ICGOO在线商城 > 集成电路(IC) > PMIC - 稳压器 - 专用型 > MMPF0100NPEP
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
MMPF0100NPEP产品简介:
ICGOO电子元器件商城为您提供MMPF0100NPEP由Freescale Semiconductor设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 MMPF0100NPEP价格参考¥询价-¥询价。Freescale SemiconductorMMPF0100NPEP封装/规格:PMIC - 稳压器 - 专用型, - Converter, i.MX6 Voltage Regulator IC 12 Output 56-QFN (8x8)。您可以下载MMPF0100NPEP参考资料、Datasheet数据手册功能说明书,资料中有MMPF0100NPEP 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC PWR MGMT I.MX6 56QFNPMIC 解决方案 PMIC i.MX6X, 6 buck reg,1 boost,7 LDOs |
产品分类 | |
品牌 | Freescale Semiconductor |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 电源管理 IC,PMIC 解决方案,Freescale Semiconductor MMPF0100NPEP- |
数据手册 | |
产品型号 | MMPF0100NPEP |
PCN组件/产地 | http://cache.freescale.com/files/shared/doc/pcn/PCN15708.htm |
PCN设计/规格 | http://cache.freescale.com/files/shared/doc/pcn/PCN15709.htmhttp://cache.freescale.com/files/shared/doc/pcn/PCN15870.htm?fsrch=1&WT_TYPE=Producthttp://cache.freescale.com/files/shared/doc/pcn/PCN16298.htm |
产品种类 | PMIC 解决方案 |
供应商器件封装 | 56-QFN(8x8) |
包装 | 托盘 |
单位重量 | 147.800 mg |
商标 | Freescale Semiconductor |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装/外壳 | 56-VFQFN 裸露焊盘 |
封装/箱体 | QFN-56 |
工作温度 | -40°C ~ 85°C |
工作温度范围 | - 40 C to + 85 C |
工厂包装数量 | 260 |
应用 | 转换器,i.MX6 |
拓扑结构 | Boost, Buck |
描述/功能 | 14 channel configurable PMIC |
最大工作温度 | + 85 C |
最小工作温度 | - 40 C |
标准包装 | 260 |
电压-输入 | 2.8 V ~ 4.5 V |
电压-输出 | 多重 |
电源电压 | 2.8 V to 4.5 V |
系列 | MMPF0100 |
输入电压 | 2.8 V to 4.5 V |
输出数 | 12 |
输出电压 | 1.5 V |
NXP Semiconductors Document Number: MMPF0100 Data sheet: Advance Information Rev. 17.0, 1/2017 14 channel configurable power management integrated circuit PF0100 The PF0100 SMARTMOS power management integrated circuit (PMIC) provides a highly programmable/ configurable architecture, with fully integrated power devices and minimal external components. With up to six buck POWER MANAGEMENT converters, six linear regulators, RTC supply, and coin-cell charger, the PF0100 can provide power for a complete system, including applications processors, memory, and system peripherals, in a wide range of applications. With on-chip one time programmable (OTP) memory, the PF0100 is available in pre-programmed standard versions, or non-programmed to support custom programming. The PF0100 is defined to power an entire embedded MCU platform solution such as i.MX 6 based eReader, IPTV, medical monitoring, and home/factory automation. EP SUFFIX (E-TYPE) ES SUFFIX (WF-TYPE) 98ASA00405D 98ASA00589D 56 QFN 8X8 56 QFN 8X8 Features: Applications: • Four to six buck converters, depending on configuration • Single/Dual phase/ parallel options • Tablets • DDR termination tracking mode option • IPTV • Boost regulator to 5.0 V output • eReaders • Six general purpose linear regulators • Set top boxes • Programmable output voltage, sequence, and timing • Industrial control • OTP (one time programmable) memory for device configuration • Medical monitoring • Coin cell charger and RTC supply • Home automation/ alarm/ energy management • DDR termination reference voltage • Power control logic with processor interface and event detection • I2C control • Individually programmable ON, OFF, and standby modes PF0100 i.MX 6X VREFDDR SW4 DDR Memory DDR MEMORY 1000 mA INTERFACE SW3A/B 2500 mA SW1A/B 2500 mA Processor Core SW1C Voltages 2000 mA External AMP SW2 Microphones 2000 mA SATA -FLASH Speakers SD-MMC/ SATA NAND -NOR SWBST NAND Mem. HDD Interfaces 600 mA Audio Codec Control Signals Parallel control/GPIOS I2C Communication I2C Communication Sensors 1V0G0E mNA1 Camera Camera VGEN2 GPS 250 mA WAM MIPI VGEN3 GMPIPSI uPCIe 100 mA VGEN4 HDMI 350 mA LDVS Display VGEN5 100 mA USB LICELL VGEN6 Ethernet Charger 200 mA CAN COINCELL M2a.8in – S4u.p5p Vly Cluster/HUD FroPnOt UDSB IRnfeoatar iSmeeantt ReParO UDSB Figure 1. Simplified application diagram * This document contains certain information on a new product. Specifications and information herein are subject to change without notice. © NXP Semiconductors N.V. 2017
Table of Contents 1 Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2.1 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3.1 General specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3.2 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.3.1 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.3.2 Control logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6 Functional block requirements and behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.1 Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.1.1 Device start-up configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.1.2 One time programmability (OTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.1.3 OTP prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1.4 Reading OTP fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1.5 Programming OTP fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.2 16 MHz and 32 kHz clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.2.1 Clock adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.3 Bias and references block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.3.1 Internal core voltage references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.3.2 VREFDDR voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.4 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.4.1 Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.4.2 State machine flow summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.4.3 Power tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.4.4 Buck regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.4.5 Boost regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.4.6 LDO regulators description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.4.7 VSNVS LDO/switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.5 Control interface I2C block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.5.1 I2C device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.5.2 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.5.3 Interrupt handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.5.4 Interrupt bit summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.5.5 Specific registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.5.6 Register bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 PF0100 2 NXP Semiconductors
7 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.1.1 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.1.2 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.2 PF0100 layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.2.1 General board recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.2.2 Component placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.2.3 General routing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.2.4 Parallel routing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.2.5 Switching regulator layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.3 Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.3.1 Rating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.3.2 Estimation of junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8.1 Packaging dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 9 Reference section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.1 Reference documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 PF0100 NXP Semiconductors 3
ORDERABLE PARTS 1 Orderable parts The PF0100 is available with both pre-programmed and non-programmed OTP memory configurations. The non-programmed device uses “NP” as the programming code. The pre-programmed devices are identified using the program codes from Table 1, which also list the associated NXP reference designs where applicable. Details of the OTP programming for each device can be found in Table 10. Table 1. Orderable Part Variations Part Number Temperature (TA) Package Programming Reference Designs Notes MMPF0100NPAEP NP N/A MCIMX6Q-SDP (1), (2) MMPF0100F0AEP F0 MCIMX6Q-SDB MCIMX6DL-SDP MMPF0100F1AEP F1 MCIMX6SLEVK (1), (2), (3) -40 °C to 85 °C MMPF0100F2AEP 56 QFN 8x8 mm - 0.5 mm pitch F2 N/A (for use in consumer E-Type QFN (full lead) MMPF0100F3AEP applications) F3 N/A MMPF0100F4AEP F4 N/A (1), (2) MMPF0100F6AEP F6 MCIMX6SX-SDB MMPF0100FCAEP FC N/A (1), (2) MMPF0100FDAEP FD MCIMX6SLLEVK MMPF0100NPANES NP N/A (1), (2), (4) MCIMX6Q-SDP MMPF0100F0ANES F0 MCIMX6Q-SDB MCIMX6DL-SDP MMPF0100F3ANES F3 N/A (1), (2) -40 °C to 105 °C MMPF0100F4ANES 56 QFN 8x8 mm - 0.5 mm pitch F4 N/A (for use in extended WF-Type QFN (wettable flank) MMPF0100F6ANES industrial applications) F6 MCIMX6SX-SDB MMPF0100F9ANES F9 N/A MMPF0100FAANES FA N/A (1), (2), (4) MMPF0100FBANES FB N/A MMPF0100FCANES FC N/A (1), (2) Notes 1. For tape and reel, add an R2 suffix to the part number. 2. For programming details see Table 10. The available OTP options are not restricted to the listed reference designs. They can be used in any application where the listed voltage and sequence details are acceptable. 3. For designs using the i.MX 6SoloLite, it is recommended to use the F3 OTP option instead of the F1 OTP option and F4 OTP option instead of the F2 OTP option. 4. SW2 can support an output current rating of 2.5 A in NP, F9, and FA Industrial versions only (ANES suffix) when SW2ILIM=0 PF0100 4 NXP Semiconductors
ORDERABLE PARTS 1.1 PF0100 version differences PF0100A is an improved version of the PF0100 power management IC. Table 2 summarizes the difference between the two versions and should be referred to when migrating from the PF0100 to the PF0100A. Note that programming options are the same for both versions of the device. Table 2. Differences between PF0100 and PF0100A Description PF0100 PF0100A Reading SILICON REV register at address 0x03 Reading SILICON REV register at address 0x03 Version identification returns 0x11. DEVICEID register at address 0x00 returns 0x21. DEVICEID register at address 0x00 reads 0x10 in PF0100 and PF0100A reads 0x10 in PF0100 and PF0100A VSNVS current limit VSNVS current limit increased in the PF0100A In the PF0100, FUSE_POR1, FUSE_POR2, and In the PF0100A, the XOR function is removed. It is FUSE_POR3 bits are XOR’ed into the required to set FUSE_POR1, FUSE_POR2, and OTP_FUSE_PORx register setting during OTP FUSE_POR_XOR bit. The FUSE_POR_XOR bit FUSE_POR3 bits during OTP programming. programming has to be 1 for fuses to be loaded during startup. This can be achieved by setting any one or all of the FUSE_PORx bits during OTP programming. Erratum ER19 applicable to PF0100. Applications Errata ER19 fixed in PF0100A. External expecting to operate in the conditions mentioned in workaround not required Erratum ER19 ER19 need to implement an external workaround to overcome the problem. Refer to the product errata for details Erratum ER20 Erratum ER20 applicable to PF0100 Errata ER20 fixed in PF0100A Errata ER22 fixed in PF0100A. Workaround not Erratum ER22 Erratum ER22 applicable to PF0100 required In addition to the version differences, Table 3 shows the differences on the test temperature rating for each version of PF0100 covered on this datasheet. Table 3. Ambient temperature range Ambient temperature range Device Qualification tier (T to T ) MIN MAX MMPF0100 Consumer and Industrial T = -40 °C to 85 °C A MMPF0100A Consumer T = -40 °C to 85 °C A MMPF0100AN Extended Industrial T = -40 °C to 105 °C A PF0100 NXP Semiconductors 5
INTERNAL BLOCK DIAGRAM 2 Internal block diagram PF0100 SW1FB VIN1 VGEN1 VGEN1 100 mA O/P SW1AIN SiSnWgl1eA/D/Bua l Drive SW1ALX VGEN2 2V5G0E mNA2 25B0u0c mkA O/P SW1BLX Drive SW1BIN VIN2 VGEN3 VGEN3 100 mA O/P SW1CLX VGEN4 SW1C Drive SW1CIN VGEN4 350 mA 2000 mA Buck SW1CFB Core Control logic SW1VSSSNS VIN3 VGEN5 100 mA VGEN5 Initialization State Machine SW2 O/P SW2LX VGEN6 2000 mA Drive SW2IN VGEN6 200 mA Buck SW2IN SW2FB OTP Supplies SW3AFB Control VDDOTP SW3A/B DOri/vPe SSWW33AALINX CONTROL Single/Dual VDDIO InteI2rCfa ce 25BD0u0Dc RmkA DOri/vPe SSWW33BBLINX SCL SDA DVS CONTROL SW3BFB DVS Control SW3VSSSNS SW4FB SW4 1000 mA O/P SW4IN I2C Register Trim-In-Package Buck Drive SW4LX VCOREDIG map GNDREF1 VCOREREF Reference Clocks and SWBSTLX Generation SWBST O/P VCORE resets 600 mA Drive Boost SWBSTIN GNDREF SWBSTFB VREFDDR VINREFDDR Clocks 32 kHz and 16 MHz VHALF VIN CLhi aCrgelelr SBuopefsp tl y LICELL VSNVS S T N Y U B B VSNV ICTES PWRO STANDB SETBMC SDWN INT E R Figure 2. Simplified internal block diagram PF0100 6 NXP Semiconductors
PIN CONNECTIONS 3 Pin connections 3.1 Pinout diagram F G WRON DDIO CL DA CORERE COREDI N CORE NDREF DDOTP WBSTLX WBSTIN WBSTFB SNVS P V S S V V VI V G V S S S V 56 55 54 53 52 51 50 49 48 47 46 45 44 43 INTB 1 42 LICELL SDWNB 2 41 VGEN6 RESETBMCU 3 40 VIN3 STANDBY 4 39 VGEN5 ICTEST 5 38 SW3AFB SW1FB 6 37 SW3AIN SW1AIN 7 EP 36 SW3ALX SW1ALX 8 35 SW3BLX SW1BLX 9 34 SW3BIN SW1BIN 10 33 SW3BFB SW1CLX 11 32 SW3VSSSNS SW1CIN 12 31 VREFDDR SW1CFB 13 30 VINREFDDR SW1VSSSNS 14 29 VHALF 15 16 17 18 19 20 21 22 23 24 25 26 27 28 1 1 1 2 B N X X N N B 3 2 4 REF GEN VIN GEN W4F W4I W4L W2L W2I W2I W2F GEN VIN GEN D V V S S S S S S S V V N G Figure 3. Pinout diagram PF0100 NXP Semiconductors 7
PIN CONNECTIONS 3.2 Pin definitions Table 4. PF0100 pin definitions Pin Pin number Pin name Max rating Type Definition function 1 INTB O 3.6 V Digital Open drain interrupt signal to processor 2 SDWNB O 3.6 V Digital Open drain signal to indicate an imminent system shutdown Open drain reset output to processor. Alternatively can be used as a power 3 RESETBMCU O 3.6 V Digital good output. 4 STANDBY I 3.6 V Digital Standby input signal from processor Digital/ 5 ICTEST I 7.5 V Reserved pin. Connect to GND in application. Analog 6 SW1FB (6) I 3.6 V Analog Output voltage feedback for SW1A/B. Route this trace separately from the high current path and terminate at the output capacitance. 7 SW1AIN (6) I 4.8 V Analog Iannpdu ta t o0 .S1 WμF1 Ad erceoguuplalitnogr. cBayppaacsitso rw aitsh calto lseea stot ath 4e. 7p iμnF a sc eproasmsiicb lcea.pacitor 8 SW1ALX (6) O 4.8 V Analog Regulator 1A switch node connection 9 SW1BLX (6) O 4.8 V Analog Regulator 1B switch node connection 10 SW1BIN (6) I 4.8 V Analog aInndp uat 0to.1 S μWF1 dBe rceoguupllaintogr .c Bapyapcaistosr w aisth c alot sleea tsot tah e4 .p7i nμ aFs c peorasmsibicl ec.apacitor 11 SW1CLX (6) O 4.8 V Analog Regulator 1C switch node connection 12 SW1CIN (6) I 4.8 V Analog Iannpdu ta t0o. 1S WμF1 Cde rceoguuplalitnogr. cBayppaacsitso rw aitsh calot sleea tsot ath 4e. 7p inμ Fa sc eproasmsiibc lcea.pacitor 13 SW1CFB (6) I 3.6V Analog Output voltage feedback for SW1C. Route this trace separately from the high current path and terminate at the output capacitance. Ground reference for regulators SW1ABC. It is connected externally to 14 SW1VSSSNS GND - GND GNDREF through a board ground plane. Ground reference for regulators SW2 and SW4. It is connected externally to 15 GNDREF1 GND - GND GNDREF, via board ground plane. 16 VGEN1 O 2.5 V Analog VGEN1 regulator output, Bypass with a 2.2 μF ceramic output capacitor. VGEN1, 2 input supply. Bypass with a 1.0 μF decoupling capacitor as close 17 VIN1 I 3.6 V Analog to the pin as possible. 18 VGEN2 O 2.5 V Analog VGEN2 regulator output, Bypass with a 4.7 μF ceramic output capacitor. 19 SW4FB (6) I 3.6 V Analog Output voltage feedback for SW4. Route this trace separately from the high current path and terminate at the output capacitance. 20 SW4IN (6) I 4.8 V Analog Ian 0p.u1t tμoF S dWec4o ruepgluinlagt ocar.p Baycpitaosr sa sw icthlo saet lteoa tsht ea p4i.n7 μasF pcoesrasmibilce .capacitor and 21 SW4LX (6) O 4.8 V Analog Regulator 4 switch node connection 22 SW2LX (6) O 4.8 V Analog Regulator 2 switch node connection 23 SW2IN (6) I 4.8 V Analog Input to SW2 regulator. Connect pin 23 together with pin 24 and bypass with at least a 4.7 μF ceramic capacitor and a 0.1 μF decoupling capacitor as 24 SW2IN (6) I 4.8 V Analog close to these pins as possible. 25 SW2FB (6) I 3.6 V Analog Output voltage feedback for SW2. Route this trace separately from the high current path and terminate at the output capacitance. 26 VGEN3 O 3.6 V Analog VGEN3 regulator output. Bypass with a 2.2 μF ceramic output capacitor. VGEN3,4 input. Bypass with a 1.0 μF decoupling capacitor as close to the 27 VIN2 I 3.6 V Analog pin as possible. 28 VGEN4 O 3.6 V Analog VGEN4 regulator output, Bypass with a 4.7 μF ceramic output capacitor. PF0100 8 NXP Semiconductors
