图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: OPA227P
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

OPA227P产品简介:

ICGOO电子元器件商城为您提供OPA227P由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 OPA227P价格参考。Texas InstrumentsOPA227P封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 1 电路 8-PDIP。您可以下载OPA227P参考资料、Datasheet数据手册功能说明书,资料中有OPA227P 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP GP 8MHZ 8DIP运算放大器 - 运放 High Prec Low Noise Oper Amplifier

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,运算放大器 - 运放,Texas Instruments OPA227P-

数据手册

点击此处下载产品Datasheet

产品型号

OPA227P

产品目录页面

点击此处下载产品Datasheet

产品种类

运算放大器 - 运放

供应商器件封装

8-PDIP

共模抑制比—最小值

120 dB

关闭

No Shutdown

包装

管件

单位重量

528.600 mg

压摆率

2.3 V/µs

双重电源电压

+/- 3 V, +/- 5 V, +/- 9 V

商标

Texas Instruments

增益带宽生成

8 MHz

增益带宽积

8MHz

安装类型

通孔

安装风格

Through Hole

封装

Tube

封装/外壳

8-DIP(0.300",7.62mm)

封装/箱体

PDIP-8

工作温度

-40°C ~ 85°C

工作电源电压

5 V to 36 V, +/- 2.5 V to +/- 18 V

工厂包装数量

50

技术

Bipolar

放大器类型

Low Noise Amplifier

最大双重电源电压

+/- 18 V

最大工作温度

+ 85 C

最小双重电源电压

+/- 2.5 V

最小工作温度

- 40 C

标准包装

50

电压-电源,单/双 (±)

5 V ~ 36 V, ±2.5 V ~ 18 V

电压-输入失调

5µV

电流-电源

3.7mA

电流-输入偏置

2.5nA

电流-输出/通道

45mA

电源电流

3.8 mA

电路数

1

系列

OPA227

设计资源

http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176

转换速度

2.3 V/us

输入偏压电流—最大

10 nA

输入参考电压噪声

3.5 nV

输入补偿电压

75 uV

输出电流

45 mA

输出类型

-

通道数量

1 Channel

推荐商品

型号:MAX4250EUK-T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:MAX4378HASD+

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:AD8510ARMZ-REEL

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:LM7372IMA/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TLC274ID

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:OPA379AIDCKRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LMH6645MFX

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LTC6103HMS8#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
OPA227P 相关产品

ADA4841-1YRZ-R7

品牌:Analog Devices Inc.

价格:

TLC084CD

品牌:Texas Instruments

价格:¥11.47-¥23.84

MC33074DTBR2G

品牌:ON Semiconductor

价格:

TLC27L2IDG4

品牌:Texas Instruments

价格:

LT1010CT#06PBF

品牌:Linear Technology/Analog Devices

价格:

NE5534D

品牌:ON Semiconductor

价格:

HCPL-7851#300

品牌:Broadcom Limited

价格:

OPA337NA/250G4

品牌:Texas Instruments

价格:

