ICGOO在线商城 > 集成电路(IC) > 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 > OP400GS
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
OP400GS产品简介:
ICGOO电子元器件商城为您提供OP400GS由Analog设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 OP400GS价格参考¥18.75-¥43.16。AnalogOP400GS封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 4 电路 16-SOIC。您可以下载OP400GS参考资料、Datasheet数据手册功能说明书,资料中有OP400GS 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
-3db带宽 | - |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC OPAMP GP 500KHZ 16SOIC运算放大器 - 运放 Quad Low Offset-Pwr Mono 3nA Max |
产品分类 | Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC |
品牌 | Analog Devices |
产品手册 | |
产品图片 | |
rohs | 否不符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 放大器 IC,运算放大器 - 运放,Analog Devices OP400GS- |
数据手册 | |
产品型号 | OP400GS |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30008http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26202 |
产品种类 | 运算放大器 - 运放 |
供应商器件封装 | 16-SOIC W |
共模抑制比—最小值 | 110 dB |
关闭 | No Shutdown |
包装 | 管件 |
压摆率 | 0.15 V/µs |
双重电源电压 | +/- 5 V, +/- 9 V, +/- 12 V, +/- 15 V, +/- 18 V |
商标 | Analog Devices |
增益带宽生成 | 500 kHz |
增益带宽积 | 500kHz |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Tube |
封装/外壳 | 16-SOIC(0.295",7.50mm 宽) |
封装/箱体 | SOIC-16 |
工作温度 | 0°C ~ 70°C |
工作电源电压 | +/- 15 V |
工厂包装数量 | 47 |
技术 | Bipolar |
放大器类型 | General Purpose |
最大双重电源电压 | +/- 18 V |
最大工作温度 | + 70 C |
最小双重电源电压 | +/- 3 V |
最小工作温度 | 0 C |
标准包装 | 47 |
电压-电源,单/双 (±) | ±3 V ~ 18 V |
电压-输入失调 | 80µV |
电流-电源 | 600µA |
电流-输入偏置 | 750pA |
电流-输出/通道 | - |
电源电流 | 2.9 mA |
电路数 | 4 |
系列 | OP400 |
视频文件 | http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193153001http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193159001 |
转换速度 | 0.15 V/us |
输入偏压电流—最大 | 7 nA |
输入补偿电压 | 80 uV |
输出电流 | 5 mA |
输出类型 | - |
通道数量 | 4 Channel |
Quad Low Offset, Low Power Operational Amplifier Data Sheet OP400 FEATURES FUNCTIONAL BLOCK DIAGRAMS Low input offset voltage: 150 μV (maximum) OUTA 1 16 OUT D Low offset voltage drift over –55°C to +125°C: 1.2 μV/°C OUT A 1 14 OUT D –IN A 2 – + + – 15 –IN D (maximum) –IN A 2 – + + – 13 –IN D +IN A 3 14 +IN D Low supply current (per amplifier): 725 μA (maximum) +IN A 3 12 +IN D V+ 4 OP400 13 V– High open-loop gain: 5000 V/mV (minimum) V+ 4 OP400 11 V– +IN B 5 12 +IN C Input bias current: 3 nA (maximum) +IN B 5 10 +IN C –IN B 6 – + + – 11 –IN C LSAotvawabi llnaeob wilseiet ih nv ol daltireag gefoe cr admpe ancsiittiyv:e 1 l1o andVs/:√ 1H0z naFt 1ty kpHicza l O–UINT BB 67 – + + – 98 –OIUNT C C00304-001 OUTN CB 78NC = NO CONNEC1T90 ONCUT C00304-002 Figure 1. 14-Lead Ceramic Dual In-Line Figure 2. 16-Lead Standard Small Package [CERDIP] and 14-Lead Plastic Outline Package [SOIC_W] Dual In-Line Package [PDIP] GENERAL DESCRIPTION nulling. The OP400 conforms to the industry-standard quad pinout, which does not have null terminals. The OP400 is the first monolithic quad operational amplifier that features OP77-type performance. Precision performance is The OP400 features low power consumption, drawing less than not sacrificed with the OP400 to obtain the space and cost savings 725 μA per amplifier. The total current drawn by