PIN CONNECTIONS Table 4. PF0100 pin definitions (continued) Pin Pin number Pin name Max rating Type Definition function 29 VHALF I 3.6 V Analog Half supply reference for VREFDDR VREFDDR regulator input. Bypass with at least 1.0 μF decoupling capacitor 30 VINREFDDR I 3.6 V Analog as close to the pin as possible. 31 VREFDDR O 3.6 V Analog VREFDDR regulator output Ground reference for the SW3 regulator. Connect to GNDREF externally via 32 SW3VSSSNS GND - GND the board ground plane. 33 SW3BFB (6) I 3.6 V Analog Output voltage feedback for SW3B. Route this trace separately from the high current path and terminate at the output capacitance. 34 SW3BIN (6) I 4.8 V Analog Iannpdu at t0o. 1S WμF3 Bd erceoguuplalitnogr. cBayppaacsitso rw aitsh calto lseea stot ath 4e. 7p iμnF a sc eproasmsiicb lcea.pacitor 35 SW3BLX (6) O 4.8 V Analog Regulator 3B switch node connection 36 SW3ALX (6) O 4.8 V Analog Regulator 3A switch node connection 37 SW3AIN (6) I 4.8 V Analog Iannpdu at t0o. 1S WμF3 Ad erceoguuplalitnogr. cBayppaacsitso rw aitsh calto lseea stot ath 4e. 7p iμnF a sc eproasmsiicb lcea.pacitor 38 SW3AFB (6) I 3.6 V Analog Output voltage feedback for SW3A. Route this trace separately from the high current path and terminate at the output capacitance. 39 VGEN5 O 3.6 V Analog VGEN5 regulator output. Bypass with a 2.2 μF ceramic output capacitor. VGEN5, 6 input. Bypass with a 1.0 μF decoupling capacitor as close to the 40 VIN3 I 4.8 V Analog pin as possible. 41 VGEN6 O 3.6 V Analog VGEN6 regulator output. By pass with a 2.2 μF ceramic output capacitor. 42 LICELL I/O 3.6 V Analog Coin cell supply input/output 43 VSNVS O 3.6 V Analog LDO or coin cell output to processor 44 SWBSTFB (6) I 5.5 V Analog Boost regulator feedback. Connect this pin to the output rail close to the load. Keep this trace away from other noisy traces and planes. 45 SWBSTIN (6) I 4.8 V Analog Iannpdu at t0o. 1S WμFB SdeTc roeugpulilnagto cr.a Bpyapcaitossr awsi tchl oast ele taos tth ae 2p.i2n μaFs pceorsasmibilce .capacitor 46 SWBSTLX (6) O 7.5 V Analog SWBST switch node connection Digital and 47 VDDOTP I 10 V(5) Supply to program OTP fuses Analog 48 GNDREF GND - GND Ground reference for the main band gap regulator. 49 VCORE O 3.6 V Analog Analog Core supply 50 VIN I 4.8 V Analog Main chip supply 51 VCOREDIG O 1.5 V Analog Digital Core supply 52 VCOREREF O 1.5 V Analog Main band gap reference 53 SDA I/O 3.6 V Digital I2C data line (Open drain) 54 SCL I 3.6 V Digital I2C clock 55 VDDIO I 3.6 V Analog Supply for I2C bus. Bypass with 0.1 μF ceramic capacitor 56 PWRON I 3.6 V Digital Power On/off from processor Expose pad. Functions as ground return for buck regulators. Tie this pad to - EP GND - GND the inner and external ground planes through vias to allow effective thermal dissipation. Notes 5. 10 V Maximum voltage rating during OTP fuse programming. 7.5 V Maximum DC voltage rated otherwise. 6. Unused switching regulators should be connected as follow: Pins SWxLX and SWxFB should be unconnected and Pin SWxIN should be connected to VIN with a 0.1 μF bypass capacitor. PF0100 NXP Semiconductors 9
GENERAL PRODUCT CHARACTERISTICS 4 General product characteristics 4.1 Absolute maximum ratings Table 5. Absolute maximum ratings All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause malfunction or permanent damage to the device. The detailed maximum voltage rating per pin can be found in the pin list section. Symbol Description Value Unit Notes Electrical ratings V Main input supply voltage -0.3 to 4.8 V IN V OTP programming input supply voltage -0.3 to 10 V DDOTP V Coin cell voltage -0.3 to 3.6 V LICELL ESD ratings V Human body model ±2000 V (7) ESD Charge device model ±500 Notes 7. ESD testing is performed in accordance with the human body model (HBM) (C = 100 pF, R = 1500 Ω), and the charge device model (CDM), ZAP ZAP robotic (C = 4.0 pF). ZAP PF0100 10 NXP Semiconductors
GENERAL PRODUCT CHARACTERISTICS 4.2 Thermal characteristics Table 6. Thermal ratings Symbol Description (rating) Min. Max. Unit Notes Thermal ratings Ambient operating temperature range • PF0100 -40 85 T °C A • PF0100A -40 85 • PF0100AN -40 105 T Operating junction temperature range -40 125 °C (8) J T Storage temperature range -65 150 °C ST T Peak package reflow temperature – Note 10 °C (9)(10) PPRT QFN56 thermal resistance and package dissipation ratings Junction to ambient • Natural convection RθJA • Four layer board (2s2p) – 28 °C/W (11)(12)(13) • Eight layer board (2s6p) – 15 Junction to ambient (@200 ft/min) RθJMA • Four layer board (2s2p) – 22 °C/W (11)(13) RθJB Junction to board – 10 °C/W (14) RΘJCBOTTOM Junction to case bottom – 1.2 °C/W (15) Junction to package top ΨJT – 2.0 °C/W (16) • Natural convection Notes 8. Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See Table 7 for thermal protection features. 9. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a malfunction or permanent damage to the device. 10. NXP’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and Moisture Sensitivity Levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all orderable parts, and review parametrics. 11. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 12. The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5. 13. Per JEDEC JESD51-6 with the board horizontal. 14. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. 15. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 16. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51- 2. When Greek letter (Ψ) are not available, the thermal characterization parameter is written as Psi-JT. 4.2.1 Power dissipation During operation, the temperature of the die should not exceed the operating junction temperature noted in Table 6. To optimize the thermal management and to avoid overheating, the PF0100 provides thermal protection. An internal comparator monitors the die temperature. Interrupts THERM110I, THERM120I, THERM125I, and THERM130I are generated when the respective thresholds specified in Table 7 are crossed in either direction. The temperature range can be determined by reading the THERMxxxS bits in register INTSENSE0. In the event of excessive power dissipation, thermal protection circuitry shuts down the PF0100. This thermal protection acts above the thermal protection threshold listed in Table 7. To avoid any unwanted power downs resulting from internal noise, the protection is debounced for 8.0 ms. This protection should be considered as a fail-safe mechanism and therefore the system should be configured so protection is not tripped under normal conditions. PF0100 NXP Semiconductors 11
GENERAL PRODUCT CHARACTERISTICS Table 7. Thermal protection thresholds Parameter Min. Typ. Max. Units Thermal 110 °C Threshold (THERM110) 100 110 120 °C Thermal 120 °C Threshold (THERM120) 110 120 130 °C Thermal 125 °C Threshold (THERM125) 115 125 135 °C Thermal 130 °C Threshold (THERM130) 120 130 140 °C Thermal Warning Hysteresis 2.0 – 4.0 °C Thermal Protection Threshold 130 140 150 °C 4.3 Electrical characteristics 4.3.1 General specifications Table 8. General PMIC static characteristics. T to T (See Table 3), VIN = 2.8 to 4.5 V, VDDIO = 1.7 to 3.6 V, typical external component values and full load current range, unless MIN MAX otherwise noted. Pin name Parameter Load condition Min. Max. Unit V – 0.0 0.2 * VSNVS V IL PWRON V – 0.8 * VSNVS 3.6 V IH V -2.0 mA 0.0 0.4 V OL RESETBMCU V Open Drain 0.7* VIN VIN V OH V – 0.0 0.2 * VDDIO V IL SCL V – 0.8 * VDDIO 3.6 V IH V – 0.0 0.2 * VDDIO V IL V – 0.8 * VDDIO 3.6 V IH SDA V -2.0 mA 0.0 0.4 V OL V Open Drain 0.7*VDDIO VDDIO V OH V -2.0 mA 0.0 0.4 V OL INTB V Open Drain 0.7* VIN VIN V OH V -2.0 mA 0.0 0.4 V OL SDWNB V Open Drain 0.7* VIN VIN V OH V – 0.0 0.2 * VSNVS V IL STANDBY V – 0.8 * VSNVS 3.6 V IH V – 0.0 0.3 V IL VDDOTP V – 1.1 1.7 V IH PF0100 12 NXP Semiconductors
GENERAL PRODUCT CHARACTERISTICS 4.3.2 Current consumption Table 9. Current consumption summary T to T (See Table 3), VIN = 3.6 V, VDDIO = 1.7 V to 3.6 V, LICELL = 1.8 V to 3.3 V, VSNVS = 3.0 V, typical external component MIN MAX values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VDDIO = 3.3 V, LICELL = 3.0 V, VSNVS = 3.0 V and 25 °C, unless otherwise noted. Mode PF0100 conditions System conditions Typical MAX Unit Notes VSNVS from LICELL All other blocks off (17),(19), Coin Cell VIN = 0.0 V No load on VSNVS 4.0 7.0 μA (23) VSNVSVOLT[2:0] = 110 VSNVS from VIN or LICELL Wake-up from PWRON active Off 32 k RC on No load on VSNVS, PMIC able to wake-up 16 21 μA (18),(19) MMPF0100 All other blocks off VIN ≥ UVDET VSNVS from VIN or LICELL Wake-up from PWRON active Off 32 k RC on No load on VSNVS, PMIC able to wake-up 17 25 μA (18),(19) MMPF0100A All other blocks off VIN ≥ UVDET VSNVS from VIN Wake-up from PWRON active Trimmed reference active 122 220(22) Sleep SW3A/B PFM No load on VSNVS. DDR memories in self μA (19) Trimmed 16 MHz RC off refresh 122 250(21) 32 k RC on VREFDDR disabled VSNVS from either VIN or LICELL SW1A/B combined in PFM SW1C in PFM SW2 in PFM Standby SSWW34A in/B P cFoMm bined in PFM Nloow lopaodw eorn m VoSdNeV. SA.ll Praroilsc epsoswoer reenda obnle d in 297 450 (20) μA (19) MMPF0100 SWBST off except boost (load = 0 mA) 297 1000 (22) Trimmed 16 MHz RC enabled Trimmed reference active VGEN1-6 enabled VREFDDR enabled VSNVS from either VIN or LICELL SW1A/B combined in PFM SW1C in PFM SW2 in PFM Standby SSWW34A in/B P cFoMm bined in PFM Nloow lopaodw eorn m VoSdNeV. SA.ll Praroilsc epsoswoer reenda obnle d in 297 450 (22) μA (19) MMPF0100A SWBST off except boost (load = 0 mA) 297 550(21) Trimmed 16 MHz RC enabled Trimmed reference active VGEN1-6 enabled VREFDDR enabled Notes 17. Refer to Figure 4 for coin cell mode characteristics over temperature. 18. When VIN is below the UVDET threshold, in the range of 1.8 V ≤ V < 2.65 V, the quiescent current increases by 50 μA, typically. IN 19. For PFM operation, headroom should be 300 mV or greater. 20. From 0 °C to 85 °C 21. From -40 °C to 105 °C, applicable only to extended industrial parts. 22. From -40 °C to 85 °C, applicable to consumer, industrial and extended industrial part numbers. 23. Additional current may be drawn in the coin cell mode when RESETBMCU is pulled up to VSNVS due an internal path from RESETBMCU to V . IN The additional current is < 30 μA with a pull up resistor of 100 kΩ. The i.MX 6x processors have an internal pull up from the POR_B pin to the VDD_SNVS_IN pin. For i.MX 6x applications, if additional current in the coin cell mode is not desired, use an external switch to disconnect the RESETBMCU path when V is removed. For non-i.MX 6 applications, pull-up RESETBMCU to a rail off in the coin cell mode. IN PF0100 NXP Semiconductors 13
GENERAL PRODUCT CHARACTERISTICS Coin cell mode A) 100 u nt ( e urr c e d o m Cell 10 MMPF0100 n MMPF0100A oi C 1 -40 -20 0 20 40 60 80 Temperature (°C) Temperature (oC) Figure 4. Coin cell mode current vs temperature PF0100 14 NXP Semiconductors
GENERAL DESCRIPTION 5 General description The PF0100 is the power management integrated circuit (PMIC) designed primarily for use with NXP’s i.MX 6 series of application processors. 5.1 Features This section summarizes the PF0100 features. • Input voltage range to PMIC: 2.8 V - 4.5 V • Buck regulators • Four to six channel configurable • SW1A/B/C, 4.5 A (single); 0.3 V to 1.875 V • SW1A/B, 2.5 A (single/dual); SW1C 2.0 A (independent); 0.3 V to 1.875 V • SW2, 2.0 A; 0.4 V to 3.3 V (2.5 A; 1.2 V to 3.3 V (24)) • SW3A/B, 2.5 A (single/dual); 0.4 V to 3.3 V • SW3A, 1.25 A (independent); SW3B, 1.25 A (independent); 0.4 V to 3.3 V • SW4, 1.0 A; 0.4 V to 3.3 V • SW4, VTT mode provide DDR termination at 50% of SW3A • Dynamic voltage scaling • Modes: PWM, PFM, APS • Programmable output voltage • Programmable current limit • Programmable soft start • Programmable PWM switching frequency • Programmable OCP with fault interrupt • Boost regulator • SWBST, 5.0 V to 5.15 V, 0.6 A, OTG support • Modes: PFM and auto • OCP fault interrupt • LDOs • Six user programable LDO • VGEN1, 0.80 V to 1.55 V, 100 mA • VGEN2, 0.80 V to 1.55 V, 250 mA • VGEN3, 1.8 V to 3.3 V, 100 mA • VGEN4, 1.8 V to 3.3 V, 350 mA • VGEN5, 1.8 V to 3.3 V, 100 mA • VGEN6, 1.8 V to 3.3 V, 200 mA • Soft start • LDO/switch supply • VSNVS (1.0/1.1/1.2/1.3/1.5/1.8/3.0 V), 400 μA • DDR memory reference voltage • VREFDDR, 0.6 V to 0.9 V, 10 mA • 16 MHz internal master clock • OTP(one time programmable) memory for device configuration • User programmable start-up sequence and timing • Battery backed memory including coin cell charger • I2C interface • User programmable standby, sleep, and off modes Notes 24. SW2 capable of 2.5 A in NP, F9, and FA Industrial versions only (ANES suffix) PF0100 NXP Semiconductors 15