PDF Datasheet 数据手册内容提取

Product Sample & Technical Tools & Support & Folder Buy Documents Software Community OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 OPAx22x High Precision, Low Noise Operational Amplifiers 1 Features 3 Description • LowNoise:3nV/√Hz The OPAx22x series operational amplifiers combine 1 low noise and wide bandwidth with high precision to • WideBandwidth: make them the ideal choice for applications requiring – OPA227:8MHz,2.3V/μs bothACandprecisionDCperformance. – OPA228:33MHz,10V/μs The OPAx227 is unity-gain stable and features high • SettlingTime:5 μs slew rate (2.3V/µs) and wide bandwidth (8MHz). The (SignificantImprovementOverOP-27) OPAx228 is optimized for closed-loop gains of 5 or greater, and offers higher speed with a slew rate of • HighCMRR:138dB 10V/µsandabandwidthof33MHz. • HighOpen-loopGain:160dB The OPAx227 and OPAx228 series operational • LowInputBiasCurrent:10nAMaximum amplifiers are ideal for professional audio equipment. • LowOffsetVoltage:75 µVMaximum In addition, low quiescent current and low cost make • WideSupplyRange:±2.5Vto ±18V them ideal for portable applications requiring high precision. • OPA227ReplacesOP-27,LT1007,MAX427 • OPA228ReplacesOP-37,LT1037,MAX437 The OPAx227 and OPAx228 series operational amplifiers are pin-for-pin replacements for the • Single,Dual,andQuadVersions industry standard OP-27 and OP-37 with substantial improvements across the board. The dual and quad 2 Applications versions are available for space savings and per • DataAcquisition channelcostreduction. • TelecomEquipment The OPAx227, OPAx228, are available in DIP-8 and • GeophysicalAnalysis SO-8 packages. The OPA4227 and OPA4228 are available in DIP-14 and SO-14 packages with • VibrationAnalysis standard pin configurations. Operation is specified • SpectralAnalysis from –40°Cto85°C. • ProfessionalAudioEquipment • ActiveFilters DeviceInformation(1) • PowerSupplyControls PARTNUMBER PACKAGE BODYSIZE(NOM) OPA227 PDIP(8) 9.81mm×6.35mm InputReferredNoise OPA228 SOIC(8) 4.90mm×3.91mm INPUTVOLTAGEANDCURRENTNOISE OPA2227 PDIP(8) 9.81mm×6.35mm SPECTRALDENSITYvsFREQUENCY OPA2228 SOIC(8) 4.90mm×3.91mm 100k OPA4227 PDIP(14) 19.30mm×6.35mm OPA4228 SOIC(14) 8.65mm×3.91mm 10k z)z) HH (1) For all available packages, see the orderable addendum at Noise (nV/√Noise (fA/√ 1k Current Noise theendofthedatasheet. e nt 100 ge VoltaCurr 10 Voltage Noise 1 0.1 1 10 100 1k 10k Frequency (Hz) 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 www.ti.com Table of Contents 1 Features.................................................................. 1 7.2 FunctionalBlockDiagram.......................................16 2 Applications........................................................... 1 7.3 FeatureDescription.................................................16 3 Description............................................................. 1 7.4 DeviceFunctionalModes........................................23 4 RevisionHistory..................................................... 2 8 ApplicationandImplementation........................ 24 8.1 ApplicationInformation............................................24 5 PinConfigurationandFunctions......................... 3 8.2 TypicalApplication..................................................26 6 Specifications......................................................... 5 9 PowerSupplyRecommendations...................... 29 6.1 AbsoluteMaximumRatings......................................5 10 Layout................................................................... 29 6.2 ESDRatings..............................................................5 6.3 RecommendedOperatingConditions.......................5 10.1 LayoutGuidelines.................................................29 6.4 ThermalInformation:OPA227U/UAand 10.2 LayoutExample....................................................30 OPA228U/UA ............................................................5 11 DeviceandDocumentationSupport................. 31 6.5 ThermalInformation:OPA227P/PAand 11.1 DeviceSupport ....................................................31 OPA228P/PA.............................................................6 11.2 DocumentationSupport........................................31 6.6 ElectricalCharacteristics:OPAx227Series(VS=±5 11.3 RelatedLinks........................................................31 Vto±15V).................................................................7 11.4 Trademarks...........................................................31 6.7 ElectricalCharacteristics:OPAx228Series(V =±5 S 11.5 ElectrostaticDischargeCaution............................32 Vto±15V).................................................................8 11.6 Glossary................................................................32 6.8 TypicalCharacteristics............................................10 12 Mechanical,Packaging,andOrderable 7 DetailedDescription............................................ 16 Information........................................................... 32 7.1 Overview.................................................................16 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionA(January2005)toRevisionB Page • AddedESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,ApplicationandImplementation section,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentationSupportsection,and Mechanical,Packaging,andOrderableInformationsection.................................................................................................. 1 2 SubmitDocumentationFeedback Copyright©1998–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 www.ti.com SBOS110B–MAY1998–REVISEDJUNE2015 5 Pin Configuration and Functions OPA227,OPA228:PorDPackage 8-PinPDIPor8-PinSOIC OPA2227,OPA2228:PorDPackage TopView 8-PinPDIPor8-PinSOIC TopView Trim 1 8 Trim OutA 1 8 V+ –In 2 7 V+ A –InA 2 7 Out B +In 3 6 Output +InA 3 B 6 –In B V– 4 5 NC V– 4 5 +In B DIP-8,SO-8 DIP-8, SO-8 NC=NotConnected OPA4227,OPA4228:NorDPackage 14-PinPDIPor14-Pin-SOIC TopView OutA 1 14 Out D –InA 2 13 –In D A D +InA 3 12 +In D V+ 4 11 V– +In B 5 10 +In C B C –In B 6 9 –In C Out B 7 8 Out C DIP-14, SO-14 PinFunctions:OPA227andOPA228 PIN I/O DESCRIPTION NAME PDIP,SOIC OffsetTrim 1 I Inputoffsetvoltagetrim(leavefloatingifnotused) -In 2 I Invertinginput +In 3 I Noninvertinginput V- 4 — Negative(lowest)powersupply NC 5 — Nointernalconnection(canbeleftfloating) Output 6 O Output V+ 7 — Positive(highest)powersupply OffsetTrim 8 — Inputoffsetvoltagetrim(leavefloatingifnotused) PinFunctions:OPA2227andOPA2228 PIN I/O DESCRIPTION NAME PDIP,SOIC OutA 1 O OutputchannelA –InA 2 I InvertinginputchannelA +InA 3 I NoninvertinginputchannelA V- 4 — Negative(lowest)powersupply +InB 5 I NoninvertinginputchannelB –InB 6 I InvertinginputchannelB OutB 7 O OutputchannelB V+ 8 — Positive(highest)powersupply Copyright©1998–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 www.ti.com PinFunctions:OPA4227andOPA4228 PIN I/O DESCRIPTION NAME PDIP,SOIC OutA 1 O OutputchannelA -InA 2 I InvertinginputchannelA +InA 3 I NoninvertinginputchannelA V+ 4 — Positive(highest)powersupply +InB 5 I NoninvertinginputchannelB -InB 6 I InvertinginputchannelB OutB 7 O OutputchannelB OutC 8 O OutputchannelC -InC 9 I InvertinginputchannelC +InC 10 I NoninvertinginputchannelC V- 11 — Negative(lowest)powersupply +InD 12 I NoninvertinginputchannelD -InD 13 I InvertinginputchannelD OutD 14 O OutputchannelD 4 SubmitDocumentationFeedback Copyright©1998–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 www.ti.com SBOS110B–MAY1998–REVISEDJUNE2015 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted) (1) MIN MAX UNIT Supplyvoltage,Vs=(V+)-(V-) 36 V Voltage (V–)–0.7 (V+)+0.7 V Signalinputterminals Current 20 mA Outputshort-circuit(2) Continuous Operatingtemperature –55 125 °C Junctiontemperature 150 °C T Storagetemperature –65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) Short-circuittoground,oneamplifierperpackage 6.2 ESD Ratings VALUE UNIT V Electrostaticdischarge Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±2000 V (ESD) (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. 6.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT Supplyvoltage,Vs=(V+)-(V-) ±2.5 ±15 ±18 V Specifiedtemperature –40 85 °C 6.4 Thermal Information: OPA227U/UA and OPA228U/UA OPA227U/UA OPA2227U/UA OPA4227UA OPA228U/UA OPA2228U/UA OPA4228UA THERMALMETRIC(1) UNIT D(SOIC) D(SOIC) D(SOIC) 8PINS 8PINS 14PINS R Junction-to-ambientthermalresistance 110.1 101.9 65 °C/W θJA R Junction-to-case(top)thermalresistance 52.2 46.3 23.1 °C/W θJC(top) R Junction-to-boardthermalresistance 52.3 45.5 20.3 °C/W θJB ψ Junction-to-topcharacterizationparameter 10.4 6.6 1.8 °C/W JT ψ Junction-to-boardcharacterizationparameter 51.5 42.8 19.9 °C/W JB R Junction-to-case(bottom)thermalresistance N/A N/A N/A °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report,SPRA953. Copyright©1998–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 www.ti.com 6.5 Thermal Information: OPA227P/PA and OPA228P/PA OPA227P/PA OPA228P/PA THERMALMETRIC(1) UNIT P(PDIP) D(SOIC) N(PDIP) 8PINS 8PINS 14PINS R Junction-to-ambientthermalresistance 48.9 110.1 65.5 °C/W θJA R Junction-to-case(top)thermalresistance 37.7 52.2 20 °C/W θJC(top) R Junction-to-boardthermalresistance 26.1 52.3 25.9 °C/W θJB ψ Junction-to-topcharacterizationparameter 15.1 10.4 1.9 °C/W JT ψ Junction-to-boardcharacterizationparameter 26 51.5 25.3 °C/W JB R Junction-to-case(bottom)thermalresistance N/A N/A N/A °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report,SPRA953. 6 SubmitDocumentationFeedback Copyright©1998–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 www.ti.com SBOS110B–MAY1998–REVISEDJUNE2015 6.6 Electrical Characteristics: OPAx227 Series (V = ±5 V to ±15 V) S AtT =25°C,andR =10kΩ,unlessotherwisenoted. A L OPA227PA,UA OPA227P,U OPA2227PA,UA PARAMETER TESTCONDITIONS OPA2227P,U OPA4227PA,UA UNIT MIN TYP MAX MIN TYP MAX OFFSETVOLTAGE VOS InputOffsetVoltage ±5 ±75 ±10 ±200 µV TA=–40°Cto85°C ±100 ±200 µV dVOS/dT vsTemperature TA=–40°Cto85°C ±0.1 ±0.6 ±0.3 ±2 µV/°C PSRR vsPowerSupply VS=±2.5Vto±18V ±0.5 ±2 ±0.5 ±2 µV/V TA=–40°Cto85°C ±2 ±2 µV/V vsTime 0.2 0.2 µV/mo ChannelSeparation(dual,quad) DC 0.2 0.2 µV/V f=1kHz,RL=5kΩ 110 110 dB INPUTBIASCURRENT IB InputBiasCurrent ±2.5 ±10 ±2.5 ±10 nA TA=–40°Cto85°C ±10 ±10 nA IOS InputOffsetCurrent ±2.5 ±10 ±2.5 ±10 nA TA=–40°Cto85°C ±10 ±10 nA NOISE InputVoltageNoise,f=0.1Hzto10Hz 90 90 nVp-p 15 15 nVrms en InputVoltageNoise f=10Hz 3.5 3.5 nV/√Hz Density f=100Hz 3 3 nV/√Hz f=1kHz 3 3 nV/√Hz in CurrentNoiseDensity f=1kHz 0.4 0.4 pA/√Hz INPUTVOLTAGERANGE VCM Common-ModeVoltageRange (V–)+2 (V+)–2 (V–)+2 (V+)–2 V CMRR Common-ModeRejection VCM=(V–)+2Vto(V+)–2V 120 138 120 138 dB TA=–40°Cto85°C 120 120 dB INPUTIMPEDANCE Differential 107||12 107||12 Ω||pF Common-Mode VCM=(V–)+2Vto(V+)–2V 109||3 109||3 Ω||pF OPEN-LOOPGAIN AOL Open-LoopVoltageGain VO=(V–)+2Vto(V+)–2V, 132 160 132 160 dB RL=10kΩ TA=–40°Cto85°C 132 132 dB VO=(V–)+3.5Vto(V+)–3.5V, 132 160 132 160 dB RL=600Ω TA=–40°Cto85°C 132 132 dB FREQUENCYRESPONSE GBW GainBandwidthProduct 8 8 MHz SR SlewRate 2.3 2.3 V/µs SettlingTime 0.1% G=1,10VStep,CL=100pF 5 5 µs 0.01% G=1,10VStep,CL=100pF 5.6 5.6 µs OverloadRecoveryTime VIN×G=VS 1.3 1.3 µs THD+N TotalHarmonicDistortion+Noise f=1kHz,G=1,VO=3.5Vrms 0.00005% 0.00005% OUTPUT VoltageOutput RL=10kΩ (V–)+2 (V+)–2 (V–)+2 (V+)–2 V RL=10kΩ (V–)+2 (V+)–2 (V–)+2 (V+)–2 V TA=–40°Cto85°C RL=600Ω (V–)+3.5 (V+)–3.5 (V–)+3.5 (V+)–3.5 V RL=600Ω (V–)+3.5 (V+)–3.5 (V–)+3.5 (V+)–3.5 V TA=–40°Cto85°C ISC Short-CircuitCurrent ±45 ±45 mA CLOAD CapacitiveLoadDrive SeeTypicalCharacteristics SeeTypicalCharacteristics ZO Open-loopoutputimpedance f=1MHz 27 27 Ω Copyright©1998–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 www.ti.com Electrical Characteristics: OPAx227 Series (V = ±5 V to ±15 V) (continued) S AtT =25°C,andR =10kΩ,unlessotherwisenoted. A L OPA227PA,UA OPA227P,U OPA2227PA,UA PARAMETER TESTCONDITIONS