this quad offered by quad amplifiers. amplifier is less than that of a single OP07, yet the OP400 offers significant improvements over this industry-standard op amp. The OP400 features an extremely low input offset voltage of less Voltage noise density of the OP400 is a low 11 nV/√Hz at 10 Hz, than 150 μV with a drift of less than 1.2 μV/°C, guaranteed over half that of most competitive devices. the full military temperature range. Open-loop gain of the OP400 is more than 5 million into a 10 kΩ load, input bias current is The OP400 is an ideal choice for applications requiring multiple less than 3 nA, common-mode rejection (CMR) is more than precision operational amplifiers and where low power 120 dB, and power supply rejection ratio (PSRR) is less than consumption is critical. 1.8 μV/V. On-chip Zener zap trimming achieves the low input offset voltage of the OP400 and eliminates the need for offset V+ BIAS VOLTAGE LIMITING OUT NETWORK +IN –IN V– 00304-003 Figure 3. Simplified Schematic (One of Four Amplifiers Is Shown) Rev. I Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 ©2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. Technical Support www.analog.com
OP400 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Typical Performance Characteristics ..............................................6 Functional Block Diagrams ............................................................. 1 Applications Information .............................................................. 11 General Description ......................................................................... 1 Dual Low Power Instrumentation Amplifier ......................... 11 Revision History ............................................................................... 2 Bipolar Current Transmitter ..................................................... 12 Specifications ..................................................................................... 3 Differential Output Instrumentation Amplifier .................... 12 Electrical Characteristics ............................................................. 3 Multiple Output Tracking Voltage Reference ......................... 13 Absolute Maximum Ratings ............................................................ 5 Outline Dimensions ....................................................................... 14 Thermal Resistance ...................................................................... 5 Ordering Guide .......................................................................... 15 ESD Caution .................................................................................. 5 SMD Parts and Equivalents ...................................................... 15 REVISION HISTORY 5/2018—Rev. H to Rev. I 6/2003—Rev. B to Rev. C Changes to Figure 19 ........................................................................ 8 Edits to Specifications ....................................................................... 2 Changed Applications Section to Applications Information Section .............................................................................................. 11 10/2002—Rev. A to Rev. B Changes to Ordering Guide .......................................................... 15 Addition of Absolute Maximum Ratings ....................................... 5 Edits to Outline Dimensions......................................................... 12 1/2013—Rev. G to Rev. H Changes to Features Section and General Description Section ....... 1 4/2002—Rev. 0 to Rev. A Changes to Ordering Guide .......................................................... 15 Edits to Features................................................................................. 1 Edits to Ordering Information ........................................................ 1 2/2011—Rev. F to Rev. G Edits to Pin Connections .................................................................. 1 Added S Package to Storage Temperature Range in Table 4 ....... 5 Edits to General Descriptions ..................................................... 1, 2 Updated Outline Dimensions ....................................................... 15 Edits to Package Type ....................................................................... 2 12/2008—Rev. E to Rev. F Added New Figure 28, Renumbered Sequentially ..................... 10 Updated Outline Dimensions ....................................................... 15 1/2007—Rev. D to Rev. E Updated Format .................................................................. Universal Changes to Figure 1 and Figure 2 ................................................... 1 Removed Figure 4 ............................................................................. 4 Changes to Table 3 ............................................................................ 4 Changes to Figure 16 through Figure 19, Figure 21..................... 8 Changes to Figure 27 ........................................................................ 9 Changes to Figure 28 ...................................................................... 10 Changes to Figure 33 ...................................................................... 13 Updated Outline Dimensions ....................................................... 14 3/2006—Rev. C to Rev. D Updated Format .................................................................. Universal Deleted Wafer Test Limits Table ..................................................... 4 New Package Drawing: R-14 ......................................................... 15 Updated Outline Dimensions ....................................................... 15 Changes to Ordering Guide .......................................................... 16 Rev. I | Page 2 of 15
Data Sheet OP400 SPECIFICATIONS ELECTRICAL CHARACTERISTICS At V = ±15 V, T = +25°C, unless otherwise noted. S A Table 1. OP400A/E OP400F OP400G/H Parameter Symbol Conditions Min Typ Max Min Typ Max Min Typ Max Unit INPUT CHARACTERISTICS Input Offset Voltage V 40 150 60 230 80 300 μV OS Long-Term Input 0.1 0.1 0.1 μV/mo Voltage Stability Input Offset Current I V = 0 V 0.1 1.0 0.1 2.0 0.1 3.5 nA OS CM Input Bias Current I V = 0 V 0.75 3.0 0.75 6.0 0.75 7.0 nA B CM Input Noise Voltage e 0.1 Hz to 10 Hz 0.5 0.5 0.5 μV p-p n p-p Input Resistance R 10 10 10 MΩ IN Differential Mode Input Resistance R 200 200 200 GΩ INCM Common Mode Large Signal Voltage A V = ±10 V VO O Gain R = 10 kΩ 5000 12,000 3000 7000 3000 7000 V/mV L R = 2 kΩ 2000 3500 1500 3000 1500 3000 V/mV L Input Voltage Range1 IVR ±12 ±13 ±12 ±13 ±12 ±13 V Common-Mode CMR V = 12 V 120 140 115 140 110 135 dB CM Rejection Input Capacitance C 3.2 3.2 3.2 pF IN OUTPUT CHARACTERISTICS Output Voltage Swing V R = 10 kΩ ±12 ±12.6 ±12 ±12.6 ±12 ±12.6 V O L POWER SUPPLY Power Supply Rejection PSRR V = 3 V to 18 V 0.1 1.8 0.1 3.2 0.2 5.6 μV/V S Ratio Supply Current per I No load 600 725 600 725 600 725 μA SY Amplifier DYNAMIC PERFORMANCE Slew Rate SR 0.1 0.15 0.1 0.15 0.1 0.15 V/μs Gain Bandwidth GBWP A = 1 500 500 500 kHz V Product Channel Separation CS V = 20 V p-p, 123 135 123 135 123 135 dB O f = 10 Hz2 O Capacitive Load A = 1, 10 10 10 nF V Stability no oscillations NOISE PERFORMANCE Input Noise Voltage e f = 10 Hz3 22 36 22 36 22 nV/√Hz n O Density3 f = 1000 Hz3 11 18 11 18 11 nV/√Hz O Input Noise Current i 0.1 Hz to 10 Hz 15 15 15 pA p-p n p-p Input Noise Current i f = 10 Hz 0.6 0.6 0.6 pA/√Hz n O Density 1 Guaranteed by CMR test. 2 Guaranteed but not 100% tested. 3 Sample tested. Rev. I | Page 3 of 15
OP400 Data Sheet At V = ±15 V, −55°C ≤ T ≤ +125°C for OP400A, unless otherwise noted. S A Table 2. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Input Offset Voltage V 70 270 µV OS Average Input Offset Voltage Drift TCV 0.3 1.2 µV/°C OS Input Offset Current I V = 0 V 0.1 2.5 nA OS CM Input Bias Current I V = 0 V 1.3 5.0 nA B CM Large Signal Voltage Gain A V = ±10 V, R = 10 kΩ 3000 9000 V/mV VO O L R = 2 kΩ 1000 2300 L Input Voltage Range1 IVR ±12 ±12.5 V Common-Mode Rejection CMR V = ±12 V 115 130 dB CM OUTPUT CHARACTERISTICS Output Voltage Swing V R = 10 kΩ ±12 ±12.4 O L POWER SUPPLY Power Supply Rejection Ratio PSRR V = 3 V to 18 V 0.2 3.2 µV/V O Supply Current per Amplifier I No load 600 775 µA SY DYNAMIC PERFORMANCE Capacitive Load Stability A = 1, no oscillations 8 nF V 1 Guaranteed by CMR test. At V = ±15 V, −25°C ≤ T ≤ +85°C for OP400E/F, 0°C ≤ T ≤ 70°C for OP400G, −40°C ≤ T ≤ +85°C for OP400H, unless otherwise noted. S A A A Table 3. OP400E OP400F OP400G/H Parameter Symbol Conditions Min Typ Max Min Typ Max Min Typ Max Unit INPUT CHARACTERISTICS Input Offset Voltage V 60 220 80 350 110 400 µV OS Average Input Offset TCV 0.3 1.2 0.3 2.0 0.6 2.5 µV/°C OS Voltage Drift Input Offset Current I V = 0 V OS CM E, F, G grades 0.1 2.5 0.1 3.5 0.2 6.0 nA H grade 0.2 12.0 nA Input Bias Current I V = 0 V B CM E, F, G grades 0.9 5.0 0.9 10.0 1.0 12.0 nA H grade 1.0 20.0 nA Large-Signal Voltage Gain A V = 0 V VO CM R = 10 kΩ 3000 10,000 2000 5000 2000 5000 V/mV L R = 2 kΩ 1500 2700 1000 2000 1000 2000 V/mV L Input Voltage Range1 IVR ±12 ±12.5 ±12 ±12.5 ±12 ±12.5 V Common-Mode Rejection CMR V = ±12 V 115 135 110 135 105 130 dB CM OUTPUT CHARACTERISTICS Output Voltage Swing V R = 10 kΩ ±12 ±12.4 ±12 ±12.4 ±12 ±12.6 V O L R = 2 kΩ ±11 ±12 ±11 ±12 ±11 ±12.2 V L POWER SUPPLY Power Supply Rejection PSRR V = ±3 V to 0.15 3.2 0.15 5.6 0.3 10.0 µV/V S Ratio ±18 V Supply Current per I No load 600 775 600 775 600 775 µA SY Amplifier DYNAMIC PERFORMANCE Capacitive Load Stability No oscillations 10 10 10 nF 1 Guaranteed by CMR test. Rev. I | Page 4 of 15
Data Sheet OP400 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 4. Parameter Rating θ is specified for worst-case mounting conditions, that is, θ is JA JA Supply Voltage ±20 V specified for device in socket for CERDIP and PDIP packages; Differential Input Voltage ±30 V θJA is specified for device soldered to printed circuit board for Input Voltage Supply voltage SOIC package. Output Short-Circuit Duration Continuous Table 5. Thermal Resistance Storage Temperature Range Package Type θ θ Unit P, Y, S Packages −65°C to +150°C JA JC 14-Lead Ceramic DIP 94 10 °C/W Lead Temperature (Soldering 60 sec) 300°C 14-Lead Plastic DIP 76 33 °C/W Junction Temperature (T) Range −65°C to +150°C J 16-Lead SOIC 88 23 °C/W Operating Temperature Range OP400A −55°C to +125°C OP400E, OP400F −25°C to +85°C ESD CAUTION OP400G 0°C to 70°C OP400H −40°C to +85°C Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Absolute maximum ratings apply to both dice and packaged parts, unless otherwise noted. Rev. I | Page 5 of 15
OP400 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS 3 TA = 25°C 120 VS = ±15V VS = ±15V GE (μV) T (pA) 110 TA 2 EN L R O R V U SET ET C 100 OFF FFS E IN 1 UT O 90 G P N N A I H C 0 00304-004 80–75 –50 –25 0 25 50 75 100 12500304-007 0 1 2 3 4 5 TIME (Minutes) TEMPERATURE (°C) Figure 4. Warmup Drift Figure 7. Input Offset Current vs. Temperature 70 1.1 VS = ±15V 60 μV) A) 1.0 GE ( 50 T (n A N T E 0.9 L R O R ET V 40 S CU FFS BIA 0.8 O 30 T PUT NPU IN 20 I 0.7 10 00304-005 0.6 00304-008 –75 –50 –25 0 25 50 75 100 125 –15 –10 –5 0 5 10 15 TEMPERATURE (°C) COMMON-MODE VOLTAGE (V) Figure 5. Input Offset Voltage vs. Temperature Figure 8. Input Bias Current vs. Common-Mode Voltage 2.0 140 VS = ±15V TVAS == 2±515°CV 120 1.6 dB) T (nA) TION ( 100 N C E 1.2 E R J 80 R E U R C E PUT BIAS 0.8 MON-MOD 4600 N M I 0.4 O C 20 0 00304-006 0 00304-009 –75 –50 –25 0 25 50 75 100 125 1 10 100 1k 10k 100k TEMPERATURE (°C) FREQUENCY (Hz) Figure 6. Input Bias Current vs. Temperature Figure 9. Common-Mode Rejection vs. Frequency Rev. I | Page 6 of 15
Data Sheet OP400 100 2.5 FOUR AMPLIFIERS TA = 25°C AGE DENSITY (nV/ Hz) PPLY CURRENT (mA) 22..34 T U E VOL TAL S 2.2 S O OI T N 10 00304-010 2.1 00304-013 1 10 100 1k ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 ±18 ±20 FREQUENCY (Hz) SUPPLY VOLTAGE (V) Figure 10. Noise Voltage Density vs. Frequency Figure 13. Total Supply Current vs. Supply Voltage 1k 2.5 TA =25°C FOUR AMPLIFIERS VS = ±15V VS = ±15V NOISE DENSITY (fA/ Hz) 468000000 UPPLY CURRENT (mA) 22..34 NT L S 2.2 E A RR OT U 200 T C 0 00304-011 2.1 00304-014 1 10 100 1k –75 –50 –25 0 25 50 75 100 125 150 FREQUENCY (Hz) TEMPERATURE(°C) Figure 11. Current Noise Density vs. Frequency Figure 14. Total Supply Current vs. Temperature 140 120 B) NEGATIVE ON (d 100 SUPPLY TI C E EJ 80 R POSITIVE Y SUPPLY L P 60 P U S ER 40 W O P 0 2 4 6 8 1000304-012 2000.1 1 10 100 1k 10k 10000304-015k TIME (Seconds) FREQUENCY (Hz) Figure 12. 0.1 Hz to 10 Hz Noise Figure 15. Power Supply Rejection vs. Frequency Rev. I | Page 7 of 15
OP400 Data Sheet 144 VS= ±15V 80 TVAS == 2±51°5CV B) 142 d N ( AV = 1000 O 60 TI EJEC 140 dB) AV = 100 LY R AIN ( 40 P G UP 138 AV = 10 S 20 R E OW 136 AV= 1 P 0 134–75 –50 –25 0 25 50 75 100 125 15000304-016 1 10 100 1k 10k 100k 1M00304-019 TEMPERATURE (°C) FREQUENCY (Hz) Figure 16. Power Supply Rejection vs. Temperature Figure 19. Closed-Loop Gain vs. Frequency 5k 4k RVSL == 2 ±k1Ω5V ortion) 25 TVAS == 2±51°5CV st V) Di m % 20 N (V/ 3k AT 1 AI p P G V p- 15 OO G ( L 2k N N- WI 10 OPE UT S 1k P T 5 U 0–75 –50 –25 0 25 50 75 100 125 15000304-017 O 10 100 1k 10k 10000304-020k TEMPERATURE (°C) FREQUENCY (Hz) Figure 17. Open-Loop Gain vs. Temperature Figure 20. Maximum Output Swing Frequency TA = 25°C TA = 25°C 120 VS = ±15V 10 VS = ±15V 100 s) VOUT = 10V p-p PEN-LOOP GAIN (dB) 486000 GAIN PHASE 90405 PHASE SHIFT (Degree DISTORTION (%) 0.00.111 RL = 2kΩ AAAVVV === 111000 O 20 135 0.001 010 100 FR1EkQUENCY 1(H0kz) 100k 1M180 00304-018 100 FREQUE1NkCY (Hz) 10k000304-021 Figure 18. Open-Loop Gain and Phase Shift vs. Frequency Figure 21. Total Harmonic Distortion vs. Frequency Rev. I | Page 8 of 15
Data Sheet OP400 50 45 TA = 25°C TA = 25°C VS = ±15V VS = ±15V 40 AV = +1 FALLING AV = +1 35 %) T ( 30 O HO 25 RISING S R E 20 V O 15 10 05 000304-022 5V 100μs 00304-025 0 0.5 1.0 1.5 2.0 2.5 3.0 CAPACITIVE LOAD (nF) Figure 22. Overshoot vs. Capacitive Load Figure 25. Large Signal Transient Response TA = 25°C TA = 25°C A) 34 VS = ±15V VS = ±15V m AV = +1 T ( N E R UR 32 T C SINKING UI C R CI RT- 30 O H S SOURCING 280 1 2 3 4 500304-023 20mV 5μs 00304-026 TIME (Minutes) Figure 23. Short Circuit vs. Time Figure 26. Small Signal Transient Response 140 TA = 25°C TA = 25°C B) 130 VVSIN == ±2105VV p-p VASV == ±+115V d N ( O TI 120 A R A P E S L 110 E N N A H C 100 90 00304-024 20mV 5μs 00304-027 10 100 1k 10k 100k FREQUENCY (Hz) Figure 24. Channel Separation vs. Frequency Figure 27. Small Signal Transient Response, CLOAD = 1 nF Rev. I | Page 9 of 15
OP400 Data Sheet 10k mV) VDD – VOH E ( G A T L O N V 1k VOL – VSS O TI A R U T A S OP400 VSY = ±15V TA = 25°C 1000.001 0.01 OUTPUT 0C.1URRENT (mA)1 10 20 00304-035 Figure 28. Saturation Voltage vs. Output Current 100Ω 10kΩ – 1/4 – OP400 eOUT 1/4 – OP400 + TO SPECTRUM ANALYZER 1/4 – 1/4 OP400 + OP400 + + eOUT( n HV z )~=2 × en( n H V z )× 101 00304-028 Figure 29. Noise Test Schematic –18V 14 13 12 11 10 9 8 V– – – 4 3 + + + + 1 2 – – V+ 1 2 3 4 5 6 7 GND +18V 00304-029 Figure 30. Burn-In Circuit Rev. I | Page 10 of 15
Data Sheet OP400 APPLICATIONS INFORMATION The OP400 is inherently stable at all gains and is capable of Table 6. Gain Bandwidth driving large capacitive loads without oscillating. Nonetheless, Gain Bandwidth good supply decoupling is highly recommended. Proper supply 5 150 kHz decoupling reduces problems caused by supply line noise and 10 67 kHz improves the capacitive load-driving capability of the OP400. 100 7.5 kHz Total supply current can be reduced by connecting the inputs of 1000 500 Hz an unused amplifier to V−. This turns the amplifier off, lowering the total supply current. DUAL LOW POWER INSTRUMENTATION + + 1/4 VOUT AMPLIFIER VIN OP400A – + A dual instrumentation amplifier that consumes less than 33 mW 1/4 – OP400A of power per channel is shown in Figure 31. The linearity of the – instrumentation amplifier exceeds 16 bits in gains of 5 to 200 and is better than 14 bits in gains from 200 to 1000. Common-mode REFERENCE 5kΩ 5kΩ 20kΩ rejection ratio (CMRR) is above 115 dB (G = 1000). Offset voltage 20kΩ drift is typically 0.4 μV/°C over the military temperature range, which is comparable to the best monolithic instrumentation RG VOUT= 5 +40,000 VIN RG amplifiers. The bandwidth of the low power instrumentation amplifier is a function of gain and is shown in Table 6. + + 1/4 VOUT The output signal is specified with respect to the reference input, VIN OP400A – + which is normally connected to analog ground. The reference 1/4 – input can offset the output from −10 V to +10 V if required. OP400A – REFERENCE 5kΩ 5kΩ 20kΩ 20kΩ RG 00304-030 Figure 31. Dual Low Power Instrumentation Amplifier Rev. I | Page 11 of 15
OP400 Data Sheet BIPOLAR CURRENT TRANSMITTER DIFFERENTIAL OUTPUT INSTRUMENTATION AMPLIFIER In the circuit of Figure 32, which is an extension of the standard three op amp instrumentation amplifier, the output current is The output voltage swing of a single-ended instrumentation proportional to the differential input voltage. Maximum output amplifier is limited by the supplies, normally at ±15 V, to a current is ±5 mA, with voltage compliance equal to ±10 V when maximum of 24 V p-p. The differential output instrumentation using ±15 V supplies. Output impedance of the current transmitter amplifier shown in Figure 33 can provide an output voltage exceeds 3 MΩ, and linearity is better than 16 bits with gain set swing of 48 V p-p when operated with ±15 V supplies. The for a full-scale input of ±100 µV. extended output swing is due to the opposite polarity of the outputs. Both outputs swing 24 V p-p, but with opposite polarity, for a total output voltage swing of 48 V p-p. The reference input can set a common-mode output voltage over the range ±10 V. The PSRR of the amplifier is less than 1 µV/V with CMRR (G = 1000) better than 115 dB. Offset voltage drift is typically 0.4 µV/°C over the military temperature range. – + 1/4 25kΩ 25kΩ OP400E – – VOUT O 1P/4400E 200Ω IOUT 25kΩ 5mA + VIN RG 25kΩ – + 1/4 25kΩ 25kΩ 1/4 OP400E OP400E + + – IOUT–2V00INΩ 1–50R,0G00 00304-031 Figure 32. Bipolar Current Transmitter 22pF – + 1/4 25kΩ 25kΩ OP400A – + 25kΩ 1/4 OP400A VIN RG – 25kΩ 22pF – 1/4 25kΩ 25kΩ OP400A 22pF + + 25kΩ 22pF VIN = 50kΩ + RG VOUT RG 25kΩ VOUT – 1/4 OP400A REFERIENNPCUET + 00304-032 Figure 33. Differential Output Instrumentation Amplifier Rev. I | Page 12 of 15
Data Sheet OP400 MULTIPLE OUTPUT TRACKING VOLTAGE under 25 µV/mA. Line regulation is better than 15 µV/V, and REFERENCE output voltage drift is under 20 µV/°C. Output voltage noise from 0.1 Hz to 10 Hz is typically 75 µV p-p from the 10 V output Figure 34 shows a circuit that provides outputs of 10 V, 7.5 V, and proportionately less from the 7.5 V, 5 V, and 2.5 V outputs. 5 V, and 2.5 V for use as a system voltage reference. Maximum output current from each reference is 5 mA with load regulation 15V 10V 10kΩ 22kΩ 1N4002 + 1/4 OP400A 7.5V 1μF – 2 10kΩ REF 43 6 10kΩ 10kΩ 2.5V + REFERENCE 1/4 OP400A + 1/4 4 – OP400A 5V 10kΩ 2μF 10kΩ – 10kΩ + 1/4 OP400A 2.5V – 1μF 00304-033 Figure 34. Multiple Output Tracking Voltage Reference Rev. I | Page 13 of 15
