图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: OP90GS
  • 制造商: Analog
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

OP90GS产品简介:

ICGOO电子元器件商城为您提供OP90GS由Analog设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 OP90GS价格参考¥询价-¥询价。AnalogOP90GS封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 1 电路 8-SOIC。您可以下载OP90GS参考资料、Datasheet数据手册功能说明书,资料中有OP90GS 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP GP 8SOIC精密放大器 Lo VTG Micropower IC SGL Supply 1.6-36V

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Analog Devices

产品手册

点击此处下载产品Datasheet

产品图片

rohs

否不符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,精密放大器,Analog Devices OP90GS-

数据手册

点击此处下载产品Datasheet

产品型号

OP90GS

PCN过时产品

点击此处下载产品Datasheet

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30008http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26202

产品种类

精密放大器

供应商器件封装

8-SOIC N

关闭

No

其它名称

OP90GSADI

包装

管件

压摆率

0.012 V/µs

双重电源电压

+/- 3 V, +/- 5 V, +/- 9 V, +/- 12 V, +/- 15 V

商标

Analog Devices

增益带宽积

-

安装类型

表面贴装

安装风格

SMD/SMT

封装

Tube

封装/外壳

8-SOIC(0.154",3.90mm 宽)

封装/箱体

SOIC-8

工作温度

-40°C ~ 85°C

工作电源电压

1.6 V to 36 V

工厂包装数量

98

放大器类型

通用

最大双重电源电压

+/- 18 V

最大工作温度

+ 85 C

最小双重电源电压

+/- 0.8 V

最小工作温度

- 40 C

标准包装

98

电压-电源,单/双 (±)

1.6 V ~ 36 V, ±0.8 V ~ 18 V

电压-输入失调

125µV

电压增益dB

118.06 dB

电流-电源

14µA

电流-输入偏置

4nA

电流-输出/通道

5mA

电源电压-最大

36 V

电源电压-最小

1.6 V

电源电流

14 uA

电源类型

Single, Dual

电路数

1

系列

OP90

视频文件

http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193153001http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193159001

转换速度

0.012 V/us

输入补偿电压

125 uV

输出类型

No

通道数量

1 Channel

推荐商品

型号:AMP03BJZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:ACPL-782T-500E

品牌:Broadcom Limited

产品名称:集成电路(IC)

获取报价

型号:THS4021ID

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT1810CS8#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:TLV2772MDRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:SM73307MM/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LMP2012MAX/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LMV862MMX/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
OP90GS 相关产品

LTC6800HDD#PBF

品牌:Linear Technology/Analog Devices

价格:

LT1994HDD#TRPBF

品牌:Linear Technology/Analog Devices

价格:

MCP6021T-E/ST

品牌:Microchip Technology

价格:

ISL28117FUZ-T7A

品牌:Renesas Electronics America Inc.

价格:

THS4502CDR

品牌:Texas Instruments

价格:

TL052CDG4

品牌:Texas Instruments

价格:

TL082IP

品牌:Texas Instruments

价格:

AD8022ARMZ-REEL7

品牌:Analog Devices Inc.

