ICGOO在线商城 > 集成电路(IC) > PMIC - 稳压器 - 线性 > NCV565ST12T3G
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
NCV565ST12T3G产品简介:
ICGOO电子元器件商城为您提供NCV565ST12T3G由ON Semiconductor设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 NCV565ST12T3G价格参考。ON SemiconductorNCV565ST12T3G封装/规格:PMIC - 稳压器 - 线性, Linear Voltage Regulator IC Positive Fixed 1 Output 1.2V 1.5A SOT-223。您可以下载NCV565ST12T3G参考资料、Datasheet数据手册功能说明书,资料中有NCV565ST12T3G 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC REG LDO 1.2V 1.5A SOT223低压差稳压器 ANA 1.5A LDO REGULATOR |
产品分类 | |
品牌 | ON Semiconductor |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 电源管理 IC,低压差稳压器,ON Semiconductor NCV565ST12T3G- |
数据手册 | |
产品型号 | NCV565ST12T3G |
产品种类 | 低压差稳压器 |
供应商器件封装 | SOT-223 |
其它名称 | NCV565ST12T3GOSCT |
包装 | 剪切带 (CT) |
商标 | ON Semiconductor |
回动电压—最大值 | 1.3 V |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | TO-261-4,TO-261AA |
封装/箱体 | SOT-223 |
工作温度 | -40°C ~ 125°C |
工厂包装数量 | 4000 |
最大工作温度 | + 125 C |
最大输入电压 | 18 V |
最小工作温度 | - 40 C |
标准包装 | 1 |
电压-跌落(典型值) | - |
电压-输入 | 2.5 V ~ 9 V |
电压-输出 | 1.2V |
电流-输出 | 1.5A |
电流-限制(最小值) | 1.6A |
稳压器拓扑 | 正,固定式 |
稳压器数 | 1 |
系列 | NCV565 |
负载调节 | 0.03 % |
输出电压 | 1.2 V |
输出电流 | 1.5 A |
输出端数量 | 1 Output |
输出类型 | Fixed |
NCP565, NCV565 Linear Regulator - Low Dropout 1.5 A The NCP565/NCV565 low dropout linear regulator will provide 1.5 A at a fixed output voltage or an adjustable voltage down to 0.9 V. www.onsemi.com The fast loop response and low dropout voltage make this regulator MARKING ideal for applications where low voltage and good load transient DIAGRAMS response are important. Device protection includes current limit, short circuit protection, and thermal shutdown. 1 D2PAK 3 2 CASE 936 NC Features 3 FIXED y565D2Txx • Ultra Fast Transient Response ((cid:2)1.0 (cid:2)s) Tab = Ground AWLYWWG • Low Ground Current (1.5 mA at Iload = 1.5 A) Pin 1. Vin • 2. Ground Low Dropout Voltage (0.9 V at Iload = 1.5 A) 3. Vout • Low Noise (28 (cid:2)Vrms) • 0.9 V Reference Voltage • NC Adjustable Output Voltage from 7.7 V down to 0.9 V 1 D2PAK 5 y565D2T • 1.2 V, 1.5 V, 2.8 V, 3.0 V, 3.3 V Fixed Output Versions. Other Fixed 5 CASE 936A AWLYWWG ADJUSTABLE Voltages Available on Request • Current Limit Protection (3.3 A Typ) • Thermal Shutdown Protection (160°C) Tab = Ground xx = 12 or 33 • Pin 1. N.C. y = P or V NCV Prefix for Automotive and Other Applications Requiring 2. Vin A = Assembly Location Unique Site and Control Change Requirements; AEC−Q100 3. Ground WL = Wafer Lot Qualified and PPAP Capable 4. Vout Y = Year • 5. Adj WW= Work Week These are Pb−Free Devices G = Pb−Free Typical Applications • DFN6, 3x3.3 P565 Servers MNxx • CASE 506AX AYWW(cid:2) ASIC Power Supplies (cid:2) 1 • Post Regulation for Power Supplies xx = Voltage Rating • Constant Current Source AJ = Adjustable 12 = 1.2 V 30 = 3.0V 15 = 1.5 V 33 = 3.3 V 28 = 2.8 V AYW SOT−223 565yy(cid:2) CASE 318E (cid:2) 1 yy = Voltage Rating Tab = Vout 12 = 1.2 V Pin 1. Ground A = Assembly Location 2. Vout Y = Year 3. Vin W = Work Week (cid:2) = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet. © Semiconductor Components Industries, LLC, 2016 1 Publication Order Number: October, 2019 − Rev. 18 NCP565/D
NCP565, NCV565 Vin Vin Vout Vout Vin Vin Vout Vout NCP565 NCP565 C1 R1 ADJ 5.6 pF GND GND Cin Cout Cin Cout R2 Figure 1. Typical Application Schematic, Figure 2. Typical Application Schematic, Fixed Output Adjustable Output PIN DESCRIPTION D2PAK 5 D2PAK 3 DFN6 SOT−223 Pin No. Pin No. Pin No. Pin No. Pin No. Adj. Version Fixed Version Adj. Version Fixed Version Fixed Version Symbol Description 1 − 1, 2 1, 2, 5 − N.C. − 2 1 3 3 3 Vin Positive Power Supply Input Voltage 3, Tab 2, Tab 6 6 1 Ground Power Supply Ground 4 3 4 4 2, Tab Vout Regulated Output Voltage 5 − 5 − − Adj This pin is to be connected to the sense resistors on the output. The linear regulator will attempt to maintain 0.9 V between this pin and ground. Refer to the Application Information section for output voltage setting. Vin Vout Vin Vout Vref = 0.9 V Vref = 0.9 V Current Current Output Output Limit Limit Stage Stage Sense Sense Voltage Voltage Reference Reference Block Block ADJ Thermal Thermal Shutdown Shutdown Block Block GND GND Figure 3. Block Diagram, Fixed Output Figure 4. Block Diagram, Adjustable Output www.onsemi.com 2
NCP565, NCV565 ABSOLUTE MAXIMUM RATINGS Rating Symbol Value Unit Input Voltage (Note 1) Vin 18 V Output Pin Voltage Vout −0.3 to Vin + 0.3 V Adjust Pin Voltage Vadj −0.3 to Vin + 0.3 V Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. NOTE: This device series contains ESD protection and exceeds the following tests: Human Body Model JESD 22−A114−B Machine Model JESD 22−A115−A THERMAL CHARACTERISTICS Rating Symbol Value Unit Thermal Characteristics SOT−223 (Notes 1, 2) °C/W Thermal Resistance, Junction−to−Ambient R(cid:3)JA 107 Thermal Resistance, Junction−to−Pin R(cid:3)JP 12 Thermal Characteristics DFN6 (Notes 1, 2) °C/W Thermal Resistance, Junction−to−Ambient R(cid:3)JA 176 Thermal Resistance, Junction−to−Pin R(cid:3)JP 37 Thermal Characteristics D2PAK (5ld) (Notes 1, 2) °C/W Thermal Resistance, Junction−to−Case R(cid:3)JC 3 Thermal Resistance, Junction−to−Ambient R(cid:3)JA 83 Thermal Resistance, Junction−to−Pin R(cid:3)JP 4 OPERATING RANGES Rating Symbol Value Unit Operating Input Voltage (Note 1) Vin Vout + VDO, V 2.5 (Note 3) to 9 Operating Junction Temperature Range T −40 to 150 °C J Operating Ambient Temperature Range TA −40 to 125 °C Storage Temperature Range T −55 to 150 °C stg 1. Refer to Electrical Characteristics and Application Information for Safe Operating Area. 2. As measured using a copper heat spreading area of 50 mm2 for SOT−223 and DFN6, 100 mm2 for D2PAK, 1 oz copper thickness. 3. Minimum Vin = (Vout + VDO) or 2.5 V, whichever is higher. www.onsemi.com 3
NCP565, NCV565 ELECTRICAL CHARACTERISTICS (Vin = Vout + 1.6 V, Vout = 0.9 V, TA= 25°C, Cin = Cout = 150 (cid:2)F, unless otherwise noted, Note 4.) Characteristic Symbol Min Typ Max Unit ADJUSTABLE OUTPUT VERSION Reference Voltage (10 mA < Iout < 1.5 A; Vout + 1.6 V < Vin < 9.0 V; TA = −10 to 105°C) Vref 0.882 0.9 0.918 V (−2%) (+2%) Reference Voltage (10 mA < Iout < 1.5 A; Vout + 1.6 V < Vin < 9.0 V; TA = −40 to 125°C) Vref 0.873 0.9 0.927 V (−3%) (+3%) ADJ Pin Current (Note 5) IAdj − 30 − nA Line Regulation (Iout = 10 mA) (Note 5) Regline − 0.03 − % Load Regulation (10 mA < Iout < 1.5 A) (Note 5) Regload − 0.03 − % Dropout Voltage (Iout = 1.5 A, Vout = 2.5 V) (Note 6) Vdo − 0.9 1.3 V Current Limit Ilim 1.6 3.3 − A Ripple Rejection (120 Hz; Iout = 1.5 A) (Note 5) RR − 85 − dB Ripple Rejection (1 kHz; Iout = 1.5 A) (Note 5) RR − 75 − dB Ground Current (Iout = 1.5 A) IGND − 1.5 3.0 mA Output Noise Voltage (f = 100 Hz to 100 kHz, Iout = 1.5 A) (Note 5) Vn − 28 − (cid:2)Vrms Thermal Shutdown Protection (Note 5) TSHD − 160 − (cid:3)C FIXED OUTPUT VOLTAGE (Vin = Vout + 1.6 V, TA = 25°C, Cin = Cout = 150 (cid:2)F, unless otherwise noted, Note 4.) Output Voltage (10 mA < Iout < 1.5 A; 2.8 V < Vin < 9.0 V; TA = −10 to 105°C) Vout 1.176 1.2 1.224 V 1.2 V version (−2%) (+2%) Output Voltage (10 mA < Iout < 1.5 A; 2.8 V < Vin < 9.0 V; TA = −40 to 125°C) Vout 1.164 1.2 1.236 V 1.2 V version (−3%) (+3%) Output Voltage (10 mA < Iout < 1.5 A; 3.1 V < Vin < 9.0 V; TA = −10 to 105°C) Vout 1.470 1.5 1.530 V 1.5 V version (−2%) (+2%) Output Voltage (10 mA < Iout < 1.5 A; 3.1 V < Vin < 9.0 V; TA = −40 to 125°C) Vout 1.455 1.5 1.545 V 1.5 V version (−3%) (+3%) Output Voltage (10 mA < Iout < 1.5 A; 4.4 V < Vin < 9.0 V; TA = −10 to 105°C) Vout 2.744 2.8 2.856 V 2.8 V version (−2%) (+2%) Output Voltage (10 mA < Iout < 1.5 A; 4.4 V < Vin < 9.0 V; TA = −40 to 125°C) Vout 2.716 2.8 2.884 V 2.8 V version (−3%) (+3%) Output Voltage (10 mA < Iout < 1.5 A; 4.6 V < Vin < 9.0 V; TA = −10 to 105°C) Vout 2.940 3.0 3.060 V 3.0 V version (−2%) (+2%) Output Voltage (10 mA < Iout < 1.5 A; 4.6 V < Vin < 9.0 V; TA = −40 to 125°C) Vout 2.910 3.0 3.090 V 3.0 V version (−3%) (+3%) Output Voltage (10 mA < Iout < 1.5 A; 4.9 V < Vin < 9.0 V; TA = −10 to 105°C) Vout 3.234 3.3 3.366 V 3.3 V version (−2%) (+2%) Output Voltage (10 mA < Iout < 1.5 A; 4.9 V < Vin < 9.0 V; TA = −40 to 125°C) Vout 3.201 3.3 3.399 V 3.3 V version (−3%) (+3%) Line Regulation (Iout = 10 mA) (Note 5) Regline − 0.03 − % Load Regulation (10 mA < Iout < 1.5 A) (Note 5) Regload − 0.03 − % Dropout Voltage (Iout = 1.5 A, Vout = 2.5 V) (Note 6) Vdo − 0.9 1.3 V Current Limit Ilim 1.6 3.3 − A Ripple Rejection (120 Hz; Iout = 1.5 A) (Note 5) RR − 85 − dB Ripple Rejection (1 kHz; Iout = 1.5 A) (Note 5) RR − 75 − dB Ground Current (Iout = 1.5 A) IGND − 1.5 3.0 mA Output Noise Voltage (f = 100 Hz to 100 kHz, Vout = 1.2 V, Iout = 1.5 A) (Note 5) Vn − 38 − (cid:2)Vrms Thermal Shutdown Protection (Note 5) TSHD − 160 − (cid:3)C 4. Performance guaranteed over specified operating conditions by design, guard banded test limits, and/or characterization, production tested at TJ = TA = 25(cid:3)C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible. 5. Typical values are based on design and/or characterization. 6. Dropout voltage is a measurement of the minimum input/output differential at full load. www.onsemi.com 4
NCP565, NCV565 TYPICAL CHARACTERISTICS 0.9005 3.302 V) V) E ( 0.9000 E (3.300 G G TA 0.8995 TA3.298 L L O O V V E 0.8990 E 3.296 C C N N E 0.8985 E3.294 R R E E F F RE 0.8980 Vin = 2.5 V RE3.292 Vin = 4.9 V V, ref 0.8975 Vout(nom) = 0.9 V V, ref3.290 Vout(nom) = 3.3 V 3.288 0.8970 −50 −25 0 25 50 75 100 125 150 −50 −25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 5. Output Voltage vs. Temperature Figure 6. Output Voltage vs. Temperature A) 3.80 1.2 T ( V) T LIMI 33..7600 AGE ( 1.0 Iout = 1.5 A N T E OL 0.8 R 3.50 V UR T T C 3.40 POU 0.6 Iout = 50 mA UI O C 3.30 R R D 0.4 T CI 3.20 , out R V O 3.10 − 0.2 H n S Vi , SC 3.00 0 I −50 −25 0 25 50 75 100 125 150 −50 −25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 7. Short Circuit Current Limit Figure 8. Dropout Voltage vs. Temperature vs. Temperature 1.60 1.80 A) A)1.70 m 1.55 m T ( T (1.65 N N RE 1.50 RE1.60 R R U U D C 1.45 Iout = 1.5 A D C1.55 N N U U1.50 RO 1.40 RO G G1.45 , D , D GN 1.35 GN1.40 I I 1.30 1.35 −50 −25 0 25 50 75 100 125 150 0 300 600 900 1200 1500 TJ, JUNCTION TEMPERATURE (°C) Iout, OUTPUT CURRENT (mA) Figure 9. Ground Current vs. Temperature Figure 10. Ground Current vs. Output Current www.onsemi.com 5
NCP565, NCV565 TYPICAL CHARACTERISTICS 100 1000 90 B) 80 d Unstable N ( 70 100 O TI 60 (cid:4)) EC 50 R ( EJ S R 40 E E PL 30 Iout = 1.5 A 10 P RI 20 Stable Vout = 3.3 V 10 Cout = 10 (cid:2)F 0 1 10 100 1000 10000 100000 1000000 0 250 500 750 1000 1250 1500 F, FREQUENCY (Hz) OUTPUT CURRENT (mA) Figure 11. Ripple Rejection vs. Frequency Figure 12. Output Capacitor ESR Stability vs. Output Current E 10 E 10 GV) GV) TAm 0 TAm 0 VOLON ( −10 VOLON ( −10 UT ATI −20 Vin = 4.59 V UT ATI −20 Vin = 4.59 V TPEVI −30 Vout = 0.9 V TPEVI −30 Vout = 0.9 V UD UD O O −40 −40 TA) TA) PUT ( 1.50 PUT ( 1.50 TN TN UE 1.00 UE 1.00 OR OR , utUR 0.50 , utUR 0.50 IoC IoC 0 0 0 50 100 150 200 250 300 350 400 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 TIME (nS) TIME ((cid:2)s) Figure 13. Load Transient from 10 mA to 1.5 A Figure 14. Load Transient from 10 mA to 1.5 A E 50 E 50 GV) GV) TAm 40 TAm 40 VOLON ( 30 Vin = 4.59 V VOLON ( 30 Vin = 4.59 V UT ATI 20 Vout = 0.9 V UT ATI 20 Vout = 0.9 V PVI PVI TE 10 TE 10 UD UD O O 0 0 1.50 TA) TA) PUT ( 1.00 PUT ( 1.50 TN TN UE 0.50 UE 1.00 OR OR , utUR 0 , utUR 0.50 IoC IoC −50 0 0 50 100 150 200 250 300 350 400 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 TIME (nS) TIME ((cid:2)s) Figure 15. Load Transient from 1.5 A to 10 mA Figure 16. Load Transient from 1.5 A to 10 mA www.onsemi.com 6
NCP565, NCV565 TYPICAL CHARACTERISTICS 100 100 90 90 Hz) 80 Hz) 80 (cid:3) (cid:3) /ms 70 /ms 70 Vr Vr n 60 n 60 Vin = 3.0 V TY ( 50 Vin = 3.0 V TY ( 50 Vout = 0.9 V NSI 40 Vout = 0.9 V NSI 40 Iout = 1.5 A E Iout = 10 mA E D D E 30 E 30 S S OI 20 OI 20 N N 10 10 0 0 Start 1.0 kHz Stop 100 kHz Start 1.0 kHz Stop 100 kHz FREQUENCY (kHz) FREQUENCY (kHz) Figure 17. Noise Density vs. Frequency Figure 18. Noise Density vs. Frequency NOTE: Typical characteristics were measured with the same conditions as electrical characteristics. APPLICATION INFORMATION The NCP565 low dropout linear regulator provides Adjustable Operation adjustable voltages at currents up to 1.5 A. It features ultra The typical application circuit for the adjustable output fast transient response and low dropout voltage. These regulators is shown in Figure 2. The adjustable device devices contain output current limiting, short circuit develops and maintains the nominal 0.9 V reference voltage protection and thermal shutdown protection. between Adj and ground pins. A resistor divider network R1 and R2 causes a fixed current to flow to ground. This current Input, Output Capacitor and Stability creates a voltage across R1 that adds to the 0.9 V across R2 An input bypass capacitor is recommended to improve and sets the overall output voltage. transient response or if the regulator is located more than a The output voltage is set according to the formula: few inches from the power source. This will reduce the (cid:6) (cid:8) circuit’s sensitivity to the input line impedance at high Vout(cid:4)Vref(cid:5) R1(cid:7)R2 (cid:9)IAdj(cid:5)R2 R2 frequencies and significantly enhance the output transient The adjust pin current, I , is typically 30 nA and response. Different types and different sizes of input Adj normally much lower than the current flowing through R1 capacitors can be chosen dependent on the quality of power and R2, thus it generates a small output voltage error that can supply. A 150(cid:5)(cid:2)F OSCON 16SA150M type from Sanyo usually be ignored. should be adequate for most applications. The bypass capacitor should be mounted with shortest possible lead or Load Transient Measurement track length directly across the regulator’s input terminals. Large load current changes are always presented in The output capacitor is required for stability. The NCP565 microprocessor applications. Therefore good load transient remains stable with ceramic, tantalum, and aluminum− performance is required for the power stage. NCP565 has electrolytic capacitors with a minimum value of 1.0 (cid:2)F with the feature of ultra fast transient response. Its load transient ESR between 50 m(cid:4) and 2.5(cid:5)(cid:4). The NCP565 is optimized responses in Figures 13 through 16 are tested on evaluation for use with a 150 (cid:2)F OSCON 16SA150M type in parallel board shown in Figure 19. On the evaluation board, it with a 10(cid:5)(cid:2)F OSCON 10SL10M type from Sanyo. The consists of NCP565 regulator circuit with decoupling and 10(cid:5)(cid:2)F capacitor is used for best AC stability while 150(cid:5)(cid:2)F filter capacitors and the pulse controlled current sink to capacitor is used for achieving excellent output transient obtain load current transitions. The load current transitions response. The output capacitors should be placed as close as are measured by current probe. Because the signal from possible to the output pin of the device. If not, the excellent current probe has some time delay, it causes load transient response of NCP565 will be degraded. un−synchronization between the load current transition and output voltage response, which is shown in Figures 13 through 16. www.onsemi.com 7
NCP565, NCV565 GEN Vout −VCC V NCP565 Vin Evaluation Board RL Pulse + GND + GND Scope Voltage Probe Figure 19. Schematic for Transient Response Measurement PCB Layout Considerations several capacitors in parallel. This reduces the overall ESR Good PCB layout plays an important role in achieving and reduces the instantaneous output voltage drop under good load transient performance. Because it is very sensitive transient load conditions. The output capacitor network to its PCB layout, particular care has to be taken when should be as close as possible to the load for the best results. tackling Printed Circuit Board (PCB) layout. The figures The schematic of NCP565 typical application circuit, which below give an example of a layout where parasitic elements this PCB layout is base on, is shown in Figure 20. The output are minimized. For microprocessor applications it is voltage is set to 3.3 V for this demonstration board according customary to use an output capacitor network consisting of to the feedback resistors in the Table 1. 2 4 Vout Vin Vin Vout NCP565 1 5 C1 C2 NC Adj C4 C3 C3 150 (cid:2) 150 (cid:2) GND 10 (cid:2) 150 (cid:2) 150 (cid:2) 3 GND GND R2 R1 15.8 k 42.2 k C6 5.6 p Figure 20. Schematic of NCP565 Typical Application Circuit www.onsemi.com 8
NCP565, NCV565 Figure 21. Top Layer Figure 22. Bottom Layer NCP565 ON Semiconductor www.onsemi.com D1 R2 R1C6 VIN VOUT C2 C3 4 C C5 C1 GND GND July, 2003 Figure 23. Silkscreen Layer www.onsemi.com 9
NCP565, NCV565 Table 1. Bill of Materials for NCP565 Adj Demonstration Board Item Used # Component Designators Suppliers Part Number 1 4 Radial Lead Aluminum Capacitor C1, C2, C3, C5 Sanyo Oscon 16SA150M 150 (cid:2)F/16 V 2 1 Radial Lead Aluminum Capacitor C4 Sanyo Oscon 10SL10M 10 (cid:2)F/10 V 3 1 SMT Chip Resistor (0805) 15.8 K 1% R2 Vishay CRCW08051582F 4 1 SMT Chip Resistor (0805) 42.2 K 1% R1 Vishay CRCW08054222F 5 1 SMT Ceramic Capacitor (0603) 5.6 pF 10% C6 Vishay VJ0603A5R6KXAA 6 1 NCP565 Low Dropout Linear Regulator U1 ON Semiconductor NCP565D2TR4 Protection Diodes Thermal Considerations When large external capacitors are used with a linear This series contains an internal thermal limiting circuit regulator it is sometimes necessary to add protection diodes. that is designed to protect the regulator in the event that the If the input voltage of the regulator gets shorted, the output maximum junction temperature is exceeded. This feature capacitor will discharge into the output of the regulator. The provides protection from a catastrophic device failure due to discharge current depends on the value of the capacitor, the accidental overheating. It is not intended to be used as a output voltage and the rate at which V drops. In the substitute for proper heat sinking. The maximum device in NCP565 linear regulator, the discharge path is through a power dissipation can be calculated by: large junction and protection diodes are not usually needed. TJ(max)(cid:9)TA If the regulator is used with large values of output PD(cid:4) R(cid:3)JA capacitance and the input voltage is instantaneously shorted to ground, damage can occur. In this case, a diode connected 200 as shown in Figure 24 is recommended. 180 160 DFN 1 oz Cu 1N4002 (Optional) Vin Vin Vout Vout W)140 DFN 2 oSzO CTu−223 1 oz Cu NCP565 CAdj C/120 SOT−223 2 oz Cu C1 GND Adj R1 C2 (cid:3)° (JA100 D2DPA2PKA 1K o2z oCzu Cu 80 R2 60 40 0 50 100 150 200 250 300 350 400 450 500 Figure 24. Protection Diode for Large COPPER HEAT−SPREADER AREA (mm sq) Output Capacitors Figure 25. Thermal Resistance www.onsemi.com 10
NCP565, NCV565 ORDERING INFORMATION Device Nominal Output Voltage** Package Shipping† NCP565D2TG D2PAK 5 50 Units / Tube (Pb−Free) NCP565D2TR4G D2PAK 5 Adj 800 / Tape & Reel (Pb−Free) NCP565MNADJT2G DFN6 3000 / Tape & Reel (Pb−Free) NCP565D2T12G D2PAK 3 50 Units / Tube (Pb−Free) NCP565D2T12R4G D2PAK 3 800 / Tape & Reel (Pb−Free) Fixed (1.2 V) NCP565MN12T2G DFN6 3000 / Tape & Reel (Pb−Free) NCP565ST12T3G SOT−223 4000 / Tape & Reel (Pb−Free) NCP565MN15T2G DFN6 Fixed (1.5 V) 3000 / Tape & Reel (Pb−Free) NCP565MN28T2G DFN6 Fixed (2.8 V) 3000 / Tape & Reel (Pb−Free) NCP565MN30T2G DFN6 Fixed (3.0 V) 3000 / Tape & Reel (Pb−Free) NCP565D2T33G D2PAK 3 50 Units / Tube (Pb−Free) NCP565D2T33R4G D2PAK 3 Fixed (3.3 V) 800 / Tape & Reel (Pb−Free) NCP565MN33T2G DFN6 3000 / Tape & Reel (Pb−Free) NCV565D2TG* D2PAK 5 50 Units / Tube Adj (Pb−Free) NCV565D2TR4G* 800 / Tape & Reel NCV565D2T12R4G* D2PAK 3 800 / Tape & Reel (Pb−Free) Fixed (1.2 V) NCV565ST12T3G* SOT−223 4000 / Tape & Reel (Pb−Free) †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. **For other fixed output versions, please contact the factory. The max Vout available for SOT−223 is 1.2 V. www.onsemi.com 11
NCP565, NCV565 PACKAGE DIMENSIONS D2PAK 3 CASE 936−03 ISSUE D NOTES: T T 1. DIMENSIONING AND TOLERANCING PER ANSI TERMINAL 4 Y14.5M, 1982. K A OCHPATIMOFNCEARL ED U OCHPATIMOFNCEARL ES 23.. CTAA OABNN CTDRO KON.LTLOINUGR ODIPMTEIONNSAIOLN W: IINTHCIHNE DSI.MENSIONS 4. DIMENSIONS U AND V ESTABLISH A MINIMUM S MOUNTING SURFACE FOR TERMINAL 4. V 5. DIMENSIONS A AND B DO NOT INCLUDE MOLD B FLASH OR GATE PROTRUSIONS. MOLD FLASH H DETAIL C DETAIL C AND GATE PROTRUSIONS NOT TO EXCEED 1 2 3 0.025 (0.635) MAXIMUM. 6. SINGLE GAUGE DESIGN WILL BE SHIPPED AF TER FPCN EXPIRATION IN OCTOBER 2011. J INCHES MILLIMETERS F SIDE VIEW BOTTOM VIEW SIDE VIEW DIM MIN MAX MIN MAX G DUAL GAUGE SINGLE GAUGE A 0.386 0.403 9.804 10.236 2XD CONSTRUCTION CONSTRUCTION BC 00..315760 00..316880 94..034128 94..354772 0.010 (0.254) M T D 0.026 0.036 0.660 0.914 TOP VIEW ED 0.045 0.055 1.143 1.397 ES 0.018 0.026 0.457 0.660 F 0.051 REF 1.295 REF G 0.100 BSC 2.540 BSC H 0.539 0.579 13.691 14.707 N T J 0.125 MAX 3.175 MAX M K 0.050 REF 1.270 REF L 0.000 0.010 0.000 0.254 M 0.088 0.102 2.235 2.591 SEATING N 0.018 0.026 0.457 0.660 P L PLANE P 0.058 0.078 1.473 1.981 R 5 (cid:3) REF 5 (cid:3) REF R DETAIL C BOTTOM VIEW S 0.116 REF 2.946 REF OPTIONAL CONSTRUCTIONS U 0.200 MIN 5.080 MIN V 0.250 MIN 6.350 MIN SOLDERING FOOTPRINT* 10.49 8.38 16.155 2X 3.504 2X 1.016 5.080 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. www.onsemi.com 12
NCP565, NCV565 PACKAGE DIMENSIONS D2PAK 5 CASE 936A−02 ISSUE C NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. −T− TERMINAL 6 2. CONTROLLING DIMENSION: INCH. A OCHPATIMOFNEARL E U 3. TAANBD CKO.NTOUR OPTIONAL WITHIN DIMENSIONS A 4. DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING SURFACE FOR TERMINAL 6. K S 5. DIMENSIONS A AND B DO NOT INCLUDE MOLD V FLASH OR GATE PROTRUSIONS. MOLD FLASH B AND GATE PROTRUSIONS NOT TO EXCEED 0.025 H (0.635) MAXIMUM. 1 2 3 4 5 M INCHES MILLIMETERS L DIM MIN MAX MIN MAX A 0.386 0.403 9.804 10.236 D B 0.356 0.368 9.042 9.347 N P C 0.170 0.180 4.318 4.572 0.010 (0.254) M T G R DE 00..002465 00..003565 01..616403 01..931947 G 0.067 BSC 1.702 BSC H 0.539 0.579 13.691 14.707 K 0.050 REF 1.270 REF L 0.000 0.010 0.000 0.254 M 0.088 0.102 2.235 2.591 C N 0.018 0.026 0.457 0.660 P 0.058 0.078 1.473 1.981 R 5 (cid:3) REF 5 (cid:3) REF S 0.116 REF 2.946 REF U 0.200 MIN 5.080 MIN SOLDERING FOOTPRINT V 0.250 MIN 6.350 MIN 8.38 0.33 1.702 0.067 10.66 0.42 1.016 3.05 0.04 0.12 16.02 0.63 (cid:6) (cid:8) mm SCALE 3:1 inches 5−LEAD D2PAK www.onsemi.com 13
NCP565, NCV565 PACKAGE DIMENSIONS SOT−223 (TO−261) CASE 318E−04 ISSUE N D b1 NOTES: 7. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 8. CONTROLLING DIMENSION: INCH. 4 MILLIMETERS INCHES HE E DAIM 1M.5IN0 N1.O6M3 M1.A75X 0M.0I6N0 0N.O06M4 0M.0A6X8 1 2 3 A1 0.02 0.06 0.10 0.001 0.002 0.004 b 0.60 0.75 0.89 0.024 0.030 0.035 b1 2.90 3.06 3.20 0.115 0.121 0.126 c 0.24 0.29 0.35 0.009 0.012 0.014 b D 6.30 6.50 6.70 0.249 0.256 0.263 e1 E 3.30 3.50 3.70 0.130 0.138 0.145 e e 2.20 2.30 2.40 0.087 0.091 0.094 e1 0.85 0.94 1.05 0.033 0.037 0.041 L 0.20 −−− −−− 0.008 −−− −−− C L1 1.50 1.75 2.00 0.060 0.069 0.078 (cid:2) A H(cid:2)E 60.7°0 7.−00 71.03°0 0.206°4 0.2−76 01.208°7 0.08 (0003) A1 L L1 SOLDERING FOOTPRINT 3.8 0.15 2.0 0.079 6.3 2.3 2.3 0.248 0.091 0.091 2.0 0.079 (cid:6) (cid:8) 1.5 mm SCALE 6:1 0.059 inches www.onsemi.com 14
NCP565, NCV565 PACKAGE DIMENSIONS DFN6 3x3.3 MM, 0.95 PITCH CASE 506AX ISSUE O D A NOTES: B 1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 mm FROM TERMINAL. PIN 1 4. COPLANARITY APPLIES TO THE EXPOSED PAD REFERENCE ÇÇÇ AS WELL AS THE TERMINALS. E MILLIMETERS ÇÇÇ DIM MIN NOM MAX 2X A 0.80 −−− 0.90 ÇÇÇ A1 0.00 −−− 0.05 0.15 C A3 0.20 REF b 0.30 −−− 0.40 2X D 3.00 BSC 0.15 C D2 1.90 −−− 2.10 TOP VIEW E 3.30 BSC E2 1.10 −−− 1.30 0.10 C e 0.95 BSC K 0.20 −−− −−− A L 0.40 −−− 0.60 6X L1 0.00 −−− 0.15 0.08 C SEATING (A3) PLANE SIDE VIEW A1 C SOLDERING FOOTPRINT* D2 4X 3.60 6XL e 1 3 K 1.35 06.X50 1 E2 0.95 PITCH 2.15 6X L1 6 4 6X b (NOTE 3) 0.10 C A B 6X BOTTOM VIEW 0.83 DIMENSIONS: MILLIMETERS 0.05 C *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free ON Semiconductor Website: www.onsemi.com Literature Distribution Center for ON Semiconductor USA/Canada P.O. Box 5163, Denver, Colorado 80217 USA Europe, Middle East and Africa Technical Support: Order Literature: http://www.onsemi.com/orderlit Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Phone: 421 33 790 2910 Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Japan Customer Focus Center For additional information, please contact your local Email: orderlit@onsemi.com Phone: 81−3−5817−1050 Sales Representative www.onsemi.com NCP565/D 15
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: O N Semiconductor: NCP565D2T12G NCP565D2T12R4G NCP565D2TG NCP565D2TR4G NCP565D2T33R4G NCP565MN33T2G NCP565D2T33G NCP565MN12T2G NCP565MNADJT2G NCP565ST12T3G NCP565MN30T2G NCP565MN15T2G NCP565MN28T2G NCV565ST12T3G