GENERAL DESCRIPTION 5.2 Functional block diagram MMPF0100 functional internal block diagram OTP startup configuration Power generation OTP prototyping Voltage Switching regulators Linear regulators (Try before buy) SW1A/B/C VGEN1 Sequence and Phasing and (0.3 V to 1.875 V) (0.8 V to 1.55 V, 100 mA) timing frequency selection Configurable 4.5 A or 2.5 A+2.0 A VGEN2 Bias & references (0.8 V to 1.55 V, 250 mA) Internal core voltage reference (0.4 V toS 3W.32 V, 2.0 A) VGEN3 (1.8 V to 3.3 V, 100 mA) DDR voltage reference SW3A/B VGEN4 (0.4 V to 3.3 V) (1.8 V to 3.3 V, 350 mA) Logic and control Configurable 2.5 A Parallel MCU interface Regulator control or 1.25 A+1.25 A VGEN5 (1.8 V to 3.3 V, 100 mA) I2C communication and registers SW4 VGEN6 (0.4 V to 3.3 V, 1.0 A) (1.8 V to 3.3 V, 200 mA) Fault detection and protection VSNVS Thermal Current limit (5.0 BVo toos 5t .R15e gVu, l6a0to0r mA) (1.0 V to 3.0 V, 400 μA) USB OTG Supply RTC supply with coin cell Short-circuit charger Figure 5. Functional block diagram 5.3 Functional description 5.3.1 Power generation The PF0100 PMIC features four buck regulators (up to six independent outputs), one boost regulator, six general purpose LDOs, one switch/LDO combination and a DDR voltage reference to supply voltages for the application processor and peripheral devices. The number of independent buck regulator outputs can be configured from four to six, thereby providing flexibility to operate with higher current capability, or to operate as independent outputs for applications requiring more voltage rails with lower current demands. Further, SW1 and SW3 regulators can be configured as single/dual phase and/or independent converters. One of the buck regulators, SW4, can also operate as a tracking regulator when used for memory termination. The buck regulators provide the supply to processor cores and to other low voltage circuits such as IO and memory. Dynamic voltage scaling is provided to allow controlled supply rail adjustments for the processor cores and/or other circuitry. Depending on the system power path configuration, the six general purpose LDO regulators can be directly supplied from the main input supply or from the switching regulators to power peripherals, such as audio, camera, Bluetooth, Wireless LAN, etc. A specific VREFDDR voltage reference is included to provide accurate reference voltage for DDR memories operating with or without VTT termination. The VSNVS block behaves as an LDO, or as a bypass switch to supply the SNVS/SRTC circuitry on the i.MX processors; VSNVS may be powered from VIN, or from a coin cell. 5.3.2 Control logic The PF0100 PMIC is fully programmable via the I2C interface. Additional communication is provided by direct logic interfacing including interrupt and reset. Start-up sequence of the device is selected upon the initial OTP configuration explained in the Start-up section, or by configuring the “Try Before Buy” feature to test different power up sequences before choosing the final OTP configuration. The PF0100 PMIC has the interfaces for the power buttons and dedicated signaling interfacing with the processor. It also ensures supply of critical internal logic and other circuits from the coin cell in case of brief interruptions from the main battery. A charger for the coin cell is included as well. PF0100 16 NXP Semiconductors
GENERAL DESCRIPTION 5.3.2.1 Interface signals 5.3.2.1.1 PWRON PWRON is an input signal to the IC generating a turn-on event. It can be configured to detect a level, or an edge using the PWRON_CFG bit. Refer to section 6.4.2.1 Turn on events, page 31 for more details. 5.3.2.1.2 STANDBY STANDBY is an input signal to the IC. When it is asserted the part enters standby mode and when de-asserted, the part exits standby mode. STANDBY can be configured as active high or active low using the STANDBYINV bit. Refer to the section 6.4.1.3 Standby mode, page 29 for more details. Note: When operating the PMIC at VIN ≤ 2.85 V and VSNVS is programmed for a 3.0 V output, a coin cell must be present to provide VSNVS, or the PMIC does not reliably enter and exit the STANDBY mode. 5.3.2.1.3 RESETBMCU RESETBMCU is an open drain, active low output configurable for two modes of operation. In its default mode, it is de-asserted 2.0 ms to 4.0 ms after the last regulator in the start-up sequence is enabled; refer to Figure 6 as an example. In this mode, the signal can be used to bring the processor out of reset, or as an indicator that all supplies have been enabled; it is only asserted for a turn-off event. When configured for its fault mode, RESETBMCU is de-asserted after the start-up sequence is completed only if no faults occurred during start-up. At anytime, if a fault occurs and persists for 1.8 ms typically, RESETBMCU is asserted, LOW. The PF0100 is turned off if the fault persists for more than 100 ms typically. The PWRON signal restarts the part, though if the fault persists, the sequence described above is repeated. To enter the fault mode, set bit OTP_PG_EN of register OTP PWRGD EN to “1”. This register, 0xE8, is located on Table 137 of the register map. To test the fault mode, the bit may be set during TBB prototyping, or the mode may be permanently chosen by programming OTP fuses. 5.3.2.1.4 SDWNB SDWNB is an open drain, active low output notifying the processor of an imminent PMIC shut down. It is asserted low for one 32 kHz clock cycle before powering down and is then de-asserted in the OFF state. 5.3.2.1.5 INTB INTB is an open drain, active low output. It is asserted when any fault occurs, provided the fault interrupt is unmasked. INTB is de-asserted after the fault interrupt is cleared by software, which requires writing a “1” to the fault interrupt bit. PF0100 NXP Semiconductors 17
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6 Functional block requirements and behaviors 6.1 Start-up The PF0100 can be configured to start-up from either the internal OTP configuration, or with a hard-coded configuration built in to the device. The internal hard-coded configuration is enabled by connecting the VDDOTP pin to VCOREDIG through a 100 kΩ resistor. The OTP configuration is enabled by connecting VDDOTP to GND. For NP devices, selecting the OTP configuration causes the PF0100 to not start-up. However, the PF0100 can be controlled through the I2C port for prototyping and programming. Once programmed, the NP device starts up with the customer programmed configuration. 6.1.1 Device start-up configuration Table 10 shows the default configuration, which can be accessed on all devices as described previously, as well as the pre-programmed OTP configurations. Table 10. Start-up configuration Default Pre-programmed OTP configuration configuration Registers All devices F0 F1(25) F2(25) F3 F4 F6 F9 FA FB FC FD Default I2C Address 0x08 0x08 0x08 0x08 0x08 0x08 0x08 0x08 0x08 0x08 0x08 0x08 VSNVS_VOLT 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V SW1AB_VOLT 1.375 V 1.375 V 1.375 V 1.375 V 1.375 V 1.375 V 1.375 V 1.375 V 1.375 V 1.375 V 1.375 V 1.2 V SW1AB_SEQ 1 1 1 1 2 2 2 5 5 2 2 2 SW1C_VOLT 1.375 V 1.375 V 1.375 V 1.375 V 1.375 V 1.375 V 1.375 V 1.375 V 1.375 V 1.375 V 1.375 V 1.2 V SW1C_SEQ 1 2 1 1 2 2 2 5 5 2 2 2 SW2_VOLT 3.0 V 3.3 V 3.15 V 3.15 V 3.15 V 3.15 V 3.3 V 1.375 V 1.375 V 3.3 V 3.3 V 3.15 V SW2_SEQ 2 5 2 2 1 1 4 5 5 6 5 1 SW3A_VOLT 1.5 V 1.5 V 1.2 V 1.5 V 1.2 V 1.5 V 1.35 V 1.350 V 1.5 V 1.2 V 1.35 V 1.2 V SW3A_SEQ 3 3 4 4 4 4 3 6 6 4 3 4 SW3B_VOLT 1.5 V 1.5 V 1.2 V 1.5 V 1.2 V 1.5 V 1.35 V 1.350 V 1.5 V 1.2 V 1.35 V 1.2 V SW3B_SEQ 3 3 4 4 4 4 3 6 6 4 3 4 SW4_VOLT 1.8 V 3.15 V 1.8 V 1.8 V 1.8 V 1.8 V 1.8 V 1.825 V 1.825 V 1.8 V 3.15 V 1.8 V SW4_SEQ 3 6 3 3 3 3 4 7 7 3 6 3 SWBST_VOLT - 5.0 V 5.0 V 5.0 V 5.0 V 5.0 V 5.0 V 5.0 V 5.0 V 5.0 V 5.0 V 5.0 V SWBST_SEQ - 13 6 6 6 6 Off 10 10 Off 13 6 VREFDDR_SEQ 3 3 4 4 4 4 3 6 6 4 3 4 VGEN1_VOLT - 1.5 V 1.2 V 1.2 V 1.2 V 1.2 V 1.2 V 1.2 V 1.2 V 1.5 V 1.5 V 1.2 V VGEN1_SEQ - 9 4 4 4 4 5 - - 3 9 - VGEN2_VOLT 1.5 V 1.5 V - - - - 1.5 V 1.5 V 1.5 V 1.5 V 1.5 V 1.5 V VGEN2_SEQ 2 10 - - - - Off 8 8 Off 10 7 VGEN3_VOLT - 2.5 V - - - - 2.8 V 1.8 V 1.8 V 2.5 V 2.5 V 1.8 V VGEN3_SEQ - 11 - - - - 5 8 8 Off 11 7 VGEN4_VOLT 1.8 V 1.8 V 1.8 V 1.8 V 1.8 V 1.8 V 1.8 V 3.0 V 3.0 V 1.8 V 1.8V 1.8 V VGEN4_SEQ 3 7 3 3 3 3 4 4 4 7 7 3 VGEN5_VOLT 2.5 V 2.8 V 2.5 V 2.5 V 2.5 V 2.5 V 3.3 V 2.5 V 2.5 V 2.8 V 2.8 V 2.5 V PF0100 18 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 10. Start-up configuration (continued) Default Pre-programmed OTP configuration configuration Registers All devices F0 F1(25) F2(25) F3 F4 F6 F9 FA FB FC FD VGEN5_SEQ 3 12 5 5 5 5 5 8 8 1 1 5 VGEN6_VOLT 2.8 V 3.3 V - - - - 3.0 V 2.8 V 2.8 V 3.3 V 3.3 V 2.8 V VGEN6_SEQ 3 8 - - - - 1 7 7 8 8 7 PU CONFIG, 1.0 ms 2.0 ms 1.0 ms 1.0 ms 1.0 ms 1.0 ms 0.5 ms 0.5 ms 0.5 ms 2.0 ms 2.0 ms 1.0 ms SEQ_CLK_SPEED PSWU DCVOSN_FCIGLK, 6.25 mV/μs 1.56/2μ5s mV 12.5μ smV/ 12.5μ smV/ 12.5μ smV/ 12.5μ smV/ 6.25μ smV/ 6.25 mV/μs 6.25 mV/μs 1.562μ5s mV/ 1.562μ5s mV/ 12.5 mV/μs PU CONFIG, Level sensitive PWRON SW1ABC Single SW1AB Single Phase, SW1C SW1AB CONFIG SW1AB Single Phase, SW1C Independent Mode, 2.0 MHz Phase, 2.0 MHz Independent mode, 2.0 MHz SW1C CONFIG 2.0 MHz SW2 CONFIG 2.0 MHz SW3A CONFIG SW3AB Single Phase, 2.0 MHz SW3B CONFIG 2.0 MHz SW4 CONFIG No VTT, 2.0 MHz PG EN RESETBMCU in default mode Notes 25. For designs using the i.MX 6SoloLite, it is recommended to use the F3 OTP option instead of the F1 OTP option and F4 OTP option instead of the F2 OTP option. PF0100 NXP Semiconductors 19
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS LICELL UVDET VIN td1 tr1 1V VSNVS td2 tr2 PWRON td3 tr3 SW1A/B SW1C td4 tr3 SW2 VGEN2 td4 tr3 SW3A/B SW4 VREFDDR VGEN4 VGEN5 VGEN6 td5 tr4 RESETBMCU *VSNVS starts from 1.0V if LICELL is valid before VIN. Figure 6. Default start-up sequence Table 11. Default start-up sequence timing Parameter Description Min. Typ. Max. Unit Notes t Turn-on delay of VSNVS – 5.0 – ms (26) D1 t Rise time of VSNVS – 3.0 – ms R1 t User determined delay – 1.0 – ms D2 t Rise time of PWRON – (27) – ms R2 Turn-on delay of first regulator • SEQ_CLK_SPEED[1:0] = 00 – 2.0 – t • SEQ_CLK_SPEED[1:0] = 01 – 2.5 – (28) D3 ms • SEQ_CLK_SPEED[1:0] = 10 – 4.0 – • SEQ_CLK_SPEED[1:0] = 11 – 7.0 – t Rise time of regulators – 0.2 – ms (29) R3 PF0100 20 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 11. Default start-up sequence timing (continued) Parameter Description Min. Typ. Max. Unit Notes Delay between regulators • SEQ_CLK_SPEED[1:0] = 00 – 0.5 – t • SEQ_CLK_SPEED[1:0] = 01 – 1.0 – D4 ms • SEQ_CLK_SPEED[1:0] = 10 – 2.0 – • SEQ_CLK_SPEED[1:0] = 11 – 4.0 – t Rise time of RESETBMCU – 0.2 – ms R4 t Turn-on delay of RESETBMCU – 2.0 – ms D5 Notes 26. Assumes LICELL voltage is valid before VIN is applied. If LICELL is not valid before VIN is applied then VSNVS turn-on delay may extend to a maximum of 24 ms. 27. Depends on the external signal driving PWRON. 28. Default configuration. 29. Rise time is a function of slew rate of regulators and nominal voltage selected. 6.1.2 One time programmability (OTP) OTP allows the programming of start-up configurations for a variety of applications. Before permanently programming the IC by programming fuses, a configuration may be prototyped by using the “Try Before Buy” (TBB) feature. Further, an error correction code(ECC) algorithm is available to correct a single bit error and to detect multiple bit errors when fuses are programmed. The parameters which can be configured by OTP are listed below. • General: I2C slave address, PWRON pin configuration, start-up sequence and timing • Buck regulators: Output voltage, dual/single phase or independent mode configuration, switching frequency, and soft start ramp rate • Boost regulator and LDOs: Output voltage NOTE: When prototyping or programming fuses, the user must ensure register settings are consistent with the hardware configuration. This is most important for the buck regulators, where the quantity, size, and value of the inductors depend on the configuration (single/ dual phase or independent mode) and the switching frequency. Additionally, if an LDO is powered by a buck regulator, it is gated by the buck regulator in the start-up sequence. 6.1.2.1 Start-up sequence and timing Each regulator has 5-bit allocated to program its start-up time slot from a turn on event; therefore, each can be placed from position one to thirty-one in the start-up sequence. The all zeros code indicates a regulator is not part of the start-up sequence and remains off. See Table 12. The delay between each position is equal; however, four delay options are available. See Table 13. The start-up sequence terminates at the last programmed regulator. PF0100 NXP Semiconductors 21
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 12. Start-up sequence SWxx_SEQ[4:0]/ VGENx_SEQ[4:0]/ Sequence VREFDDR_SEQ[4:0] 00000 Off 00001 SEQ_CLK_SPEED[1:0] * 1 00010 SEQ_CLK_SPEED[1:0] * 2 * * * * * * * * 11111 SEQ_CLK_SPEED[1:0] * 31 Table 13. Start-up sequence clock speed SEQ_CLK_SPEED[1:0] Time (μs) 00 500 01 1000 10 2000 11 4000 6.1.2.2 PWRON pin configuration The PWRON pin can be configured as either a level sensitive input (PWRON_CFG = 0), or as an edge sensitive input (PWRON_CFG = 1). As a level sensitive input, an active high signal turns on the part and an active low signal turns off the part, or puts it into sleep mode. As an edge sensitive input, such as when connected to a mechanical switch, a falling edge turns on the part and if the switch is held low for greater than or equal to 4.0 seconds, the part turns off or enters sleep mode. Table 14. PWRON configuration PWRON_CFG Mode PWRON pin HIGH = ON 0 PWRON pin LOW = OFF or Sleep mode PWRON pin pulled LOW momentarily = ON 1 PWRON pin LOW for 4.0 seconds = OFF or Sleep mode 2 6.1.2.3 I C address configuration The I2C device address can be programmed from 0x08 to 0x0F. This allows flexibility to change the I2C address to avoid bus conflicts. Address bit, I2C_SLV_ADDR[3] in OTP_I2C_ADDR register is hard coded to “1” while the lower three LSBs of the I2C address (I2C_SLV_ADDR[2:0]) are programmable as shown in Table 15. Table 15. I2C address configuration I2C_SLV_ADDR[3] I2C device address I2C_SLV_ADDR[2:0] hard coded (Hex) 1 000 0x08 1 001 0x09 1 010 0x0A 1 011 0x0B PF0100 22 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 15. I2C address configuration (continued) I2C_SLV_ADDR[3] I2C device address I2C_SLV_ADDR[2:0] hard coded (Hex) 1 100 0x0C 1 101 0x0D 1 110 0x0E 1 111 0x0F 6.1.2.4 Soft start ramp rate The start-up ramp rate or soft start ramp rate can be chosen from the same options as shown in 6.4.4.2.1 Dynamic voltage scaling, page 35. 