价格:¥28.28-¥47.69

PDF Datasheet 数据手册内容提取

a Precision Low-Voltage Micropower Operational Amplifier OP90 FEATURES PIN CONNECTIONS Single/Dual Supply Operation: 1.6 V to 36 V, (cid:1)0.8 V to (cid:1)18 V True Single-Supply Operation; Input and Output Voltage Ranges Include Ground 8-Lead Epoxy Mini-DIP Low Supply Current: 20 (cid:2)A Max (P-Suffix) High Output Drive: 5 mA Min 8-Lead SO Low Input Offset Voltage: 150 (cid:2)V Max (S-Suffix) High Open-Loop Gain: 700 V/mV Min Outstanding PSRR: 5.6 (cid:2)V/V Max Standard 741 Pinout with Nulling to V– VOS NULL 1 8 NC –IN 2 7 V+ +IN 3 6 OUT V– 4 5 VOS NULL GENERAL DESCRIPTION NC = NO CONNECT The OP90 is a high performance, micropower op amp that operates from a single supply of 1.6 V to 36 V or from dual external nulling. Gain exceeds 700,000 and common-mode supplies of ±0.8 V to ±18 V. The input voltage range includes rejection is better than 100 dB. The power supply rejection the negative rail allowing the OP90 to accommodate input ratio of under 5.6 µV/V minimizes offset voltage changes experi- signals down to ground in a single-supply operation. The OP90’s enced in battery-powered systems. output swing also includes a ground when operating from a The low offset voltage and high gain offered by the OP90 bring single-supply, enabling “zero-in, zero-out” operation. precision performance to micropower applications. The minimal The OP90 draws less than 20 µA of quiescent supply current, voltage and current requirements of the OP90 suit it for battery while able to deliver over 5 mA of output current to a load. The and solar powered applications, such as portable instruments, input offset voltage is below 150 µV eliminating the need for remote sensors, and satellites. V+ +IN OUTPUT –IN * * NULL NULL V– *ELECTRONICALLY ADJUSTED ON CHIP FOR MINIMUM OFFSET VOLTAGE Figure 1.Simplied Schematic REV. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. may result from its use. No license is granted by implication or otherwise Tel: 781/329-4700www.analog.com under any patent or patent rights of Analog Devices. Fax: 781/461-3113 © Analog Devices, Inc.,

OP90 SPECIFICATIONS ELECTRICAL CHARACTERISTICS (VS = ±1.5 V to ±15 V, TA = 25°C, unless otherwise noted.) OP90G Parameter Symbol Conditions Min Typ Max Unit INPUT OFFSET VOLTAGE VOS 125 450 µV INPUT OFFSET CURRENT I V = 0 V 0.4 5 nA OS CM INPUT BIAS CURRENT IB VCM = 0 V 4.0 25 nA LARGE-SIGNAL V = ± 15 V, V = ± 10 V S O VOLTAGE GAIN AVO RL = 100 kΩ 400 800 V/mV AVO RL= 10 kΩ 200 400 V/mV AVO RL = 2 kΩ 100 200 V/mV   V+ = 5 V, V– = 0 V,   1 V < VO < 4 V AVO RL = 100 kΩ 100 250 V/mV AVO RL = 10 kΩ 70 140 V/mV INPUT VOLTAGE RANGE1 IVR V+ = 5 V, V– = 0 V 0/4 V VS = ± 15 V –15/13.5 V OUTPUT VOLTAGE SWING VO VS = ± 15 V   RL = 10 kΩ ± 14 ± 14.2 V RL = 2 kΩ ± 11 ± 12 V VOH V+ = 5 V, V– = 0 V   RL = 2 kΩ 4.0 4.2 V VOL V+ = 5 V, V– = 0 V R = 10 kΩ 100 500 µV L COMMON-MODE CMR V+ = 5 V, V– = 0 V, REJECTION 0 V < V < 4 V CM 80 100 dB CMR V = ± 15 V, S 90 120 dB –15 V < VCM < 13.5 V POWER SUPPLY REJECTION RATIO PSRR 3.2 10 µV/V SLEW RATE SR V = ± 15 V 5 12 V/ms S SUPPLY CURRENT I V = ± 1.5 V 9 15 µA SY S ISY VS = ± 15 V 14 20 µA CAPACITIVE LOAD AV = 1 STABILITY2 No Oscillations 250 650 pF INPUT NOISE VOLTAGE e f = 0.1 Hz to 10 Hz n p-p O VS = ± 15 V 3 µV p-p INPUT RESISTANCE DIFFERENTIAL MODE R V = ± 15 V 30 MΩ IN S INPUT RESISTANCE COMMON-MODE R V = ± 15 V 20 GΩ INCM S NOTES 1Guaranteed by CMR test. 2Guaranteed but not 100% tested. Specifications subject to change without notice. Rev. C | Page 2 of 13

