图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: OP27GP
  • 制造商: Analog
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

OP27GP产品简介:

ICGOO电子元器件商城为您提供OP27GP由Analog设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 OP27GP价格参考¥21.28-¥27.83。AnalogOP27GP封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 1 电路 8-PDIP。您可以下载OP27GP参考资料、Datasheet数据手册功能说明书,资料中有OP27GP 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP GP 8MHZ 8DIP精密放大器 LOW-NOISE PREC IC 2.8V/uS

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Analog Devices

产品手册

点击此处下载产品Datasheet

产品图片

rohs

否不符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,精密放大器,Analog Devices OP27GP-

数据手册

点击此处下载产品Datasheet

产品型号

OP27GP

PCN过时产品

点击此处下载产品Datasheet

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30008http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26202

产品种类

精密放大器

供应商器件封装

8-PDIP

关闭

No

包装

管件

压摆率

2.8 V/µs

双重电源电压

4 V to 22 V

商标

Analog Devices

增益带宽生成

5 MHz

增益带宽积

8MHz

安装类型

通孔

安装风格

Through Hole

封装

Tube

封装/外壳

8-DIP(0.300",7.62mm)

封装/箱体

PDIP-8

工作温度

-40°C ~ 85°C

工作电源电压

+/- 22 V

工厂包装数量

50

放大器类型

通用

最大功率耗散

170 mW

最大双重电源电压

22 V

最大工作温度

+ 85 C

最小双重电源电压

4 V

最小工作温度

- 40 C

标准包装

50

电压-电源,单/双 (±)

±4 V ~ 18 V

电压-输入失调

30µV

电压增益dB

123.52 dB

电流-电源

-

电流-输入偏置

15nA

电流-输出/通道

-

电源电压-最大

+ 22 V

电源电压-最小

- 22 V

电源电流

4.67 mA

电源类型

Dual

电路数

1

系列

OP27

视频文件

http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193153001http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193159001

转换速度

1.7 V/us

输入电压范围—最大

- 11 V to + 11 V

输入补偿电压

100 uV

输出类型

No

通道数量

1 Channel

推荐商品

型号:TL974IPW

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:OPA2357AIDGSRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:EL5130IS-T13

品牌:Renesas Electronics America Inc.

产品名称:集成电路(IC)

获取报价

型号:MAX4414ESA+

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:LMC6462BIM/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LM6134AIMX

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MCP6062T-E/SN

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:AD8476ARMZ-RL

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
OP27GP 相关产品

OP213FSZ-REEL7

品牌:Analog Devices Inc.

价格:

OPA2337PA

品牌:Texas Instruments

价格:¥7.05-¥15.87

AD8039AR-REEL7

品牌:Analog Devices Inc.

价格:

LPV321IDBVRE4

品牌:Texas Instruments

价格:

TSC1031IDT

品牌:STMicroelectronics

价格:¥10.42-¥20.33

AD629BR-REEL7

品牌:Analog Devices Inc.

价格:

THS4120IDGKR

品牌:Texas Instruments

价格:

TLE2022CD

品牌:Texas Instruments

价格:¥10.50-¥21.44

PDF Datasheet 数据手册内容提取

Low Noise, Precision Operational Amplifier Data Sheet OP27 FEATURES PIN CONFIGURATIONS Low noise: 80 nV p-p (0.1 Hz to 10 Hz), 3 nV/√Hz BAL Low drift: 0.2 µV/°C BAL 1 OP27 V+ High speed: 2.8 V/µs slew rate, 8 MHz gain bandwidth Low V : 10 µV –IN 2 OUT OS CMRR: 126 dB at VCM of ±11 V +IN 3 NC High open-loop gain: 1.8 million Available in die form NC =4 NV–O (CCOANSEN)ECT 00317-001 GENERAL DESCRIPTION Figure 1. 8-Lead TO-99 (J-Suffix) The OP27 precision operational amplifier combines the low offset and drift of the OP07 with both high speed and low noise. VOS TRIM 1 OP27 8 VOS TRIM Offsets down to 25 µV and maximum drift of 0.6 µV/°C make –IN 2 7 V+ the OP27 ideal for precision instrumentation applications. Low +IN 3 6 OUT noise, e = 3.5 nV/√Hz, at 10 Hz, a low 1/f noise corner V– 4 5 NC frequenncy of 2.7 Hz, and high gain (1.8 million), allow accurate NC = NO CONNECT 00317-002 high-gain amplification of low-level signals. A gain bandwidth Figure 2. 8-Lead CERDIP – Glass Hermetic Seal (Z-Suffix), product of 8 MHz and a 2.8 V/µs slew rate provide excellent 8-Lead PDIP (P-Suffix), and 8-Lead SOIC (S-Suffix) dynamic accuracy in high speed, data-acquisition systems. A low input bias current of ±10 nA is achieved by use of a bias current cancellation circuit. Over the military temperature range, this circuit typically holds I and I to ±20 nA and 15 nA, B OS respectively. The output stage has good load driving capability. A guaranteed swing of ±10 V into 600 Ω and low output distortion make the OP27 an excellent choice for professional audio applications. (Continued on Page 3) FUNCTIONAL BLOCK DIAGRAM V+ R3 R4 C2 1 8 Q6 Q22 Q46 R11 VOS ADJ.. R21 R23 R24 C1 Q21 Q23 Q24 R9 Q20 Q19 Q1A Q1B Q2B Q2A R12 OUTPUT NONINIVNEPRUTTI N(+G) R5 C3 C4 Q3 INVERTING Q11 Q12 Q26 Q45 INPUT (–) Q27 Q28 1R1 AND R2 ARE PERMANENTLY ADJUSTED AT WAFER TEST FOR MINIMUM OFFSET VOLTAGE V– 00317-003 Figure 3. Rev. H Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 ©1981–2015 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. Technical Support www.analog.com