6.1.3 OTP prototyping Before permanently programming fuses, it is possible to test the desired configuration by using the “Try Before Buy” feature. With this feature, the configuration is loaded from the OTP registers. These registers merely serve as temporary storage for the values to be written to the fuses, for the values read from the fuses, or for the values read from the default configuration. To avoid confusion, these registers are referred to as the TBBOTP registers. The portion of the register map concerned with OTP is shown in Table 137 and Table 138. The contents of the TBBOTP registers are initialized to zero when a valid V is first applied. The values loaded into the TBBOTP registers IN depend on the setting of the VDDOTP pin and on the value of the TBB_POR and FUSE_POR_XOR bits. Refer to Table 16. • If VDDOTP = VCOREDIG (1.5 V), the values are loaded from the default configuration. • If VDDOTP = 0.0 V, TBB_POR = 0 and FUSE_POR_XOR = 1, the values are loaded from the fuses. In the MMPF0100, FUSE_POR1, FUSE_POR2, and FUSE_POR3 are XOR’ed into the FUSE_POR_XOR bit. The FUSE_POR_XOR has to be 1 for fuses to be loaded. This can be achieved by setting any one or all of the FUSE_PORx bits. In the MMPF0100A, the XOR function is removed. It is required to set all of the FUSE_PORx bits to be able to load the fuses. • If VDDOTP = 0.0 V, TBB_POR = 0 and FUSE_POR_XOR = 0, the TBBOTP registers remain initialized at zero. The initial value of TBB_POR is always “0”; only when VDDOTP = 0.0 V and TBB_POR is set to “1” are the values from the TBBOTP registers maintained and not loaded from a different source. The contents of the TBBOTP registers are modified by I2C. To communicate with I2C, VIN must be valid and VDDIO, to which SDA and SCL are pulled up, must be powered by a 1.7 V to 3.6 V supply. VIN, or the coin cell voltage must be valid to maintain the contents of the registers. To power on with the contents of the TBBOTP registers, the following conditions must exist; VIN is valid, VDDOTP = 0.0 V, TBB_POR = 1 and there is a valid turn-on event. Refer to the application note AN4536 for an example of prototyping. 6.1.4 Reading OTP fuses As described in the previous section, the contents of the fuses are loaded to the TBBOTP registers when the following conditions are met; VIN is valid, VDDOTP = 0.0 V, TBB_POR = 0 and FUSE_POR_XOR = 1. If ECC were enabled at the time the fuses were programmed, the error corrected values can be loaded into the TBBOTP registers if desired. Once the fuses are loaded and a turn-on event occurs, the PMIC powers on with the configuration programmed in the fuses. For more details on reading the OTP fuses, see application note AN4536. 6.1.5 Programming OTP fuses The parameters which can be programmed are shown in the TBBOTP registers in Table 137. Extended page 1, page 111 of the register map. The PF0100 offers ECC, the control registers for which functions are located in Extended Page 2 of the register map. There are ten banks of twenty-six fuses each which can be programmed. Programming the fuses requires an 8.25 V, 100 mA supply powering the VDDOTP pin, bypassed with 10 to 20 μF of capacitance. For more details on programming the OTP fuses, see application note AN4536. PF0100 NXP Semiconductors 23
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 16. Source of start-up sequence VDDOTP(V) TBB_POR FUSE_POR_XOR Start-up sequence 0 0 0 None 0 0 1 OTP fuses 0 1 x TBBOTP registers 1.5 x x Factory defined 6.2 16 MHz and 32 kHz clocks There are two clocks: a trimmed 16 MHz, RC oscillator and an untrimmed 32 kHz, RC oscillator. The 16 MHz oscillator is specified within -8.0/+8.0%. The 32 kHz untrimmed clock is only used in the following conditions: • VIN < UVDET • All regulators are in sleep mode • All regulators are in PFM switching mode A 32 kHz clock, derived from the 16 MHz trimmed clock, is used when accurate timing is needed under the following conditions: • During start-up, VIN > UVDET • PWRON_CFG = 1, for power button debounce timing In addition, when the 16 MHz is active in the ON mode, the debounce times in Table 27 are referenced to the 32 kHz derived from the 16 MHz clock. The exceptions are the LOWVINI and PWRONI interrupts, which are referenced to the 32 kHz untrimmed clock. Table 17. 16 MHz clock specifications T to T (See Table 3), V = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V and typical external component values. Typical values are MIN MAX IN characterized at V = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted. IN Symbol Parameters Min. Typ. Max. Units Notes V Operating voltage from VIN 2.8 – 4.5 V IN16MHz f 16 MHz clock frequency 14.7 16 17.2 MHz 16MHZ f 2.0 MHz clock frequency 1.84 – 2.15 MHz (30) 2MHZ Notes 30. 2.0 MHz clock is derived from the 16 MHz clock. 6.2.1 Clock adjustment The 16 MHz clock and hence the switching frequency of the regulators, can be adjusted to improve the noise integrity of the system. By changing the factory trim values of the 16 MHz clock, the user may add an offset as small as ±3.0% of the nominal frequency. Contact your NXP representative for detailed information on this feature. 6.3 Bias and references block description 6.3.1 Internal core voltage references All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at VCOREREF. The bandgap and the rest of the core circuitry are supplied from VCORE. The performance of the regulators is directly dependent on the performance of the bandgap. No external DC loading is allowed on VCORE, VCOREDIG, or VCOREREF. VCOREDIG is kept powered as long as there is a valid supply and/or valid coin cell. Table 18 shows the main characteristics of the core circuitry. PF0100 24 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 18. Core voltages electrical specifications(32) T to T (See Table 3), V = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V, and typical external component values. Typical values are MIN MAX IN characterized at V = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted. IN Symbol Parameters Min. Typ. Max. Units Notes VCOREDIG (digital core supply) Output voltage V • ON mode – 1.5 – V (31) COREDIG • Coin cell mode and OFF – 1.3 – — VCORE (analog core supply) Output voltage V • ON mode and charging – 2.775 – V (31) CORE • OFF and coin cell mode – 0.0 – — VCOREREF (bandgap / regulator reference) V Output voltage – 1.2 – V (31) COREREF V Absolute accuracy – 0.5 – % COREREFACC V Temperature drift – 0.25 – % COREREFTACC Notes 31. 3.0 V < V < 4.5 V, no external loading on VCOREDIG, VCORE, or VCOREREF. Extended operation down to UVDET, but no system malfunction. IN 32. For information only. 6.3.1.1 External components Table 19. External components for core voltages Regulator Capacitor value (μF) VCOREDIG 1.0 VCORE 1.0 VCOREREF 0.22 6.3.2 VREFDDR voltage reference VREFDDR is an internal PMOS half supply voltage follower capable of supplying up to 10 mA. The output voltage is at one half the input voltage. Its typically used as the reference voltage for DDR memories. A filtered resistor divider is utilized to create a low frequency pole. This divider then utilizes a voltage follower to drive the load. VINREFDDR VINREFDDR CHALF1 100 nf VHALF _ CHALF2 + 100 nf Discharge VREFDDR VREFDDR CREFDDR 1.0 uf Figure 7. VREFDDR block diagram PF0100 NXP Semiconductors 25
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.3.2.1 VREFDDR control register The VREFDDR voltage reference is controlled by a single bit in VREFDDCRTL register in Table 20. Table 20. Register VREFDDCRTL - ADDR 0x6A Name Bit # R/W Default Description UNUSED 3:0 – 0x00 UNUSED Enable or disables VREFDDR output voltage VREFDDREN 4 R/W 0x00 • 0 = VREFDDR Disabled • 1 = VREFDDR Enabled UNUSED 7:5 – 0x00 UNUSED 6.3.2.1.1 External components Table 21. VREFDDR external components(33) Capacitor Capacitance (μF) VINREFDDR(34) to VHALF 0.1 VHALF to GND 0.1 VREFDDR 1.0 Notes 33. Use X5R or X7R capacitors. 34. VINREFDDR to GND, 1.0 μF minimum capacitance is provided by buck regulator output. 6.3.2.1.2 VREFDDR specifications Table 22. VREFDDR electrical characteristics T to T (See Table 3), V = 3.6 V, I = 0.0 mA, V = 1.5 V and typical external component values, unless otherwise MIN MAX IN REFDDR INREFDDR noted. Typical values are characterized at V = 3.6 V, I = 0.0 mA, V = 1.5 V, and 25 °C, unless otherwise noted. IN REFDDR INREFDDR Symbol Parameter Min. Typ. Max. Unit Notes VREFDDR V Operating input voltage range 1.2 – 1.8 V INREFDDR I Operating load current range 0.0 – 10 mA REFDDR Current limit I 10.5 15 25 mA REFDDRLIM • I when V is forced to V /4 REFDDR REFDDR INREFDDR I Quiescent Current – 8.0 – μA (35) REFDDRQ Active mode – DC Output voltage V • 1.2 V < V < 1.8 V – V /2 – V REFDDR INREFDDR INREFDDR • 0.0 mA < I < 10 mA REFDDR Output voltage tolerance (T = -40 °C to 85 °C) A V • 1.2 V < V < 1.8 V –1.0 – 1.0 % REFDDRTOL INREFDDR • 0.6 mA ≤ I ≤ 10 mA REFDDR Output voltage tolerance (T = -40 °C to 105 °C), applicable only A to the extended industrial version V –1.2 – 1.2 % REFDDRTOL • 1.2 V < V < 1.8 V INREFDDR • 0.6 mA ≤ I ≤ 10 mA REFDDR Load regulation V • 1.0 mA < I < 10 mA – 0.40 – mV/mA REFDDRLOR REFDDR • 1.2 V < V < 1.8 V INREFDDR PF0100 26 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 22. VREFDDR electrical characteristics (continued) T to T (See Table 3), V = 3.6 V, I = 0.0 mA, V = 1.5 V and typical external component values, unless otherwise MIN MAX IN REFDDR INREFDDR noted. Typical values are characterized at V = 3.6 V, I = 0.0 mA, V = 1.5 V, and 25 °C, unless otherwise noted. IN REFDDR INREFDDR Symbol Parameter Min. Typ. Max. Unit Notes Active mode – AC Turn-on time • Enable to 90% of end value t – – 100 μs ONREFDDR • V = 1.2 V, 1.8 V INREFDDR • I = 0.0 mA REFDDR Turn-off time • Disable to 10% of initial value t – – 10 ms OFFREFDDR • V = 1.2 V, 1.8 V INREFDDR • I = 0.0 mA REFDDR Start-up overshoot V • V = 1.2 V, 1.8 V – 1.0 6.0 % REFDDROSH INREFDDR • I = 0.0 mA REFDDR Transient load response V – 5.0 – mV REFDDRTLR • V = 1.2 V, 1.8 V INREFDDR Notes 35. When VREFDDR is off there is a quiescent current of 1.5 μA typical. PF0100 NXP Semiconductors 27
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4 Power generation 6.4.1 Modes of operation The operation of the PF0100 can be reduced to five states, or modes: on, off, sleep, standby, and coin cell. Figure 8 shows the state diagram of the PF0100, along with the conditions to enter and exit from each state. Coin Cell VIN < UVDET VIN < UVDET VIN > UVDET PWRON = 0 held >= 4.0 sec Any SWxOMODE bits=1 Thermal shutdown & PWRONRSTEN = 1 (PWRON_CFG=1) PWRON=1 OFF & VIN > UVDET VIN < UVDET Sleep (PWRON_CFG = 0) Or PWRON = 0 PWRON= 0 < 4.0 sec Any SWxOMODE bits=1 & VIN > UVDET (PWRON_CFG=0) (PWRON_CFG=1) Or PWRON=0 held >= 4.0 sec PWRON = 0 Any SWxOMODE bits=1 All SWxOMODE bits= 0 VIN < UVDET & PWRONRSTEN = 1 (PWRON_CFG = 0) PWRON = 0 (PWRON_CFG=1) Or Any SWxOMODE bits=1 PWRON = 0 held >= 4.0 sec (PWRON_CFG=0) PWRON=1 All SWxOMODE bits= 0 Or & VIN > UVDET & PWRONRSTEN = 1 PWRON=0 held >= 4.0 sec (PWRON_CFG =0) (PWRON_CFG = 1) Any SWxOMODE bits=1 Or ON & PWRONRSTEN = 1 PWRON= 0 < 4.0 sec (PWRON_CFG=1) & VIN > UVDET Thermal shudown (PWRON_CFG=1) PWRON = 0 All SWxOMODE bits= 0 (PWRON_CFG = 0) STANDBY asserted STANDBY de-asserted Or PWRON = 0 held >= 4.0 sec All SWxOMODE bits= 0 & PWRONRSTEN = 1 (PWRON_CFG = 1) Thermal shutdown Standby Figure 8. State diagram To complement the state diagram in Figure 8, a description of the states is provided in following sections. Note that V must exceed the IN rising UVDET threshold to allow a power up. Refer to Table 29 for the UVDET thresholds. Additionally, I2C control is not possible in the coin cell mode and the interrupt signal, INTB, is only active in sleep, standby, and on states. 6.4.1.1 ON mode The PF0100 enters the On mode after a turn-on event. RESETBMCU is de-asserted, high, in this mode of operation. 6.4.1.2 OFF mode The PF0100 enters the off mode after a turn-off event. A thermal shutdown event also forces the PF0100 into the off mode. Only VCOREDIG and VSNVS are powered in the mode of operation. To exit the off mode, a valid turn-on event is required. RESETBMCU is asserted, low, in this mode. PF0100 28 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.1.3 Standby mode • Depending on STANDBY pin configuration, standby is entered when the STANDBY pin is asserted. This is typically used for low- power mode of operation. • When STANDBY is de-asserted, standby mode is exited. A product may be designed to go into a low-power mode after periods of inactivity. The STANDBY pin is provided for board level control of going in and out of such deep sleep modes (DSM). When a product is in DSM, it may be able to reduce the overall platform current by lowering the regulator output voltage, changing the operating mode of the regulators or disabling some regulators. The configuration of the regulators in standby is pre-programmed through the I2C interface. Note that the STANDBY pin is programmable for active high or active low polarity, and decoding of a standby event takes into account the programmed input polarity as shown in Table 23. When the PF0100 is powered up first, regulator settings for the standby mode are mirrored from the regulator settings for the on mode. To change the STANDBY pin polarity to Active Low, set the STANDBYINV bit via software first, and then change the regulator settings for Standby mode as required. For simplicity, STANDBY generally is referred to as active high throughout this document. Table 23. Standby pin and polarity control STANDBY (pin)(37) STANDBYINV (I2C bit)(38) STANDBY control (36) 0 0 0 0 1 1 1 0 1 1 1 0 Notes 36. STANDBY = 0: System is not in standby, STANDBY = 1: System is in standby 37. The state of the STANDBY pin only has influence in on mode. 38. Bit 6 in power control register (ADDR - 0x1B) Since STANDBY pin activity is driven asynchronously to the system, a finite time is required for the internal logic to qualify and respond to the pin level changes. A programmable delay is provided to hold off the system response to a standby event. This allows the processor and peripherals some time after a standby instruction has been received to terminate processes to facilitate seamless entering into standby mode. When enabled (STBYDLY = 01, 10, or 11) per Table 24, STBYDLY delays the standby initiated response for the entire IC, until the STBYDLY counter expires. An allowance should be made for three additional 32 k cycles required to synchronize the standby event. Table 24. STANDBY delay - initiated response STBYDLY[1:0](39) Function 00 No delay 01 One 32 k period (default) 10 Two 32 k periods 11 Three 32 k periods Notes 39. Bits [5:4] in power control register (ADDR - 0x1B) 6.4.1.4 Sleep mode • Depending on PWRON pin configuration, sleep mode is entered when PWRON is de-asserted and SWxOMODE bit is set. • To exit sleep mode, assert the PWRON pin. In the sleep mode, the regulator uses the set point as programmed by SW1xOFF[5:0] for SW1A/B/C and by SWxOFF[6:0] for SW2, SW3A/ B, and SW4. The activated regulators maintains settings for this mode and voltage until the next turn-on event. Table 25 shows the control bits in sleep mode. During sleep mode, interrupts are active and the INTB pin reports any unmasked fault event. PF0100 NXP Semiconductors 29
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 25. Regulator mode control SWxOMODE Off operational mode (Sleep) (40) 0 Off 1 PFM Notes 40. For sleep mode, an activated switching regulator, should use the off mode set point as programmed by SW1xOFF[5:0] for SW1A/B/C and SWxOFF[6:0] for SW2, SW3A/B, and SW4. 6.4.1.5 Coin cell mode In the coin cell state, the coin cell is the only valid power source (V = 0.0 V) to the PMIC. No turn-on event is accepted in the coin cell IN state. Transition to the off state requires V surpasses UVDET threshold. RESETBMCU is held low in this mode. IN If the coin cell is depleted, a complete system reset occurs. At the next application of power and the detection of a turn-on event, the system is re-initialized with all I2C bits including those reset on COINPORB, which are restored to their default states. 6.4.2 State machine flow summary Table 26 provides a summary matrix of the PF0100 flow diagram to show the conditions needed to transition from one state to another. Table 26. State machine flow summary Next state STATE OFF Coin cell Sleep Standby ON PWRON_CFG = 0 PWRON = 1 & V > UVDET IN or OFF X V < UVDET X X IN PWRON_CFG = 1 PWRON = 0 < 4.0 s & V > UNDET IN Coin cell V > UVDET X X X X IN Thermal shutdown PWRON_CFG = 0 PWRON = 1 & V > UVDET IN PWRON_CFG = 1 or Sleep V < UVDET X X PWRON = 0 ≥ 4.0 s IN PWRON_CFG = 1 Any SWxOMODE = 1 & PWRON = 0 < 4.0 s & PWRONRSTEN = 1 V > UNDET IN e Thermal shutdown at PWRON_CFG = 0 nitial st APllW SPRWWOxRONO_MCNOF =DG E0 = = 0 0 Any PSWWRxOoOrMNO =D 0E = 1 I Standby or VIN < UVDET PWRON_CFG = 1 X Standby de-asserted PWRON_CFG = 1 PWRON = 0 ≥ 4.0 s PWRON = 0 ≥ 4.0 s Any SWxOMODE = 1 & All SWxOMODE = 0 & PWRONRSTEN = 1 PWRONRSTEN = 1 Thermal shutdown PWRON_CFG = 0 PWRON_CFG = 0 PWRON = 0 PWRON = 0 Any SWxOMODE = 1 All SWxOMODE = 0 or ON V < UVDET Standby asserted X or IN PWRON_CFG = 1 PWRON_CFG = 1 PWRON = 0 ≥ 4.0 s PWRON = 0 ≥ 4.0 s Any SWxOMODE = 1 & All SWxOMODE = 0 & PWRONRSTEN = 1 PWRONRSTEN = 1 PF0100 30 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.2.1 Turn on events From off and sleep modes, the PMIC is powered on by a turn-on event. The type of turn-on event depends on the configuration of PWRON. PWRON may be configured as an active high when PWRON_CFG = 0, or as the input of a mechanical switch when PWRON_CFG = 1. V must be greater than UVDET for the PMIC to turn-on. When PWRON is configured as an active high and PWRON is high (pulled up IN to VSNVS) before V is valid, a V transition from 0.0 V to a voltage greater than UVDET is also a Turn-on event. See the state diagram, IN IN Figure 8, and the Table 26 for more details. Any regulator enabled in the sleep mode remains enabled when transitioning from sleep to on, i.e., the regulator does not turn off and then on again to match the start-up sequence. The following is a more detailed description of the PWRON configurations: • If PWRON_CFG = 0, the PWRON signal is high and V > UVDET, the PMIC turns on; the interrupt and sense bits, PWRONI and IN PWRONS respectively, is set. • If PWRON_CFG = 1, V > UVDET and PWRON transitions from high to low, the PMIC turns on; the interrupt and sense bits, IN PWRONI and PWRONS respectively, sets. The sense bit shows the real time status of the PWRON pin. In this configuration, the PWRON input can be a mechanical switch debounced through a programmable debouncer, PWRONDBNC[1:0], to avoid a response to a very short (i.e., unintentional) key press. The interrupt is generated for both the falling and the rising edge of the PWRON pin. By default, a 30 ms interrupt debounce is applied to both falling and rising edges. The falling edge debounce timing can be extended with PWRONDBNC[1:0] as defined in Table 27. The interrupt is cleared by software, or when cycling through the OFF mode. Table 27. PWRON hardware debounce bit settings Turn on Falling edge INT Rising edge INT Bits State debounce (ms) debounce (ms) debounce (ms) 00 0.0 31.25 31.25 01 31.25 31.25 31.25 PWRONDBNC[1:0] 10 125 125 31.25 11 750 750 31.25 Notes 41. The sense bit, PWRONS, is not debounced and follows the state of the PWRON pin. 6.4.2.2 Turn off events 6.4.2.2.1 PWRON pin The PWRON pin is used to power off the PF0100. The PWRON pin can be configured with OTP to power off the PMIC under the following two conditions: 1. PWRON_CFG bit = 0, SWxOMODE bit = 0 and PWRON pin is low. 2. PWRON_CFG bit = 1, SWxOMODE bit = 0, PWRONRSTEN = 1 and PWRON is held low for longer than 4.0 seconds. Alternatively, the system can be configured to restart automatically by setting the RESTARTEN bit. 6.4.2.2.2 Thermal protection If the die temperature surpasses a given threshold, the thermal protection circuit powers off the PMIC to avoid damage. A turn-on event does not power on the PMIC while it is in thermal protection. The part remains in off mode until the die temperature decreases below a given threshold. There are no specific interrupts related to this other than the warning interrupt. See 4.2.1 Power dissipation, page 11 section for more detailed information. 6.4.2.2.3 Undervoltage detection When the voltage at VIN drops below the undervoltage falling threshold, UVDET, the state machine transitions to the coin cell mode. PF0100 NXP Semiconductors 31
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.3 Power tree The PF0100 PMIC features six buck regulators, one boost regulator, six general purpose LDOs, one switch/LDO combination, and a DDR voltage reference to supply voltages for the application processor and peripheral devices. The buck regulators as well as the boost regulator are supplied directly from the main input supply (V ). The inputs to all of the buck regulators must be tied to VIN, whether they IN are powered on or off. The six general use LDO regulators are directly supplied from the main input supply or from the switching regulators depending on the application requirements. Since VREFDDR is intended to provide DDR memory reference voltage, it should be supplied by any rail supplying voltage to DDR memories; the typical application recommends the use of SW3 as the input supply for VREFDDR. VSNVS is supplied by either the main input supply or the coin cell. Refer to Table 28 for a summary of all power supplies provided by the PF0100. Table 28. Power tree summary Supply Output voltage (V) Step size (mV) Maximum load current (mA) SW1A/B 0.3 - 1.875 25 2500 SW1C 0.3 - 1.875 25 2000 SW2 0.4 - 3.3 25/50 2000 (43) SW3A/B 0.4 - 3.3 25/50 1250 (42) SW4 0.5*SW3A_OUT, 0.4 - 3.3 25/50 1000 SWBST 5.00/5.05/5.10/5.15 50 600 VGEN1 0.80 – 1.55 50 100 VGEN2 0.80 – 1.55 50 250 VGEN3 1.8 – 3.3 100 100 VGEN4 1.8 – 3.3 100 350 VGEN5 1.8 – 3.3 100 100 VGEN6 1.8 – 3.3 100 200 VSNVS 1.0 - 3.0 NA 0.4 VREFDDR 0.5*SW3A_OUT NA 10 Notes 42. Current rating per independent phase, when SW3A/B is set in single or dual phase, current capability is up to 2500 mA. 43. SW2 capable of 2500 mA in NP, F9, and FA Industrial versions only (ANES suffix) Figure 9 shows a simplified power map with various recommended options to supply the different block within the PF0100, as well as the typical application voltage domain on the i.MX 6X processor. Note that each application power tree is dependent upon the system’s voltage and current requirements, therefore a proper input voltage should be selected for the regulators. The minimum operating voltage for the main V supply is 2.8 V, for lower voltages proper operation is not guaranteed. However at initial IN power up, the input voltage must surpass the rising UVDET threshold before proper operation is guaranteed. Refer to the representative tables and text specifying each supply for information on performance metrics and operating ranges. Table 29 summarizes the UVDET thresholds. Table 29. UVDET threshold UVDET threshold V IN Rising 3.1 V Falling 2.65 V PF0100 32 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS i.MX6X MCU SW1A VDDARM_IN CORE (0.3 to 1.875 V), 1.25 A SW1B CORE (0.3 to 1.875 V), 1.25 A SW1C VDDSOC_IN SOC (0.3 to 1.875 V), 2.0 A SW2 VDDHIGH_IN VIN VDDHIGH 2.8 - 4.5 V (0.4 to 3.3 V), 2.0 A SW3A DDR CORE (0.4 to 3.3 V), 1.25 A SW3B VDD_DDR_IO DDR IO (0.4 to 3.3 V), 1.25 A SW4 System/VTT (0.4 to 3.3 V) (0.5*VDDR) 1.0 A SWBST 5.0 V, 0.6 A LDO_3p0 VREFDDR SW3A/B 0.5*VDDR, 10 mA VIN MUX / VSNVS COIN 1.0 to 3.0 V, VSNVS_IN Coincell CHRG 400 uA VGEN1 USB_OTG (0.80 to 1.55 V), VIN 100 mA SW2 VINMAX = 3.4 V VGEN2 SW4 (0.80 to 1.55 V), DDR3 250 mA VGEN3 (1.8 to 3.3 V), Peripherals VIN 100 mA SW2 VINMAX = 3.6 V VGEN4 SW4 (1.8 to 3.3 V), 350 mA VGEN5 (1.8 to 3.3 V), VIN 100 mA SW2 VINMAX = 4.5 V VGEN6 SW4 (1.8 to 3.3 V), 200 mA Figure 9. PF0100 typical power map PF0100 NXP Semiconductors 33
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.4 Buck regulators Each buck regulator is capable of operating in PFM, APS, and PWM switching modes. 6.4.4.1 Current limit Each buck regulator has a programmable current limit. In an overcurrent condition, the current is limited cycle-by-cycle. If the current limit condition persists for more than 8.0 ms, a fault interrupt is generated. 6.4.4.2 General control To improve system efficiency the buck regulators can operate in different switching modes. Changing between switching modes can occur by any of the following means: I2C programming, exiting/entering the Standby mode, exiting/entering Sleep mode, and load current variation. Available switching modes for buck regulators are presented in Table 30. Table 30. Switching mode description Mode Description OFF The regulator is switched off and the output voltage is discharged. PFM In this mode, the regulator is always in PFM mode, which is useful at light loads for optimized efficiency. PWM In this mode, the regulator is always in PWM mode operation regardless of load conditions. In this mode, the regulator moves automatically between pulse skipping mode and PWM mode APS depending on load conditions. During soft-start of the buck regulators, the controller transitions through the PFM, APS, and PWM switching modes. 3.0 ms (typical) after the output voltage reaches regulation, the controller transitions to the selected switching mode. Depending on the particular switching mode selected, additional ripple may be observed on the output voltage rail as the controller transitions between switching modes. Table 31 summarizes the buck regulator programmability for normal and standby modes. Table 31. Regulator mode control SWxMODE[3:0] Normal mode Standby mode 0000 Off Off 0001 PWM Off 0010 Reserved Reserved 0011 PFM Off 0100 APS Off 0101 PWM PWM 0110 PWM APS 0111 Reserved Reserved 1000 APS APS 1001 Reserved Reserved 1010 Reserved Reserved 1011 Reserved Reserved 1100 APS PFM 1101 PWM PFM 1110 Reserved Reserved 1111 Reserved Reserved PF0100 34 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Transitioning between normal and standby modes can affect a change in switching modes as well as output voltage. The rate of the output voltage change is controlled by the dynamic voltage scaling (DVS), explained in 6.4.4.2.1 Dynamic voltage scaling, page 35. For each regulator, the output voltage options are the same for normal and standby modes. When in standby mode, the regulator outputs the voltage programmed in its standby voltage register and operates in the mode selected by the SWxMODE[3:0] bits. Upon exiting Standby mode, the regulator returns to its normal switching mode and its output voltage programmed in its voltage register. Any regulators whose SWxOMODE bit is set to “1” enters Sleep mode if a PWRON turn-off event occurs, and any regulator whose SWxOMODE bit is set to “0” turns off. In sleep mode, the regulator outputs the voltage programmed in its off (sleep) voltage register and operates in the PFM mode. The regulator exits the sleep mode when a turn-on event occurs. Any regulator whose SWxOMODE bit is set to “1” remains on and change to its normal configuration settings when exiting the sleep state to the on state. Any regulator whose SWxOMODE bit is set to “0” is powered up with the same delay in the start-up sequence as when powering on from off. At this point, the regulator returns to its default on state output voltage and switch mode settings. Table 25 shows the control bits in sleep mode. When sleep mode is activated by the SWxOMODE bit, the regulator uses the set point as programmed by SW1xOFF[5:0] for SW1A/B/C and by SWxOFF[6:0] for SW2, SW3A/B, and SW4. 6.4.4.2.1 Dynamic voltage scaling To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the processor. 1. Normal operation: The output voltage is selected by I2C bits SW1x[5:0] for SW1A/B/C and SWx[6:0] for SW2, SW3A/B, and SW4. A voltage transition initiated by I2C is governed by the DVS stepping rates shown in Table 34 and Table 35. 2. Standby mode: The output voltage can be higher, or lower than in normal operation, but is typically selected to be the lowest state retention voltage of a given processor; it is selected by I2C bits SW1xSTBY[5:0] for SW1A/B/C and by bits SWxSTBY[6:0] for SW2, SW3A/B, and SW4. Voltage transitions initiated by a Standby event are governed by the SW1xDVSSPEED[1:0] and SWxDVSSPEED[1:0] I2C bits shown in Table 34 and Table 35, respectively. 3. Sleep mode: The output voltage can be higher or lower than in normal operation, but is typically selected to be the lowest state retention voltage of a given processor; it is selected by I2C bits SW1xOFF[5:0] for SW1A/B/C and by bits SWxOFF[6:0] for SW2, SW3A/B, and SW4. Voltage transitions initiated by a turn-off event are governed by the SW1xDVSSPEED[1:0] and SWxDVSSPEED[1:0] I2C bits shown in Table 34 and Table 35, respectively. Table 32, Table 33, Table 34, and Table 35 summarize the set point control and DVS time stepping applied to all regulators. Table 32. DVS control logic for SW1A/B/C STANDBY Set point selected by 0 SW1x[5:0] 1 SW1xSTBY[5:0] Table 33. DVS control logic for SW2, SW3A/B, and SW4 STANDBY Set Point Selected by 0 SWx[6:0] 1 SWxSTBY[6:0] Table 34. DVS speed selection for SW1A/B/C SW1xDVSSPEED[1:0] Function 00 25 mV step each 2.0 μs 01 (default) 25 mV step each 4.0 μs 10 25 mV step each 8.0 μs 11 25 mV step each 16 μs PF0100 NXP Semiconductors 35
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 35. DVS speed selection for SW2, SW3A/B, and SW4 Function Function SWxDVSSPEED[1:0] SWx[6] = 0 or SWxSTBY[6] = 0 SWx[6] = 1 or SWxSTBY[6] = 1 00 25 mV step each 2.0 μs 50 mV step each 4.0 μs 01 (default) 25 mV step each 4.0 μs 50 mV step each 8.0 μs 10 25 mV step each 8.0 μs 50 mV step each 16 μs 11 25 mV step each 16 μs 50 mV step each 32 μs The regulators have a strong sourcing capability and sinking capability in PWM mode, therefore the fastest rising and falling slopes are determined by the regulator in PWM mode. However, if the regulators are programmed in PFM or APS mode during a DVS transition, the falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced, controlled DVS transitions in PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode operation. The following diagram shows the general behavior for the regulators when initiated with I2C programming, or standby control. During the DVS period the overcurrent condition on the regulator should be masked. Requested Set Point Output Voltage with light Load Internally Controlled Steps Output Example Actual Output Voltage Voltage Initial Set Point Actual Output Voltage Internally Controlled Steps Possible Output Voltage Window Request for Request for Voltage Higher Voltage Lower Voltage Change Request Initiated by I2C Programming, Standby Control Figure 10. Voltage stepping with DVS 6.4.4.2.2 Regulator phase clock The SWxPHASE[1:0] bits select the phase of the regulator clock as shown in Table 36. By default, each regulator is initialized at 90 ° out of phase with respect to each other. For example, SW1x is set to 0 °, SW2 is set to 90 °, SW3A/B is set to 180 °, and SW4 is set to 270 ° by default at power up. Table 36. Regulator phase clock selection SWxPHASE[1:0] Phase of clock sent to regulator (degrees) 00 0 01 90 10 180 11 270 The SWxFREQ[1:0] register is used to set the desired switching frequency for each one of the buck regulators. Table 38 shows the selectable options for SWxFREQ[1:0]. For each frequency, all phases are available, allowing regulators operating at different frequencies to have different relative switching phases. However, not all combinations are practical. For example, 2.0 MHz, 90 ° and 4.0 MHz, 180 ° are the same in terms of phasing. Table 37 shows the optimum phasing when using more than one switching frequency. PF0100 36 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 37. Optimum phasing Frequencies Optimum Phasing 1.0 MHz 0 ° 2.0 MHz 180 ° 1.0 MHz 0 ° 4.0 MHz 180 ° 2.0 MHz 0 ° 4.0 MHz 180 ° 1.0 MHz 0 ° 2.0 MHz 90 ° 4.0 MHz 90 ° Table 38. Regulator frequency configuration SWxFREQ[1:0] Frequency 00 1.0 MHz 01 2.0 MHz 10 4.0 MHz 11 Reserved 6.4.4.2.3 Programmable maximum current The maximum current, ISWx , of each buck regulator is programmable. This allows the use of smaller inductors where lower currents MAX are required. Programmability is accomplished by choosing the number of paralleled power stages in each regulator. The SWx_PWRSTG[2:0] bits in Table 138. Extended Page 2, page 115 of the register map control the number of power stages. See Table 39 for the programmable options. Bit[0] must always be enabled to ensure the stage with the current sensor is chosen. The default setting, SWx_PWRSTG[2:0] = 111, represents the highest maximum current. The current limit for each option is also scaled by the percentage of power stages enabled. Table 39. Programmable current configuration Regulators Control bits % of power stages enabled Rated current (A) SW1AB_PWRSTG[2:0] ISW1AB MAX 0 0 1 40% 1.0 SW1AB 0 1 1 80% 2.0 1 0 1 60% 1.5 1 1 1 100% 2.5 SW1C_PWRSTG[2:0] ISW1C MAX 0 0 1 43% 0.9 SW1C 0 1 1 58% 1.2 1 0 1 86% 1.7 1 1 1 100% 2.0 SW2_PWRSTG[2:0] ISW2 MAX 0 0 1 38% 0.75 SW2 0 1 1 75% 1.5 1 0 1 63% 1.25 1 1 1 100% 2.0 PF0100 NXP Semiconductors 37
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 39. Programmable current configuration (continued) Regulators Control bits % of power stages enabled Rated current (A) SW3A_PWRSTG[2:0] ISW3A MAX 0 0 1 40% 0.5 SW3A 0 1 1 80% 1.0 1 0 1 60% 0.75 1 1 1 100% 1.25 SW3B_PWRSTG[2:0] ISW3B MAX 0 0 1 40% 0.5 SW3B 0 1 1 80% 1.0 1 0 1 60% 0.75 1 1 1 100% 1.25 SW4_PWRSTG[2:0] ISW4 MAX 0 0 1 50% 0.5 SW4 0 1 1 75% 0.75 1 0 1 75% 0.75 1 1 1 100% 1.0 6.4.4.3 SW1A/B/C SW1/A/B/C are 2.5 A to 4.5 A buck regulators which can be configured in various phasing schemes, depending on the desired cost/ performance trade-offs. The following configurations are available: • SW1A/B/C single phase with one inductor • SW1A/B as a single phase with one inductor and SW1C in independent mode with one inductor • SW1A/B as a dual phase with two inductors and SW1C in independent mode with one inductor The desired configuration is programmed by OTP by using SW1_CONFIG[1:0] bits in the register map Table 137. Extended page 1, page 111, as shown in Table 40. . Table 40. SW1 configuration SW1_CONFIG[1:0] Description 00 A/B/C single phase 01 A/B single phase, C independent mode 10 A/B dual phase, C independent mode 11 Reserved 6.4.4.3.1 SW1A/B/C single phase In this configuration, all phases A, B, and C, are connected together to a single inductor, thus, providing up to 4.50 A current capability for high current applications. The feedback and all other controls are accomplished by use of pin SW1CFB and SW1C control registers, respectively. Figure 11 shows the connection for SW1A/B/C in single phase mode. During single phase mode operation, all three phases use the same configuration for frequency, phase, and DVS speed set in SW1CCONF register. However, the same configuration settings for frequency, phase, and DVS speed setting on SW1AB registers should be used. The SW1FB pin should be left floating in this configuration. PF0100 38 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS VIN SW1AIN SW1AMODE CINSW1A ISENSE SW1A/B/C Controller SW1ALX Driver LSW1 COSW1A SW1AFAULT Internal I2C Compensation Z2 SW1FB Z1 EA DAC VREF VIN SW1BIN SW1BMODE ISENSE CINSW1B Controller I2C SW1BLX Driver Interface SW1BFAULT VIN SW1CIN SW1CMODE CINSW1C ISENSE Controller SW1CLX Driver EP SW1CFAULT Internal I2C Compensation Z2 SW1CFB Z1 EA VREF DAC Figure 11. SW1A/B/C single phase block diagram 6.4.4.3.2 SW1A/B single phase - SW1C independent mode In this configuration, SW1A/B is connected as a single phase with a single inductor, while SW1C is used as an independent output, using its own inductor and configurations parameters. This configuration allows reduced component count by using only one inductor for SW1A/ B. As mentioned before, SW1A/B and SW1C operate independently from one another, thus, they can be operated with a different voltage set point for normal, standby, and sleep modes, as well as switching mode selection and on/off control. Figure 12 shows the physical connection for SW1A/B in single phase and SW1C as an independent output. PF0100 NXP Semiconductors 39
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS VIN SW1AIN SW1AMODE CINSW1A ISENSE SW1A/B Controller SW1ALX Driver LSW1A COSW1A SW1AFAULT Internal I2C Compensation Z2 SW1FB Z1 EA DAC VREF VIN SW1BIN SW1BMODE ISENSE CINSW1B Controller I2C SW1BLX Driver Interface SW1BFAULT VIN SW1CIN SW1CMODE CINSW1C ISENSE SW1C SW1CLX Controller Driver LSW1C COSW1C EP SW1CFAULT Internal I2C Compensation Z2 SW1CFB Z1 EA VREF DAC Figure 12. SW1A/B single phase, SW1C independent mode block diagram Both SW1ALX and SW1BLX nodes operate at the same DVS, frequency, and phase configured by the SW1ABCONF register, while SW1CLX node operates independently, using the configuration in the SW1CCONF register. 6.4.4.3.3 SW1A/B dual phase - SW1C independent mode In this mode, SW1A/B is connected in dual phase mode using one inductor per switching node, while SW1C is used as an independent output using its own inductor and configuration parameters. This mode provides a smaller output voltage ripple on the SW1A/B output. As mentioned before, SW1A/B and SW1C operate independently from one another, thus, they can be operated with a different voltage set point for normal, standby, and sleep modes, as well as switching mode selection and on/off control. Figure 13 shows the physical connection for SW1A/B in dual phase and SW1C as an independent output. PF0100 40 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS VIN SW1AIN SW1AMODE CINSW1A ISENSE SW1AB Controller SW1ALX Driver LSW1A COSW1A SW1AFAULT Internal I2C Compensation Z2 SW1FB Z1 EA DAC VREF VIN SW1BIN SW1BMODE CINSW1B ISENSE Controller I2C SW1BLX Interface Driver LSW1B COSW1B SW1BFAULT VIN SW1CIN SW1CMODE CINSW1C ISENSE SW1C SW1CLX Controller Driver LSW1C COSW1C EP SW1CFAULT Internal I2C Compensation Z2 SW1CFB Z1 EA VREF DAC Figure 13. SW1A/B dual phase, SW1C independent mode block diagram In this mode of operation, SW1ALX and SW1BLX nodes operate automatically at 180 ° phase shift from each other and use the same frequency and DVS configured by SW1ABCONF register, while SW1CLX node operate independently using the configuration in the SW1CCONF register. 6.4.4.3.4 SW1A/B/C setup and control registers SW1A/B and SW1C output voltages are programmable from 0.300 V to 1.875 V in steps of 25 mV. The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW1x[5:0], SW1xSTBY[5:0], and SW1xOFF[5:0] bits respectively. Table 41 shows the output voltage coding for SW1A/B or SW1C. Note: Voltage set points of 0.6 V and below are not supported. PF0100 NXP Semiconductors 41
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 41. SW1A/B/C output voltage configuration SW1x[5:0] SW1x[5:0] Set point SW1xSTBY[5:0] SW1x output (V) Set point SW1xSTBY[5:0] SW1x output (V) SW1xOFF[5:0] SW1xOFF[5:0] 0 000000 0.3000 32 100000 1.1000 1 000001 0.3250 33 100001 1.1250 2 000010 0.3500 34 100010 1.1500 3 000011 0.3750 35 100011 1.1750 4 000100 0.4000 36 100100 1.2000 5 000101 0.4250 37 100101 1.2250 6 000110 0.4500 38 100110 1.2500 7 000111 0.4750 39 100111 1.2750 8 001000 0.5000 40 101000 1.3000 9 001001 0.5250 41 101001 1.3250 10 001010 0.5500 42 101010 1.3500 11 001011 0.5750 43 101011 1.3750 12 001100 0.6000 44 101100 1.4000 13 001101 0.6250 45 101101 1.4250 14 001110 0.6500 46 101110 1.4500 15 001111 0.6750 47 101111 1.4750 16 010000 0.7000 48 110000 1.5000 17 010001 0.7250 49 110001 1.5250 18 010010 0.7500 50 110010 1.5500 19 010011 0.7750 51 110011 1.5750 20 010100 0.8000 52 110100 1.6000 21 010101 0.8250 53 110101 1.6250 22 010110 0.8500 54 110110 1.6500 23 010111 0.8750 55 110111 1.6750 24 011000 0.9000 56 111000 1.7000 25 011001 0.9250 57 111001 1.7250 26 011010 0.9500 58 111010 1.7500 27 011011 0.9750 59 111011 1.7750 28 011100 1.0000 60 111100 1.8000 29 011101 1.0250 61 111101 1.8250 30 011110 1.0500 62 111110 1.8500 31 011111 1.0750 63 111111 1.8750 PF0100 42 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 42 provides a list of registers used to configure and operate SW1A/B/C and a detailed description on each one of these register is provided in Table 43 through Table 52. Table 42. SW1A/B/C register summary Register Address Output SW1ABVOLT 0x20 SW1AB output voltage set point in normal operation SW1ABSTBY 0x21 SW1AB output voltage set point on standby SW1ABOFF 0x22 SW1AB output voltage set point on sleep SW1ABMODE 0x23 SW1AB switching mode selector register SW1ABCONF 0x24 SW1AB DVS, phase, frequency and ILIM configuration SW1CVOLT 0x2E SW1C output voltage set point in normal operation SW1CSTBY 0x2F SW1C output voltage set point in standby SW1COFF 0x30 SW1C output voltage set point in sleep SW1CMODE 0x31 SW1C switching mode selector register SW1CCONF 0x32 SW1C DVS, phase, frequency and ILIM configuration Table 43. Register SW1ABVOLT - ADDR 0x20 Name Bit # R/W Default Description Sets the SW1AB output voltage during normal SW1AB 5:0 R/W 0x00 operation mode. See Table 41 for all possible configurations. UNUSED 7:6 – 0x00 unused Table 44. Register SW1ABSTBY - ADDR 0x21 Name Bit # R/W Default Description Sets the SW1AB output voltage during standby SW1ABSTBY 5:0 R/W 0x00 mode. See Table 41 for all possible configurations. UNUSED 7:6 – 0x00 unused Table 45. Register SW1ABOFF - ADDR 0x22 Name Bit # R/W Default Description Sets the SW1AB output voltage during sleep SW1ABOFF 5:0 R/W 0x00 mode. See Table 41 for all possible configurations. UNUSED 7:6 – 0x00 unused PF0100 NXP Semiconductors 43
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 46. Register SW1ABMODE - ADDR 0x23 Name Bit # R/W Default Description Sets the SW1AB switching operation mode. SW1ABMODE 3:0 R/W 0x08 See Table 31 for all possible configurations. UNUSED 4 – 0x00 unused Set status of SW1AB when in sleep mode SW1ABOMODE 5 R/W 0x00 • 0 = OFF • 1 = PFM UNUSED 7:6 – 0x00 unused Table 47. Register SW1ABCONF - ADDR 0x24 Name Bit # R/W Default Description SW1AB current limit level selection SW1ABILIM 0 R/W 0x00 • 0 = High level current limit • 1 = Low level current limit UNUSED 1 R/W 0x00 unused SW1A/B switching frequency selector. See SW1ABFREQ 3:2 R/W 0x00 Table 38. SW1ABPHASE 5:4 R/W 0x00 SW1A/B phase clock selection. See Table 36. SW1ABDVSSPEED 7:6 R/W 0x00 SW1A/B DVS speed selection. See Table 34. Table 48. Register SW1CVOLT - ADDR 0x2E Name Bit # R/W Default Description Sets the SW1C output voltage during normal SW1C 5:0 R/W 0x00 operation mode. See Table 41 for all possible configurations. UNUSED 7:6 – 0x00 unused Table 49. Register SW1CSTBY - ADDR 0x2F Name Bit # R/W Default Description Sets the SW1C output voltage during standby SW1CSTBY 5:0 R/W 0x00 mode. See Table 41 for all possible configurations. UNUSED 7:6 – 0x00 unused Table 50. Register SW1COFF - ADDR 0x30 Name Bit # R/W Default Description Sets the SW1C output voltage during sleep SW1COFF 5:0 R/W 0x00 mode. See Table 41 for all possible configurations. UNUSED 7:6 – 0x00 unused PF0100 44 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 51. Register SW1CMODE - ADDR 0x31 Name Bit # R/W Default Description Sets the SW1C switching operation mode. SW1CMODE 3:0 R/W 0x08 See Table 30 for all possible configurations. UNUSED 4 – 0x00 unused Set status of SW1C when in sleep mode SW1COMODE 5 R/W 0x00 • 0 = OFF • 1 = PFM UNUSED 7:6 – 0x00 unused Table 52. Register SW1CCONF - ADDR 0x32 Name Bit # R/W Default Description SW1C current limit level selection SW1CILIM 0 R/W 0x00 • 0 = High level current limit • 1 = Low level current limit UNUSED 1 R/W 0x00 unused SW1C switching frequency selector. See SW1CFREQ 3:2 R/W 0x00 Table 38. SW1CPHASE 5:4 R/W 0x00 SW1C phase clock selection.See Table 36. SW1CDVSSPEED 7:6 R/W 0x00 SW1C DVS speed selection. See Table 34. 6.4.4.3.5 SW1A/B/C external components Table 53. SW1A/B/C external component recommendations Mode Components Description A/B/C single A/B Single - C A/B Dual - C phase independent mode independent mode C (44) SW1A input capacitor 4.7 μF 4.7 μF 4.7 μF INSW1A C (44) SW1A decoupling input capacitor 0.1 μF 0.1 μF 0.1 μF IN1AHF C (44) SW1B input capacitor 4.7 μF 4.7 μF 4.7 μF INSW1B C (44) SW1B decoupling input capacitor 0.1 μF 0.1 μF 0.1 μF IN1BHF C (44) SW1C input capacitor 4.7 μF 4.7 μF 4.7 μF INSW1C C (44) SW1C decoupling input capacitor 0.1 μF 0.1 μF 0.1 μF IN1CHF C (44) SW1A/B output capacitor 6 x 22 μF 2 x 22 μF 4 x 22 μF OSW1AB C (44) SW1C output capacitor – 3 x 22 μF 3 x 22 μF OSW1C L SW1A inductor 1.0 μH 1.0 μH 1.0 μH SW1A L SW1B inductor – – 1.0 μH SW1B L SW1C inductor – 1.0 μH 1.0 μH SW1C Notes 44. Use X5R or X7R capacitors. PF0100 NXP Semiconductors 45
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.4.3.6 SW1A/B/C specifications Table 54. SW1A/B/C electrical characteristics All parameters are specified at T to T (See Table 3), V = VIN = 3.6 V, V = 1.2 V, I = 100 mA, MIN MAX IN SW1x SW1x SW1x SW1x_PWRSTG[2:0] = [111], typical external component values, f = 2.0 MHz, unless otherwise noted. Typical values are SW1x characterized at V = VIN = 3.6 V, V = 1.2 V, I = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted. IN SW1x SW1x SW1x Symbol Parameter Min. Typ. Max. Unit Notes SW1A/B/C (single phase) VIN SW1A VIN Operating input voltage 2.8 – 4.5 V SW1B VIN SW1C V Nominal output voltage – Table 41 – V SW1ABC Output voltage accuracy • PWM, APS, 2.8 V < V < 4.5 V, 0 < I < 4.5 A IN SW1ABC • 0.625 V ≤ V ≤ 1.450 V -25 – 25 SW1ABC • 1.475 V ≤ V ≤ 1.875 V -3.0% – 3.0% SW1ABC mV V SW1ABCACC % • PFM, steady state, 2.8 V < V < 4.5 V, 0 < I < 150 mA IN SW1ABC • 0.625 V < V < 0.675 V -65 – 65 SW1ABC • 0.7 V < V < 0.85 V -45 – 45 SW1ABC • 0.875 V < V < 1.875 V -3.0% – 3.0% SW1ABC Rated output load current, I – – 4500 mA SW1ABC • 2.8 V < V < 4.5 V, 0.625 V < V < 1.875 V IN SW1ABC Current limiter peak current detection • Current through inductor I A SW1ABCLIM • SW1ABILIM = 0 7.1 10.5 13.7 • SW1ABILIM = 1 5.3 7.9 10.3 Start-up overshoot V • I = 0 mA – – 66 mV SW1ABCOSH SW1ABC • DVS clk = 25 mV/4 μs, V = VIN = 4.5 V, V = 1.875 V IN SW1x SW1ABC Turn-on time • Enable to 90% of end value tONSW1ABC • ISW1x = 0 mA – – 500 µs • DVS clk = 25 mV/4.0 μs, V = VIN = 4.5 V, IN SW1x V = 1.875 V SW1ABC Switching frequency • SW1xFREQ[1:0] = 00 – 1.0 – f MHz SW1ABC • SW1xFREQ[1:0] = 01 – 2.0 – • SW1xFREQ[1:0] = 10 – 4.0 – Efficiency • V = 3.6 V, f = 2.0 MHz, L = 1.0 μH IN SW1ABC SW1ABC • PFM, 0.9 V, 1.0 mA – 77 – η • PFM, 1.2 V, 50 mA – 82 – % SW1ABC • APS, PWM, 1.2 V, 850 mA – 86 – • APS, PWM, 1.2 V, 1275 mA – 84 – • APS, PWM, 1.2 V, 2125 mA – 80 – • APS, PWM, 1.2 V, 4500 mA – 68 – ΔV Output ripple – 10 – mV SW1ABC V Line regulation (APS, PWM) – – 20 mV SW1ABCLIR V DC load regulation (APS, PWM) – – 20 mV SW1ABCLOR PF0100 46 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 54. SW1A/B/C electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = VIN = 3.6 V, V = 1.2 V, I = 100 mA, MIN MAX IN SW1x SW1x SW1x SW1x_PWRSTG[2:0] = [111], typical external component values, f = 2.0 MHz, unless otherwise noted. Typical values are SW1x characterized at V = VIN = 3.6 V, V = 1.2 V, I = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted. IN SW1x SW1x SW1x Symbol Parameter Min. Typ. Max. Unit Notes SW1A/B/C (single phase) (continued) Transient load regulation • Transient load = 0 to 2.25 A, di/dt = 100 mA/μs V mV SW1ABCLOTR • Overshoot – – 50 • Undershoot – – 50 Quiescent current I • PFM Mode – 18 – µA SW1ABCQ • APS Mode – 145 – R Discharge resistance – 600 – Ω SW1ABCDIS SW1A/B (single/dual phase) VIN SW1A Operating input voltage 2.8 – 4.5 V VIN SW1B V Nominal output voltage – Table 41 – V SW1AB Output voltage accuracy • PWM, APS, 2.8 V < V < 4.5 V, 0 < I < 2.5 A IN SW1AB • 0.625 V ≤ V ≤ 1.450 V -25 - 25 SW1AB • 1.475 V ≤ V ≤ 1.875 V -3.0% - 3.0% SW1AB mV V SW1ABACC % • PFM, steady state, 2.8 V < V < 4.5 V, 0 < I < 150 mA IN SW1AB • 0.625 V < V < 0.675 V -65 – 65 SW1AB • 0.7 V < V < 0.85 V -45 – 45 SW1AB • 0.875 V < V < 1.875 V -3.0% – 3.0% SW1AB Rated output load current, I – – 2500 mA (46) SW1AB • 2.8 V < V < 4.5 V, 0.625 V < V < 1.875 V IN SW1AB Current limiter peak current detection • SW1A/B single phase (current through inductor) • SW1ABILIM = 0 4.5 6.5 8.5 • SW1ABILIM = 1 3.3 4.9 6.4 I A (46) SW1ABLIM • • SW1A/B dual phase (current through inductor per phase) • SW1ABILIM = 0 2.2 3.2 4.3 • SW1ABILIM = 1 1.6 2.4 3.2 Start-up overshoot V • I = 0.0 mA – – 66 mV SW1ABOSH SW1AB • DVS clk = 25 mV/4 μs, V = VIN = 4.5 V, V = 1.875 V IN SW1x SW1AB Turn-on time • Enable to 90% of end value tON – – 500 µs SW1AB • I = 0.0 mA SW1AB • DVS clk = 25 mV/4 μs, V = VIN = 4.5 V, V = 1.875 V IN SW1x SW1AB Switching frequency • SW1ABFREQ[1:0] = 00 – 1.0 – f MHz SW1AB • SW1ABFREQ[1:0] = 01 – 2.0 – • SW1ABFREQ[1:0] = 10 – 4.0 – PF0100 NXP Semiconductors 47
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 54. SW1A/B/C electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = VIN = 3.6 V, V = 1.2 V, I = 100 mA, MIN MAX IN SW1x SW1x SW1x SW1x_PWRSTG[2:0] = [111], typical external component values, f = 2.0 MHz, unless otherwise noted. Typical values are SW1x characterized at V = VIN = 3.6 V, V = 1.2 V, I = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted. IN SW1x SW1x SW1x Symbol Parameter Min. Typ. Max. Unit Notes SW1A/B (single/dual phase) (continued) Efficiency (single phase) • V = 3.6 V, f = 2.0 MHz, L = 1.0 μH IN SW1AB SW1AB • PFM, 0.9 V, 1.0 mA – 82 – η • PFM, 1.2 V, 50 mA – 84 – % SW1AB • APS, PWM, 1.2 V, 500 mA – 86 – • APS, PWM, 1.2 V, 750 mA – 87 – • APS, PWM, 1.2 V, 1250 mA – 82 – • APS, PWM, 1.2 V, 2500 mA – 71 – ΔV Output ripple – 10 – mV SW1AB V Line regulation (APS, PWM) – – 20 mV SW1ABLIR V DC load regulation (APS, PWM) – – 20 mV SW1ABLOR Transient load regulation • Transient load = 0 to 1.25 A, di/dt = 100 mA/μs V mV SW1ABLOTR • Overshoot – – 50 • Undershoot – – 50 Quiescent current I • PFM mode – 18 – µA SW1ABQ • APS mode – 235 – SW1A P-MOSFET R R DS(on) – 215 245 mΩ ONSW1AP • VIN = 3.3 V SW1A SW1A N-MOSFET R R DS(on) – 258 326 mΩ ONSW1AN • VIN = 3.3 V SW1A SW1A P-MOSFET leakage current I – – 7.5 µA SW1APQ • VIN = 4.5 V SW1A SW1A N-MOSFET leakage current I – – 2.5 µA SW1ANQ • VIN = 4.5 V SW1A SW1B P-MOSFET R R DS(on) – 215 245 mΩ ONSW1BP • VIN = 3.3 V SW1B SW1B N-MOSFET R R DS(on) – 258 326 mΩ ONSW1BN • VIN = 3.3 V SW1B SW1B P-MOSFET leakage current I – – 7.5 µA SW1BPQ • VIN = 4.5 V SW1B SW1B N-MOSFET leakage current I – – 2.5 µA SW1BNQ • VIN = 4.5 V SW1B R Discharge resistance – 600 – Ω SW1ABDIS PF0100 48 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 54. SW1A/B/C electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = VIN = 3.6 V, V = 1.2 V, I = 100 mA, MIN MAX IN SW1x SW1x SW1x SW1x_PWRSTG[2:0] = [111], typical external component values, f = 2.0 MHz, unless otherwise noted. Typical values are SW1x characterized at V = VIN = 3.6 V, V = 1.2 V, I = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted. IN SW1x SW1x SW1x Symbol Parameter Min. Typ. Max. Unit Notes SW1C (independent) VIN Operating input voltage 2.8 – 4.5 V SW1C V Nominal output voltage – Table 41 – V SW1C Output voltage accuracy • PWM, APS, 2.8 V < V < 4.5 V, 0 < I < 2.0 A IN SW1C • 0.625 V ≤ V ≤ 1.450 V -25 – 25 SW1C • 1.475 V ≤ V ≤ 1.875 V -3.0% – 3.0% SW1C V mV SW1CACC • PFM, steady state 2.8 V < V < 4.5 V, 0 < I < 50 mA IN SW1C • 0.625 V < V < 0.675 V -65 – 65 SW1C • 0.7 V < V < 0.85 V -45 – 45 SW1C • 0.875 V < V < 1.875 V -3.0% – 3.0% SW1C Rated output load current I – – 2000 mA SW1C • 2.8 V < V < 4.5 V, 0.625 V < V < 1.875 V IN SW1C Current limiter peak current detection • Current through inductor I A SW1CLIM • SW1CILIM = 0 2.6 4.0 5.2 (45) • SW1CILIM = 1 1.95 3.0 3.9 — Start-up overshoot V • I = 0 mA – – 66 mV SW1COSH SW1C • DVS clk = 25 mV/4 μs, V = VIN = 4.5 V, V = 1.875 V IN SW1C SW1C Turn-on time • Enable to 90% of end value tON – – 500 µs SW1C • I = 0 mA SW1C • DVS clk = 25 mV/4 μs, V = VIN = 4.5 V, V = 1.875 V IN SW1C SW1C Switching frequency • SW1CFREQ[1:0] = 00 – 1.0 – f MHz SW1C • SW1CFREQ[1:0] = 01 – 2.0 – • SW1CFREQ[1:0] = 10 – 4.0 – Efficiency • V = 3.6 V, f = 2.0 MHz, L = 1.0 μH IN SW1C SW1C • PFM, 0.9 V, 1.0 mA – 77 – η • PFM, 1.2 V, 50 mA – 78 – % SW1C • APS, PWM, 1.2 V, 400 mA – 86 – • APS, PWM, 1.2 V, 600 mA – 84 – • APS, PWM, 1.2 V, 1000 mA – 78 – • APS, PWM, 1.2 V, 2000 mA – 65 – ΔV Output ripple – 10 – mV SW1C V Line regulation (APS, PWM) – – 20 mV SW1CLIR V DC load regulation (APS, PWM) – – 20 mV SW1CLOR Transient load regulation • Transient load = 0.0 mA to 1.0 A, di/dt = 100 mA/μs V mV SW1CLOTR • Overshoot – – 50 • Undershoot – – 50 Quiescent current I • PFM mode – 22 – µA SW1CQ • APS mode – 145 – PF0100 NXP Semiconductors 49
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 54. SW1A/B/C electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = VIN = 3.6 V, V = 1.2 V, I = 100 mA, MIN MAX IN SW1x SW1x SW1x SW1x_PWRSTG[2:0] = [111], typical external component values, f = 2.0 MHz, unless otherwise noted. Typical values are SW1x characterized at V = VIN = 3.6 V, V = 1.2 V, I = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted. IN SW1x SW1x SW1x Symbol Parameter Min. Typ. Max. Unit Notes SW1C (independent) (continued) SW1C P-MOSFET R R DS(on) – mΩ ONSW1CP • at VIN = 3.3 V 184 206 SW1C SW1C N-MOSFET R R DS(on) – mΩ ONSW1CN • at VIN = 3.3 V 211 260 SW1C SW1C P-MOSFET leakage current I – – 10.5 µA SW1CPQ • VIN = 4.5 V SW1C SW1C N-MOSFET leakage current I – – 3.5 µA SW1CNQ • VIN = 4.5 V SW1C R Discharge resistance – 600 – Ω SW1CDIS Notes 45. Meets 1.89 A current rating for VDDSOC_IN domain on i.MX 6X processor. 46. Current rating of SW1AB supports the power virus mode of operation of the i.MX 6X processor. 100 100 90 90 80 80 %) (%) 70 %) (%) 70 y (cy 60 y (cy 60 cn 50 cn 50 nie nie cieffic 40 cieffic 40 ffiE 30 ffiE 30 APS E 20 PFM E 20 PWM 10 10 0 0 0.1 1 10 100 1000 10 100 1000 10000 Load Current (mA) Load Current (mA) Figure 14. SW1AB efficiency waveforms: V = 4.2 V; V = 1.375 V; consumer version IN OUT PF0100 50 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 100 100 90 90 Efficiency (%)Efficiency (%) 345678000000 Efficiency (%)Efficiency (%) 345678000000 APS 20 PFM 20 PWM 10 10 0 0 0.1 1 10 100 1000 10 100 1000 10000 Load Current (mA) Load Current (mA) Figure 15. SW1AB efficiency waveforms: V = 4.2 V; V = 1.375 V; extended industrial version IN OUT 100 100 90 90 80 80 %)) 70 %)) 70 y (y (%60 y (y (%60 cc cc enien 50 enien 50 EfficiEffic 3400 EfficiEffic 3400 APS 20 PFM 20 PWM 10 10 0 0 0.1 1 10 100 1000 10 100 1000 10000 Load Current (mA) Load Current (mA) Figure 16. SW1C efficiency waveforms: V = 4.2 V; V = 1.375 V; consumer version IN OUT 100 100 90 90 80 80 ) ) %) 70 %) 70 y (y (%60 y (y (%60 cc cc nn 50 nn 50 eie eie fficiEffic 3400 fficiEffic 3400 E E APS 20 PFM 20 PWM 10 10 0 0 0.1 1 10 100 1000 10 100 1000 10000 Load Current (mA) Load Current (mA) Figure 17. SW1C efficiency waveforms: V = 4.2 V; V = 1.375 V; extended industrial version IN OUT PF0100 NXP Semiconductors 51
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.4.4 SW2 SW2 is a single phase, 2.0 A rated buck regulator (2.5 A in NP, F9, and FA Industrial versions only (ANES suffix)). Table 30 describes the modes, and Table 31 show the options for the SWxMODE[3:0] bits. Figure 18 shows the block diagram and the external component connections for SW2 regulator. VIN SW2IN SW2MODE CINSW2 ISENSE SW2 SW2LX Controller Driver LSW2 COSW2 EP SW2FAULT I2C Interface Internal I2C Compensation Z2 SW2FB Z1 EA VREF DAC Figure 18. SW2 block diagram 6.4.4.4.1 SW2 setup and control registers SW2 output voltage is programmable from 0.400 V to 3.300 V; however, bit SW2[6] in register SW2VOLT is read-only during normal operation. Its value is determined by the default configuration, or may be changed by using the OTP registers. Therefore, once SW2[6] is set to “0”, the output is limited to the lower output voltages from 0.400 V to 1.975 V with 25 mV increments, as determined by bits SW2[5:0]. Likewise, once bit SW2[6] is set to “1”, the output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V with 50 mV increments, as determined by bits SW2[5:0]. In order to optimize the performance of the regulator, it is recommended only voltages from 2.000 V to 3.300 V be used in the high range, and the lower range be used for voltages from 0.400 V to 1.975 V. The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW2[5:0], SW2STBY[5:0] and SW2OFF[5:0] bits, respectively. However, the initial state of bit SW2[6] are copied into bits SW2STBY[6], and SW2OFF[6] bits. Therefore, the output voltage range remains the same in all three operating modes. Table 55 shows the output voltage coding valid for SW2. Note: Voltage set points of 0.6 V and below are not supported. Table 55. SW2 output voltage configuration Low output voltage range(47) High output voltage range Set point SW2[6:0] SW2 output Set point SW2[6:0] SW2 output 0 0000000 0.4000 64 1000000 0.8000 1 0000001 0.4250 65 1000001 0.8500 2 0000010 0.4500 66 1000010 0.9000 3 0000011 0.4750 67 1000011 0.9500 4 0000100 0.5000 68 1000100 1.0000 5 0000101 0.5250 69 1000101 1.0500 6 0000110 0.5500 70 1000110 1.1000 7 0000111 0.5750 71 1000111 1.1500 8 0001000 0.6000 72 1001000 1.2000 9 0001001 0.6250 73 1001001 1.2500 10 0001010 0.6500 74 1001010 1.3000 11 0001011 0.6750 75 1001011 1.3500 PF0100 52 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 55. SW2 output voltage configuration (continued) Low output voltage range(47) High output voltage range Set point SW2[6:0] SW2 output Set point SW2[6:0] SW2 output 12 0001100 0.7000 76 1001100 1.4000 13 0001101 0.7250 77 1001101 1.4500 14 0001110 0.7500 78 1001110 1.5000 15 0001111 0.7750 79 1001111 1.5500 16 0010000 0.8000 80 1010000 1.6000 17 0010001 0.8250 81 1010001 1.6500 18 0010010 0.8500 82 1010010 1.7000 19 0010011 0.8750 83 1010011 1.7500 20 0010100 0.9000 84 1010100 1.8000 21 0010101 0.9250 85 1010101 1.8500 22 0010110 0.9500 86 1010110 1.9000 23 0010111 0.9750 87 1010111 1.9500 24 0011000 1.0000 88 1011000 2.0000 25 0011001 1.0250 89 1011001 2.0500 26 0011010 1.0500 90 1011010 2.1000 27 0011011 1.0750 91 1011011 2.1500 28 0011100 1.1000 92 1011100 2.2000 29 0011101 1.1250 93 1011101 2.2500 30 0011110 1.1500 94 1011110 2.3000 31 0011111 1.1750 95 1011111 2.3500 32 0100000 1.2000 96 1100000 2.4000 33 0100001 1.2250 97 1100001 2.4500 34 0100010 1.2500 98 1100010 2.5000 35 0100011 1.2750 99 1100011 2.5500 36 0100100 1.3000 100 1100100 2.6000 37 0100101 1.3250 101 1100101 2.6500 38 0100110 1.3500 102 1100110 2.7000 39 0100111 1.3750 103 1100111 2.7500 40 0101000 1.4000 104 1101000 2.8000 41 0101001 1.4250 105 1101001 2.8500 42 0101010 1.4500 106 1101010 2.9000 43 0101011 1.4750 107 1101011 2.9500 44 0101100 1.5000 108 1101100 3.0000 45 0101101 1.5250 109 1101101 3.0500 46 0101110 1.5500 110 1101110 3.1000 47 0101111 1.5750 111 1101111 3.1500 48 0110000 1.6000 112 1110000 3.2000 49 0110001 1.6250 113 1110001 3.2500 PF0100 NXP Semiconductors 53