OP90 ELECTRICAL CHARACTERISTICS (V = (cid:1)1.5 V to (cid:1)15 V, –55(cid:3)C (cid:1) T (cid:1) +125(cid:3)C, unless otherwise noted.) S A Parameter Symbol Conditions Min Typ Max Unit INPUT OFFSET VOLTAGE V 80 400 µV OS AVERAGE INPUT OFFSET VOLTAGE DRIFT TCV 0.3 2.5 µV/°C OS INPUT OFFSET CURRENT I V = 0 V 1.5 5 nA OS CM INPUT BIAS CURRENT I V = 0 V 4.0 20 nA B CM LARGE-SIGNAL VOLTAGE GAIN A V = ±15 V, V = ±10 V VO S O R = 100 kΩ 225 400 V/mV L R = 10 kΩ 125 240 V/mV L R = 2 kΩ 50 110 V/mV L A V+ = 5 V, V– = 0 V, VO 1 V < V < 4 V O R = 100 kΩ 100 200 V/mV L R = 10 kΩ 50 110 V/mV L INPUT VOLTAGE RANGE* IVR V+ = 5 V, V– = 0 V 0/3.5 V V = ±15 V –15/13 5 V S OUTPUT VOLTAGE SWING V V = ±15 V O S R = 10 kΩ ±13.5 ±13.7 V L R = 2 kΩ ±10.5 ±11.5 V L V V+ = 5 V, V– = 0 V OH R = 2 kΩ 3.9 4.1 V L V V+ = 5 V, V– = 0 V OL R = 10 kΩ 100 500 µV L COMMON-MODE REJECTION CMR V+ = 5 V, V– = 0 V, 0 V < V < 3.5 V 85 105 dB CM V = ±15 V, S 15 V < V < 13.5 V 95 115 dB CM POWER SUPPLY REJECTION RATIO PSRR 3.2 10 µV/V SUPPLY CURRENT I V = ±1.5 V 15 25 µA SY S V = ±15 V 19 30 µA S NOTE *Guaranteed by CMR test. REV. C –3–

OP90 ELECTRICAL CHARACTERISTICS (VS = ±1.5 V to ±15 V, –40°C ≤ TA ≤ +85°C for OP90G, unless otherwise noted.) OP90G Parameter Symbol Conditions Min Typ Max Unit INPUT OFFSET VOLTAGE V 180 675 µV OS AVERAGE INPUT OFFSET VOLTAGE DRIFT TCVOS 1.2 5 µV/°C INPUT OFFSET CURRENT I VCM = 0 V 1.3 7 nA OS INPUT BIAS CURRENT IB VCM = 0 V 4.0 25 nA LARGE-SIGNAL VOLTAGE A V = ± 15 V, V = ± 10 V VO S O GAIN   R = 100 kΩ 300 600 V/mV L RL = 10 kΩ 150 250 V/mV RL = 2 kΩ 75 125 V/mV AVO V+ = 5 V, V– = 0 V,     1 V < VO < 4 V R = 100 kΩ 80 160 V/mV L R = 10 kΩ 40 90 V/mV L INPUT VOLTAGE RANGE* IVR V+ = 5 V, V– = 0 V 0/3.5 V VS = ± 15 V –15/13.5 V OUTPUT VOLTAGE SWING VO VS = ± 15 V   RL = 10 kΩ ± 13.5 ± 14 V RL = 2 kΩ ± 10.5 ± 11.8 V VOH V+ = 5 V, V– = 0 V     R = 2 kΩ 3.9 4.1 V L VOL V+ = 5 V, V– = 0 V RL = 10 kΩ 100 500 µV COMMON-MODE CMR V+ = 5 V, V– = 0 V, REJECTION 0 V < V < 3.5 V 80 100 dB CM     V = ± 15 V, S –15 V < VCM < 13.5 V 90 110 dB POWER SUPPLY REJECTION RATIO PSRR 5.6 17.8 µV/V SUPPLY CURRENT I V = ± 1.5 V 12 25 µA SY S VS = ± 15 V 16 30 µA NOTE *Guaranteed by CMR test. Rev. C | Page 4 of 13