OP27 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Typical Performance Characteristics ..............................................8 General Description ......................................................................... 1 Applications Information .............................................................. 14 Pin Configurations ........................................................................... 1 Offset Voltage Adjustment ........................................................ 14 Functional Block Diagram .............................................................. 1 Noise Measurements .................................................................. 14 Revision History ............................................................................... 2 Unity-Gain Buffer Applications ............................................... 14 Specifications ..................................................................................... 4 Comments On Noise ................................................................. 15 Electrical Characteristics ............................................................. 4 Audio Applications .................................................................... 16 Typical Electrical Characteristics ............................................... 6 References .................................................................................... 18 Absolute Maximum Ratings ............................................................ 7 Outline Dimensions ....................................................................... 19 Thermal Resistance ...................................................................... 7 Ordering Guide .......................................................................... 21 ESD Caution .................................................................................. 7 REVISION HISTORY 10/15—Rev. G to Rev. H 1/03—Rev. B to Rev. C Changes to Features Section and General Description Section ..... 1 Edits to Pin Connections .................................................................. 1 Changes to Note 1, Ordering Guide ................................................. 21 Edits to General Description ........................................................... 1 Edits to Die Characteristics .............................................................. 5 3/15—Rev. F to Rev. G Edits to Absolute Maximum Ratings .............................................. 7 Changes to General Description Section ...................................... 3 Updated Outline Dimensions ....................................................... 16 Changes to Figure 31 ...................................................................... 12 Edits to Figure 8 .............................................................................. 14 Changes to Applications Information Section and Output Edits to Outline Dimensions......................................................... 16 Voltage Adjustment Section .......................................................... 14 Updated Outline Dimensions ....................................................... 19 9/01—Rev. 0 to Rev. A Changes to Ordering Guide .......................................................... 21 Edits to Ordering Information ........................................................ 1 Edits to Pin Connections .................................................................. 1 5/06—Rev. E to Rev. F Edits to Absolute Maximum Ratings .............................................. 2 Removed References to 745 .............................................. Universal Edits to Package Type ....................................................................... 2 Updated 741 to AD741 ...................................................... Universal Edits to Electrical Characteristics .............................................. 2, 3 Changes to Ordering Guide .......................................................... 20 Edits to Wafer Test Limits ................................................................ 4 Deleted Typical Electrical Characteristics...................................... 4 12/05—Rev. D to Rev. E Edits to Burn-In Circuit Figure ....................................................... 7 Edits to Figure 2 ................................................................................ 1 Edits to Application Information .................................................... 8 9/05—Rev. C to Rev. D Updated Format .................................................................. Universal Changes to Table 1 ............................................................................ 4 Removed Die Characteristics Figure ............................................. 5 Removed Wafer Test Limits Table .................................................. 5 Changes to Table 5 ............................................................................ 7 Changes to Comments on Noise Section .................................... 15 Changes to Ordering Guide .......................................................... 24 Rev. H | Page 2 of 21

Data Sheet OP27 GENERAL DESCRIPTION (Continued from Page 1) The OP27 provides excellent performance in low noise, high accuracy amplification of low level signals. Applications PSRR and CMRR exceed 120 dB. These characteristics, coupled include stable integrators, precision summing amplifiers, with long-term drift of 0.2 µV/month, allow the circuit designer precision voltage threshold detectors, comparators, and to achieve performance levels previously attained only by discrete professional audio circuits such as tape heads and microphone designs. preamplifiers. Low cost, high volume production of OP27 is achieved by using an on-chip Zener zap-trimming network. This reliable and stable offset trimming scheme has proven its effectiveness over many years of production history. Rev. H | Page 3 of 21

OP27 Data Sheet SPECIFICATIONS ELECTRICAL CHARACTERISTICS V = ±15 V, T = 25°C, unless otherwise noted. S A Table 1. OP27A/OP27E OP27G Parameter Symbol Test Conditions Min Typ Max Min Typ Max Unit INPUT OFFSET VOLTAGE1 V 10 25 30 100 µV OS LONG-TERM V STABILITY2, 3 V /Time 0.2 1.0 0.4 2.0 µV/M OS OS O INPUT OFFSET CURRENT I 7 35 12 75 nA OS INPUT BIAS CURRENT I ±10 ±40 ±15 ±80 nA B INPUT NOISE VOLTAGE3, 4 e 0.1 Hz to 10 Hz 0.08 0.18 0.09 0.25 µV p-p n p-p INPUT NOISE e f = 10 Hz 3.5 5.5 3.8 8.0 nV/√Hz n O Voltage Density3 f = 30 Hz 3.1 4.5 3.3 5.6 nV/√Hz O f = 1000 Hz 3.0 3.8 3.2 4.5 nV/√Hz O INPUT NOISE i f = 10 Hz 1.7 4.0 1.7 pA/√Hz n O Current Density3 f = 30 Hz 1.0 2.3 1.0 pA/√Hz O f = 1000 Hz 0.4 0.6 0.4 0.6 pA/√Hz O INPUT RESISTANCE Differential Mode5 R 1.3 6 0.7 4 MΩ IN Common Mode R 3 2 GΩ INCM INPUT VOLTAGE RANGE IVR ±11.0 ±12.3 ±11.0 ±12.3 V COMMON-MODE REJECTION RATIO CMRR V = ±11 V 114 126 100 120 dB CM POWER SUPPLY REJECTION RATIO PSRR V = ±4 V to ±18 V 1 10 2 20 µV/V S LARGE SIGNAL VOLTAGE GAIN A R ≥ 2 kΩ, V = ±10 V 1000 1800 700 1500 V/mV VO L O R ≥ 600 Ω, V = ±10 V 800 1500 600 1500 V/mV L O OUTPUT VOLTAGE SWING V R ≥ 2 kΩ ±12.0 ±13.8 ±11.5 ±13.5 V O L R ≥ 600 Ω ±10.0 ±11.5 ±10.0 ±11.5 V L SLEW RATE6 SR R ≥ 2 kΩ 1.7 2.8 1.7 2.8 V/µs L GAIN BANDWIDTH PRODUCT6 GBW 5.0 8.0 5.0 8.0 MHz OPEN-LOOP OUTPUT RESISTANCE R V = 0, I = 0 70 70 Ω O O O POWER CONSUMPTION P V 90 140 100 170 mW d O OFFSET ADJUSTMENT RANGE R = 10 kΩ ±4.0 ±4.0 mV P 1 Input offset voltage measurements are performed approximately 0.5 seconds after application of power. A/E grades guaranteed fully warmed up. 2 Long-term input offset voltage stability refers to the average trend line of VOS vs. time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in VOS during the first 30 days are typically 2.5 µV. Refer to the Typical Performance Characteristics section. 3 Sample tested. 4 See voltage noise test circuit (Figure 31). 5 Guaranteed by input bias current. 6 Guaranteed by design. Rev. H | Page 4 of 21

Data Sheet OP27 V = ±15 V, −55°C ≤ T ≤ 125°C, unless otherwise noted. S A Table 2. OP27A Parameter Symbol Test Conditions Min Typ Max Unit INPUT OFFSET VOLTAGE1 V 30 60 µV OS AVERAGE INPUT OFFSET DRIFT TCV 2 OS TCV 3 0.2 0.6 µV/°C OSn INPUT OFFSET CURRENT I 15 50 nA OS INPUT BIAS CURRENT IB ±20 ±60 nA INPUT VOLTAGE RANGE IVR ±10.3 ±11.5 V COMMON-MODE REJECTION RATIO CMRR V = ±10 V 108 122 dB CM POWER SUPPLY REJECTION RATIO PSRR V = ±4.5 V to ±18 V 2 16 µV/V S LARGE SIGNAL VOLTAGE GAIN A R ≥ 2 kΩ, V = ±10 V 600 1200 V/mV VO L O OUTPUT VOLTAGE SWING V R ≥ 2 kΩ ±11.5 ±13.5 V O L 1 Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power. A/E grades guaranteed fully warmed up. 2 The TCVOS performance is within the specifications unnulled or when nulled with RP = 8 kΩ to 20 kΩ. TCVOS is 100% tested for A/E grades, sample tested for G grades. 3 Guaranteed by design. V = ±15 V, −25°C ≤ T ≤ 85°C for OP27J and OP27Z and −40°C ≤ T ≤ 85°C for OP27GS, unless otherwise noted. S A A Table 3. OP27E OP27G Parameter Symbol Test Conditions Min Typ Max Min Typ Max Unit INPUT ONSET VOLTAGE V 20 50 55 220 µV OS AVERAGE INPUT OFFSET DRIFT TCV 1 0.2 0.6 0 4 1.8 µV/°C OS TCV 2 0.2 0.6 0 4 1.8 µV/°C OSn INPUT OFFSET CURRENT I 10 50 20 135 nA OS INPUT BIAS CURRENT I ±14 ±60 ±25 ±150 nA B INPUT VOLTAGE RANGE IVR ±10.5 ±11.8 ±10.5 ±11.8 V COMMON-MODE REJECTION RATIO CMRR V = ±10 V 110 124 96 118 dB CM POWER SUPPLY REJECTION RATIO PSRR V = ±4.5 V to ±18 V 2 15 2 32 µV/V S LARGE SIGNAL VOLTAGE GAIN A R ≥ 2 kΩ, V = ±10 V 750 1500 450 1000 V/mV VO L O OUTPUT VOLTAGE SWING V R ≥ 2 kΩ ±11.7 ±13.6 ±11.0 ±13.3 V O L 1 The TCVOS performance is within the specifications unnulled or when nulled with RP = 8 kΩ to 20 kΩ. TCVOS is 100% tested for A/E grades, sample tested for C/G grades. 2 Guaranteed by design. Rev. H | Page 5 of 21

OP27 Data Sheet TYPICAL ELECTRICAL CHARACTERISTICS V = ±15 V, T = 25°C unless otherwise noted. S A Table 4. Parameter Symbol Test Conditions OP27N Typical Unit AVERAGE INPUT OFFSET VOLTAGE DRIFT1 TCV or TCV Nulled or unnulled, R = 8 kΩ to 20 kΩ 0.2 µV/°C OS OSn P AVERAGE INPUT OFFSET CURRENT DRIFT TCI 80 pA/°C OS AVERAGE INPUT BIAS CURRENT DRIFT TCI 100 pA/°C B INPUT NOISE VOLTAGE DENSITY e f = 10 Hz 3.5 nV/√Hz n O f = 30 Hz 3.1 nV/√Hz O f = 1000 Hz 3.0 nV/√Hz O INPUT NOISE CURRENT DENSITY i f = 10 Hz 1.7 pA/√Hz n O f = 30 Hz 1.0 pA/√Hz O f = 1000 Hz 0.4 pA/√Hz O INPUT NOISE VOLTAGE SLEW RATE e 0.1 Hz to 10 Hz 0.08 µV p-p np-p SR R ≥ 2 kΩ 2.8 V/µs L GAIN BANDWIDTH PRODUCT GBW 8 MHz 1 Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power. Rev. H | Page 6 of 21

Data Sheet OP27 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 5. Parameter Rating θJA is specified for the worst-case conditions, that is, θJA is Supply Voltage ±22 V specified for device in socket for TO-99, CERDIP, and PDIP Input Voltage1 ±22 V packages; θJA is specified for device soldered to printed circuit Output Short-Circuit Duration Indefinite board for SOIC package. Differential Input Voltage2 ±0.7 V Absolute maximum ratings apply to both dice and packaged Differential Input Current2 ±25 mA parts, unless otherwise noted. Storage Temperature Range −65°C to +150°C Operating Temperature Range Table 6. OP27A (J, Z) −55°C to +125°C Package Type θJA θJC Unit OP27E (Z) −25°C to +85°C 8-Lead Metal Can (TO-99) (J) 150 18 °C/W OP27E (P) 0°C to 70°C 8-Lead CERDIP (Z) 148 16 °C/W OP27G (P, S, J, Z) −40°C to +85°C 8-Lead PDIP (P) 103 43 °C/W Lead Temperature Range (Soldering, 60 sec) 300°C 8-Lead SOIC_N (S) 158 43 °C/W Junction Temperature −65°C to +150°C 1 For supply voltages less than ±22 V, the absolute maximum input voltage is ESD CAUTION equal to the supply voltage. 2 The inputs of the OP27 are protected by back-to-back diodes. Current limiting resistors are not used in order to achieve low noise. If differential input voltage exceeds ±0.7 V, the input current should be limited to 25 mA. Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. H | Page 7 of 21

OP27 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS 100 10 TA = 25(cid:113)C VS =(cid:114)15V 90 V) 80 (cid:80) E ( 1 S B) 70 NOI N (d GE GAI 60 LTA O S V 0.1 50 M R TEST TIME OF 10sec FURTHER 40 LIMITS LOW FREQUENCY (<0.1Hz) GAIN 30 0.01 0.01 0.1 FREQUE1NCY (Hz) 10 10000317-004 100 1kBANDWIDTH (Hz)10k 100k00317-007 Figure 4. 0.1 Hz to 10 Hz p-p Noise Tester Frequency Response Figure 7. Input Wideband Voltage Noise vs. Bandwidth (0.1 Hz to Frequency Indicated) 10 100 98 TVAS == 2(cid:114)51(cid:113)5CV VTAS == 2(cid:114)51(cid:113)5CV RR21 7 6 RS– 2R1 GE NOISE (nV/Hz)(cid:151) 543 AL NOISE (nV/Hz)(cid:151) 10 TA I/F CORNER = 2.7Hz OT AT 10Hz OL 2 T V AT 1kHz RESISTOR NOISE ONLY 1 11 10FREQUENCY (Hz)100 1k00317-005 100 SOURCE RE1SkISTANCE ((cid:58)) 10k00317-008 Figure 5. Voltage Noise Density vs. Frequency Figure 8. Total Noise vs. Sourced Resistance 100 5 VS =(cid:114)15V 741 Hz) Hz) 4 (cid:151) (cid:151) AT 10Hz V/ V/ n n E ( I/F CORNER E ( S S OI 10 OI 3 GE N I/F CORNER = 2.7Hz LAOUWDI ON OOIPS EAMP GE N AT 1kHz A A LT OP27 I/F CORNER LT O O V V 2 INSTRUMENTATION AUDIO RANGE RANGE TO DC TO 20kHz 1 1 1 10FREQUENCY (Hz)100 1k00317-006 –50 –25 0 TEM2P5ERATUR50E ((cid:113)C) 75 100 12500317-009 Figure 6. A Comparison of Op Amp Voltage Noise Spectra Figure 9. Voltage Noise Density vs. Temperature Rev. H | Page 8 of 21

Data Sheet OP27 5 60 TA = 25(cid:113)C OP27C 50 40 OISE (nV/Hz)(cid:151) 43 AT 10Hz LTAGE (V)(cid:80) 3210000 OOPP2277AA GE N AT 1kHz T VO –10 OP27A A E –20 VOLT 2 OFFS –30 –40 TRIMMING WITH –50 10k(cid:58) POT DOES NOT CHANGE 10 TO1T0AL SUPPLY VO2L0TAGE, V+– V–3,0 (V) 4000317-010 ––6700–75TCV–5O0S –25 0 TEM25PERA50TURE7 5((cid:113)C)100 125OP2175C0 17500317-013 Figure 10. Voltage Noise Density vs. Supply Voltage Figure 13. Offset Voltage Drift of Five Representative Units vs. Temperature 10.0 6 4 V) 2 (cid:80) Hz)(cid:151) AGE ( –20 SE (pA/ T VOLT ––46 RRENT NOI 1.0 E IN OFFSE 642 U G C AN 0 H I/F CORNER = 140Hz C –2 –4 0.1 –6 10 100FREQUENCY (Hz)1k 10k00317-011 0 1 2 TIM3E (Mont4hs) 5 6 7 00317-014 Figure 11. Current Noise Density vs. Frequency Figure 14. Long-Term Offset Voltage Drift of Six Representative Units 5.0 TA= 25(cid:113)C V) VS= 15V (cid:80) GE ( 10 A) 4.0 LTA m O OP27 C/G RRENT ( 3.0 TA = +125(cid:113)C FFSET V OP27 F U O Y C UT 5 PL TA =–55(cid:113)C NP OP27 A/E UP N I S 2.0 E I G TA = +25(cid:113)C AN H C 1.05 15TOTAL SUPPL2Y5 VOLTAGE (V)35 4500317-012 10 1 TIME AF2TER POWER3 ON (Min) 4 500317-015 Figure 12. Supply Current vs. Supply Voltage Figure 15. Warm-Up Offset Voltage Drift Rev. H | Page 9 of 21

OP27 Data Sheet 30 130 VS =(cid:114)15V 110 25 TA = TA = 70(cid:113)C dB) 20 25(cid:113)C B) 90 GAIN ( AIN (d 70 LOOP 15 TSHHEORCMKAL AGE G 50 N- RESPONSE LT OPE 10 BAND VO 30 5 10 DEVICE IMMERSED IN 70(cid:113)C OIL BATH 0 –10 –20 0 20 TIME4 0(Sec) 60 80 10000317-016 1 10 100 1FkREQU1E0NkCY (1H0z0)k 1M 10M 100M00317-019 Figure 16. Offset Voltage Change Due to Thermal Shock Figure 19. Open-Loop Gain vs. Frequency s) 50 ee 10 VS=(cid:114)15V Degr 70 (cid:41)M T (nA) 40 E MARGIN ( 60 VS=(cid:114)15V 9 UCT (MHz) N S D E 30 A O RR PH 50 GBW PR S CU 4 8 DTH INPUT BIA 2100 OP27C RATE (V/S)(cid:80) 3 SLEW 7 AIN BANDWI W G OP27A E L S 2 0 6 –50 –25 0 TEM2P5ERAT5U0RE ((cid:113)C75) 100 125 15000317-017 –75 –50 –25 TE0MPERA25TURE (5(cid:113)0C) 75 100 125 00317-020 Figure 17. Input Bias Current vs. Temperature Figure 20. Slew Rate, Gain Bandwidth Product, Phase Margin vs. Temperature 50 VS=(cid:114)15V 25 TA = 25(cid:113)C 80 VS =(cid:114)15V 20 100 A) 40 n GAIN ENT ( 15 120 ees) URR 30 B) 10 MPAHRAGSIEN 140 Degr T OFFSET C 20 GAIN (d 5 = 70(cid:113) 160 ASE SHIFT ( PU OP27C 0 180 PH IN 10 –5 200 OP27A 0 –75 –50 –25 TE0MPERA25TURE (5(cid:113)0C) 75 100 12500317-018 –101M FREQU1E0NMCY (Hz) 100M220 00317-021 Figure 18. Input Offset Current vs. Temperature Figure 21. Gain, Phase Shift vs. Frequency Rev. H | Page 10 of 21

Data Sheet OP27 2.5 100 TA= 25(cid:113)C VS=(cid:114)15V VIN= 100mV AV= +1 2.0 80 V) AIN (V/(cid:80) 1.5 RL= 2k(cid:58) HOOT 60 P G RL= 1k(cid:58) RS O E N-LO 1.0 % OV 40 E P O 0.5 20 0 0 0 10 TOTAL 2S0UPPLY VOL3T0AGE (V) 40 5000317-022 0 500 CAP10A0C0ITIVE LO1A5D0 0(pF) 2000 250000317-025 Figure 22. Open-Loop Voltage Gain vs. Supply Voltage Figure 25. Small-Signal Overshoot vs. Capacitive Load 28 TA= 25°C VS= ±15V 24 20mV 500ns G N 20 WI UT S 16 50mV ACVL C=L 1 =5 p+F1 TP VS =(cid:114)15V OU TA = 25(cid:113)C M 12 MU 0V AXI 8 M 4 –50mV 0 1k 10k FREQU1E0N0kCY (Hz) 1M 10M00317-023 00317-026 Figure 23. Maximum Output Swing vs. Frequency Figure 26. Small-Signal Transient Response 18 16 14 POSITIVE SWING 2V 2(cid:80)s V) 12 T ( PU 10 NEGATIVE +5V AVCL = +1 UT SWING VS =(cid:114)15V M O 8 TA = 25(cid:113)C U M 6 MAXI 4 0V 2 0 TA= 25(cid:113)C VS=(cid:114)15V –5V –2 100 LOAD RES1ISkTANCE ((cid:58)) 10k00317-024 00317-027 Figure 24. Maximum Output Voltage vs. Load Resistance Figure 27. Large Signal Transient Response Rev. H | Page 11 of 21

OP27 Data Sheet 60 TA= 25(cid:113)C VS= 15V A) 50 m 0.1mF T ( N RRE 40 (cid:20)(cid:19)(cid:19)(cid:78)(cid:159) CU ISC(+) RCUIT 30 (cid:20)(cid:19)(cid:159) OD.PU2.T7. (cid:21)(cid:78)(cid:159) T-CI ISC(–) VOLTAGE 22mF R (cid:23)(cid:17)(cid:22)(cid:78)(cid:159) O GAIN AD8677 SH 20 = 50,000 SCOPE ´ 1 4.7mF (cid:20)(cid:19)(cid:19)(cid:78)(cid:159) RIN(cid:3)(cid:32)(cid:3)(cid:20)(cid:48)(cid:159) 100 TIME F1ROM OUTPU2T SHORTED3 TO GROUN4D (Min) 500317-028 (cid:21)(cid:23)(cid:17)(cid:22)(cid:78)0(cid:159).1mF 2.2mF (cid:20)(cid:20)(cid:19)(cid:78)(cid:159) 00317-031 Figure 28. Short-Circuit Current vs. Time Figure 31. Voltage Noise Test Circuit (0.1 Hz to 10 Hz) 140 2.4 VS=(cid:114)15V TA = 25(cid:113)C TA= 25(cid:113)C 2.2 VS =(cid:114)15V VCM=(cid:114)10V V) (cid:80) 2.0 V/ 120 N ( 1.8 AI G B) GE 1.6 d A R ( 100 LT 1.4 R O CM P V 1.2 O LO 1.0 80 PEN- 0.8 O 0.6 60100 1k FREQU1E0NkCY (Hz) 100k 1M00317-029 0.4100 L1OkAD RESISTANCE (1(cid:58)0)k 100k00317-032 Figure 29. CMRR vs. Frequency Figure 32. Open-Loop Voltage Gain vs. Load Resistance 16 TA =–55(cid:113)C 12 1 SEC/DIV TA = +25(cid:113)C 120 V) 8 GE ( TA = +125(cid:113)C 80 AN 4 nV) ODE R 0 OISE ( 40 ON-M –4 TA =–55(cid:113)C GE N 0 MM TA = +25(cid:113)C LTA –40 CO –8 VO –90 TA = +125(cid:113)C –12 –120 –16 0 (cid:114)5 SUPPLY V(cid:114)O10LTAGE (V) (cid:114)15 (cid:114)2000317-030 0.1Hz TO 10Hz p-p NOISE 00317-033 Figure 30. Common-Mode Input Range vs. Supply Voltage Figure 33. Low Frequency Noise Rev. H | Page 12 of 21

Data Sheet OP27 160 TA = 25(cid:113)C B) 140 d TIO ( 120 A R N O 100 TI NEGATIVE EC SWING J 80 E R Y L 60 PP POSITIVE R SU 40 SWING E W PO 20 0 1 10 100 1FkREQU1E0NkCY (1H0z0)k 1M 10M 100M00317-034 Figure 34. PSRR vs. Frequency Rev. H | Page 13 of 21

OP27 Data Sheet APPLICATIONS INFORMATION OP27 series units can be inserted directly into OP07 sockets NOISE MEASUREMENTS with or without removal of external compensation or nulling To measure the 80 nV p-p noise specification of the OP27 in components. OP27 offset voltage can be nulled to 0 (or another the 0.1 Hz to 10 Hz range, the following precautions must be desired setting) using a potentiometer (see Figure 35). observed: The OP27 provides stable operation with load capacitances of (cid:120) The device must be warmed up for at least five minutes. up to 2000 pF and ±10 V swings; larger capacitances should be As shown in the warm-up drift curve, the offset voltage decoupled with a 50 Ω resistor inside the feedback loop. The typically changes 4 µV due to increasing chip temperature OP27 is unity-gain stable. after power-up. In the 10-second measurement interval, Thermoelectric voltages generated by dissimilar metals at the these temperature-induced effects can exceed tens-of- input terminal contacts can degrade the drift performance. nanovolts. Best operation is obtained when both input contacts are (cid:120) For similar reasons, the device has to be well-shielded maintained at the same temperature. from air currents. Shielding minimizes thermocouple effects. 10k(cid:58) RP V+ (cid:120) Sudden motion in the vicinity of the device can also 1 feedthrough to increase the observed noise. –- 2 8 7 (cid:120) The test time to measure 0.1 Hz to 10 Hz noise should not OP27 6 OUTPUT exceed 10 seconds. As shown in the noise-tester frequency + 3 4 response curve, the 0.1 Hz corner is defined by only one V– 00317-035 ztoe reol.i mThinea ttees nt otiimsee c oofn 1tr0i bseuctioonndss f aroctms atsh ea nfr aedqduietniocnya bl aznedro below 0.1 Hz. Figure 35. Offset Nulling Circuit (cid:120) A noise voltage density test is recommended when OFFSET VOLTAGE ADJUSTMENT measuring noise on a large number of units. A 10 Hz noise The input offset voltage of the OP27 is trimmed at wafer level. voltage density measurement correlates well with a 0.1 Hz to However, if further adjustment of VOS is necessary, a 10 kΩ trim 10 Hz p-p noise reading, since both results are determined potentiometer can be used. TCVOS is not degraded (see Figure 35). by the white noise and the location of the 1/f corner Other potentiometer values from 1 kΩ to 1 MΩ can be used frequency. with a slight degradation (0.1 µV/°C to 0.2 µV/°C) of TCV . OS UNITY-GAIN BUFFER APPLICATIONS Trimming to a value other than zero creates a drift of approxi- mately (VOS/300) µV/°C. For example, the change in TCVOS is When Rf ≤ 100 Ω and the input is driven with a fast, large 0.33 µV/°C if V is adjusted to 100 µV. The offset voltage signal pulse (>1 V), the output waveform looks as shown in the OS adjustment range with a 10 kΩ potentiometer is ±4 mV. If smaller pulsed operation diagram (see Figure 37). adjustment range is required, the nulling sensitivity can be During the fast feedthrough-like portion of the output, the reduced by using a smaller potentiometer in conjunction with input protection diodes effectively short the output to the input, fixed resistors. For example, Figure 36 shows a network that has and a current, limited only by the output short-circuit protect- a ±280 µV adjustment range. ion, is drawn by the signal generator. With R ≥ 500 Ω, the output is f 1 4.7k(cid:58) 1k(cid:58) POTT 4.7k(cid:58) 8 capable of handling the current requirements (IL ≤ 20 mA at 10 V); V+ 00317-036 tohcec uarms.p lifier stays in its active mode and a smooth transition Figure 36. Offset Voltage Adjustment When R > 2 kΩ, a pole is created with R and the amplifier’s f f input capacitance (8 pF) that creates additional phase shift and reduces phase margin. A small capacitor (20 pF to 50 pF) in parallel with R eliminates this problem. f Rf – OP27 2.8V/(cid:80)s + 00317-037 Figure 37. Pulsed Operation Rev. H | Page 14 of 21

Data Sheet OP27 COMMENTS ON NOISE Figure 39 shows the 0.1 Hz to 10 Hz p-p noise. Here the picture is less favorable; resistor noise is negligible and current noise The OP27 is a very low noise, monolithic op amp. The out- becomes important because it is inversely proportional to the standing input voltage noise characteristics of the OP27 square root of frequency. The crossover with the OP07 occurs are achieved mainly by operating the input stage at a high in the 3 kΩ to 5 kΩ range depending on whether balanced or quiescent current. The input bias and offset currents, which unbalanced source resistors are used (at 3 kΩ the I and I would normally increase, are held to reasonable values by the B OS error also can be 3× the V spec). input bias current cancellation circuit. The OP27A/OP27E has OS I and I of only ±40 nA and 35 nA at 25°C respectively. This 1k B OS OP08/108 is particularly important when the input has a high source resistance. In addition, many audio amplifier designers prefer 500 5534 to use direct coupling. The high I , V , and TCV of previous B OS OS OP07 designs have made direct coupling difficult, if not impossible, V) 1 to use. E (n 2 S100 Voltage noise is inversely proportional to the square root of bias NOI current, but current noise is proportional to the square root of p-p 50 OP27/37 e . g1.RRSS U=NRMS1A T= C1H0kE(cid:58)D,RS2 = 0 bias current. The noise advantage of the OP27 disappears when 2RS MATCHED e.g.RS = 10k(cid:58),RS1 =RS2 = 5k(cid:58) high source resistors are used. Figure 38, Figure 39, Figure 40 RS1 compare the observed total noise of the OP27 with the noise REGISTER RS2 performance of other devices in different circuit applications. NOISE ONLY 10 (cid:170)(VoltageNoise)2 (cid:14) (cid:186)1/2 50 100 RS—5S0O0UR1CkE RESISTANC5Ek ((cid:58))10k 50k00317-039 (cid:171) (cid:187) TotalNoise(cid:32)(cid:171)(CurrentNoise(cid:117)RS)2 (cid:14)(cid:187) Figure 39. Peak-to-Peak Noise (0.1 Hz to 10 Hz) as Source Resistance (Includes Resistor Noise) (cid:171)(ResistorNoise)2 (cid:187) (cid:171)(cid:172) (cid:187)(cid:188) For low frequency applications, the OP07 is better than the Figure 38 shows noise vs. source resistance at 1000 Hz. The OP27/OP37 when RS > 3 kΩ. The only exception is when gain same plot applies to wideband noise. To use this plot, multiply error is important. the vertical scale by the square root of the bandwidth. Figure 40 illustrates the 10 Hz noise. As expected, the results are 100 between the previous two figures. 100 50 1 50 OP08/108 1 Hz) 2 V/(cid:151) 2 OP08/108 NOISE(n 10 OP07 (nV/Hz)(cid:151) OP07 TOTAL 5 OP552374/37 e e .. gg12..RRRRSSSS UM== NAR1RTM0SSkC1A1(cid:58) H=T, EC1RDH0SkE1(cid:58)D =,RRSS22 == 05k(cid:58) TOTALNOISE 105 5534 e . g12.RRRSSS UM=NARTMSC1A HT= EC1DH0kE(cid:58)D,RS2 = 0 RNEOGISISET OENRLY RS2 OP27/37 e.g.RS = 1R0Sk1(cid:58),RS1 =RS2 = 5k(cid:58) Figure 3185.0 Nois1e0 0vs. SourRcSe— R5eS0sO0isUtRa1CnkEc eR (EInScISluTAdiNnC5gEk R (e(cid:58)s)1is0tkor Noise) a5t0 1k000317-03800 Hz 150 100 RNEORGISSISE—T 5OSE0NO0RLUYR1CkE RESISTANC5Ek R((cid:58)S2)10k 50k00317-040 At R < 1 kΩ, the low voltage noise of the OP27 is maintained. Figure 40. 10 Hz Noise vs. Source Resistance (Includes Resistor Noise) S With R < 1 kΩ, total noise increases but is dominated by the Audio Applications S resistor noise rather than current or voltage noise. lt is only beyond R of 20 kΩ that current noise starts to dominate. The S argument can be made that current noise is not important for applications with low-to-moderate source resistances. The crossover between the OP27 and OP07 noise occurs in the 15 kΩ to 40 kΩ region. Rev. H | Page 15 of 21

OP27 Data Sheet For reference, typical source resistances of some signal sources C4 (2) R5 220µF are listed in Table 7. + + (cid:20)(cid:19)(cid:19)(cid:78)(cid:159) MOVING MAGNET LF ROLLOFF Table 7. CARTRIDGE INPUT C3 OUT IN Device SImouprecdea nce Comments R(cid:23)(cid:26)A(cid:17)(cid:24)(cid:78)(cid:159) 1C5A0pF 32OAP127 6 0.47µF R4 OUTPUT Strain Gauge <500 Ω Typically used in low frequency R1 C1 (cid:26)(cid:24)(cid:78)(cid:159) applications. (cid:28)(cid:26)(cid:17)(cid:25)(cid:78)(cid:159) 0.03µF Magnetic <1500 Ω Low is very important to reduce R2 C2 Tape Head self-magnetization problems (cid:26)(cid:17)(cid:27)(cid:26)(cid:78)(cid:159) 0.01µF when direct coupling is used. R3 OP27 IB can be neglected. (cid:20)(cid:19)(cid:19)(cid:159) Magnetic <1500 Ω Similar need for low I in direct B G = 1kHz GAIN PCharotnriodggreasp h nmcooautg pinnleetrdtoi zdaaputpicoelin ca apntryioo sbnelsle.f m-OPs.2 7 does == 908.1.60717 ( (13 9+. 9RR d 13 B ))AS SHOWN 00317-041 Figure 41. Phono Preamplifier Circuit Linear <1500 Ω Used in rugged servo-feedback Variable applications. Bandwidth of The OP27 brings a 3.2 nV/√Hz voltage noise and 0.45 pA/√Hz Differential interest is 400 Hz to 5 kHz. current noise to this circuit. To minimize noise from other Transformer sources, R3 is set to a value of 100 Ω, generating a voltage noise of 1.3 nV/√Hz. The noise increases the 3.2 nV/√Hz of the Table 8. Open-Loop Gain amplifier by only 0.7 dB. With a 1 kΩ source, the circuit noise Frequency OP07 OP27 OP37 measures 63 dB below a 1 mV reference level, unweighted, in a At 3 Hz 100 dB 124 dB 125 dB 20 kHz noise bandwidth. At 10 Hz 100 dB 120 dB 125 dB Gain (G) of the circuit at 1 kHz can be calculated by the At 30 Hz 90 dB 110 dB 124 dB expression: AUDIO APPLICATIONS R1 Figure 41 is an example of a phono pre-amplifier circuit using the G(cid:32)0.101(cid:168)(cid:169)(cid:167)1 (cid:14)R3(cid:184)(cid:185)(cid:183) OP27 for A1; R1-R2-C1-C2 form a very accurate RIAA network For the values shown, the gain is just under 100 (or 40 dB). with standard component values. The popular method to Lower gains can be accommodated by increasing R3, but gains accomplish RIAA phono equalization is to employ frequency higher than 40 dB show more equalization errors because of the dependent feedback around a high quality gain block. Properly 8 MHz gain bandwidth of the OP27. chosen, an RC network can provide the three necessary time constants of 3180 µs, 318 µs, and 75 µs. This circuit is capable of very low distortion over its entire range, generally below 0.01% at levels up to 7 V rms. At 3 V For initial equalization accuracy and stability, precision metal output levels, it produces less than 0.03% total harmonic film resistors and film capacitors of polystyrene or polypro- distortion at frequencies up to 20 kHz. pylene are recommended because they have low voltage coefficients, dissipation factors, and dielectric absorption. Capacitor C3 and Resistor R4 form a simple −6 dB per octave (High-k ceramic capacitors should be avoided here, though rumble filter, with a corner at 22 Hz. As an option, the switch low-k ceramics, such as NPO types that have excellent selected Shunt Capacitor C4, a nonpolarized electrolytic, dissipation factors and somewhat lower dielectric absorption, bypasses the low frequency roll-off. Placing the rumble filter’s can be considered for small values.) high-pass action after the preamplifier has the desirable result of discriminating against the RIAA-amplified low frequency noise components and pickup produced low frequency disturbances. A preamplifier for NAB tape playback is similar to an RIAA phono preamplifier, though more gain is typically demanded, along with equalization requiring a heavy low frequency boost. The circuit in Figure 41 can be readily modified for tape use, as shown by Figure 42. Rev. H | Page 16 of 21

Data Sheet OP27 + 0.47µF sources is about 6 nV/√Hz, equivalent to 0.9 µV in a 20 kHz OP27 noise bandwidth, or nearly 61 dB below a 1 mV input signal. HTEAAPDE RA CA – Measurements confirm this predicted performance. (cid:20)(cid:24)(cid:78)(cid:159) R1 (cid:22)(cid:22)(cid:78)(cid:159) R1 R3 C1 R6 (cid:20)(cid:78)(cid:159) (cid:22)(cid:20)(cid:25)(cid:78)(cid:159) 5mF (cid:20)(cid:19)(cid:19)(cid:159) R2 0.01µF (cid:24)(cid:78)(cid:159) – (cid:20)(cid:19)(cid:159) TT12 == 35018µ0sµs 00317-042 MIC(cid:11)L(cid:61)RO(cid:3)(cid:32)OW(cid:3)P(cid:24)(cid:19) HI(cid:159)MOPNTEE(cid:50)D (cid:3)IA(cid:21)N(cid:19)NP(cid:19)CU(cid:159)ET(cid:12) R(cid:22)(cid:19)P(cid:78)(cid:159) O+OPP2377/ R(cid:20)(cid:19)7(cid:78)(cid:159) OUTPUT Figure 42. Tape Head Preamplifier R2 R4 Wfrehqiulee nthcey tgaapine eaqbuoavlei z3a tkiHonz r(eTq2u =ir e5m0 eµnst) ,h tahse aa mflapt lhifiigehr need RR31=RR42 (cid:20)(cid:78)(cid:159) (cid:22)(cid:20)(cid:25)(cid:78)(cid:159) 00317-043 not be stabilized for unity gain. The decompensated OP37 Figure 43. Fixed Gain Transformerless Microphone Preamplifier provides a greater bandwidth and slew rate. For many applica- For applications demanding appreciably lower noise, a high tions, the idealized time constants shown can require trimming quality microphone transformer coupled preamplifier (Figure 44) of R1 and R2 to optimize frequency response for nonideal tape incorporates the internally compensated OP27. T1 is a JE- head performance and other factors (see the References section). 115K-E 150 Ω/15 kΩ transformer that provides an optimum The network values of the configuration yield a 50 dB gain at source resistance for the OP27 device. The circuit has an overall 1 kHz, and the dc gain is greater than 70 dB. Thus, the worst- gain of 40 dB, the product of the transformer’s voltage setup and case output offset is just over 500 mV. A single 0.47 µF output the op amp’s voltage gain. capacitor can block this level without affecting the dynamic C2 1800pF range. The tape head can be coupled directly to the amplifier input, R1 R2 (cid:20)(cid:21)(cid:20)(cid:159) 1(cid:20)(cid:19)(cid:19)(cid:159) because the worst-case bias current of 80 nA with a 400 mH, 100 µ inch head (such as the PRB2H7K) is not troublesome. 2 A1 Amplifier bias-current transients that can magnetize a head T11 OP27 6 OUTPUT present one potential tape head problem. The OP27 and OP37 3 are free of bias current transients upon power-up or power- (cid:20)(cid:24)(cid:19)(cid:159) R3 down. It is always advantageous to control the speed of power SOURCE (cid:20)(cid:19)(cid:19)(cid:159) 1T1 – JENSEN JE –115K – E supply rise and fall to eliminate transients. JENSENTRANSFORMERS 00317-044 In addition, the dc resistance of the head should be carefully Figure 44. High Quality Microphone Transformer Coupled Preamplifier controlled and preferably below 1 kΩ. For this configuration, Gain can be trimmed to other levels, if desired, by adjusting R2 the bias current induced offset voltage can be greater than the or R1. Because of the low offset voltage of the OP27, the output 100 pV maximum offset if the head resistance is not sufficiently offset of this circuit is very low, 1.7 mV or less, for a 40 dB gain. controlled. The typical output blocking capacitor can be eliminated in such A simple, but effective, fixed gain transformerless microphone cases, but it is desirable for higher gains to eliminate switching preamp (Figure 43) amplifies differential signals from low transients. impedance microphones by 50 dB and has an input impedance +18V of 2 kΩ. Because of the high working gain of the circuit, an OP37 helps to preserve bandwidth, which is 110 kHz. As the 8 OP37 is a decompensated device (minimum stable gain of 5), a 2 7 dummy resistor, Rp, may be necessary if the microphone is to be OP27 6 unplugged. Otherwise, the 100% feedback from the open input 3 4 can cause the amplifier to oscillate. Common-mode input noise rejection will depend upon the –18V 00317-045 match of the bridge-resistor ratios. Either close tolerance (0.1%) Figure 45. Burn-In Circuit types should be used, or R4 should be trimmed for best CMRR. Capacitor C2 and Resistor R2 form a 2 µs time constant in this All resistors should be metal film types for best stability and low circuit, as recommended for optimum transient response by the noise. transformer manufacturer. With C2 in use, A1 must have unity- Noise performance of this circuit is limited more by the Input gain stability. For situations where the 2 µs time constant is not Resistors R1 and R2 than by the op amp, as R1 and R2 each necessary, C2 can be deleted, allowing the faster OP37 to be generate a 4 nV/√Hz noise, while the op amp generates a employed. 3.2 nV/√Hz noise. The rms sum of these predominant noise Rev. H | Page 17 of 21

OP27 Data Sheet A 150 Ω resistor and R1 and R2 gain resistors connected to a REFERENCES noiseless amplifier generate 220 nV of noise in a 20 kHz 1. Lipshitz, S. R, “On RIAA Equalization Networks,” JAES, bandwidth, or 73 dB below a 1 mV reference level. Any practical Vol. 27, June 1979, p. 458–481. amplifier can only approach this noise level; it can never exceed 2. Jung, W. G., IC Op Amp Cookbook, 2nd. Ed., H. W. Sams it. With the OP27 and T1 specified, the additional noise and Company, 1980. degradation is close to 3.6 dB (or −69.5 referenced to 1 mV). 3. Jung, W. G., Audio IC Op Amp Applications, 2nd. Ed., H. W. Sams and Company, 1978. 4. Jung, W. G., and Marsh, R. M., “Picking Capacitors,” Audio, February and March, 1980. 5. Otala, M., “Feedback-Generated Phase Nonlinearity in Audio Amplifiers,” London AES Convention, March 1980, preprint 1976. 6. Stout, D. F., and Kaufman, M., Handbook of Operational Amplifier Circuit Design, New York, McGraw-Hill, 1976. Rev. H | Page 18 of 21

Data Sheet OP27 OUTLINE DIMENSIONS 0.400 (10.16) 0.365 (9.27) 0.355 (9.02) 8 5 0.280 (7.11) 0.250 (6.35) 1 4 0.240 (6.10) 0.325 (8.26) 0.310 (7.87) 0.100 (2.54) 0.300 (7.62) BSC 0.060 (1.52) 0.195 (4.95) 0.210 (5.33) MAX 0.130 (3.30) MAX 0.115 (2.92) 0.015 0.150 (3.81) (0.38) 0.015 (0.38) 0.130 (3.30) MIN GAUGE 0.115 (2.92) SEATING PLANE 0.014 (0.36) PLANE 0.010 (0.25) 0.022 (0.56) 0.008 (0.20) 0.005 (0.13) 0.430 (10.92) 0.018 (0.46) MIN MAX 0.014 (0.36) 0.070 (1.78) 0.060 (1.52) 0.045 (1.14) COMPLIANTTO JEDEC STANDARDS MS-001 CONTROLLING DIMENSIONSARE IN INCHES; MILLIMETER DIMENSIONS (RCINEOFRPEANRREERENN LCTEEHA EODSNSEL MSY)AAAYNR BDEE AR CROOEU NNNFODIGETUDAR-POEPFDRFOA INSPC RWHIAH ETOEQL UFEIO VORAR LU EHSNAETL ISFN FLDOEEARSDIGSN.. 070606-A Figure 46. 8-Lead Plastic Dual-in-Line Package [PDIP] (N-8) P-Suffix Dimensions shown in inches and (millimeters) 0.005 (0.13) 0.055 (1.40) MIN MAX 8 5 0.310 (7.87) 0.220 (5.59) 1 4 0.100 (2.54) BSC 0.405 (10.29) MAX 0.320 (8.13) 0.290 (7.37) 0.200 (5.08) 0.060 (1.52) MAX 0.015 (0.38) 0.200 (5.08) 0.150 (3.81) MIN 0.125 (3.18) 0.015 (0.38) 00..002134 ((00..5386)) 0.070 (1.78) SPELAANTIENG 1 05°° 0.008 (0.20) 0.030 (0.76) CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 47. 8-Lead Ceramic DIP – Glass Hermetic Seal [CERDIP] (Q-8) Z-Suffix Dimensions shown in inches and (millimeters) Rev. H | Page 19 of 21

OP27 Data Sheet 5.00(0.1968) 4.80(0.1890) 8 5 4.00(0.1574) 6.20(0.2441) 3.80(0.1497) 1 4 5.80(0.2284) 1.27(0.0500) 0.50(0.0196) BSC 1.75(0.0688) 0.25(0.0099) 45° 0.25(0.0098) 1.35(0.0532) 8° 0.10(0.0040) 0° COPLANARITY 0.51(0.0201) 0.10 SEATING 0.31(0.0122) 0.25(0.0098) 01..2407((00..00510570)) PLANE 0.17(0.0067) COMPLIANTTOJEDECSTANDARDSMS-012-AA R(CINEOFNPEATRRREOENNLCLTEIHNEOGSNDELISYM)AEANNRDSEIAORRNOESUNANORDETEDAIN-POMPFRIFLOLMPIMIRLELIATIMTEEERTFSEO;RIRNECUQHSUEDIVIINMAELDENENSSTIIOGSNNFS.OR 012407-A Figure 48. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) S-Suffix Dimensions shown in millimeters and (inches) REFERENCE PLANE 0.50(12.70) MIN 0.100 (2.54) 0.185 (4.70) 0.250 (6.35) MIN BSC 0.165 (4.19) 0.050 (1.27) MAX 0.160 (4.06) 0.140 (3.56) 5 0.370 (9.40) 0.021 (0.53) 4 6 0.335 (8.51) 0.016 (0.40) 0.20B0S (C5.08) 3 7 0.045 (1.14) 0.335 (8.51) 0.027 (0.69) 0.305 (7.75) 2 8 0.034 (0.86) 0.100 (2.54) 1 0.028 (0.71) 0.019 (0.48) BSC SIDE VIEW 0.016 (0.41) BOTTOM VIEW 0.040 (1.02) MAX 45° BSC 0.040 (1.02) 0.010 (0.25) BASE & SEATING PLANE COMPLIANTTO JEDEC STANDARDS MO-002-AK C(RINEOFNPEATRRREOENNLCLTEIHN EOGSN EDLSIYM)AEANNRDSEI AORRNOESU NANORDEET DAIN-PO IPFNRFCO HINPECRSHI;A METEQIL UFLIOIVMRAE LUTEESNRET ISDN I FMDOEERSNISGINO.NS 01-15-2015-B Figure 49. 8-Lead Metal Can [TO-99] (H-08) J-Suffix Dimensions shown in inches and (millimeters) Rev. H | Page 20 of 21

Data Sheet OP27 ORDERING GUIDE Model1 Temperature Range Package Description Package Option OP27AJ/883C −55°C to +125°C 8-Lead Metal Can (TO-99) J-Suffix (H-08) OP27GJZ −40°C to +85°C 8-Lead Metal Can (TO-99) J-Suffix (H-08) OP27AZ −55°C to +125°C 8-Lead CERDIP Z-Suffix (Q-8) OP27AZ/883C −55°C to +125°C 8-Lead CERDIP Z-Suffix (Q-8) OP27EZ −25°C to +85°C 8-Lead CERDIP Z-Suffix (Q-8) OP27GZ −40°C to +85°C 8-Lead CERDIP Z-Suffix (Q-8) OP27EPZ 0°C to +70°C 8-Lead PDIP P-Suffix (N-8) OP27GPZ −40°C to +85°C 8-Lead PDIP P-Suffix (N-8) OP27GS −40°C to +85°C 8-Lead SOIC_N S-Suffix (R-8) OP27GS-REEL7 −40°C to +85°C 8-Lead SOIC_N S-Suffix (R-8) OP27GSZ −40°C to +85°C 8-Lead SOIC_N S-Suffix (R-8) OP27GSZ-REEL −40°C to +85°C 8-Lead SOIC_N S-Suffix (R-8) OP27GSZ-REEL7 −40°C to +85°C 8-Lead SOIC_N S-Suffix (R-8) OP27NBC Die 1 The OP27GJZ, OP27EPZ, OP27GPZ, OP27GSZ, OP27GSZ-REEL, and OP27GSZ-REEL7 are RoHS compliant parts. ©1981–2015 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00317-0-10/15(H) Rev. H | Page 21 of 21