OPA2227P,U OPA4227PA,UA UNIT MIN TYP MAX MIN TYP MAX POWERSUPPLY VS SpecifiedVoltageRange ±5 ±15 ±5 ±15 V OperatingVoltageRange ±2.5 ±18 ±2.5 ±18 V IQ QuiescentCurrent(peramplifier) IO=0 ±3.7 ±3.8 ±3.7 ±3.8 mA IO=0 ±4.2 ±4.2 mA TA=–40°Cto85°C TEMPERATURERANGE SpecifiedRange –40 85 –40 85 °C OperatingRange –55 125 –55 125 °C StorageRange –65 150 –65 150 °C θJA ThermalResistance SO-8SurfaceMount 150 150 °C/W DIP-8 100 100 °C/W DIP-14 80 80 °C/W SO-14SurfaceMount 100 100 °C/W 6.7 Electrical Characteristics: OPAx228 Series (V = ±5 V to ±15 V) S AtT =25°C,andR =10kΩ,unlessotherwisenoted. A L OPA228PA,UA OPA228P,U OPA2228PA,UA PARAMETER TESTCONDITIONS OPA2228P,U OPA4228PA,UA UNIT MIN TYP MAX MIN TYP MAX OFFSETVOLTAGE VOS InputOffsetVoltage ±5 ±75 ±10 ±200 µV TA=–40°Cto85°C ±100 ±200 µV dVOS/dT vsTemperature TA=–40°Cto85°C ±0.1 ±0.6 ±0.3 ±2 µV/°C PSRR vsPowerSupply VS=±2.5Vto±18V ±0.5 ±2 ±0.5 ±2 µV/V TA=–40°Cto85°C ±2 ±2 µV/V vsTime 0.2 0.2 µV/mo ChannelSeparation(dual,quad) DC 0.2 0.2 µV/V f=1kHz,RL=5kΩ 110 110 dB INPUTBIASCURRENT IB InputBiasCurrent ±2.5 ±10 ±2.5 ±10 nA TA=–40°Cto85°C ±10 ±10 nA IOS InputOffsetCurrent ±2.5 ±10 ±2.5 ±10 nA TA=–40°Cto85°C ±10 ±10 nA NOISE InputVoltageNoise,f=0.1Hzto10Hz 90 90 nVp-p 15 15 nVrms en InputVoltageNoise f=10Hz 3.5 3.5 nV/√Hz Density f=100Hz 3 3 nV/√Hz f=1kHz 3 3 nV/√Hz in CurrentNoiseDensity f=1kHz 0.4 0.4 pA/√Hz INPUTVOLTAGERANGE VCM Common-ModeVoltageRange (V–)+2 (V+)–2 (V–)+2 (V+)–2 V CMRR Common-ModeRejection VCM=(V–)+2Vto(V+)–2V 120 138 120 138 dB TA=–40°Cto85°C 120 120 dB INPUTIMPEDANCE Differential 107||12 107||12 Ω||pF Common-Mode VCM=(V–)+2Vto(V+)–2V 109||3 109||3 Ω||pF 8 SubmitDocumentationFeedback Copyright©1998–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 www.ti.com SBOS110B–MAY1998–REVISEDJUNE2015 Electrical Characteristics: OPAx228 Series (V = ±5 V to ±15 V) (continued) S AtT =25°C,andR =10kΩ,unlessotherwisenoted. A L OPA228PA,UA OPA228P,U OPA2228PA,UA PARAMETER TESTCONDITIONS OPA2228P,U OPA4228PA,UA UNIT MIN TYP MAX MIN TYP MAX OPEN-LOOPGAIN AOL Open-LoopVoltageGain VO=(V–)+2Vto(V+)–2V, 132 160 132 160 dB RL=10kΩ TA=–40°Cto85°C 132 132 dB VO=(V–)+3.5Vto(V+)–3.5V, 132 160 132 160 dB RL=600Ω TA=–40°Cto85°C 132 132 dB FREQUENCYRESPONSE MinimumClosed-LoopGain 5 5 V/V GBW GainBandwidthProduct 33 33 MHz SR SlewRate 11 11 V/µs 0.1% G=5,10VStep,CL=100pF,CF= 1.5 1.5 µs 12pF SettlingTime 0.01% G=5,10VStep,CL=100pF,CF= 2 2 µs 12pF OverloadRecoveryTime VIN×G=VS 0.6 0.6 µs THD+N TotalHarmonicDistortion+Noise f=1kHz,G=5,VO=3.5Vrms 0.00005% 0.00005% OUTPUT VoltageOutput RL=10kΩ (V–)+2 (V+)–2 (V–)+2 (V+)–2 V RL=10kΩ (V–)+2 (V+)–2 (V–)+2 (V+)–2 V TA=–40°Cto85°C RL=600Ω (V–)+3.5 (V+)–3.5 (V–)+3.5 (V+)–3.5 V RL=600Ω (V–)+3.5 (V+)–3.5 (V–)+3.5 (V+)–3.5 V TA=–40°Cto85°C ISC Short-CircuitCurrent ±45 ±45 mA CLOAD CapacitiveLoadDrive SeeTypicalCharacteristics SeeTypicalCharacteristics ZO Open-loopoutputimpedance f=1MHz 27 27 Ω POWERSUPPLY VS SpecifiedVoltageRange ±5 ±15 ±5 ±15 V OperatingVoltageRange ±2.5 ±18 ±2.5 ±18 V IQ QuiescentCurrent(peramplifier) IO=0 ±3.7 ±3.8 ±3.7 ±3.8 mA IO=0 ±4.2 ±4.2 mA TA=–40°Cto85°C TEMPERATURERANGE SpecifiedRange –40 85 –40 85 °C OperatingRange –55 125 –55 125 °C StorageRange –65 150 –65 150 °C θJA ThermalResistance SO-8SurfaceMount 150 150 °C/W DIP-8 100 100 °C/W DIP-14 80 80 °C/W SO-14SurfaceMount 100 100 °C/W Copyright©1998–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 www.ti.com 6.8 Typical Characteristics AtT =25°C,R =10kΩ,andV =±15V,unlessotherwisenoted. A L S 180 0 180 0 OPA227 OPA228 160 –20 160 –20 140 –40 140 –40 G 120 –60 120 G –60 A(dB)OL 1086000 Φ –––81100200 P°)hase ( A(dB)OL 1086000 Φ –––81100200 °P)hase ( 40 –140 40 –140 20 –160 20 –160 0 –180 0 –180 –20 –200 –20 –200 0.01 0.10 1 10 100 1k 10k 100k 1M 10M 100M 0.01 0.10 1 10 100 1k 10k 100k 1M 10M 100M Frequency (Hz) Frequency (Hz) Figure1.Open-LoopGainandPhasevsFrequency Figure2.Open-LoopGainandPhasevsFrequency 140 INPUTVOLTAGEANDCURRENTNOISE SPECTRALDENSITYvsFREQUENCY 120 100k +CMRR PSRR, CMRR (dB) 186400000 –PSRR+PSRR e Noise (nV/Hz)√nt Noise (fA/Hz)√ 110100kk Current Noise ge -20 VoltaCurr 10 Voltage Noise –0 0.1 1 10 100 1k 10k 100k 1M 1 Frequency (Hz) 0.1 1 10 100 1k 10k Frequency (Hz) Figure3.PowerSupplyandCommon-ModeRejectionRatio Figure4.InputVoltageandCurrentNoiseSpectralDensity vsFrequency vsFrequency 0.01 0.01 VOUT= 3.5Vrms OPA227 VOUT= 3.5Vrms OPA228 %) 0.001 %) 0.001 e ( e ( s s oi oi N N + + D D TH 0.0001 G = 1, R = 10kΩ TH 0.0001 G = 1, R = 10kΩ L L 0.00001 0.00001 20 100 1k 10k 20k 20 100 1k 10k 50k Frequency (Hz) Frequency (Hz) Figure5.TotalHarmonicDistortion+NoisevsFrequency Figure6.TotalHarmonicDistortion+NoisevsFrequency 10 SubmitDocumentationFeedback Copyright©1998–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 www.ti.com SBOS110B–MAY1998–REVISEDJUNE2015 Typical Characteristics (continued) AtT =25°C,R =10kΩ,andV =±15V,unlessotherwisenoted. A L S 140 B) 120 d n ( o V/div parati 100 n e 0 S 5 el 80 nn Dual and quad devices. G = 1, all channels. a h Quad measured ChannelAto D, or B to C; C 60 other combinations yield similiar or improved rejection. 40 1s/div 10 100 1k 10k 100k 1M Frequency (Hz) Figure7.InputNoiseVoltagevsTime Figure8.ChannelSeparationvsFrequency 24 OFFSETVOLTAGEPRODUCTIONDISTRIBUTION 17.5 Typical distribution 15.0 of packaged units. nits (%) 16 ers (%) 12.5 cent of U 8 ofAmplifi 105..50 Per cent 5.0 er P 2.5 0 0 0 3.16 3.25 3.34 3.43 3.51 3.60 3.69 3.78 05050505050 Noise (nV/√Hz) 50352005–90–75–60–45–30–15 13467910121315 –1–1–1–1 Offset Voltage (μV) Figure9.VoltageNoiseDistribution(10Hz) Figure10.OffsetVoltageProductionDistribution 12 10 Typical distribution 8 of packaged units. V) 6 ers (%) 8 μange ( 42 fi h mpli e C 0 ofA oltag –2 ent 4 et V –4 c s Per Off –6 –8 –10 0 0 50 100 150 200 250 300 0 0.5 1.0 1.5 Time from Power SupplyTurn-On (s) Offset Voltage Drift (μV)/°C Figure11.OffsetVoltageDriftProductionDistribution Figure12.Warm-UpOffsetVoltageDrift Copyright©1998–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 www.ti.com Typical Characteristics (continued) AtT =25°C,R =10kΩ,andV =±15V,unlessotherwisenoted. A L S 160 160 150 AOL 150 AOL CMRR B) 140 B) 140 CMRR SRR (d 113200 PSRR SRR (d 113200 PSRR P P R, 110 R, 110 MR 100 MR 100 C C , OL 90 , OL 90 A 80 OPA227 A 80 OPA228 70 70 60 60 –75 –50 –25 0 25 50 75 100 125 –75 –50 –25 0 25 50 75 100 125 Temperature (°C) Temperature (°C) Figure13.AOL,CMRR,PSRRvsTemperature Figure14.AOL,CMRR,PSRRvsTemperature 2.0 60 1.5 50 A) 1.0 mA) Input BiasCurrent (n ––001...0550 Short-Circuit Current ( 432000 +ISC –ISC 10 –1.5 –2.0 0 –60 –40 –20 0 20 40 60 80 100 120 140 –75 –50 –25 0 25 50 75 100 125 Temperature (°C) Temperature (°C) Figure15.InputBiasCurrentvsTemperature Figure16.Short-CircuitCurrentvsTemperature 5.0 3.8 ±18V A) 4.5 ±15V A) 3.6 Current (m 4.0 ±±±11502VVV Current (m 3.4 Quiescent 33..50 ±2.5V Quiescent 33..20 2.5 2.8 –60 –40 –20 0 20 40 60 80 100 120 140 0 2 4 6 8 10 12 14 16 18 20 Temperature (°C) Supply Voltage (±V) Figure17.QuiescentCurrentvsTemperature Figure18.QuiescentCurrentvsSupplyVoltage 12 SubmitDocumentationFeedback Copyright©1998–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 www.ti.com SBOS110B–MAY1998–REVISEDJUNE2015 Typical Characteristics (continued) AtT =25°C,R =10kΩ,andV =±15V,unlessotherwisenoted. A L S 3.0 12 OPA227 OPA228 2.5 10 Positive Slew Rate Negative Slew Rate V) 2.0 V) 8 V/ V/ μ μ ate ( 1.5 ate ( 6 R R w w Sle 1.0 Sle 4 0.5 RLOAD= 2kΩ 2 RLOAD= 2kΩ C = 100pF C = 100pF LOAD LOAD 0 0 –75 –50 –25 0 25 50 75 100 125 –75 –50 –25 0 25 50 75 100 125 Temperature (°C) Temperature (°C) Figure19.SlewRatevsTemperature Figure20.SlewRatevsTemperature 2.0 1.5 Curveshowsnormalizedchangeinbiascurrent Curveshowsnormalizedchangeinbiascurrent 11..50 wfroitmhr–e2snpAecttot o+2VnSA=a±t 1V0SV=.T±y1p0iVca.lIBmayrange 1.0 wfroitmhr–e2snpAectot t+o2VnCAMat= V0CVM.T=y 0pVic.alIBmayrange 0.5 0.5 A) A) (nB 0 (nB 0 VS=±15V ∆I ∆I –0.5 –0.5 V =±5V –1.0 S –1.0 –1.5 –2.0 –1.5 0 5 10 15 20 25 30 35 40 –15 –10 –5 0 5 10 15 Supply Voltage (V) Common-Mode Voltage (V) Figure21.ChangeinInputBiasCurrentvsPowerSupply Figure22.ChangeinInputBiasCurrentvsCommon-Mode Voltage Voltage 100 15 V+ V =±15V, 10V Step S 14 (V+)–1V C = 1500pF RLL= 2kΩ V) 13 –40°C (V+)–2V μs)me ( 0.0O1%PA227 e Swing ( 111120 125°C85°2C5°C –55°C (V+)–3V Ti 10 0.1% g ng OPA228 olta –10 –55°C Settli 0.01% 0.1% utput V ––1112 125°C 85°C –40°C (V–) +3V O –13 25°C (V–) +2V –14 (V–) +1V 1 –15 V– ±1 ±10 ±100 0 10 20 30 40 50 60 Gain (V/V) Output Current (mA) Figure23.SettlingTimevsClosed-LoopGain Figure24.OutputVoltageSwingvsOutputCurrent Copyright©1998–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 www.ti.com Typical Characteristics (continued) AtT =25°C,R =10kΩ,andV =±15V,unlessotherwisenoted. A L S 30 70 V =±15V OPA227 OPA227 S 60 25 Gain = +10 Vp-p) 20 %) 50 ge ( ot ( 40 put Volta 1150 VS=±5V Oversho 30 ut 20 O Gain =–1 Gain =–10 5 Gain = +1 10 0 0 1k 10k 100k 1M 10M 1 10 100 1k 10k 100k Frequency (Hz) Load Capacitance(pF) Figure25.MaximumOutputVoltagevsFrequency Figure26.Small-SignalOvershootvsLoadCapacitance OPA227 OPA227 2V/div mV/div 5 2 5μs/div 400ns/div G=–1, CL=1500pF G=1, C=1000pF Figure27.Large-SignalStepResponse Figure28.Small-SignalStepResponse 30 OPA227 V =±15V OPA228 S 25 p) Vp- 20 div ge ( mV/ olta 15 25 put V 10 VS=±5V ut O 5 0 400ns/div 1k 10k 100k 1M 10M G=1, C =5pF Frequency (Hz) L Figure29.Small-SignalStepResponse Figure30.MaximumOutputVoltagevsFrequency 14 SubmitDocumentationFeedback Copyright©1998–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 www.ti.com SBOS110B–MAY1998–REVISEDJUNE2015 Typical Characteristics (continued) AtT =25°C,R =10kΩ,andV =±15V,unlessotherwisenoted. A L S 70 OPA228 OPA228 60 50 %) G=–100 oot ( 40 div ersh 30 5V/ Ov G = +100 20 G=±10 10 0 1 10 100 1k 10k 100k 2μs/div Load Capacitance(pF) G=–10, C =100pF L Figure31.Small-SignalOvershootvsLoadCapacitance Figure32.Large-SignalStepResponse OPA228 OPA228 V/div V/div m m 200 200 500ns/div 500ns/div G=10, CL=1000pF RL=1.8kΩ G=10, CL=1000pF RL=1.8kΩ Figure33.Small-SignalStepResponse Figure34.Small-SignalStepResponse 100 80 70 60 50 :) e ( 40 c n a 30 d e p m I 20 10 1k 10k 100k 1M Frequency (Hz) Figure35.Open-loopOutputImpedance Copyright©1998–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 www.ti.com 7 Detailed Description 7.1 Overview The OPAx22x series operational amplifiers combine low noise and wide bandwidth with high precision to make them the ideal choice for applications requiring both AC and precision DC performance. The OPAx227 is unity- gain stable and features high slew rate (2.3 V/µs) and wide bandwidth (8 MHz). The OPAx228 is optimized for closed-loop gains of 5 or greater, and offers higher speed with a slew rate of 10 V/µs and a bandwidth of 33 MHz. 7.2 Functional Block Diagram Input Offset Adjust (OPA227 and OPA228 only) +IN + Output -IN ± Input Offset Adjust Compensation (OPA227 and OPA228 only) 7.3 Feature Description TheOPAx22xseriesareunity-gainstableandfreefromunexpectedoutputphasereversal,makingiteasytouse in a wide range of applications. Applications with noisy or high-impedance power supplies may require decouplingcapacitorsclosetothedevicepins.Inmostcases0.1-μFcapacitorsareadequate. 7.3.1 OffsetVoltageandDrift The OPAx22x series have very low offset voltage and drift. To achieve highest DC precision, circuit layout and mechanical conditions should be optimized. Connections of dissimilar metals can generate thermal potentials at the operational amplifier inputs, which can degrade the offset voltage and drift. These thermocouple effects can exceed the inherent drift of the amplifier and ultimately degrade its performance. The thermal potentials can be madetocancelbyassuringthattheyareequalatbothinputterminals.Inaddition: • Keepthermalmassoftheconnectionsmadetothetwoinputterminalssimilar. • Locateheatsourcesasfaraspossiblefromthecriticalinputcircuitry. • Shieldoperationalamplifierandinputcircuitryfromaircurrentssuchasthosecreatedbycoolingfans. 