OP90 ABSOLUTE MAXIMUM RATINGS1 Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±18 V Differential Input Voltage . . . .[(V–) – 20 V] to [(V+) + 20 V] Common-Mode Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[(V–) – 20 V] to [(V+) + 20 V] Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite Storage Temperature Range Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C P Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C Operating Temperature Range OP90G . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C Junction Temperature (T) .. . . . . . . . . . . . –65 °C to +150°C J Lead Temperature (Soldering 60 sec) . . . . . . . . . . . . . .300°C Package Type (cid:2) 2 (cid:2) Unit JA JC 8-Lead Plastic DIP (P) 103 43 °C/W 8-Lead SO (S) 158 43 °C/W NOTES 1Absolute Maximum Ratings apply to packaged parts, unless otherwise noted. 2(cid:2) is specified for worst-case mounting conditions; i.e., (cid:2) is specified for JA JA device in socket for CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily WARNING! accumulate on the human body and test equipment and can discharge without detection. Although the OP90 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. ESD SENSITIVE DEVICE REV. C –5–

OP90–Typical Performance Characteristics 100 1.6 4.2 VS = (cid:1)15V VS = (cid:1)15V (cid:2)INPUT OFFSET VOLTAGE – V 46280000 INPUT OFFSET CURRENT – nA101001......084642 INPUT BIAS CURRENT – nA34333.....40862 VS = (cid:1)15V 0 0.2 3.0 –75 –50 –25 0 25 50 75 100 125 –75 –50 –25 0 25 50 75 100 125 –75 –50 –25 0 25 50 75 100 125 TEMPERATURE – C TEMPERATURE – C TEMPERATURE – C TPC 1.Input Offset Voltage TPC 2.Input Offset Current TPC 3.Input Bias Current vs. Temperature vs. Temperature vs. Temperature 22 600 140 (cid:2)SUPPLY CURRENT – A 11121104806268 VVNSSO == L(cid:1)(cid:1)O11A5.5DVV OPEN-LOOP GAIN – V/mV354200000000 RL = 10k(cid:4) TTTAAA = == 1 282555CCC OPEN-LOOP GAIN – dB112806400000 GAIN TVRASL === 2(cid:1)1501(cid:3)05CkV(cid:4) 49105035 PHASE SHIFT – DEG 100 20 180 4 2 0 0 –75 –50 –25 0 25 50 75 100 125 0 5 10 15 20 25 30 0.1 1 10 100 1k 10k 100k TEMPERATURE – C SINGLE-SUPPLY VOLTAGE – V FREQUENCY – Hz TPC 4.Supply Current vs. TPC 5.Open-Loop Gain vs. TPC 6.Open-Loop Gain and Temperature Single-Supply Voltage Phase Shift vs. Frequency 60 6 16 TVAS == 2(cid:1)51(cid:3)5CV V 5 VTA+ == 255V,(cid:3) CV– = 0V 14 POSITIVE NEGATIVE B – P GAIN – d 40 GE SWING 4 WING – V1120 O 20 A 3 S 8 OSED-LO PUT VOLT 2 OUTPUT 6 L 0 T 4 C U O 1 2 TA = 25(cid:3)C VS = (cid:1)15V –20 0 0 10 100 1k 10k 100k 100 1k 10k 100k 100 1k 10k 100k FREQUENCY – Hz LOAD RESISTANCE – (cid:4) LOAD RESISTANCE – (cid:4) TPC 7.Closed-Loop Gain TPC 8.Output Voltage Swing TPC 9.Output Voltage Swing vs. Frequency vs. Load Resistance vs. Load Resistance –6– REV. C

OP90 120 140 1000 dB TA = 25(cid:3)C dB TVAS == 2(cid:1)51(cid:3)5CV (cid:1)Hz TVAS == 2(cid:1)51(cid:3)5CV REJECTION – 10800 PNOEGSIATTIVIVEE S SUUPPPPLLYY REJECTION – 112000 ENSITY – nV/ 100 POWER SUPPLY 6400 COMMON-MODE 8600 NOISE VOLTAGE D 10 20 40 1 1 10 100 1k 1 10 100 1k 0.1 1 10 100 1k FREQUENCY – Hz FREQUENCY – Hz FREQUENCY – Hz TPC 10.Power Supply Rejection TPC 11.Common-Mode Rejection TPC 12.Noise Voltage Density vs. Frequency vs. Frequency vs. Frequency 100 (cid:1)Hz TVAS == 2(cid:1)51(cid:3)5CV A/ p – TY 10 SI N E D E S OI N 1 T EN TA = 25(cid:3)C TA = 25(cid:3)C RR VS = (cid:1)15V VS = (cid:1)15V CU AV = +1 AV = +1 0.1 RL = 10k(cid:4) RL = 10k(cid:4) 0.1 1 10 100 1k CL = 500pF CL = 500pF FREQUENCY – Hz TPC 13.Current Noise Density TPC 14.Small-Signal Transient TPC 15.Large-Signal Transient vs. Frequency Response Response +18V APPLICATION INFORMATION Battery-Powered Applications The OP90 can be operated on a minimum supply voltage of 1.6 V, 2 7 or with dual supplies ±0.8 V, and draws only 14 pA of supply 6 OP90 current. In many battery-powered circuits, the OP90 can be 3 4 continuously operated for thousands of hours before requiring battery replacement, reducing equipment down time and operating cost. –18V High-performance portable equipment and instruments frequently Figure 2.Burn-In Circuit use lithium cells because of their long shelf-life, light weight, and high-energy density relative to older primary cells. Most lithium cells have a nominal output voltage of 3 V and are noted for a flat discharge characteristic. The low-supply voltage requirement of the OP90, combined with the flat discharge characteristic of the lithium cell, indicates that the OP90 can be operated over the entire useful life of the cell. Figure 1 shows the typical dis- charge characteristic of a 1Ah lithium cell powering an OP90 which, in turn, is driving full output swing into a 100 kΩ load. REV. C –7–

OP90 4 Single-Supply Output Voltage Range In single-supply operation, the OP90’s input and output ranges E include ground. This allows true “zero-in, zero-out” operation. XID 3 The output stage provides an active pull-down to around 0.8 V OV PHUR DILTAGE – 2 atob ogvroe ugnrodu ins dre. qBueilroewd ttoh ips ulellv ethl,e a o luotapdu rt edsoiswtann ctoe zoef ruop. to 1 MΩ ULVO In the region from ground to 0.8 V, the OP90 has voltage gain SL UM CEL equal to the data sheet specification. Output current source THI 1 capatibility is maintained over the entire voltage range includ- LI ing ground. 0 APPLICATIONS 0 1000 2000 3000 4000 5000 6000 7000 HOURS Battery-Powered Voltage Reference The circuit of Figure 6 is a battery-powered voltage reference Figure 3.Lithium Sulphur Dioxide Cell Discharge that draws only 17 µA of supply current. At this level, two AA Characteristic with OP90 and 100 kΩ Load cells can power this reference over 18 months. At an output voltage Input Voltage Protection of 1.23 V @ 25°C, drift of the reference is only at 5.5 µV/°C over The OP90 uses a PNP input stage with protection resistors in the industrial temperature range. Load regulation is 85 µV/mA series with the inverting and noninverting inputs. The high with line regulation at 120 µV/V. breakdown of the PNP transistors coupled with the protection Design of the reference is based on the bandgap technique. resistors provides a large amount of input protection, allowing Scaling of resistors R1 and R2 produces unequal currents in Q1 the inputs to be taken 20 V beyond either supply without dam- and Q2. The resulting V mismatch creates a temperature aging the amplifier. BE proportional voltage across R3 which, in turn, produces a larger Offset Nulling temperature-proportional voltage across R4 and R5. This volt- The offset null circuit of Figure 4 provides 6 mV of offset adjust- age appears at the output added to the V of Q1, which has an BE ment range. A 100 kΩ resistor placed in a series with the wiper opposite temperature coefficient. Adjusting the output to l.23 V of the offset null potentiometer, as shown in Figure 5, reduces at 25°C produces minimum drift over temperature. Bandgap the offset adjustment range to 400 µV and is recommended for references can have start-up problems. With no current in R1 applications requiring high null resolution. Offset nulling does not and R2, the OP90 is beyond its positive input range limit and affect TCVOS performance. has an undefined output state. Shorting Pin 5 (an offset adjust pin) to ground, forces the output high under these conditions TEST CIRCUITS and ensures reliable start-up without significantly degrading the OP90’s offset drift. V+ V+ 2 7 (2.5V TO 36V) 6 C1 R1 R2 3 OP90 4 1000pF 240k(cid:4) 1.5M(cid:4) 5 2 7 1 100k(cid:4) 3 OP90 5 6 (V1O.2U3TV @ 25(cid:3)C) 4 V– Figure 4.Offset Nulling Circuit 1 MAT-01AH 7 V+ 2 6 3 5 2 7 R3 6 3 OP90 4 68k(cid:4) 5 R4 1 100k(cid:4) 130k(cid:4) 100k(cid:4) 20kR(cid:4)5 OUTPUT ADJUST V– Figure 5.High Resolution Offset Nulling Circuit Figure 6.Battery-Powered Voltage Reference –8– REV. C

OP90 Single Op Amp Full-Wave Rectifier 2-WIRE 4 mA TO 20 mA CURRENT TRANSMITTER Figure 7 shows a full-wave rectifier circuit that provides the The current transmitter of Figure 9 provides an output of 4 mA absolute value of input signals up to ±2.5 V even though operated to 20 mA that is linearly proportional to the input voltage. from a single 5 V supply. For negative inputs, the amplifier acts Linearity of the transmitter exceeds 0.004% and line rejection is as a unity-gain inverter. Positive signals force the op amp output 0.0005%/volt. to ground. The 1N914 diode becomes reversed-biased and the Biasing for the current transmitter is provided by the REF-02EZ. signal passes through R1 and R2 to the output. Since output The OP90 regulates the output current to satisfy the current impedance is dependent on input polarity, load impedances summation at the noninverting node: cause an asymmetric output. For constant load impedances, this can be corrected by reducing R2. Varying or heavy loads can be 1 V R5 5V R5 buffered by a second OP90. Figure 8 shows the output of the IOUT = R6 INR2 + R1  full-wave rectifier with a 4 V , 10 Hz input signal. p-p For the values shown in Figure 9, R2 10k(cid:4) I = 16 V +4mA OUT 100Ω IN +5V giving a full-scale output of 20 mA with a 100 mV input. VIN R1 2 7 1N914 Adjustment of R2 will provide an offset trim and adjustment of 10k(cid:4) OP90 6 VOUT R1 will provide a gain trim. These trims do not interact since 3 the noninverting input of the OP90 is at virtual ground. The HP5082-2800 4 R3 Schottky diode, D1, prevents input voltage spikes from pulling 100k(cid:4) the noninverting input more than 300 mV below the inverting input. Without the diode, such spikes could cause phase reversal of Figure 7.Single Op Amp Full-Wave Rectifier the OP90 and possible latch-up of the transmitter. Compliance of this circuit is from 10 V to 40 V. The voltage reference output can provide up to 2 mA for transducer excitation. Figure 8.Output of Full-Wave Rectifier with 4 V , p-p 10 Hz Input +5V 6 2 V+ REFERENCE REF-02EZ (10V TO 40V) 2mA MAX 4 R1M1(cid:4) 2 7 OP90 6 2N1711 R2 3 + 5k(cid:4) 4 D1 VIN H50P82- R4.37k(cid:4) R1040k(cid:4) 2800 – R6 100(cid:4) R5 80k(cid:4) IOUT RL IOUT =1160V0(cid:4)IN+ 4mA Figure 9.2-Wire 4 mA to 20mA Transmitter REV. C –9–

OP90 Micropower Voltage-Controlled Oscillator tions. Nonlinearity is less than 0.1% for gains of 500 to 1000 Two OP90s in combination with an inexpensive quad CMOS over a 2.5 V output range. Resistors R3 and R4 set the voltage switch comprise the precision VCO of Figure 10. This circuit gain and, with the values shown, yield a gain of 1000. Gain provides triangle and square wave outputs and draws only 50 µA tempco of the instrumentation amplifier is only 50 ppm/°C. from a single 5 V supply. A1 acts as an integrator; S1 switches Offset voltage is under 150 µV with drift below 2 µV/°C. The the charging current symmetrically to yield positive and negative OP90’s input and output voltage ranges include the negative ramps. The integrator is bounded by A2 which acts as a Schmitt rail which allows the instrumentation amplifier to provide true trigger with a precise hysteresis of 1.67 V, set by resistors R5, “zero-in, zero-out” operation. R6, and R7, and associated CMOS switches. The resulting output of A1 is a triangular wave with upper and lower levels of 3.33 V +5V and 1.67 V. The output of A2 is a square wave with almost rail-to-rail swing. With the components shown, frequency of operation is given by the equation: 0.1(cid:2)F 2 7 –IN fOUT =VCONTROL(V)×10Hz/V OP90 56 R2 VOUT +IN 3 500k(cid:4) but this is easily changed by varying C1. The circuit operates 4 1 R4 GAIN well up to a few hundred hertz. 3.9M(cid:4) ADJUST R1 Micropower Single-Supply Instrumentation Amplifier 4.3M(cid:4) The simple instrumentation amplifier of Figure 11 provides over R1M3(cid:4) 110 dB of common-mode rejection and draws only 15 µA of supply current. Feedback is to the trim pins rather than to the inverting input. This enables a single amplifier to provide differ- Figure 11.Micropower Single-Supply Instrumentation ential to single-ended conversion with excellent common-mode Amplifier rejection. Distortion of the instrumentation amplifier is that of a differential pair, so the circuit is restricted to high gain applica- C1 +5V +5V 75nF R2050k(cid:4) +5V R1 2 7 VCONTROL 20R02k(cid:4) 3 OPA910 6 2 OP90 7 6 SQUARE 200k(cid:4) 4 3 A2 OUT 4 R3 R4 100k(cid:4) 200k(cid:4) TRIANGLE OUT R8 +5V 200k(cid:4) 1 IN/OUT CD4066 VDD 14 +5V R6 R7 200k(cid:4) 200k(cid:4) S1 2 OUT/IN CONT 13 3 OUT/IN CONT 12 S2 4 IN/OUT IN/OUT 11 5 CONT OUT/IN 10 S3 6 CONT OUT/IN 9 +5V S4 7 IN/OUT 8 VSS Figure 10.Micropower Voltage Controlled Oscillator –10– REV. C

OP90 Single-Supply Current Monitor V+ Current monitoring essentially consists of amplifying the voltage drop across a resistor placed in a series with the current to be + measured. The difficulty is that only small voltage drops can be TO CIRCUIT UNDER TEST tolerated and with low precision op amps this greatly limits the – 3 7 ohvaesr aa lrl erseosolulutitoionn o. fT 1h0e µsiAn galne dsu ips pclayp caubrlree notf mmoonniittoorr ionfg F 3ig0u mre A1 2of ITEST 2 OP90 5 64 VOUT = 100mV/mA (ITEST) current. This range can be adjusted by changing the current 1 R4 sense resistor R1. When measuring total system current, it may R1 10R02k(cid:4) 9.9k(cid:4) be necessary to include the supply current of the current moni- 1(cid:4) tor, which bypasses the current sense resistor, in the final result. This current can be measured and calibrated (together with the R5 R3 residual offset) by adjustment of the offset trim potentiometer, 100(cid:4) 100k(cid:4) R2. This produces a deliberate offset that is temperature dependent. However, the supply current of the OP90 is also proportional to temperature and the two effects tend to track. Figure 12.Single-Supply Current Monitor Current in R4 and R5, which also bypasses R1, can be accounted for by a gain trim. REV. C –11–

OP90 OUTLINE DIMENSIONS 0.400 (10.16) 0.365 (9.27) 0.355 (9.02) 8 5 0.280 (7.11) 0.250 (6.35) 1 4 0.240 (6.10) 0.325 (8.26) 0.310 (7.87) 0.100 (2.54) 0.300 (7.62) BSC 0.060 (1.52) 0.195 (4.95) 0.210 (5.33) MAX 0.130 (3.30) MAX 0.115 (2.92) 0.015 0.150 (3.81) (0.38) 0.015 (0.38) 0.130 (3.30) MIN GAUGE 0.115 (2.92) SEATING PLANE 0.014 (0.36) PLANE 0.010 (0.25) 0.022 (0.56) 0.008 (0.20) 0.005 (0.13) 0.430 (10.92) 0.018 (0.46) MIN MAX 0.014 (0.36) 0.070 (1.78) 0.060 (1.52) 0.045 (1.14) COMPLIANTTO JEDEC STANDARDS MS-001 CONTROLLING DIMENSIONSARE IN INCHES; MILLIMETER DIMENSIONS (RCINOEFRPENAREREREN NLCTEEHA EODSNSEL MSY)AAAYNR BDEE AR CROOEU NNNFODIGETUDAR-POEPFDRFOA INSPC RWHIAH ETOEQL UFEIO VORAR LU EHSNAETL ISFN FLDOEEARSDIGSN.. 070606-A Figure 1. 8-Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N-8) Dimensions shown in inches and (millimeters) 5.00(0.1968) 4.80(0.1890) 8 5 4.00(0.1574) 6.20(0.2441) 3.80(0.1497) 1 4 5.80(0.2284) 1.27(0.0500) 0.50(0.0196) BSC 1.75(0.0688) 0.25(0.0099) 45° 0.25(0.0098) 1.35(0.0532) 8° 0.10(0.0040) 0° COPLANARITY 0.51(0.0201) 0.10 SEATING 0.31(0.0122) 0.25(0.0098) 10..2470((00..00510507)) PLANE 0.17(0.0067) COMPLIANTTOJEDECSTANDARDSMS-012-AA C(RINEOFNPEATRRREOENNLCLTEIHNEOGSNDELISYM)AEANNRDSEIAORRNOESUNANORDETEDAIN-POMPFRIFLOLMPIMIRLELIATIMTEEERTFSEO;RIRNECUQHSUEDIVIINMAELDENENSSTIIOGSNNFS.OR 012407-A Figure 2. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) ORDERING GUIDE Model1 Temperature Range Package Description Package Option OP90GPZ −40°C to +85°C 8-Lead PDIP N-8 OP90GS −40°C to +85°C 8-Lead SOIC_N R-8 OP90GS-REEL −40°C to +85°C 8-Lead SOIC_N R-8 OP90GS-REEL7 −40°C to +85°C 8-Lead SOIC_N R-8 OP90GSZ −40°C to +85°C 8-Lead SOIC_N R-8 OP90GSZ-REEL −40°C to +85°C 8-Lead SOIC_N R-8 OP90GSZ-REEL7 −40°C to +85°C 8-Lead SOIC_N R-8 1 Z = RoHS Compliant Part. Rev. C | Page 12 of 13

OP90 REVISION HISTORY 12/11—Rev. B to Rev. C 9/01—Rev. 0 to Rev. A Deleted 8-Lead Hermetic DIP (Z-Suffix) Package Edits to Pin Connections ................................................................. 1 (Q-8) ..................................................................................... Universal Edits to Electrical Characteristics ......................................... 2, 3, 4 Changes to Electrical Characteristics ............................................ 2 Edits to Ordering Information ........................................................ 5 Changes to Electrical Characteristics ............................................ 4 Edits to Absolute Maximum Ratings .............................................. 5 Changes to Absolute Maximum Ratings ....................................... 5 Edits to Package Type ....................................................................... 5 Changes to Figure 7, 2-Wire 4 mA to 20 mA Current Deleted OP90 Dice Characteristics ................................................. 5 Transmitter Section, and Figure 9 .................................................. 9 Deleted Wafer Test Limits ................................................................ 5 Changes to Figure 10 and Figure 11............................................. 10 Changes to Figure 12 ...................................................................... 11 Updated Outline Dimensions ....................................................... 12 Changes to Ordering Guide .......................................................... 12 5/02—Rev. A to Rev. B Edits to 8-Lead SOIC Package (R-8) ............................................ 12 ©2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00321-0-12/11(C) Rev. C | Page 13 of 13