.3 TYP SEATING PLANE 4214839/E 09/2019 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Refernce JEDEC MO-178. 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. www.ti.com

EXAMPLE BOARD LAYOUT DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM (1.9) 2 2X (0.95) 3 4 (R0.05) TYP (2.6) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214839/E 09/2019 NOTES: (continued) 5. Publication IPC-7351 may have alternate designs. 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM 2 (1.9) 2X(0.95) 3 4 (R0.05) TYP (2.6) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X 4214839/E 09/2019 NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design. www.ti.com

GENERIC PACKAGE VIEW DDA 8 PowerPAD TM SOIC - 1.7 mm max height PLASTIC SMALL OUTLINE Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4202561/G

None

None

None

None

None

None

None

None

None

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated