图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: OP177GPZ
  • 制造商: Analog
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

OP177GPZ产品简介:

ICGOO电子元器件商城为您提供OP177GPZ由Analog设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 OP177GPZ价格参考¥3.52-¥4.40。AnalogOP177GPZ封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 1 电路 8-PDIP。您可以下载OP177GPZ参考资料、Datasheet数据手册功能说明书,资料中有OP177GPZ 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP GP 600KHZ 8DIP精密放大器 ULTRA-PREC IC Low Supply Crnt 2mA

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Analog Devices

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,精密放大器,Analog Devices OP177GPZ-

数据手册

点击此处下载产品Datasheet

产品型号

OP177GPZ

PCN设计/规格

点击此处下载产品Datasheet

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30008http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26202

产品目录页面

点击此处下载产品Datasheet

产品种类

精密放大器

供应商器件封装

8-PDIP

关闭

No

包装

管件

压摆率

0.3 V/µs

双重电源电压

+/- 5 V, +/- 9 V, +/- 12 V, +/- 15 V

商标

Analog Devices

增益带宽生成

600 kHz

增益带宽积

600kHz

安装类型

通孔

安装风格

Through Hole

封装

Tube

封装/外壳

8-DIP(0.300",7.62mm)

封装/箱体

PDIP-8

工作温度

-40°C ~ 85°C

工厂包装数量

50

放大器类型

通用

最大功率耗散

500 mW

最大双重电源电压

+/- 18 V

最大工作温度

+ 85 C

最小双重电源电压

+/- 3 V

最小工作温度

- 40 C

标准包装

50

电压-电源,单/双 (±)

6 V ~ 36 V, ±3 V ~ 18 V

电压-输入失调

20µV

电压增益dB

135.56 dB

电流-电源

1.6mA

电流-输入偏置

1.2nA

电流-输出/通道

-

电源电压-最大

22 V

电源电流

1.6 mA

电源类型

Dual

电路数

1

系列

OP177

视频文件

http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193153001http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193159001

设计资源

点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet

转换速度

0.3 V/us

输入电压范围—最大

14 V

输入补偿电压

20 uV

输出类型

No

通道数量

1 Channel

推荐商品

型号:LMC6034IM/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:AD817AR

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:THS4062IDGNRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TL082AIPT

品牌:STMicroelectronics

产品名称:集成电路(IC)

获取报价

型号:PA83

品牌:Apex Microtechnology

产品名称:集成电路(IC)

获取报价

型号:LPV321M7X/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:OPA381AIDRBTG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LMV342IDGKRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
OP177GPZ 相关产品

OPA180IDBVT

品牌:Texas Instruments

价格:¥6.05-¥13.62

ICL7652CPD+

品牌:Maxim Integrated

价格:

TLC084AID

品牌:Texas Instruments

价格:¥8.89-¥18.14

EL5364IS

品牌:Renesas Electronics America Inc.

价格:

AD712KNZ

品牌:Analog Devices Inc.

价格:¥70.76-¥95.44

AD8039SRZ-EPR7

品牌:Analog Devices Inc.

价格:

AD8652ARZ-REEL

品牌:Analog Devices Inc.

价格:

AD8038ARZ-REEL7

品牌:Analog Devices Inc.

价格:¥8.48-¥8.48

PDF Datasheet 数据手册内容提取

Ultraprecision Operational Amplifier Data Sheet OP177 FEATURES PIN CONFIGURATION Ultralow offset voltage T = 25°C, 25 μV maximum VOS TRIM 1 OP177 8 VOS TRIM A –IN 2 7 V+ Outstanding offset voltage drift 0.3 μV/°C maximum +IN 3 6 OUT Excellent open-loop gain and gain linearity TOP VIEW CM1R2R V: /1μ3V0 t dyBp imcailn imum V– N4C (=N oNtO t oC SOcNaNleE)CT5 NC 00289-001 PSRR: 115 dB minimum Figure 1. 8-Lead PDIP (P-Suffix), 8-Lead SOIC (S-Suffix) Low supply current 2.0 mA maximum Fits industry-standard precision operational amplifier sockets GENERAL DESCRIPTION The OP177 features one of the highest precision performance of This low noise, bipolar input operational amplifier is also a cost any operational amplifier currently available. Offset voltage of the effective alternative to chopper-stabilized amplifiers. The OP177 OP177 is only 25 μV maximum at room temperature. The ultralow provides chopper-type performance without the usual problems V of the OP177 combines with the exceptional offset voltage of high noise, low frequency chopper spikes, large physical size, OS drift (TCV ) of 0.3 μV/°C maximum to eliminate the need for limited common-mode input voltage range, and bulky external OS external V adjustment and increases system accuracy over storage capacitors. OS temperature. The OP177 is offered in the −40°C to +85°C extended industrial The OP177 open-loop gain of 12 V/μV is maintained over the full temperature ranges. This product is available in 8-lead PDIP, as ±10 V output range. CMRR of 130 dB minimum, PSRR of 120 dB well as the space saving 8-lead SOIC. minimum, and maximum supply current of 2 mA are just a few examples of the excellent performance of this operational amplifier. The combination of outstanding specifications of the OP177 ensures accurate performance in high closed-loop gain applications. FUNCTIONAL BLOCK DIAGRAM V+ R2A* (OPTIONALNULL) R2B* C1 R7 R1A R1B 2B Q19 Q9 Q10 Q7 Q8 Q11 Q12 R9 Q5 Q3 Q6 Q4 OUTPUT NONINVERINTPINUGT R3 Q1 QQ2276 RC53 C2 Q17 Q16 R10 Q21 Q23 Q20 INVERINTPINUGT R4 Q22 Q24 Q2 Q25 Q15 Q14 Q18 Q13 R6 R8 V– *R2AANDR2BAREELECTRONICALLYADJUSTED ONCHIPATFACTORY. 00289-002 Figure 2. Simplified Schematic Rev. H Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 ©1995–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. Technical Support www.analog.com

OP177 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Applications Information .................................................................9 Pin Configuration ............................................................................. 1 Gain Linearity ................................................................................9 General Description ......................................................................... 1 Thermocouple Amplifier with Cold-Junction Compensation9 Functional Block Diagram .............................................................. 1 Precision High Gain Differential Amplifier ........................... 10 Revision History ............................................................................... 2 Isolating Large Capacitive Loads .............................................. 10 Specifications ..................................................................................... 3 Bilateral Current Source ............................................................ 10 Electrical Characteristics ............................................................. 3 Precision Absolute Value Amplifier ......................................... 10 Test Circuits ................................................................................... 4 Precision Positive Peak Detector .............................................. 12 Absolute Maximum Ratings ............................................................ 5 Precision Threshold Detector/Amplifier ................................ 12 Thermal Resistance ...................................................................... 5 Outline Dimensions ....................................................................... 13 ESD Caution .................................................................................. 5 Ordering Guide .......................................................................... 14 Typical Performance Characteristics ............................................. 6 REVISION HISTORY 4/16—Rev. G to Rev. H 4/06—Rev. C to Rev. D Changes to Figure 27 ........................................................................ 9 Change to Pin Configuration Caption ........................................... 1 Changes to Features .......................................................................... 1 9/12—Rev. F to Rev. G Change to Table 2 .............................................................................. 4 Changes to Features and General Description Section ............... 1 Change to Figure 2 ............................................................................ 4 Updated Outline Dimensions ....................................................... 13 Changes to Figure 10 and Figure 11 ............................................... 6 Changes to Ordering Guide .......................................................... 14 Changes to Figure 12 through Figure 17 ........................................ 7 Changes to Figure 18 through Figure 22 ........................................ 8 3/09—Rev. E to Rev. F Change to Figure 27 ....................................................................... 10 Added Figure 23, Renumbered Sequentially ................................ 8 Changes to Figure 30 and Figure 31 ............................................ 11 Updated Outline Dimensions ....................................................... 13 Updated Outline Dimensions ....................................................... 13 Changes to Ordering Guide .......................................................... 13 5/06—Rev. D to Rev. E Changes to Figure 1 .......................................................................... 1 1/05—Rev. B to Rev. C Change to Specifications Table 1 .................................................... 3 Edits to Features................................................................................. 1 Changes to Specifications Table 2................................................... 4 Edits to General Description ........................................................... 1 Changes to Table 3 ............................................................................ 5 Edits to Pin Connections .................................................................. 1 Changes to Figure 23 and Figure 24 ............................................... 9 Edits to Electrical Characteristics .............................................. 2, 3 Changes to Figure 32 ...................................................................... 12 Global deletion of references to OP177E ............................ 3, 4, 10 Updated the Ordering Guide ........................................................ 14 Edits to Absolute Maximum Ratings .............................................. 5 Edits to Package Type ....................................................................... 5 Edits to Ordering Guide ................................................................... 5 Edit to Outline Dimensions .......................................................... 11 11/95—Rev. 0: Initial Version Rev. H | Page 2 of 16

Data Sheet OP177 SPECIFICATIONS ELECTRICAL CHARACTERISTICS At V = ±15 V, T = 25°C, unless otherwise noted. S A Table 1. OP177F OP177G Parameter Symbol Test Conditions/Comments Min Typ Max Min Typ Max Unit INPUT OFFSET VOLTAGE V 10 25 20 60 μV OS LONG-TERM INPUT OFFSET1 Voltage Stability ΔV /time 0.3 0.4 μV/mo OS INPUT OFFSET CURRENT I 0.3 1.5 0.3 2.8 nA OS INPUT BIAS CURRENT I −0.2 +1.2 +2 −0.2 +1.2 +2.8 nA B INPUT NOISE VOLTAGE e f = 1 Hz to 100 Hz2 118 150 118 150 nV rms n O INPUT NOISE CURRENT i f = 1 Hz to 100 Hz2 3 8 3 8 pA rms n O INPUT RESISTANCE Differential Mode3 R 26 45 18.5 45 MΩ IN INPUT RESISTANCE COMMON MODE R 200 200 GΩ INCM INPUT VOLTAGE RANGE4 IVR ±13 ±14 ±13 ±14 V COMMON-MODE REJECTION RATIO CMRR V = ±13 V 130 140 115 140 dB CM POWER SUPPLY REJECTION RATIO PSRR V = ±3 V to ±18 V 115 125 110 120 dB S LARGE SIGNAL VOLTAGE GAIN A R ≥ 2 kΩ, V = ±10 V5 5000 12,000 2000 6000 V/mV VO L O OUTPUT VOLTAGE SWING V R ≥ 10 kΩ ±13.5 ±14.0 ±13.5 ±14.0 V O L R ≥ 2 kΩ ±12.5 ±13.0 ±12.5 ±13.0 V L R ≥ 1 kΩ ±12.0 ±12.5 ±12.0 ±12.5 V L SLEW RATE2 SR R ≥ 2 kΩ 0.1 0.3 0.1 0.3 V/μs L CLOSED-LOOP BANDWIDTH2 BW A = 1 0.4 0.6 0.4 0.6 MHz VCL OPEN-LOOP OUTPUT RESISTANCE R 60 60 Ω O POWER CONSUMPTION P V = ±15 V, no load 50 60 50 60 mW D S V = ±3 V, no load 3.5 4.5 3.5 4.5 mW S SUPPLY CURRENT I V = ±15 V, no load 1.6 2 1.6 2 mA SY S OFFSET ADJUSTMENT RANGE R = 20 kΩ ±3 ±3 mV P 1 Long-term input offset voltage stability refers to the averaged trend line of VOS vs. time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in VOS during the first 30 operating days are typically less than 2.0 μV. 2 Sample tested. 3 Guaranteed by design. 4 Guaranteed by CMRR test condition. 5 To ensure high open-loop gain throughout the ±10 V output range, AVO is tested at −10 V ≤ VO ≤ 0 V, 0 V ≤ VO ≤ +10 V, and –10 V ≤ VO ≤ +10 V. Rev. H | Page 3 of 16

OP177 Data Sheet At V = ±15 V, −40°C ≤ T ≤ +85°C, unless otherwise noted. S A Table 2. OP177F OP177G Parameter Symbol Test Conditions/Comments Min Typ Max Min Typ Max Unit INPUT Input Offset Voltage V 15 40 20 100 μV OS Average Input Offset Voltage Drift1 TCV 0.1 0.3 0.7 1.2 μV/°C OS Input Offset Current I 0.5 2.2 0.5 4.5 nA OS Average Input Offset Current Drift2 TCI 1.5 40 1.5 85 pA/°C OS Input Bias Current I −0.2 +2.4 +4 +2.4 ±6 nA B Average Input Bias Current Drift2 TCI 8 40 15 60 pA/°C B Input Voltage Range3 IVR ±13 ±13.5 ±13 ±13.5 V COMMON-MODE REJECTION RATIO CMRR V = ±13 V 120 140 110 140 dB CM POWER SUPPLY REJECTION RATIO PSRR V = ±3 V to ±18 V 110 120 106 115 dB S LARGE-SIGNAL VOLTAGE GAIN4 A R ≥ 2 kΩ, V = ±10 V 2000 6000 1000 4000 V/mV VO L O OUTPUT VOLTAGE SWING V R ≥ 2 kΩ ±12 ±13 ±12 ±13 V O L POWER CONSUMPTION P V = ±15 V, no load 60 75 60 75 mW D S SUPPLY CURRENT I V = ±15 V, no load 20 2.5 2 2.5 mA SY S 1 TCVOS is sample tested. 2 Guaranteed by endpoint limits. 3 Guaranteed by CMRR test condition. 4 To ensure high open-loop gain throughout the ±10 V output range, AVO is tested at −10 V ≤ VO ≤ 0 V, 0 V ≤ VO ≤ +10 V, and −10 V ≤ VO ≤ +10 V. TEST CIRCUITS 200kΩ 50Ω – OP177 VO + VOS =4V00O0 00289-003 Figure 3. Typical Offset Voltage Test Circuit 20kΩ V+ – – INPUT OP177 OUTPUT + + V– VTYOPS ITCRAILML YR A±3N.G0mE VIS 00289-004 Figure 4. Optional Offset Nulling Circuit 20kΩ +20V – OP177 + PINOUTS SHOWN FOR P AND Z PACKAGES –20V 00289-005 Figure 5. Burn-In Circuit Rev. H | Page 4 of 16

Data Sheet OP177 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 3. Parameter Ratings θ is specified for worst-case mounting conditions, that is, θ is JA JA Supply Voltage ±22 V specified for device in socket for PDIP; θJA is specified for Internal Power Dissipation1 500 mW device soldered to printed circuit board for SOIC package. Differential Input Voltage ±30 V Table 4. Thermal Resistance Input Voltage ±22 V Package Type θ θ Unit Output Short-Circuit Duration Indefinite JA JC 8-Lead PDIP (P-Suffix) 103 43 °C/W Storage Temperature Range −65°C to +125°C 8-Lead SOIC (S-Suffix) 158 43 °C/W Operating Temperature Range −40°C to +85°C Lead Temperature (Soldering, 60 sec) 300°C ESD CAUTION DICE Junction Temperature (T) −65°C to +150°C J 1 For supply voltages less than ±22 V, the absolute maximum input voltage is equal to the supply voltage. Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. H | Page 5 of 16

OP177 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS 2 20 TA = 25°C VS = ±15V VS = ±15V INPUT VOLTAGE (µV)ULLEDTO 0mV @ V = 0V)OUT–110 RL = 10kΩ ABSOLUTE CHANGE INNPUT OFFSET VOLTAGE (µV)23345050 D70E°V OICILE BIMATMHE R(2S0E UDN IINTS) N I ( 45 –2 00289-006 50 00289-009 –10 –5 0 5 10 0 10 20 30 40 50 60 70 OUTPUT VOLTAGE (V) TIME (Seconds) Figure 6. Gain Linearity (Input Voltage vs. Output Voltage) Figure 9. Offset Voltage Change Due to Thermal Shock 100 25 TA = 25°C VS = ±15V W) 20 m V) TION ( N (V/µ15 MP GAI NSU10 OP R CO N-LO10 OWE OPE P 5 1 00289-007 0 00289-010 0 10 20 30 40 –55 –35 –15 5 25 45 65 85 105 125 TOTAL SUPPLY VOLTAGE, V+TO V– (V) TEMPERATURE (°C) Figure 7. Power Consumption vs. Power Supply Figure 10. Open-Loop Gain vs. Temperature 5 16 4 TA = 25°C RL = 2kΩ 3 2 LLOOTT AB µV)12 LOT C V/ 1 LOT D N ( V) AI µ G (OS 0 OP 8 V O –1 L N- E –2 P O 4 –3 ––45 00289-008 0 00289-011 0 20 40 60 80 100 120 140 160 180 0 ±5 ±10 ±15 ±20 TIME (Seconds) POWER SUPPLY VOLTAGE (V) Figure 8. Warm-Up VOS Drift (Normalized) Z Package Figure 11. Open-Loop Gain vs. Power Supply Voltage Rev. H | Page 6 of 16

Data Sheet OP177 4 160 VS = ±15V TA = 25°C 140 VS = ±15V A)3 120 RENT (n AIN (dB)100 R G S CU2 OOP 80 A L BI N-60 UT PE P O N1 40 I 0 00289-012 200 00289-015 –50 0 50 100 0.01 0.1 1 10 100 1k 10k 100k 1M TEMPERATURE (°C) FREQUENCY (Hz) Figure 12. Input Bias Current vs. Temperature Figure 15. Open-Loop Frequency Response 2.0 150 VS = ±15V TA = 25°C 140 A) n1.5 T ( 130 N E R ET CUR1.0 RR (dB)120 FS CM110 F O T U 100 P0.5 N I 0 00289-013 8900 00289-016 –50 0 50 100 1 10 100 1k 10k 100k TEMPERATURE (°C) FREQUENCY (Hz) Figure 13. Input Offset Current vs. Temperature Figure 16. CMRR vs. Frequency 100 130 TVAS == 2±51°5CV TA = 25°C 80 120 B) d 110 N (60 AI P G dB)100 OO40 R ( D-L PSR90 E OS20 CL 80 0 –2010 100 1k 10k 100k 1M 10M00289-014 67000.1 1 10 100 1k 10k00289-017 FREQUENCY (Hz) FREQUENCY (Hz) Figure 14. Closed-Loop Response for Various Gain Configurations Figure 17. PSRR vs. Frequency Rev. H | Page 7 of 16

OP177 Data Sheet 1000 20 TRHS1E R= MRAS2L =N 2O0I0SkEΩ OF SOURCE TVAS == 2+51°5CV √Hz) RESISTORS INCLUDED 15 VIN = ±10mV POSITIVE SWING nV V) GE (100 UT ( NEGATIVE SWING A P LT UT UT NOISE VO 10 RS = 0 EXCLUDED MAXIMUM O10 P 5 N I 1 VTAS == 2±51°5CV 00289-018 0 00289-021 1 10 100 1k 100 1k 10k FREQUENCY (Hz) LOAD RESISTANCETO GROUND (Ω) Figure 18. Total Input Noise Voltage vs. Frequency Figure 21. Maximum Output Voltage vs. Load Resistance 10 40 TA = 25°C TA = 25°C VS = ±15V mA) VS = ±15V T (35 N E R R V) CU +ISC E (µ UIT 30 OIS 1 RC N CI S T-25 RM OR –ISC H S T PU20 T 0.1100 1k 10k 10000289-019k OU150 1 2 3 400289-022 BANDWIDTH (Hz) TIME FROM OUTPUT BEING SHORTED (Minutes) Figure 19. Input Wideband Noise vs. Bandwidth Figure 22. Output Short-Circuit Current vs. Time (0.1 Hz to Frequency Indicated) 32 1.50 TA = 25°C TA = 25°C 28 VS = ±15V VS = ±15V 1.25 V) E (24 D TU 1.00 LI20 P AK AM16 (nA)B 0.75 E I O-P12 IB1– (nA) AK-T 8 0.50 IIBB23–– ((nnAA)) PE 0.25 IIBB12++ ((nnAA)) 04 00289-020 0 IB3+ (nA) 00289-033 1k 10k 100k 1M –16 –14 –10 –6 –2 2 6 10 14 FREQUENCY (Hz) VCM (V) Figure 20. Maximum Output Swing vs. Frequency Figure 23. Input Bias (IB) vs. Common-Mode Voltage (VCM) Rev. H | Page 8 of 16

Data Sheet OP177 APPLICATIONS INFORMATION GAIN LINEARITY THERMOCOUPLE AMPLIFIER WITH COLD- JUNCTION COMPENSATION The actual open-loop gain of most monolithic operational amplifiers varies at different output voltages. This nonlinearity An example of a precision circuit is a thermocouple amplifier causes errors in high closed-loop gain circuits. that must accurately amplify very low level signals without introducing linearity and offset errors to the circuit. In this It is important to know that the manufacturer’s A specifica- VO circuit, an S-type thermocouple with a Seebeck coefficient of tion is only a part of the solution because all automated testers 10.3 μV/°C produces 10.3 mV of output voltage at a temperature use endpoint testing and, therefore, show only the average gain. of 1000°C. The amplifier gain is set at 973.16, thus, it produces For example, Figure 24 shows a typical precision operational an output voltage of 10.024 V. Extended temperature ranges amplifier with a respectable open-loop gain of 650 V/mV. beyond 1500°C are accomplished by reducing the amplifier However, the gain is not constant through the output voltage gain. The circuit uses a low cost diode to sense the temperature range, causing nonlinear errors. An ideal operational amplifier at the terminating junctions and, in turn, compensates for any shows a horizontal scope trace. ambient temperature change. The OP177, with the high open- Figure 25 shows the OP177 output gain linearity trace with the loop gain plus low offset voltage and drift, combines to yield a truly impressive average A of 12,000 V/mV. The output trace VO precise temperature sensing circuit. Circuit values for other is virtually horizontal at all points, assuring extremely high gain thermocouple types are listed in Table 5. accuracy. Analog Devices, Inc., also performs additional testing to ensure consistent high open-loop gain at various output Table 5. voltages. Figure 26 is a simple open-loop gain test circuit. Thermocouple Seebeck Type Coefficient R1 R2 R7 R9 K 39.2 μV/°C 110 Ω 5.76 kΩ 102 kΩ 269 kΩ J 50.2 μV/°C 100 Ω 4.02 kΩ 80.6 kΩ 200 kΩ VX S 10.3 μV/°C 100 Ω 20.5 kΩ 392 kΩ 1.07 MΩ –10V 0V +10V 2 6 10.000V +15V REF01 ARVLO= ≥2 k6Ω50V/mV 00289-023 2+.2µF 4 471kR%Ω3 R319%72kΩ 10.0.R0759M%Ω +15V Figure 24. Typical Precision Operational amplifier 10µF 0.1µF + VY ISOTHERMAL R2 R8 10µF COLD- 20.5kΩ 1.0kΩ – JUNCTIONS 1% 0.05% – VX TYPES + CCOOPPPPEERR 100RΩ5 OP177 VOUT –10V 0V +10V (ZERO + 10µF ISOTHERMAL ADJUST- ARVLO= ≥2 k1Ω2000V/mV 00289-024 CCOOLMDPB-ELJUNONSCACKTTIIOONN 1010R%Ω1 ME5N10RT%Ω4) 10µF 0.1µF Figure 25. Output Gain Linearity Trace –15V ANALOG VY GANRAOLUONGD GROUND 00289-026 10kΩ 10kΩ Figure 27. Thermocouple Amplifier with Cold Junction Compensation VIN = ±10V 1MΩ VX – 10Ω OP177 + RL 00289-025 Figure 26. Open-Loop Gain Linearity Test Circuit Rev. H | Page 9 of 16

OP177 Data Sheet PRECISION HIGH GAIN DIFFERENTIAL AMPLIFIER ISOLATING LARGE CAPACITIVE LOADS The high gain, gain linearity, CMRR, and low TCVOS of the The circuit shown in Figure 29 reduces maximum slew rate but OP177 make it possible to obtain performance not previously allows driving capacitive loads of any size without instability. available in single stage, very high gain amplifier applications. Because the 100 Ω resistor is inside the feedback loop, the effect See Figure 28. on output impedance is reduced to insignificance by the high R1 R3 open loop gain of the OP177. For best CMR, must equal R2 R4 RF In this example, with a 10 mV differential signal, the maximum 10pF errors are listed in Table 6. +15V R2 0.1µF 1MΩ +15V INPUT RS 2 – 7 6 100Ω 0.1µF OP177 OUTPUT 3 1Rk1Ω 2 7 + 4 0.1µF CLOAD 1Rk3Ω 3 O+–P177 6 –15V 00289-028 4 Figure 29. Isolating Capacitive Loads R4 0.1µF 1MΩ BILATERAL CURRENT SOURCE –15V 00289-027 The current sources shown in Figure 30 supply both positive Figure 28. Precision High Gain Differential Amplifier and negative currents into a grounded load. Table 6. High Gain Differential Amplifier Performance Note that Type Amount R4  Common-Mode Voltage 0.1%/V R5 1 R2  Gain Linearity, Worst Case 0.02% Z  O R5R4 R3 TCV 0.0003%/°C  OS R2 R1 TCI 0.008%/°C OS and that for Z to be infinite O R5R4 R3 must  R2 R1 PRECISION ABSOLUTE VALUE AMPLIFIER The high gain and low TCV assure accurate operation with OS inputs from microvolts to volts. In this circuit, the signal always appears as a common-mode signal to the operational amplifiers (for details, see Figure 31). BASIC CURRENT SOURCE 100mACURRENT SOURCE R3 1kΩ R3 +15V R1 VIN 10R02kΩ 2 –OP177 6 VIN R1 2 –OP177 6 50Ω 2N2222 100kΩ 3 R2 3 + R4 R105Ω + 2N2907 R5 990Ω R4 –15V IOUT ≤ 15mA IOUT ≤ 100mA IGOIUVTE =N VRIN3 =R R1R 4× 3 +R R55, R1 = R2 00289-029 Figure 30. Bilateral Current Source Rev. H | Page 10 of 16

Data Sheet OP177 1kΩ 1kΩ +15V +15V 0.1µF 0.1µF C1 D1 30pF 1N4148 7 2 – 2 7 6 – OP177 VOUT OP177 6 3 + 0 < VOUT < 10V 3 2N4393 4 VIN + R3 0.1µF 4 0.1µF 2kΩ –15V –15V 00289-030 Figure 31. Precision Absolute Value Amplifier 1kΩ +15V +15V 0.1µF 1N4148 0.1µF 7 NC 2 – 2 – 7 VIN 1kΩ 3 O+P177 6 2N930 1kΩ 3 +AD820 6 VOUT 4 4 0.1µF CH 0.1µF –15V –15V RESET 1kΩ 00289-031 Figure 32. Precision Positive Peak Detector Rev. H | Page 11 of 16

OP177 Data Sheet PRECISION POSITIVE PEAK DETECTOR CC RF In Figure 32, CH must be polystyrene, Teflon®, or polyethylene 100kΩ to minimize dielectric absorption and leakage. The droop rate is +15V determined by the size of C and the bias current of the AD820. H 0.1µF PRECISION THRESHOLD DETECTOR/AMPLIFIER RS VTH 1kΩ 2 – 7 1ND41148 In Figure 33, when VIN < VTH, amplifier output swings negative, R1 OP177 6 VOUT 2kΩ 3 reverse biasing diode D1. VOUT = VTH if RL = ∞. When VIN ≥ VTH, VIN + 4 0.1µF the loop closes. VOUT =VTH +(VIN −VTH)1+ RRF  Figure 33. Precision– 1T5hVreshold Detector/Amplifier 00289-032 S C is selected to smooth the response of the loop. C Rev. H | Page 12 of 16

Data Sheet OP177 OUTLINE DIMENSIONS 0.400 (10.16) 0.365 (9.27) 0.355 (9.02) 8 5 0.280 (7.11) 0.250 (6.35) 1 4 0.240 (6.10) 0.325 (8.26) 0.310 (7.87) 0.100 (2.54) 0.300 (7.62) BSC 0.060 (1.52) 0.195 (4.95) 0.210 (5.33) MAX 0.130 (3.30) MAX 0.115 (2.92) 0.015 0.150 (3.81) (0.38) 0.015 (0.38) 0.130 (3.30) MIN GAUGE 0.115 (2.92) SEATING PLANE 0.014 (0.36) PLANE 0.010 (0.25) 0.022 (0.56) 0.008 (0.20) 0.005 (0.13) 0.430 (10.92) 0.018 (0.46) MIN MAX 0.014 (0.36) 0.070 (1.78) 0.060 (1.52) 0.045 (1.14) COMPLIANTTO JEDEC STANDARDS MS-001 CONTROLLING DIMENSIONSARE IN INCHES; MILLIMETER DIMENSIONS (RCINEOFRPEANRREERENN LCTEEHA EODSNSEL MSY)AAAYNR BDEE AR CROOEU NNNFODIGETUDAR-POEPFDRFOA INSPC RWHIAH ETOEQL UFEIO VORAR LU EHSNAETL ISFN FLDOEEARSDIGSN.. 070606-A Figure 34. 8-Lead Plastic Dual In-Line Package (PDIP) P-Suffix (N-8) Dimensions show in inches and (millimeters) 5.00(0.1968) 4.80(0.1890) 8 5 4.00(0.1574) 6.20(0.2441) 3.80(0.1497) 1 4 5.80(0.2284) 1.27(0.0500) 0.50(0.0196) BSC 1.75(0.0688) 0.25(0.0099) 45° 0.25(0.0098) 1.35(0.0532) 8° 0.10(0.0040) 0° COPLANARITY 0.51(0.0201) 0.10 SEATING 0.31(0.0122) 0.25(0.0098) 10..2470((00..00510507)) PLANE 0.17(0.0067) COMPLIANTTOJEDECSTANDARDSMS-012-AA C(RINOEFNPEATRRREOENNLCLTEIHNEOGSNDELISYM)AEANNRDSEIAORRNOESUNANORDETEDAIN-POMPFRIFLOLMPIMIRLELIATIMTEEERTFSEO;RIRNECUQHSUEDIVIINMAELDENENSSTIIOGSNNFS.OR 012407-A Figure 35. 8-Lead Standard Small Outline Package (SOIC_N) S-Suffix (R-8) Dimensions shown in millimeters and( inches) Rev. H | Page 13 of 16

OP177 Data Sheet ORDERING GUIDE Model1 Temperature Range Package Description Package Option OP177FPZ −40°C to +85°C 8-Lead PDIP P-Suffix (N-8) OP177GPZ −40°C to +85°C 8-Lead PDIP P-Suffix (N-8) OP177FSZ −40°C to +85°C 8-Lead SOIC_N S-Suffix (R-8) OP177FSZ-REEL −40°C to +85°C 8-Lead SOIC_N S-Suffix (R-8) OP177FSZ-REEL7 −40°C to +85°C 8-Lead SOIC_N S-Suffix (R-8) OP177GS −40°C to +85°C 8-Lead SOIC_N S-Suffix (R-8) OP177GS-REEL −40°C to +85°C 8-Lead SOIC_N S-Suffix (R-8) OP177GS-REEL7 −40°C to +85°C 8-Lead SOIC_N S-Suffix (R-8) OP177GSZ −40°C to +85°C 8-Lead SOIC_N S-Suffix (R-8) OP177GSZ-REEL −40°C to +85°C 8-Lead SOIC_N S-Suffix (R-8) OP177GSZ-REEL7 −40°C to +85°C 8-Lead SOIC_N S-Suffix (R-8) 1 Z = RoHS Compliant Part. Rev. H | Page 14 of 16

Data Sheet OP177 NOTES Rev. H | Page 15 of 16

OP177 Data Sheet NOTES ©1995–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00289-0-4/16(H) Rev. H | Page 16 of 16

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: A nalog Devices Inc.: OP177GSZ OP177FSZ-REEL7 OP177FSZ OP177GS OP177GSZ-REEL7 OP177FPZ OP177FSZ-REEL OP177GPZ OP177GS-REEL7 OP177GSZ-REEL OP177GS-REEL