7.3.2 OperatingVoltage The OPAx22x series of operational amplifiers operate from ±2.5 V to ±18 V supplies with excellent performance. Unlike most operational amplifiers that are specified at only one supply voltage, the OPA227 series is specified for real-world applications; a single set of specifications applies over the ±5-V to ±15-V supply range. Specifications are assured for applications from ±5-V to ±15-V power supplies. Some applications do not require equal positive and negative output voltage swing. Power supply voltages do not need to be equal. The OPAx22x series can operate with as little as 5 V between the supplies and with up to 36 V between the supplies. For example, the positive supply could be set to 25 V with the negative supply at –5 V or vice-versa. In addition, key parameters are assured over the specified temperature range, –40°C to 85°C. Parameters which vary significantlywithoperatingvoltageortemperatureareshownintheTypicalCharacteristics. 16 SubmitDocumentationFeedback Copyright©1998–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 www.ti.com SBOS110B–MAY1998–REVISEDJUNE2015 Feature Description (continued) 7.3.3 OffsetVoltageAdjustment The OPAx22x series are laser-trimmed for very low offset and drift so most applications will not require external adjustment. However, the OPA227 and OPA228 (single versions) provide offset voltage trim connections on pins 1 and 8. Offset voltage can be adjusted by connecting a potentiometer as shown in Figure 36. This adjustment should be used only to null the offset of the operational amplifier. This adjustment should not be used to compensateforoffsetscreatedelsewhereinthesystembecausethiscanintroduceadditionaltemperaturedrift. V+ Trim range exceeds offset voltage specification 0.1μF 20kΩ 7 2 1 8 OPA227 3 6 4 OPA227 and OPA228 single op amps only. Use offset adjust pins only to null offset voltage of op amp. 0.1μF See text. V– Figure36. OPA227OffsetVoltageTrimCircuit 7.3.4 InputProtection Back-to-back diodes (see Figure 37) are used for input protection on the OPAx22x. Exceeding the turnon threshold of these diodes, as in a pulse condition, can cause current to flow through the input protection diodes due to the amplifier’s finite slew rate. Without external current limiting resistors, the input devices can be destroyed. Sources of high-input current can cause subtle damage to the amplifier. Although the unit may still be functional,importantparameterssuchasinputoffsetvoltage,drift,andnoisemayshift. R F 500Ω – OPA227 Output + Input Figure37. PulsedOperation When using the OPA227 as a unity-gain buffer (follower), the input current should be limited to 20 mA. This can be accomplished by inserting a feedback resistor or a resistor in series with the source. Use Equation 1 to calculatesufficientresistorsize. R =V /20mA–R X S SOURCE where • R iseitherinserieswiththesourceorinsertedinthefeedbackpath. (1) X For example, for a 10-V pulse (V = 10 V), total loop resistance must be 500 Ω. If the source impedance is large S enough to sufficiently limit the current on its own, no additional resistors are needed. The size of any external resistors must be carefully chosen because they will increase noise. See the Noise Performance section of this data sheet for further information on noise calculation. Figure 37 shows an example implementing a current limitingfeedbackresistor. Copyright©1998–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 www.ti.com Feature Description (continued) 7.3.5 InputBiasCurrentCancellation The input bias current of the OPAx22x series is internally compensated with an equal and opposite cancellation current. The resulting input bias current is the difference between with input bias current and the cancellation current.Theresidualinputbiascurrentcanbepositiveornegative. When the bias current is cancelled in this manner, the input bias current and input offset current are approximately equal. A resistor added to cancel the effect of the input bias current (as shown in Figure 38) may actuallyincreaseoffsetandnoiseandisthereforenotrecommended. Conventional OpAmp Configuration R 2 R 1 OpAmp Not recommended for OPA227 RB= R2|| R1 External Cancellation Resistor Recommended OPA227 Configuration R 2 R 1 OPA227 No cancellation resistor. See text. Figure38. InputBiasCurrentCancellation 7.3.6 NoisePerformance Figure 39 shows total circuit noise for varying source impedances with the operational amplifier in a unity-gain configuration(nofeedbackresistornetwork,thereforenoadditionalnoisecontributions).Twodifferentoperational amplifiers are shown with total circuit noise calculated. The OPA227 has very low voltage noise, making it ideal for low source impedances (less than 20 kΩ). A similar precision operational amplifier, the OPA277, has somewhat higher voltage noise but lower current noise. It provides excellent noise performance at moderate source impedance (10 kΩ to 100 kΩ). Above 100 kΩ, a FET-input operational amplifier such as the OPA132 (very low current noise) may provide improved performance. Use the equation in Figure 39 for calculating the totalcircuitnoise.e =voltagenoise,i =currentnoise,R =sourceimpedance,k=Boltzmann’sconstant=1.38 n n S ×10–23J/KandTistemperatureinK.Formoredetailsoncalculatingnoise,seeBasicNoiseCalculations. 18 SubmitDocumentationFeedback Copyright©1998–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 www.ti.com SBOS110B–MAY1998–REVISEDJUNE2015 Feature Description (continued) 1.00+03 0 E y, sit EO OPA227 e Noise Spectral DenTypical at 1k (V/√Hz) 11..0000EE++0021 RSOPA227 OPA277 Resistor NoiOsePA277 g Resistor Noise a otl V E 2=e2+(i R)2+4kTR O n n S S 1.00E+00 100 1k 10k 100k 1M Source Resistance, R (Ω) S Figure39. NoisePerformanceoftheOPA227inUnity-GainBufferConfiguration 7.3.7 BasicNoiseCalculations Design of low noise operational amplifier circuits requires careful consideration of a variety of possible noise contributors: noise from the signal source, noise generated in the operational amplifier, and noise from the feedback network resistors. The total noise of the circuit is the root-sum-square combination of all noise components. The resistive portion of the source impedance produces thermal noise proportional to the square root of the resistance.ThisfunctionisshownplottedinFigure39.Becausethesourceimpedanceisusuallyfixed,selectthe operationalamplifierandthefeedbackresistorstominimizetheircontributiontothetotalnoise. Figure 39 shows total noise for varying source impedances with the operational amplifier in a unity-gain configuration (no feedback resistor network and therefore no additional noise contributions). The operational amplifier itself contributes both a voltage noise component and a current noise component. The voltage noise is commonly modeled as a time-varying component of the offset voltage. The current noise is modeled as the time- varying component of the input bias current and reacts with the source resistance to create a voltage component of noise. Consequently, the lowest noise operational amplifier for a given application depends on the source impedance. For low source impedance, current noise is negligible and voltage noise generally dominates. For highsourceimpedance,currentnoisemaydominate. Figure 40 shows both inverting and noninverting operational amplifier circuit configurations with gain. In circuit configurations with gain, the feedback network resistors also contribute noise. The current noise of the operational amplifier reacts with the feedback resistors to create additional noise components. The feedback resistorvaluescangenerallybechosentomakethesenoisesourcesnegligible.Theequationsfortotalnoiseare showninthefollowingimagesforbothconfigurations. Copyright©1998–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 www.ti.com Feature Description (continued) Noise in Noninverting Gain Configuration R 2 Noiseattheoutput: ( )2 ( )2 R1 E 2= 1+R2 e2+ e2+ e2+ (i R )2+ e 2+ (i R )21+R2 O R n 1 2 n 2 S n S R 1 1 EO ( R ) Where e = √4kTR • 1+ 2 =thermalnoiseofR S S R S 1 R S ( ) R e =√4kTR • 2 = thermal noise of R 1 1 1 VS R1 e =√4kTR = thermal noise of R 2 2 2 Noise in Inverting Gain Configuration R 2 Noise at the output: R1 E 2 =(1+ R2 )2e 2+ e2+ e2+ (i R)2+ e 2 O R +R n 1 2 n 2 S 1 S E R O S ( ) R Where e =√4kTR • 2 = thermal noise of R S S R +R S VS 1 S ( ) R e =√4kTR • 2 = thermal noise of R 1 1 R +R 1 1 S e =√4kTR = thermal noise of R 2 2 2 FortheOPA227andOPA228seriesopampsat1kHz,e =3nV/√Hzandi =0.4pA/√Hz. n n Figure40. NoiseCalculationinGainConfigurations 20 SubmitDocumentationFeedback Copyright©1998–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 www.ti.com SBOS110B–MAY1998–REVISEDJUNE2015 Feature Description (continued) R1 R2 R8 R11 2MΩ 2MΩ 402kΩ 178kΩ 1RkΩ3 9.0R94kΩ 22Cn4F 10Cn6F R R R R 6 7 9 10 40.2kΩ 97.6kΩ 178kΩ 226kΩ 2 2 C C 6 6 1μ1F 1μ2F U1 C 3 U2 C 3 U3 VOUT 3 5 0.47μF 0.47μF (OPA227) (OPA227) (OPA227) Input from Device R 5 Under 634kΩ Test Figure41. 0.1Hzto10HzBandpassFilterUsedtoTestWidebandNoiseofthe OPAx22xSeries 22pF 100kΩ 10Ω 2 6 OPA227 V 3 OUT Device Under Test Figure42. NoiseTestCircuit Figure 41 shows the 0.1 Hz 10 Hz bandpass filter used to test the noise of the OPA227 and OPA228. The filter circuit was designed using Texas Instruments’ FilterPro software (available at www.ti.com). Figure 42 shows the configurationoftheOPA227andOPA228fornoisetesting. 7.3.8 EMIRejectionRatio(EMIRR) The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers.Anadverseeffectthatiscommontomanyoperationalamplifiersisachangeintheoffsetvoltageasa result of RF signal rectification. An operational amplifier that is more efficient at rejecting this change in offset as a result of EMI has a higher EMIRR and is quantified by a decibel value. Measuring EMIRR can be performed in many ways, but this section provides the EMIRR IN+, which specifically describes the EMIRR performance when the RF signal is applied to the noninverting input pin of the operational amplifier. In general, only the noninverting inputistestedforEMIRRforthefollowingthreereasons: 1. Operational amplifier input pins are known to be the most sensitive to EMI, and typically rectify RF signals betterthanthesupplyoroutputpins. 2. The noninverting and inverting operational amplifier inputs have symmetrical physical layouts and exhibit nearlymatchingEMIRRperformance. 3. EMIRR is easier to measure on noninverting pins than on other pins because the noninverting input terminal can be isolated on a printed-circuit-board (PCB). This isolation allows the RF signal to be applied directly to the noninverting input terminal with no complex interactions from other components or connecting PCB traces. Copyright©1998–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 www.ti.com Feature Description (continued) A more formal discussion of the EMIRR IN+ definition and test method is provided in application report SBOA128, EMI Rejection Ratio of Operational Amplifiers, available for download at www.ti.com. The EMIRR IN+ oftheOPA227isplottedversusfrequencyasshowninFigure43. 120 PRF = -10 dbm VS = r2.5 V 100 VCM = 0 V b) 80 d + ( N R I 60 R MI E 40 20 0 10 100 1k 10k Frequency (MHz) Figure43. OPA227EMIRRIN+vsFrequency If available, any dual and quad operational amplifier device versions have nearly similar EMIRR IN+ performance. The OPAx227 unity-gain bandwidth is 8 MHz. EMIRR performance below this frequency denotes interferingsignalsthatfallwithintheoperationalamplifierbandwidth. Table 1 shows the EMIRR IN+ values for the OPA227 at particular frequencies commonly encountered in real- world applications. Applications listed in Table 1 may be centered on or operated near the particular frequency shown. This information may be of special interest to designers working with these types of applications, or working in other fields likely to encounter RF interference from broad sources, such as the industrial, scientific, andmedical(ISM)radioband. Table1.OPAx227EMIRRIN+forFrequenciesofInterest FREQUENCY APPLICATION/ALLOCATION EMIRRIN+ 400MHz Mobileradio,mobilesatellite/spaceoperation,weather,radar,UHF 35.7dB GSM,radiocom/nav./GPS(to1.6GHz),ISM,aeronauticalmobile, 900MHz 47.8dB UHF 1.8GHz GSM,mobilepersonalcomm.broadband,satellite,L-band 68.8dB 802.11b/g/n,Bluetooth™,mobilepersonalcomm.,ISM,amateur 2.4GHz 69.8dB radio/satellite,S-band 3.6GHz Radiolocation,aerocomm./nav.,satellite,mobile,S-band 78dB 802.11a/n,aerocomm./nav.,mobilecomm.,space/satellite 5GHz 88.4dB operation,C-band 7.3.8.1 EMIRRIN+TestConfiguration Figure 44 shows the circuit configuration for testing the EMIRR IN+. An RF source is connected to the operational amplifier noninverting input terminal using a transmission line. The operational amplifier is configured in a unity gain buffer topology with the output connected to a low-pass filter (LPF) and a digital multimeter (DMM). A large impedance mismatch at the operational amplifier input causes a voltage reflection; however, this effect is characterized and accounted for when determining the EMIRR IN+. The resulting DC offset voltage is sampled and measured by the multimeter. The LPF isolates the multimeter from residual RF signals that may interferewithmultimeteraccuracy.RefertoSBOA128 formoredetails. 22 SubmitDocumentationFeedback Copyright©1998–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 www.ti.com SBOS110B–MAY1998–REVISEDJUNE2015 Ambient temperature: 25Û& +VS ± 50 (cid:13)(cid:3) Low-Pass Filter + RF source DC Bias: 0 V -VS Sample / Modulation: None (CW) Digital Multimeter Frequency Sweep: 201 pt. Log Not shown: 0.1 µF and 10 µF Averaging supply decoupling Figure44. EMIRRIN+TestConfigurationSchematic 7.4 Device Functional Modes The OPAx22x has a single functional mode and are operational when the power-supply voltage is greater than 5 V(±2.5V).ThemaximumpowersupplyvoltagefortheOPAx22xis36V(±18V). Copyright©1998–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information The OPAx22x series are precision operational amplifiers with very low noise. The OPAx227 series is unity-gain stable with a slew rate of 2.3 V/μs and 8 MHz bandwidth. The OPAx228 series is optimized for higher-speed applications with gains of 5 or greater, featuring a slew rate of 10 V/μs and 33-MHz bandwidth. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins. In most cases,0.1-μFcapacitorsareadequate. 8.1.1 Three-Pole,20kHzLowPass,0.5-dBChebyshevFilter 1.1kΩ 1.43kΩ 2.2nF dc Gain = 1 330pF 1.1kΩ 1.65kΩ V IN 1.43kΩ 1.91kΩ OPA227 33nF 2.21kΩ OPA227 V 68nF OUT 10nF f = 13.86kHz f = 20.33kHz f = 7.2kHz N N Q = 1.186 Q = 4.519 Figure45. Three-Pole,20kHzLowPass,0.5-dBChebyshevFilter 8.1.2 Long-WavelengthInfraredDetectorAmplifier 0.1μF 100Ω 100kΩ 2 6 Output OPA227 3 NOTE: Use metalfilm resistors Dexter 1M and plasticfilm capacitor. Circuit Thermopile must be well shielded to achieve Detector low noise. Responsivity≈2.5 x 104V/W Output Noise≈30μVrms, 0.1Hz to 10Hz Figure46. Long-WavelengthInfraredDetectorAmplifier 24 SubmitDocumentationFeedback Copyright©1998–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 www.ti.com SBOS110B–MAY1998–REVISEDJUNE2015 Application Information (continued) 8.1.3 HighPerformanceSynchronousDemodulator 20pF TTLINPUT GAIN 9.76kΩ “1” +1 “0” –1 Balance 500Ω Trim Input 10kΩ 2 6 Output D1 4.99kΩ 3 OPA227 8 S1 D2 S2 1 4.75kΩ 4.75kΩ 1kΩ TTL DG188 In Offset Trim +V CC Figure47. HighPerformanceSynchronousDemodulator 8.1.4 HeadphoneAmplifier +15V 0.1μF 1kΩ 1kΩ Audio In 1/2 OPA2227 200Ω To 200Ω Headphone 1/2 OPA2227 This application uses two op amps in parallel for higher output current drive. 0.1μF –15V Figure48. HeadphoneAmplifier Copyright©1998–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 www.ti.com Application Information (continued) 8.1.5 Three-BandActiveToneControl(Bass,Midrange,andTreble) BassTone Control R R 2 R 1 50kΩ 3 7.5kΩ 7.5kΩ 3 CW 1 2 R 10 100kΩ MidrangeTone Control C 1 940pF R R 5 R 4 50kΩ 6 2.7kΩ 2.7kΩ 3 CW 1 V IN 2 C 2 0.0047μF TrebleTone Control R R 8 R 7 50kΩ 9 7.5kΩ 7.5kΩ R 3 CW 1 11 100kΩ 2 C 3 680pF 2 6 OPA227 V 3 OUT Figure49. Three-BandActiveToneControl(Bass,Midrange,andTreble) 8.2 Typical Application CF RF RIN ± Output + CLOAD RLOAD Input Figure50. TypicalApplicationSchematic 8.2.1 DesignRequirements 1. OperateOPAx228gainislessthan5V/V 2. Stableoperationwithcapacitiveload 26 SubmitDocumentationFeedback Copyright©1998–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 www.ti.com SBOS110B–MAY1998–REVISEDJUNE2015 Typical Application (continued) 8.2.2 DetailedDesignProcedure 8.2.2.1 UsingtheOPAx228inLowGains The OPAx228 family is intended for applications with signal gains of 5 or greater, but it is possible to take advantage of their high-speed in lower gains. Without external compensation, the OPA228 has sufficient phase margin to maintain stability in unity gain with purely resistive loads. However, the addition of load capacitance canreducethephasemarginanddestabilizetheoperationalamplifier. A variety of compensation techniques have been evaluated specifically for use with the OPA228. The recommended configuration consists of an additional capacitor (C ) in parallel with the feedback resistance, as F shown in Figure 51and Figure 52. This feedback capacitor serves two purposes in compensating the circuit. The operational amplifier’s input capacitance and the feedback resistors interact to cause phase shift that can result in instability. C compensates the input capacitance, minimizing peaking. Additionally, at high frequencies, the F closed-loop gain of the amplifier is strongly influenced by the ratio of the input capacitance and the feedback capacitor.Thus,C canbeselectedtoyieldgoodstabilitywhilemaintaininghigh-speed. F Without external compensation, the noise specification of the OPA228 is the same as that for the OPA227 in gains of 5 or greater. With the additional external compensation, the output noise of the of the OPA228 will be higher. The amount of noise increase is directly related to the increase in high-frequency closed-loop gain establishedbytheC /C ratio. IN F Figure 51 and Figure 52 show the recommended circuit for gains of 2 and –2, respectively. The figures suggest approximate values for C . Because compensation is highly dependent on circuit design, board layout, and load F conditions, C should be optimized experimentally for best results. Figure 53 and Figure 55 show the large- and F small-signal step responses for the G = 2 configuration with 100-pF load capacitance.Figure 54 and Figure 56 showthelarge-andsmall-signalstepresponsesfortheG=–2configurationwith100-pFloadcapacitance. 22pF 15pF 2kΩ 1kΩ 2kΩ 2kΩ OPA228 OPA228 2kΩ 100pF 2kΩ 100pF Figure51.CompensationoftheOPA228forG=2 Figure52.CompensationforOPA228forG= –2 8.2.3 ApplicationCurves div div V/ V/ m m 5 5 OPA228 OPA228 400ns/div 400ns/div Figure53.Large-SignalStepResponse,G=2, Figure54.Large-SignalStepResponse,G=–2,CLOAD= C =100pF,InputSignal=5Vp-p 100pF,InputSignal=5Vp-p LOAD Copyright©1998–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 27 ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 www.ti.com Typical Application (continued) div div V/ V/ m m 5 5 2 2 OPA228 OPA228 200ns/div 200ns/div Figure55.Small-SignalStepResponse,G=2, Figure56.Small-SignalStepResponse,G=–2, CLOAD=100pF,InputSignal=50mVp-p. CLOAD=100pF,InputSignal=50mVp-p. 28 SubmitDocumentationFeedback Copyright©1998–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 www.ti.com SBOS110B–MAY1998–REVISEDJUNE2015 9 Power Supply Recommendations The OPAx22x series are specified for operation from 5 V to 36 V (±2.5 V to ±18 V); many specifications apply from –40°C to 85°C. Parameters that can exhibit significant variance with regard to operating voltage or temperaturearepresentedintheElectricalCharacteristics:OPAx227Series(V =±5Vto ±15V). S CAUTION Supply voltages larger than 36 V can permanently damage the device; see the AbsoluteMaximumRatings. Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high- impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout Guidelines. 10 Layout 10.1 Layout Guidelines Forbestoperationalperformanceofthedevice,usegoodPCBlayoutpractices,including: • Noise can propagate into analog circuitry through the power pins of the circuit as a whole and operational amplifier itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance powersourceslocaltotheanalogcircuitry. – Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single- supplyapplications. • Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds paying attention to the flow of the ground current. For more detailed informationrefertoCircuitBoardLayoutTechniques (SLOA089). • To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much betterasopposedtoinparallelwiththenoisytrace. • Place the external components as close to the device as possible. As shown in Layout Example, keeping RFandRGclosetotheinvertinginputminimizesparasiticcapacitance. • Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitivepartofthecircuit. • Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduceleakagecurrentsfromnearbytracesthatareatdifferentpotentials. • CleaningthePCBfollowingboardassemblyisrecommendedforbestperformance. • Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended to remove moisture introduced into the device packaging during the cleaning process. A lowtemperature,postcleaningbakeat85°Cfor30minutesissufficientformostcircumstances. Copyright©1998–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 29 ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 www.ti.com 10.2 Layout Example VIN + RG VOUT RF (Schematic Representation) Place components Run the input traces close to device and to as far away from each other to reduce the supply lines parasitic errors VS+ RF as possible Offset trim Offset trim RG GND ±IN V+ GND VIN +IN OUTPUT V± NC Use low-ESR, ceramic bypass capacitor Use low-ESR, GND VS± VOUT ceramic bypass Ground (GND) plane on another layer capacitor Figure57. OPAx227LayoutExample 30 SubmitDocumentationFeedback Copyright©1998–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 www.ti.com SBOS110B–MAY1998–REVISEDJUNE2015 11 Device and Documentation Support 11.1 Device Support 11.1.1 DevelopmentSupport 11.1.1.1 TINA-TI™(FreeSoftwareDownload) TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range of both passive and active models. TINA-TI provides all the conventional DC, transient, and frequency domain analysisofSPICE,aswellasadditionaldesigncapabilities. Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select inputwaveformsandprobecircuitnodes,voltages,andwaveforms,creatingadynamicquick-starttool. NOTE These files require that either the TINA software (from DesignSoft™) or TINA-TI software beinstalled.DownloadthefreeTINA-TIsoftwarefromtheTINA-TIfolder. 11.1.1.2 TIPrecisionDesigns The OPAx22x are featured in several TI Precision Designs, available online at http://www.ti.com/ww/en/analog/precision-designs/. TI Precision Designs are analog solutions created by TI’s precision analog applications experts and offer the theory of operation, component selection, simulation, completePCBschematicandlayout,billofmaterials,andmeasuredperformanceofmanyusefulcircuits. 11.2 Documentation Support 11.2.1 RelatedDocumentation CircuitBoardLayoutTechniques,SLOA089 EMIRejectionRatioofOperationalAmplifiers,SBOA128 11.3 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table2.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY OPA227 Clickhere Clickhere Clickhere Clickhere Clickhere OPA2227 Clickhere Clickhere Clickhere Clickhere Clickhere OPA4227 Clickhere Clickhere Clickhere Clickhere Clickhere OPA228 Clickhere Clickhere Clickhere Clickhere Clickhere OPA2228 Clickhere Clickhere Clickhere Clickhere Clickhere OPA4228 Clickhere Clickhere Clickhere Clickhere Clickhere 11.4 Trademarks TINA-TIisatrademarkofTexasInstruments,Inc. TINA,DesignSoftaretrademarksofDesignSoft,Inc. Allothertrademarksarethepropertyoftheirrespectiveowners. Copyright©1998–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 31 ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

OPA227,OPA2227,OPA4227 OPA228,OPA2228,OPA4228 SBOS110B–MAY1998–REVISEDJUNE2015 www.ti.com 11.5 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 11.6 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 32 SubmitDocumentationFeedback Copyright©1998–2015,TexasInstrumentsIncorporated ProductFolderLinks:OPA227 OPA2227 OPA4227OPA228 OPA2228 OPA4228

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) OPA2227P ACTIVE PDIP P 8 50 Green (RoHS NIPDAU N / A for Pkg Type -40 to 85 OPA2227P & no Sb/Br) OPA2227PA ACTIVE PDIP P 8 50 Green (RoHS NIPDAU N / A for Pkg Type -40 to 85 OPA2227P & no Sb/Br) A OPA2227U ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 2227U OPA2227U/2K5 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 2227U OPA2227U/2K5G4 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 2227U OPA2227UA ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 2227U A OPA2227UA/2K5 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 2227U A OPA2227UA/2K5E4 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 2227U A OPA2227UAE4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 2227U A OPA2227UAG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 2227U A OPA2227UE4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 2227U OPA2227UG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 2227U OPA2228P ACTIVE PDIP P 8 50 Green (RoHS NIPDAU N / A for Pkg Type -40 to 85 OPA2228P & no Sb/Br) OPA2228PA ACTIVE PDIP P 8 50 Green (RoHS NIPDAU N / A for Pkg Type -40 to 85 OPA2228P & no Sb/Br) A OPA2228PAG4 ACTIVE PDIP P 8 50 Green (RoHS NIPDAU N / A for Pkg Type -40 to 85 OPA2228P & no Sb/Br) A Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) OPA2228PG4 ACTIVE PDIP P 8 50 Green (RoHS NIPDAU N / A for Pkg Type -40 to 85 OPA2228P & no Sb/Br) OPA2228U ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 2228U OPA2228U/2K5 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 2228U OPA2228UA ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 2228U A OPA2228UA/2K5 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 2228U A OPA2228UA/2K5E4 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 2228U A OPA2228UE4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 2228U OPA227P ACTIVE PDIP P 8 50 Green (RoHS NIPDAU N / A for Pkg Type -40 to 85 OPA227P & no Sb/Br) OPA227PA ACTIVE PDIP P 8 50 Green (RoHS NIPDAU N / A for Pkg Type -40 to 85 OPA227P & no Sb/Br) A OPA227PAG4 ACTIVE PDIP P 8 50 Green (RoHS NIPDAU N / A for Pkg Type -40 to 85 OPA227P & no Sb/Br) A OPA227PG4 ACTIVE PDIP P 8 50 Green (RoHS NIPDAU N / A for Pkg Type -40 to 85 OPA227P & no Sb/Br) OPA227U ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 227U OPA227U/2K5 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 227U OPA227U/2K5E4 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 227U OPA227UA ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 227U A OPA227UA/2K5 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 227U A Addendum-Page 2

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) OPA227UA/2K5G4 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-3-260C-168 HR -40 to 85 OPA & no Sb/Br) 227U A OPA228P ACTIVE PDIP P 8 50 Green (RoHS NIPDAU N / A for Pkg Type -55 to 125 OPA228P & no Sb/Br) OPA228PA ACTIVE PDIP P 8 50 Green (RoHS NIPDAU N / A for Pkg Type -55 to 125 OPA228P & no Sb/Br) A OPA228PAG4 ACTIVE PDIP P 8 50 Green (RoHS NIPDAU N / A for Pkg Type -55 to 125 OPA228P & no Sb/Br) A OPA228U ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-3-260C-168 HR -55 to 125 OPA & no Sb/Br) 228U OPA228UA ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-3-260C-168 HR -55 to 125 OPA & no Sb/Br) 228U A OPA228UA/2K5 ACTIVE SOIC D 8 2500 Green (RoHS NIPDAU Level-3-260C-168 HR -55 to 125 OPA & no Sb/Br) 228U A OPA228UAG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-3-260C-168 HR -55 to 125 OPA & no Sb/Br) 228U A OPA228UG4 ACTIVE SOIC D 8 75 Green (RoHS NIPDAU Level-3-260C-168 HR -55 to 125 OPA & no Sb/Br) 228U OPA4227PA ACTIVE PDIP N 14 25 Green (RoHS NIPDAU N / A for Pkg Type -40 to 85 OPA4227PA & no Sb/Br) OPA4227PAG4 ACTIVE PDIP N 14 25 Green (RoHS NIPDAU N / A for Pkg Type -40 to 85 OPA4227PA & no Sb/Br) OPA4227UA ACTIVE SOIC D 14 50 Green (RoHS NIPDAU-DCC Level-3-260C-168 HR -40 to 85 OPA4227UA & no Sb/Br) OPA4227UA/2K5 ACTIVE SOIC D 14 2500 Green (RoHS NIPDAU-DCC Level-3-260C-168 HR -40 to 85 OPA4227UA & no Sb/Br) OPA4227UA/2K5G4 ACTIVE SOIC D 14 2500 Green (RoHS NIPDAU-DCC Level-3-260C-168 HR -40 to 85 OPA4227UA & no Sb/Br) OPA4227UAG4 ACTIVE SOIC D 14 50 Green (RoHS NIPDAU-DCC Level-3-260C-168 HR -40 to 85 OPA4227UA & no Sb/Br) OPA4228PA ACTIVE PDIP N 14 25 Green (RoHS NIPDAU N / A for Pkg Type -55 to 125 OPA4228PA & no Sb/Br) Addendum-Page 3

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) OPA4228PAG4 ACTIVE PDIP N 14 25 Green (RoHS NIPDAU N / A for Pkg Type -55 to 125 OPA4228PA & no Sb/Br) OPA4228UA ACTIVE SOIC D 14 50 Green (RoHS NIPDAU-DCC Level-3-260C-168 HR -55 to 125 OPA4228UA & no Sb/Br) OPA4228UA/2K5 ACTIVE SOIC D 14 2500 Green (RoHS NIPDAU-DCC Level-3-260C-168 HR -55 to 125 OPA4228UA & no Sb/Br) OPA4228UA/2K5G4 ACTIVE SOIC D 14 2500 Green (RoHS NIPDAU-DCC Level-3-260C-168 HR -55 to 125 OPA4228UA & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. Addendum-Page 4

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF OPA2227 : •Enhanced Product: OPA2227-EP NOTE: Qualified Version Definitions: •Enhanced Product - Supports Defense, Aerospace and Medical Applications Addendum-Page 5

PACKAGE MATERIALS INFORMATION www.ti.com 7-Apr-2015 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) OPA2227U/2K5 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 OPA2227UA/2K5 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 OPA2228U/2K5 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 OPA2228UA/2K5 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 OPA227U/2K5 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 OPA227UA/2K5 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 OPA228UA/2K5 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 OPA4227UA/2K5 SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 OPA4228UA/2K5 SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 7-Apr-2015 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) OPA2227U/2K5 SOIC D 8 2500 367.0 367.0 35.0 OPA2227UA/2K5 SOIC D 8 2500 367.0 367.0 35.0 OPA2228U/2K5 SOIC D 8 2500 367.0 367.0 35.0 OPA2228UA/2K5 SOIC D 8 2500 367.0 367.0 35.0 OPA227U/2K5 SOIC D 8 2500 367.0 367.0 35.0 OPA227UA/2K5 SOIC D 8 2500 367.0 367.0 35.0 OPA228UA/2K5 SOIC D 8 2500 367.0 367.0 35.0 OPA4227UA/2K5 SOIC D 14 2500 367.0 367.0 38.0 OPA4228UA/2K5 SOIC D 14 2500 367.0 367.0 38.0 PackMaterials-Page2

None

None

PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

None

None

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated