ICGOO在线商城 > 集成电路(IC) > 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 > OP490GSZ-REEL
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
OP490GSZ-REEL产品简介:
ICGOO电子元器件商城为您提供OP490GSZ-REEL由Analog设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 OP490GSZ-REEL价格参考。AnalogOP490GSZ-REEL封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 4 电路 16-SOIC。您可以下载OP490GSZ-REEL参考资料、Datasheet数据手册功能说明书,资料中有OP490GSZ-REEL 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
-3db带宽 | - |
产品目录 | 集成电路 (IC) |
描述 | IC OPAMP GP 20KHZ 16SOIC |
产品分类 | Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps |
品牌 | Analog Devices Inc |
数据手册 | |
产品图片 | |
产品型号 | OP490GSZ-REEL |
rohs | 无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | - |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30008http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26202 |
产品目录页面 | |
供应商器件封装 | 16-SOIC |
其它名称 | OP490GSZ-REELCT |
包装 | 剪切带 (CT) |
压摆率 | 0.012 V/µs |
增益带宽积 | 20kHz |
安装类型 | 表面贴装 |
封装/外壳 | 16-SOIC(0.295",7.50mm 宽) |
工作温度 | -40°C ~ 85°C |
放大器类型 | 通用 |
标准包装 | 1 |
电压-电源,单/双 (±) | 1.6 V ~ 36 V, ±0.8 V ~ 18 V |
电压-输入失调 | 600µV |
电流-电源 | 60µA |
电流-输入偏置 | 4.2nA |
电流-输出/通道 | - |
电路数 | 4 |
视频文件 | http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193153001 |
输出类型 | - |
Low Voltage, Micropower, Quad Operational Amplifier OP490 FEATURES FUNCTIONAL BLOCK DIAGRAMS Single/dual-supply operation OUT A 1 14 OUT D 1.6 V to 36 V –IN A 2 13 –IN D ±0.8 V to ±18 V +IN A 3 12 +IN D Single-supply operation; input and output V+ 4 OP490 11 V– voltage ranges include ground +IN B 5 10 +IN C –IN B 6 9 –IN C Low supply current: 80 μA maximum OUT B 7 8 OUT C HLoigwh o ofufsteptu vto dltraivgee: :5 1 m.0A m mVi mniamxuimmu m (NToOt Pto V SIEcWale) 00308-001 High open-loop gain: 800 V/mV typical Figure 1. 14-Lead Plastic DIP Industry-standard quad pinouts (P-Suffix) OUT A 1 16 OUT D –IN A 2 15 –IN D +IN A 3 14 +IN D V+ 4 OP490 13 V– +IN B 5 12 +IN C –IN B 6 11 –IN C OUT B 7 10 OUT C NC N8C (=NT oNOtO Pt o CV SOIEcNWaNleE)CT9 NC 00308-002 Figure 2. 16-Lead SOIC (S-Suffix) GENERAL DESCRIPTION The OP490 is a high performance micropower quad op amp 0.5 mV. Gain exceeds over 400,000 and CMR is better than that operates from a single supply of 1.6 V to 36 V or from dual 90 dB. A PSRR of under 5.6 μV/V minimizes offset voltage supplies of ±0.8 V to ±18 V. The input voltage range includes changes experienced in battery-powered systems. the negative rail allowing the OP490 to accommodate input The quad OP490 combines high performance with the space signals down to ground in single-supply operation. The output and cost savings of quad amplifiers. The minimal voltage and swing of the OP490 also includes ground when operating from current requirements of the OP490 make it ideal for battery and a single supply, enabling zero-in, zero-out operation. solar-powered applications, such as portable instruments and The quad OP490 draws less than 20 μA of quiescent supply remote sensors. current per amplifier, but each amplifier is able to deliver over 5 mA of output current to a load. Input offset voltage is under Rev. E Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 www.analog.com Trademarks and registered trademarks are the property of their respective owners. Fax: 781.461.3113 ©1987–2010 Analog Devices, Inc. All rights reserved.
OP490 TABLE OF CONTENTS Features .............................................................................................. 1 Battery-Powered Applications .....................................................9 Functional Block Diagrams ............................................................. 1 Single-Supply Output Voltage Range..........................................9 General Description ......................................................................... 1 Input Voltage Protection ........................................................... 10 Revision History ............................................................................... 2 Micropower Voltage-Controlled Oscillator ............................ 10 Specifications ..................................................................................... 3 Micropower Single-Supply Quad Voltage-Output 8-Bit DAC Electrical Characteristics ............................................................. 3 ....................................................................................................... 11 Absolute Maximum Ratings ............................................................ 5 High Output Amplifier .............................................................. 12 Thermal Resistance ...................................................................... 5 Single-Supply Micropower Quad Programmable Gain Amplifier ..................................................................................... 12 ESD Caution .................................................................................. 5 Outline Dimensions ....................................................................... 14 Typical Performance Characteristics ............................................. 6 Ordering Guide .......................................................................... 15 Applications Information ................................................................ 9 REVISION HISTORY 5/10—Rev. D to Rev. E Changes to Features Section............................................................ 1 Changes to Figure 24 ...................................................................... 12 7/09—Rev. C to Rev. D Deleted 14-Lead CERDIP (Y-Suffix) ............................... Universal Deleted Figure 1, Renumbered Figures Sequentially ................... 1 Changes to Table 1 ............................................................................ 3 Changes to Table 2 ............................................................................ 4 Changes to Figure 16 ........................................................................ 8 Updated Outline Dimensions ....................................................... 14 Changes to Ordering Guide .......................................................... 15 4/02—Rev. B to Rev. C Deleted 28-Pin LCC (TC-Suffix) Pin Connection Diagram ...... 1 Deleted Electrical Characteristics .................................................. 3 Edits to Absolute Maximum Ratings ............................................ 6 Edits to Ordering Guide ............................................................... 16 Rev. E | Page 2 of 16
OP490 SPECIFICATIONS ELECTRICAL CHARACTERISTICS @ V = ±1.5 V to ±15 V, T = 25°C, unless otherwise noted. S A Table 1. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Input Offset Voltage V 0.6 1.0 mV OS Input Offset Current I V = 0 V 0.4 5 nA OS CM Input Bias Current I V = 0 V 4.2 25 nA B CM Large Signal Voltage Gain A V = ±15 V, V = ±10 V VO S O R = 100 kΩ 400 800 V/mV L R = 10 kΩ 200 400 V/mV L R = 2 kΩ 100 200 V/mV L V+ = 5 V, V− = 0 V, 1 V < V < 4 V O R = 100 kΩ 100 250 V/mV L R = 10 kΩ 70 140 V/mV L Input Voltage Range1 IVR V+ = 5 V, V− = 0 V 0 4 V Common-Mode Rejection Ratio CMRR V+ = 5 V, V− = 0 V, 0 V < V < 4 V 80 100 dB CM V = ±15 V, −15 V < V < +13.5 V 90 120 dB S CM Input Resistance Differential Mode R V = ±15 V 30 MΩ IN S Input Resistance Common-Mode R V = ±15 V 20 GΩ INCM S OUTPUT CHARACTERISTICS Output Voltage Swing V V = ±15 V, R = 10 kΩ ±13.5 ±14.2 V OL S L V = ±15 V, R = 2 kΩ ±10.5 ±11.5 V S L Output Voltage High V V+ = 5 V, V− = 0 V, R = 2 kΩ 4.0 4.2 V OH L Output Voltage Low V V+ = 5 V, V− = 0 V, R = 10 kΩ 100 500 μV OL L Capacitive Load Stability A = 1 650 pF V DYNAMIC PERFORMANCE Slew Rate SR V = ±15 V 5 12 V/ms S Channel Separation2 CS f = 10 Hz, V = 20 V p-p, V = ±15 V 120 150 dB O O S Gain Bandwidth Product GBWP A = 1 20 kHz V POWER SUPPLY Power Supply Rejection Ratio PSRR 3.2 10 μV/V Supply Current (All Amplifiers) I V = ±1.5 V, no load 40 60 μA SY S V = ±15 V, no load 60 80 μA S NOISE PERFORMANCE Voltage Noise e p-p f = 0.1 Hz to 10 Hz, V = ±15 V 3 μV p-p n O S Voltage Noise Density e f = 1 kHz 60 nV/√Hz n Current Noise Density i f = 1 kHz 0.07 pA/√Hz n 1 Guaranteed by CMRR test. 2 Guaranteed but not 100% tested. Rev. E | Page 3 of 16
OP490 @ V = ±1.5 V to ±15 V, −40°C ≤ T ≤ +85°C S A Table 2. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Input Offset Voltage V 0.8 1.5 mV OS Average Input Offset Voltage Drift TCV V = ±15 V 4 μV/°C OS S Input Offset Current I V = 0 V 1.3 7 nA OS CM Input Bias Current I V = 0 V 4.4 25 nA B CM Large Signal Voltage Gain A V = ±15 V, V = ±10 V VO S O R = 100 kΩ 300 600 V/mV L R = 10 kΩ 150 250 V/mV L R = 2 kΩ 75 125 V/mV L V+ = 5 V, V− = 0 V, 1 V < V < 4 V O R = 100 kΩ 80 160 V/mV L R = 10 kΩ 40 90 V/mV L Input Voltage Range1 IVR V+ = 5 V, V− = 0 V 0.3 5 V −15 +13.5 V Common-Mode Rejection Ratio CMRR V+ = 5 V, V− = 0 V, 0 V < V < 3.5 V 80 100 dB CM V = ±15 V, −15 V < V < +13.5 V 90 110 dB S CM OUTPUT CHARACTERISTICS Output Voltage Swing V V = ±15 V ±13 ±14 V O S R = 2 kΩ ±10 ±11 V L Output Voltage High V V+ = 5 V, V− = 0 V, R = 2 kΩ 3.9 4.1 V OH L Output Voltage Low V V+ = 5 V, V− = 0 V, R = 10 kΩ 100 500 μV OL L POWER SUPPLY Power Supply Rejection Ratio PSRR 5.6 17.8 μV/V Supply Current (All Amplifiers) I V = ±1.5 V, no load 60 100 mA SY S V = ±15 V, no load 75 120 mA S 1 Guaranteed by CMRR test. V+ +IN OUTPUT –IN V– 00308-003 Figure 3. Simplified Schematic Rev. E | Page 4 of 16
OP490 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 3. θ is specified for worst-case mounting conditions, that is, θ is Parameter Rating JA JA specified for a device in socket for the PDIP package; θ is Supply Voltage ±18 V JA specified for a device soldered to a printed circuit board (PCB) Digital Input Voltage [(V−) − 20 V] to [(V+) + 20 V] for the SOIC package. Common-Mode Input Voltage [(V−) − 20 V] to [(V+) + 20 V] Output Short-Circuit Duration Continuous Table 4. Storage Temperature Range −65°C to +150°C Package Type θ θ Unit JA JC Operating Temperature Range −40°C to +85°C 14-Lead PDIP_N (S-Suffix) 76 33 °C/W Junction Temperature (T) Range −65°C to +150°C J 16-Lead SOIC_R (S-Suffix) 92 27 °C/W Lead Temperature (Soldering, 300°C 60 sec) Stresses above those listed under Absolute Maximum Ratings ESD CAUTION may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. E | Page 5 of 16
OP490 TYPICAL PERFORMANCE CHARACTERISTICS 0.4 90 VS = ±15V 80 A) A) m 0.3 µ INPUT OFFSET VOLTAGE ( 00..12 TOTAL SUPPLY CURRENT ( 47650000 VS = ±V1S5 V= ±1.5V 2–75 –50 –25 TEMP0ERATUR2E5 (°C) 50 75 125 00308-004 30–75 –50 –25 TEMP0ERATUR2E5 (°C) 50 75 125 00308-007 Figure 4. Input Offset Voltage vs. Temperature Figure 7. Total Supply Current vs. Temperature 1.6 600 1.4 VS = ±15V 500 TRAL == 2150°kCΩ A) 25°C T (n 1.2 mV) URREN 1.0 AIN (V/ 400 85°C T C P G 300 E O PUT OFFS 00..68 OPEN-LO 200 125°C N I 100 0.4 0.2–75 –50 –25 TEMP0ERATUR2E5 (°C) 50 75 12500308-005 00 5 SING10LE-SUPPL15Y VOLTAG20E (V) 25 3000308-008 Figure 5. Input Offset Current vs. Temperature Figure 8. Open-Loop Gain vs. Single-Supply Voltage 4.8 140 VS = ±15V VS = ±15V TA = 25°C 4.6 120 RL = 10kΩ A) RENT (n 4.4 AIN (dB) 10800 GAIN 405 egrees) R G D PUT BIAS CU 44..20 OPEN-LOOP 6400 PHASE 91035 HASE SHIFT ( N P I 3.8 20 180 3.6–75 –50 –25 TEMP0ERATUR2E5 (°C) 50 75 12500308-006 00.1 1 10FREQU1E0N0CY (Hz)1k 10k 100k 00308-009 Figure 6. Input Bias Current vs. Temperature Figure 9. Open-Loop Gain and Phase Shift vs. Frequency Rev. E | Page 6 of 16
OP490 60 120 VS = ±15V TA = 25°C TA = 25°C B) 100 NEGATIVE SUPPLY d B) 40 N ( N (d TIO GAI JEC 80 OOP 20 Y RE D-L PPL 60 POSITIVE SUPPLY E U S S CLO 0 WER O 40 P –2010 100 FREQUE1NkCY (Hz) 10k 100k00308-010 201 L1O0AD RESISTANCE (1Ω0)0 1k00308-013 Figure 10. Closed-Loop Gain vs. Frequency Figure 13. Power Supply Rejection vs. Frequency 6 140 V+ = 5V, V– = 0V VS = ±15V TA = 25°C TA = 25°C V) 5 dB) 120 G ( N ( N O WI 4 TI E S JEC 100 G E A 3 R UT VOLT 2 N-MODE 80 P O T M OU OM 60 1 C 0100 L1OkAD RESISTANCE (1Ω0)k 100k00308-011 400.1 1 FREQUE1N0CY (Hz) 100 1k00308-014 Figure 11. Output Voltage Swing vs. Load Resistance Figure 14. Common-Mode Rejection vs. Frequency 16 1k VS = ±15V VS = ±15V 14 TA = 25°C TA = 25°C Hz) 12 V/ WING (V) 10 POSITIVE ENSITY (n 100 S 8 D UT NEGATIVE SE OUTP 6 E NOI 10 G 4 A T L O 2 V 0100 L1OkAD RESISTANCE (1Ω0)k 100k00308-012 10.1 1 FREQUE1N0CY (Hz) 100 1k00308-015 Figure 12. Output Voltage Swing vs. Load Resistance Figure 15. Voltage Noise Density vs. Frequency Rev. E | Page 7 of 16
OP490 100 VS = ±15V VS = ±15V Hz) TA = 25°C TARAVL === 21150°kCΩ TY (pA/ 10 DIV) CL = 500pF SI V/ E DEN AGE (5 NOIS OLT T 1 V N E R R U C 0.10.1 1 FREQUE1N0CY (Hz) 100 1k00308-016 TIME (1ms/DIV) 00308-018 Figure 16. Current Noise Density vs. Frequency Figure 18. Large Signal Transient Response VS = ±15V TA = 25°C AV = 1 RL = 10kΩ V) CL = 500pF DI V/ m 0 2 E ( G A T L O V TIME (100µs/DIV) 00308-017 Figure 17. Small Signal Transient Response Rev. E | Page 8 of 16
OP490 APPLICATIONS INFORMATION –18V BATTERY-POWERED APPLICATIONS The OP490 can be operated on a minimum supply voltage of 1.6 V or with dual supplies of ±0.8 V drawing only 60 μA of 14 13 12 11 10 9 8 supply current. In many battery-powered circuits, the OP490 can be continuously operated for hundreds of hours before D C requiring battery replacement, thereby reducing equipment downtime and operating costs. High performance portable equipment and instruments A B frequently use lithium cells because of their long shelf life, light weight, and high energy density relative to older primary cells. 1 2 3 4 5 6 7 Most lithium cells have a nominal output voltage of 3 V and are noted for a flat discharge characteristic. The low supply current +G1N8DV 00308-019 rcehqauraircetmereisnttic o of ft hthee O liPth4i9u0m, c coemllb, iinndedic watietsh t thhaet ftlhaet dOiPsc4h9a0r gcea n Figure 19. Burn-In Circuit be operated over the entire useful life of the cell. Figure 21 shows the typical discharge characteristic of a 1 Ah lithium cell powering an OP490 with each amplifier, in turn, driving full +15V output swing into a 100 kΩ load. +15V 4 + V) 1/4 E ( OP490 + G A 1kΩ – A OPA37 V2 VOLT 3 – L L 100Ω 10kΩ CE –15V DE XI 2 –15V O DI R VIN + 1/4 PHU OP490 V1 UL 1 B S – 20V p-p @ 10Hz M- U HI T + CHANNEL SEPARATION = 20 log V2/V11000 LI 00 250 500 HO7U50RS 1000 1250 150000308-021 1/4 Figure 21. Lithium-Sulphur Dioxide Cell Discharge Characteristic with OP490 OP490 and 100 kΩ Loads C – SINGLE-SUPPLY OUTPUT VOLTAGE RANGE In single-supply operation the input and output ranges of the OP490 include ground. This allows true zero-in, zero-out + 1/4 operation. The output stage provides an active pull-down to OP490 around 0.8 V above ground. Below this level, a load resistance of up D – 00308-020 tIon 1th Me Ωre gtoio gnr ofruonmd igs rroeuqnuidr etdo t0o. 8p uVl,l tthhee OouPtp4u90t dhoaws nv otolt azgereo g. ain Figure 20. Channel Separation Test Circuit equal to the data sheet specification. Output current source capability is maintained over the entire voltage range including ground. Rev. E | Page 9 of 16
OP490 INPUT VOLTAGE PROTECTION charging current symmetrically to yield positive and negative ramps. The integrator is bounded by B, which acts as a Schmitt The OP490 uses a PNP input stage with protection resistors in trigger with a precise hysteresis of 1.67 V, set by Resistors R5, series with the inverting and noninverting inputs. The high R6, and R7, and the associated CMOS switches. The resulting breakdown of the PNP transistors coupled with the protection output of A is a triangle wave with upper and lower levels of resistors provides a large amount of input protection, allowing 3.33 V and 1.67 V. The output of B is a square wave with almost the inputs to be taken 20 V beyond either supply without rail-to-rail swing. With the components shown, frequency of damaging the amplifier. operation is given by the equation MICROPOWER VOLTAGE-CONTROLLED f = V (Volts) × 10 Hz/V OSCILLATOR OUT CONTROL but this is easily changed by varying C1. The circuit operates An OP490 in combination with an inexpensive quad CMOS well up to a few hundred hertz. switch comprise the precision V of Figure 22. This circuit CO provides triangle and square wave outputs and draws only 75 μA from a 5 V supply. A acts as an integrator; S1 switches the C1 75nF +15V +15V R1 200kΩ 2 – 4 200kRΩ5 VCONTROL OP14/490 1 6 – 20R02kΩ 3 + A 11 5 +OP1B4/490 7 SOQUUTARE R4 TRIANGLE R3 200kΩ OUT 100kΩ R8 200kΩ +5V IN/OUT 1 VDD 14 +5V 200kRΩ6 R2070kΩ S1 OUT/IN CONT 2 13 OUT/IN CONT S2 3 12 IN/OUT IN/OUT 4 11 CONT OUT/IN S3 5 10 CONT OUT/IN +5V 6 9 S4 IN/OUT 7 VSS 8 00308-022 Figure 22. Micropower Voltage Controlled Oscillator Rev. E | Page 10 of 16
OP490 MICROPOWER SINGLE-SUPPLY QUAD VOLTAGE- OUTPUT 8-BIT DAC The circuit shown in Figure 23 uses the DAC8408 CMOS quad 8-bit DAC, and the OP490 to form a single-supply quad voltage output DAC with a supply drain of only 140 μA. The DAC8408 is used in voltage switching mode and each DAC has an output resistance (≈10 kΩ) independent of the digital input code. The output amplifiers act as buffers to avoid loading the DACs. The 100 kΩ resistors ensure that the OP490 outputs swing below 0.8 V when required. +5V 4 2 – REFERENCE 4 IOUT1A OP14/490 1 VOUTA VOLTA1.G5VE DA1C/4 A VREFA 2 3 + A DAC8408 R1 100kΩ 11 5 IOUT2A/2B 6 – 1/4 DAC B OP490 7 VOUTB 1/4 VREFB 8 5 + B 6 IOUT1B DAC8408 R2 100kΩ 13 – 25 IOUT1C OP14/490 14 VOUTC DAC C 1/4 VREFC 27 12 + C DAC8408 R3 100kΩ 24 IOUT2C/2D 9 – 1/4 DAC D OP490 8 VOUTD VREFD 21 10 D 1/4 + 23 IOUT1D DAC8408 R4 100kΩ OP490 DAC DATA BUS PIN 9 (LSB) TO PIN 16 (MSB) 17 A/B 18 DIGITAL R/W DAC8408 CONTROL SIGNALS 19 DS1 20 DS2 DGND 28 00308-023 Figure 23. Micropower Single-Supply Quad Voltage Output 8-Bit DAC Rev. E | Page 11 of 16
OP490 R5 5kΩ +15V R2 R6 9kΩ 5kΩ R1 1kΩ 2 – 4 R3 R7 – 9 1/4 1 50Ω 50Ω 8 1/4 OP490 OP490 VIN 3 + A 11 C + 10 –15V 6 13 – – R4 R8 1/4 7 50Ω RL 50Ω 14 1/4 OP490 OP490 5 + B D + 12 00308-024 Figure 24. High Output Amplifier HIGH OUTPUT AMPLIFIER determines the ratio between the fixed DAC feedback resistor and the resistance of the DAC ladder seen by the op amp feed- The amplifier shown in Figure 24 is capable of driving 25 V p-p back loop. The gain of each amplifier is: into a 1 kΩ load. Design of the amplifier is based on a bridge configuration. A amplifies the input signal and drives the load V 256 OUT =− with the help of B. Amplifier C is a unity-gain inverter which V n IN drives the load with help from D. Gain of the high output where n equals the decimal equivalent of the 8-bit digital code amplifier with the component values shown is 10, but can easily present at the DAC. If the digital code present at the DAC be changed by varying R1 or R2. consists of all zeros, the feedback loop opens causing the op SINGLE-SUPPLY MICROPOWER QUAD amp output to saturate. The 10 MΩ resistors placed in parallel PROGRAMMABLE GAIN AMPLIFIER with the DAC feedback loop eliminate this problem with a very The combination of a quad OP490 and the DAC8408 quad 8-bit small reduction in gain accuracy. The 2.5 V reference biases the CMOS DAC creates a quad programmable-gain amplifier with amplifiers to the center of the linear region providing maximum a quiescent supply drain of only 140 μA. The digital code output swing. present at the DAC, which is easily set by a microprocessor, Rev. E | Page 12 of 16
OP490 C1 VDD 1 +5V 0.1µF VINA 3 RFBA VREFA 2 4 R1 2 DAC A IOUT1A 4 10MΩ – DAC1/84408 OP14/490 1 VOUTA 3 A + 11 IOUT2A/2B 5 C2 0.1µF VINB 7 RFBB VREFB 8 R2 DAC B 10MΩ 1/4 DAC8408 IOUT1B 6 6 – 1/4 OP490 7 VOUTB 5 B + C3 0.1µF VINC 25 RFBC VREFC 27 R3 DAC C IOUT1C 25 10MΩ 9 – DAC1/84408 OP14/490 8 VOUTC 10 C + IOUT2C/2D 24 C4 0.1µF VIND 22 RFBD VREFD 21 DAC D R4 10MΩ 1/4 IOUT1D 23 13 DAC8408 – 1/4 OP490 14 VOUTD 12 D + DAC DATA BUS PIN 9 (LSB) TO PIN 16 (MSB) OP490 17 A/B +2.5V DIGITAL 18 R/W DAC8408 REFERENCE CONTROL VOLTAGE SIGNALS 19 DS1 20 DS2 DGND 28 00308-025 Figure 25. Single-Supply Micropower Quad Programmable Gain Amplifier Rev. E | Page 13 of 16
OP490 OUTLINE DIMENSIONS 0.775 (19.69) 0.750 (19.05) 0.735 (18.67) 14 8 0.280 (7.11) 0.250 (6.35) 1 7 0.240 (6.10) 0.325 (8.26) 0.310 (7.87) 0.100 (2.54) 0.300 (7.62) BSC 0.060 (1.52) 0.195 (4.95) 0.210 (5.33) MAX 0.130 (3.30) MAX 0.115 (2.92) 0.015 0.150 (3.81) (0.38) 0.015 (0.38) 0.130 (3.30) MIN GAUGE 0.110 (2.79) SEATING PLANE 0.014 (0.36) PLANE 0.010 (0.25) 0.022 (0.56) 0.008 (0.20) 0.005 (0.13) 0.430 (10.92) 0.018 (0.46) MIN MAX 0.014 (0.36) 0.070 (1.78) 0.050 (1.27) 0.045 (1.14) COMPLIANTTO JEDEC STANDARDS MS-001 CONTROLLING DIMENSIONSARE IN INCHES; MILLIMETER DIMENSIONS (RCINEOFRPEANRREERENN LCTEEHA EODSNSEL MSY)AAAYNR BDEE AR CROOEU NNNFODIGETUDAR-POEPFDRFOA INSPC RWHIAH ETOEQL UFEIO VORAR LU EHSNAETL ISFN FLDOEEARSDIGSN.. 070606-A Figure 26. 14-Lead Plastic Dual In-Line Package [PDIP] Narrow Body P-Suffix (N-14) Dimensions shown in inches and (millimeters) 10.50 (0.4134) 10.10 (0.3976) 16 9 7.60 (0.2992) 7.40 (0.2913) 1 10.65 (0.4193) 8 10.00 (0.3937) 1.27 (0.0500) 0.75 (0.0295) BSC 2.65 (0.1043) 0.25 (0.0098) 45° 0.30 (0.0118) 2.35 (0.0925) 8° 0.10 (0.0039) 0° COPLANARITY 0.10 0.51 (0.0201) SPLEAATNIENG 0.33 (0.0130) 1.27 (0.0500) 0.31 (0.0122) 0.20 (0.0079) 0.40 (0.0157) COMPLIANTTO JEDEC STANDARDS MS-013-AA C(RINOEFNPEATRRREOENNLCLTEIHN EOGSN EDLSIYM)AEANNRDSEI AORRNOESU NANORDEET DAIN-PO MPFRIFLO LMPIIMRLELIATIMTEEER TFSEO; RIRN ECUQHSU EDI VIINMA LEDENENSSTIIOGSN NFS.OR 032707-B Figure 27. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body S-Suffix (RW-16) Dimensions shown in millimeters and (inches) Rev. E | Page 14 of 16
OP490 ORDERING GUIDE Model1 Temperature Range Package Description Package Option OP490GP −40°C to +85°C 14-Lead PDIP_N N-14 (P-Suffix) OP490GPZ −40°C to +85°C 14-Lead PDIP_N N-14 (P-Suffix) OP490GS −40°C to +85°C 16-Lead SOIC_W RW-16 (S-Suffix) OP490GSZ −40°C to +85°C 16-Lead SOIC_W RW-16 (S-Suffix) OP490GSZ-REEL −40°C to +85°C 16-Lead SOIC_W RW-16 (S-Suffix) 1 Z = RoHS Compliant Part. Rev. E | Page 15 of 16
OP490 NOTES ©1987–2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00308-0-5/10(E) Rev. E | Page 16 of 16
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: A nalog Devices Inc.: OP490GSZ-REEL OP490GPZ OP490GSZ