OP400 Data Sheet OUTLINE DIMENSIONS 0.005 (0.13) MIN 0.098 (2.49) MAX 14 8 0.310 (7.87) 0.220 (5.59) 1 7 PIN 1 0.100 (2.54) BSC 0.320 (8.13) 0.290 (7.37) 0.785 (19.94) MAX 0.060 (1.52) 0.200 (5.08) 0.015 (0.38) MAX 0.150 0.200 (5.08) (3.81) 0.125 (3.18) MIN SEATING 0.015 (0.38) 0.023 (0.58) 0.070 (1.78) PLANE 15° 0.008 (0.20) 0.014 (0.36) 0.030 (0.76) 0° CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 35. 14-Lead Ceramic Dual In-Line Package [CERDIP] (Q-14) Dimensions shown in inches and (millimeters) 0.775 (19.69) 0.750 (19.05) 0.735 (18.67) 14 8 0.280 (7.11) 0.250 (6.35) 1 7 0.240 (6.10) 0.325 (8.26) 0.310 (7.87) 0.100 (2.54) 0.300 (7.62) BSC 0.060 (1.52) 0.195 (4.95) 0.210 (5.33) MAX 0.130 (3.30) MAX 0.115 (2.92) 0.015 0.150 (3.81) (0.38) 0.015 (0.38) 0.130 (3.30) MIN GAUGE 0.110 (2.79) SEATING PLANE 0.014 (0.36) PLANE 0.010 (0.25) 0.022 (0.56) 0.008 (0.20) 0.005 (0.13) 0.430 (10.92) 0.018 (0.46) MIN MAX 0.014 (0.36) 0.070 (1.78) 0.050 (1.27) 0.045 (1.14) COMPLIANTTO JEDEC STANDARDS MS-001 CONTROLLING DIMENSIONSARE IN INCHES; MILLIMETER DIMENSIONS (RCINOEFRPEANRREERENN LCTEEHA EODSNSEL MSY)AAAYNR BDEE AR CROOEU NNNFODIGETUDAR-POEPFDRFOA INSPC RWHIAH ETOEQL UFEIO VORAR LU EHSNAETL ISFN FLDOEEARSDIGSN.. 070606-A Figure 36. 14-Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N-14) Dimensions shown in inches and (millimeters) Rev. I | Page 14 of 15
Data Sheet OP400 10.50(0.4134) 10.10(0.3976) 16 9 7.60(0.2992) 7.40(0.2913) 1 8 10.65(0.4193) 10.00(0.3937) 1.27(0.0500) 0.75(0.0295) BSC 2.65(0.1043) 0.25(0.0098) 45° 0.30(0.0118) 2.35(0.0925) 8° 0.10(0.0039) 0° COPLANARITY 0.10 0.51(0.0201) SPELAATNIENG 0.33(0.0130) 1.27(0.0500) 0.31(0.0122) 0.20(0.0079) 0.40(0.0157) C(RINEOFNPEATRRREOENNLCLTEIHNCEOGOSNDMELISPYM)LAEAIANNRNDSETIAORTRNOOESUJNANEORDDETEEDAICN-POSMPFTRIFALONLMPIDMIRLAELIRATIMTDEEESRTFSMEO;SRIRN-0ECU1QH3SU-EADIVAIINMAELDENENSSTIIOGSNNFS.OR 03-27-2007-B Figure 37. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16) Dimensions shown in millimeters and (inches) ORDERING GUIDE Model1 Temperature Range Package Description Package Option OP400AY −55°C to +125°C 14-Lead CERDIP Q-14 OP400EY −25°C to +85°C 14-Lead CERDIP Q-14 OP400FY −25°C to +85°C 14-Lead CERDIP Q-14 OP400GPZ 0°C to +70°C 14-Lead PDIP N-14 OP400HPZ −40°C to +85°C 14-Lead PDIP N-14 OP400GS 0°C to +70°C 16-Lead SOIC_W RW-16 OP400GSZ 0°C to +70°C 16-Lead SOIC_W RW-16 OP400GSZ-REEL 0°C to +70°C 16-Lead SOIC_W RW-16 OP400HSZ −40°C to +85°C 16-Lead SOIC_W RW-16 OP400HSZ-REEL −40°C to +85°C 16-Lead SOIC_W RW-16 OP400GBC Die 1 Z = RoHS Compliant Part. SMD PARTS AND EQUIVALENTS SMD Part Number1 Analog Devices Equivalent 5962-8777101M3A OP400ATCMDA 5962-8777101MCA OP400AYMDA 1 For military processed devices, please refer to the standard microcircuit drawing (SMD) available at the Defense Supply Center Columbus website. ©2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00304-0-5/18(I) Rev. I | Page 15 of 15