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 55. SW2 output voltage configuration (continued) Low output voltage range(47) High output voltage range Set point SW2[6:0] SW2 output Set point SW2[6:0] SW2 output 50 0110010 1.6500 114 1110010 3.3000 51 0110011 1.6750 115 1110011 Reserved 52 0110100 1.7000 116 1110100 Reserved 53 0110101 1.7250 117 1110101 Reserved 54 0110110 1.7500 118 1110110 Reserved 55 0110111 1.7750 119 1110111 Reserved 56 0111000 1.8000 120 1111000 Reserved 57 0111001 1.8250 121 1111001 Reserved 58 0111010 1.8500 122 1111010 Reserved 59 0111011 1.8750 123 1111011 Reserved 60 0111100 1.9000 124 1111100 Reserved 61 0111101 1.9250 125 1111101 Reserved 62 0111110 1.9500 126 1111110 Reserved 63 0111111 1.9750 127 1111111 Reserved Notes 47. For voltages less than 2.0 V, only use set points 0 to 63. Setup and control of SW2 is done through I2C registers listed in Table 56, and a detailed description of each one of the registers is provided in Tables 57 to Table 61. Table 56. SW2 register summary Register Address Description SW2VOLT 0x35 Output voltage set point on normal operation SW2STBY 0x36 Output voltage set point on standby SW2OFF 0x37 Output voltage set point on sleep SW2MODE 0x38 Switching mode selector register SW2CONF 0x39 DVS, phase, frequency, and ILIM configuration Table 57. Register SW2VOLT - ADDR 0x35 Name Bit # R/W Default Description Sets the SW2 output voltage during normal operation SW2 5:0 R/W 0x00 mode. See Table 55 for all possible configurations. Sets the operating output voltage range for SW2. Set SW2 6 R 0x00 during OTP or TBB configuration only. See Table 55 for all possible configurations. UNUSED 7 – 0x00 unused PF0100 54 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 58. Register SW2STBY - ADDR 0x36 Name Bit # R/W Default Description Sets the SW2 output voltage during standby mode. SW2STBY 5:0 R/W 0x00 See Table 55 for all possible configurations. Sets the operating output voltage range for SW2 on standby mode. This bit inherits the value configured SW2STBY 6 R 0x00 on bit SW2[6] during OTP or TBB configuration. See Table 55 for all possible configurations. UNUSED 7 – 0x00 unused Table 59. Register SW2OFF - ADDR 0x37 Name Bit # R/W Default Description Sets the SW2 output voltage during sleep mode. See SW2OFF 5:0 R/W 0x00 Table 55 for all possible configurations. Sets the operating output voltage range for SW2 on sleep mode. This bit inherits the value configured on SW2OFF 6 R 0x00 bit SW2[6] during OTP or TBB configuration. See Table 55 for all possible configurations. UNUSED 7 – 0x00 unused Table 60. Register SW2MODE - ADDR 0x38 Name Bit # R/W Default Description Sets the SW2 switching operation mode. SW2MODE 3:0 R/W 0x08 See Table 30 for all possible configurations. UNUSED 4 – 0x00 unused Set status of SW2 when in sleep mode SW2OMODE 5 R/W 0x00 • 0 = OFF • 1 = PFM UNUSED 7:6 – 0x00 unused Table 61. Register SW2CONF - ADDR 0x39 Name Bit # R/W Default Description SW2 current limit level selection (48) SW2ILIM 0 R/W 0x00 • 0 = High level current limit • 1 = Low level current limit UNUSED 1 R/W 0x00 unused SW2FREQ 3:2 R/W 0x00 SW2 switching frequency selector. See Table 38. SW2PHASE 5:4 R/W 0x00 SW2 phase clock selection. See Table 36. SW2DVSSPEED 7:6 R/W 0x00 SW2 DVS speed selection. See Table 35. Notes 48. SW2ILIM = 0 must be used in NP/F9/FA versions (Industrial only) if 2.5 A output load current is desired PF0100 NXP Semiconductors 55
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.4.4.2 SW2 external components Table 62. SW2 external component recommendations Components Description Values C (49) SW2 input capacitor 4.7 μF INSW2 C (49) SW2 decoupling input capacitor 0.1 μF IN2HF C (49) SW2 output capacitor 3 x 22 μF OSW2 L SW2 inductor 1.0 μH SW2 Notes 49. Use X5R or X7R capacitors. 6.4.4.4.3 SW2 Specifications Table 63. SW2 electrical characteristics All parameters are specified at T to T (See Table 3), V = VIN = 3.6 V, V = 3.15 V, I = 100 mA, MIN MAX IN SW2 SW2 SW2 SW2_PWRSTG[2:0] = [111], typical external component values, f = 2.0 MHz, unless otherwise noted. Typical values are SW2 characterized at V = VIN = 3.6 V, V = 3.15 V, I = 100 mA, SW2_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted. IN SW2 SW2 SW2 Symbol Parameter Min Typ Max Unit Notes Switch mode supply SW2 VIN Operating input voltage 2.8 – 4.5 V (50) SW2 V Nominal output voltage – Table 55 – V SW2 Output voltage accuracy • PWM, APS, 2.8 V < V < 4.5 V, 0 < I < 2.0 A IN SW2 • 0.625 V < V < 0.85 V -25 – 25 SW2 • 0.875 V < V < 1.975 V -3.0% – 3.0% SW2 • 2.0 V < V < 3.3 V -6.0% – 6.0% SW2 mV V SW2ACC % • PFM, 2.8 V < V < 4.5 V, 0 < I ≤ 50 mA IN SW2 • 0.625 V < V < 0.675 V -65 – 65 SW2 • 0.7 V < V < 0.85 V -45 – 45 SW2 • 0.875 V < V < 1.975 V -3.0% – 3.0% SW2 • 2.0 V < V < 3.3 V -3.0% – 3.0% SW2 Rated output load current I • 2.8 V < V < 4.5 V, 0.625 V < V < 3.3 V – – 2000 mA (51) SW2 IN SW2 • 2.8 V < V < 4.5 V, 1.2 V < V < 3.3 V, SW2LIM = 0 – – 2500 (52) IN SW2 Current limiter peak current detection • Current through inductor I A SW2LIM • SW2ILIM = 0 2.8 4.0 5.2 • SW2ILIM = 1 2.1 3.0 3.9 Start-up overshoot V • I = 0.0 mA – – 66 mV SW2OSH SW2 • DVS clk = 25 mV/4 μs, V = VIN = 4.5 V IN SW2 Turn-on time • Enable to 90% of end value tON – – 550 µs SW2 • I = 0.0 mA SW2 • DVS clk = 50 mV/8 μs, V = VIN = 4.5 V IN SW2 Switching frequency • SW2FREQ[1:0] = 00 – 1.0 – f MHz SW2 • SW2FREQ[1:0] = 01 – 2.0 – • SW2FREQ[1:0] = 10 – 4.0 – PF0100 56 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 63. SW2 electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = VIN = 3.6 V, V = 3.15 V, I = 100 mA, MIN MAX IN SW2 SW2 SW2 SW2_PWRSTG[2:0] = [111], typical external component values, f = 2.0 MHz, unless otherwise noted. Typical values are SW2 characterized at V = VIN = 3.6 V, V = 3.15 V, I = 100 mA, SW2_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted. IN SW2 SW2 SW2 Symbol Parameter Min Typ Max Unit Notes Switch mode supply SW2 (continued) Efficiency • V = 3.6 V, f = 2.0 MHz, L = 1.0 μH IN SW2 SW2 • PFM, 3.15 V, 1.0 mA – 94 – η • PFM, 3.15 V, 50 mA – 95 – % SW2 • APS, PWM, 3.15 V, 400 mA – 96 – • APS, PWM, 3.15 V, 600 mA – 94 – • APS, PWM, 3.15 V, 1000 mA – 92 – • APS, PWM, 3.15 V, 2000 mA – 86 – ΔV Output ripple – 10 – mV SW2 V Line regulation (APS, PWM) – – 20 mV SW2LIR V DC load regulation (APS, PWM) – – 20 mV SW2LOR Transient load regulation • Transient load = 0.0 mA to 1.0 A, di/dt = 100 mA/μs V mV SW2LOTR • Overshoot – – 50 • Undershoot – – 50 Quiescent current • PFM mode – 23 – I µA SW2Q • APS mode (low output voltage settings) – 145 – • APS mode (high output voltage settings) – 305 – SW2 P-MOSFET R R DS(on) – 190 209 mΩ ONSW2P • at V = VIN = 3.3 V IN SW2 SW2 N-MOSFET R R DS(on) – 212 255 mΩ ONSW2N • at V = VIN = 3.3 V IN SW2 SW2 P-MOSFET leakage current I – – 12 µA SW2PQ • V = VIN = 4.5 V IN SW2 SW2 N-MOSFET leakage current I – – 4.0 µA SW2NQ • V = VIN = 4.5 V IN SW2 R Discharge resistance – 600 – Ω SW2DIS Notes 50. When output is set to > 2.6 V the output follows the input down when V gets near 2.8 V. IN 51. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation: (VIN - V ) = I * (DCR of Inductor +R + PCB trace resistance). SW2 SW2 SW2 ONSW2P 52. Applies to NP, F9, and FA Industrial versions only (ANES suffix) PF0100 NXP Semiconductors 57
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 100 100 90 90 80 80 %)) 70 %)) 70 Efficiency (Efficiency (%34560000 Efficiency (Efficiency (%34560000 APS 20 PFM 20 PWM 10 10 0 0 0.1 1 10 100 1000 10 100 1000 10000 Load Current (mA) Load Current (mA) Figure 19. sw2 Efficiency Waveforms: V = 4.2 V; V = 3.0 V; consumer version IN OUT 100 100 90 90 80 80 ) ) %) 70 %) 70 y (y (%60 y (y (%60 cc cc nn 50 nn 50 eie eie fficiEffic 3400 fficiEffic 3400 E E APS 20 PFM 20 PWM 10 10 0 0 0.1 1 10 100 1000 10 100 1000 10000 Load Current (mA) Load Current (mA) Figure 20. sw2 efficiency waveforms: v = 4.2 v; v = 3.0 v; Extended Industrial Version in out 6.4.4.4.4 SW3A/B SW3A/B are 1.25 to 2.5 A rated buck regulators, depending on the configuration. Table 30 describes the available switching modes and Table 31 show the actual configuration options for the SW3xMODE[3:0] bits. SW3A/B can be configured in various phasing schemes, depending on the desired cost/performance trade-offs. The following configurations are available: • A single phase • A dual phase • Independent regulators The desired configuration is programmed in OTP by using the SW3_CONFIG[1:0] bits.Table 64 shows the options for the SW3CFG[1:0] bits. PF0100 58 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 64. SW3 configuration SW3_CONFIG[1:0] Description 00 A/B single phase 01 A/B single phase 10 A/B dual phase 11 A/B independent 6.4.4.4.5 SW3A/B single phase In this configuration, SW3ALX and SW3BLX are connected in single phase with a single inductor a shown in Figure 21. This configuration reduces cost and component count. Feedback is taken from the SW3AFB pin and the SW3BFB pin must be left open. Although control is from SW3A, registers of both regulators, SW3A and SW3B, must be identically set. VIN SW3AIN SW3AMODE CINSW3A ISENSE SW3 Controller SW3ALX Driver LSW3A COSW3A SW3AFAULT Internal I2C Compensation Z2 SW3AFB Z1 I2C EA VREF Interface DAC VIN SW3BIN SW3BMODE ISENSE CINSW3B Controller SW3BLX Driver EP SW3BFAULT I2C Internal Compensation Z2 SW3BFB Z1 DAC VREF EA Figure 21. SW3A/B single phase block diagram PF0100 NXP Semiconductors 59
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.4.4.6 SW3A/B dual phase SW3A/B can be connected in dual phase configuration using one inductor per switching node, as shown in Figure 22. This mode allows a smaller output voltage ripple. Feedback is taken from pin SW3AFB and pin SW3BFB must be left open. Although control is from SW3A, registers of both regulators, SW3A and SW3B, must be identically set. In this configuration, the regulators switch 180 degrees apart. VIN SW3AIN SW3AMODE CINSW3A ISENSE SW3 SW3ALX Controller Driver LSW3A COSW3A SW3AFAULT Internal I2C Compensation Z2 SW3AFB Z1 EA VREF InteI2rfCace DAC VIN SW3BIN SW3BMODE CINSW3B ISENSE Controller SW3BLX Driver LSW3B COSW3B EP SW3BFAULT I2C Internal Compensation Z2 SW3BFB Z1 DAC VREF EA Figure 22. SW3A/B dual phase block diagram PF0100 60 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.4.4.7 SW3A - SW3B independent outputs SW3A and SW3B can be configured as independent outputs as shown in Figure 23, providing flexibility for applications requiring more voltage rails with less current capability. Each output is configured and controlled independently by its respective I2C registers as shown in Table 66. VIN SW3AIN SW3AMODE CINSW3A ISENSE SW3A SW3ALX Controller Driver LSW3A COSW3A SW3AFAULT Internal I2C Compensation Z2 SW3AFB Z1 EA VREF DAC VIN I2C SW3BIN SW3BMODE Interface CINSW3B ISENSE SW3B SW3BLX Controller Driver LSW3B COSW3B EP SW3BFAULT Internal I2C Compensation Z2 SW3BFB Z1 EA VREF DAC Figure 23. SW3A/B independent output block diagram 6.4.4.4.8 SW3A/B Setup and Control Registers SW3A/B output voltage is programmable from 0.400 V to 3.300 V; however, bit SW3x[6] in register SW3xVOLT is read-only during normal operation. Its value is determined by the default configuration, or may be changed by using the OTP registers. Therefore, once SW3x[6] is set to “0”, the output is limited to the lower output voltages from 0.40 V to 1.975 V with 25 mV increments, as determined by bits SW3x[5:0]. Likewise, once bit SW3x[6] is set to "1", the output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V with 50 mV increments, as determined by bits SW3x[5:0]. In order to optimize the performance of the regulator, it is recommended only voltages from 2.00 V to 3.300 V be used in the high range and the lower range be used for voltages from 0.400 V to 1.975 V. The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW3x[5:0], SW3xSTBY[5:0], and SW3xOFF[5:0] bits respectively; however, the initial state of the SW3x[6] bit is copied into the SW3xSTBY[6] and SW3xOFF[6] bits. Therefore, the output voltage range remains the same on all three operating modes. Table 65 shows the output voltage coding valid for SW3x. Note: Voltage set points of 0.6 V and below are not supported. PF0100 NXP Semiconductors 61
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 65. SW3A/B output voltage configuration Low output voltage range (53) High output voltage range Set point SW3x[6:0] SW3x output Set point SW3x[6:0] SW3x output 0 0000000 0.4000 64 1000000 0.8000 1 0000001 0.4250 65 1000001 0.8500 2 0000010 0.4500 66 1000010 0.9000 3 0000011 0.4750 67 1000011 0.9500 4 0000100 0.5000 68 1000100 1.0000 5 0000101 0.5250 69 1000101 1.0500 6 0000110 0.5500 70 1000110 1.1000 7 0000111 0.5750 71 1000111 1.1500 8 0001000 0.6000 72 1001000 1.2000 9 0001001 0.6250 73 1001001 1.2500 10 0001010 0.6500 74 1001010 1.3000 11 0001011 0.6750 75 1001011 1.3500 12 0001100 0.7000 76 1001100 1.4000 13 0001101 0.7250 77 1001101 1.4500 14 0001110 0.7500 78 1001110 1.5000 15 0001111 0.7750 79 1001111 1.5500 16 0010000 0.8000 80 1010000 1.6000 17 0010001 0.8250 81 1010001 1.6500 18 0010010 0.8500 82 1010010 1.7000 19 0010011 0.8750 83 1010011 1.7500 20 0010100 0.9000 84 1010100 1.8000 21 0010101 0.9250 85 1010101 1.8500 22 0010110 0.9500 86 1010110 1.9000 23 0010111 0.9750 87 1010111 1.9500 24 0011000 1.0000 88 1011000 2.0000 25 0011001 1.0250 89 1011001 2.0500 26 0011010 1.0500 90 1011010 2.1000 27 0011011 1.0750 91 1011011 2.1500 28 0011100 1.1000 92 1011100 2.2000 29 0011101 1.1250 93 1011101 2.2500 30 0011110 1.1500 94 1011110 2.3000 31 0011111 1.1750 95 1011111 2.3500 32 0100000 1.2000 96 1100000 2.4000 33 0100001 1.2250 97 1100001 2.4500 34 0100010 1.2500 98 1100010 2.5000 35 0100011 1.2750 99 1100011 2.5500 36 0100100 1.3000 100 1100100 2.6000 37 0100101 1.3250 101 1100101 2.6500 PF0100 62 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 65. SW3A/B output voltage configuration Low output voltage range (53) High output voltage range Set point SW3x[6:0] SW3x output Set point SW3x[6:0] SW3x output 38 0100110 1.3500 102 1100110 2.7000 39 0100111 1.3750 103 1100111 2.7500 40 0101000 1.4000 104 1101000 2.8000 41 0101001 1.4250 105 1101001 2.8500 42 0101010 1.4500 106 1101010 2.9000 43 0101011 1.4750 107 1101011 2.9500 44 0101100 1.5000 108 1101100 3.0000 45 0101101 1.5250 109 1101101 3.0500 46 0101110 1.5500 110 1101110 3.1000 47 0101111 1.5750 111 1101111 3.1500 48 0110000 1.6000 112 1110000 3.2000 49 0110001 1.6250 113 1110001 3.2500 50 0110010 1.6500 114 1110010 3.3000 51 0110011 1.6750 115 1110011 Reserved 52 0110100 1.7000 116 1110100 Reserved 53 0110101 1.7250 117 1110101 Reserved 54 0110110 1.7500 118 1110110 Reserved 55 0110111 1.7750 119 1110111 Reserved 56 0111000 1.8000 120 1111000 Reserved 57 0111001 1.8250 121 1111001 Reserved 58 0111010 1.8500 122 1111010 Reserved 59 0111011 1.8750 123 1111011 Reserved 60 0111100 1.9000 124 1111100 Reserved 61 0111101 1.9250 125 1111101 Reserved 62 0111110 1.9500 126 1111110 Reserved 63 0111111 1.9750 127 1111111 Reserved Notes 53. For voltages less than 2.0 V, only use set points 0 to 63. PF0100 NXP Semiconductors 63
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 66 provides a list of registers used to configure and operate SW3A/B. A detailed description on each of these register is provided on Tables 67 through Table 76. Table 66. SW3AB register summary Register Address Output SW3AVOLT 0x3C SW3A output voltage set point on normal operation SW3ASTBY 0x3D SW3A output voltage set point on standby SW3AOFF 0x3E SW3A output voltage set point on sleep SW3AMODE 0x3F SW3A switching mode selector register SW3ACONF 0x40 SW3A DVS, phase, frequency and ILIM configuration SW3BVOLT 0x43 SW3B output voltage set point on normal operation SW3BSTBY 0x44 SW3B output voltage set point on standby SW3BOFF 0x45 SW3B output voltage set point on sleep SW3BMODE 0x46 SW3B switching mode selector register SW3BCONF 0x47 SW3B DVS, phase, frequency and ILIM configuration Table 67. Register SW3AVOLT - ADDR 0x3C Name Bit # R/W Default Description Sets the SW3A output voltage (independent) or SW3A/B output voltage (single/dual phase), SW3A 5:0 R/W 0x00 during normal operation mode. See Table 65 for all possible configurations. Sets the operating output voltage range for SW3A (independent) or SW3A/B (single/dual phase). SW3A 6 R 0x00 Set during OTP or TBB configuration only. See Table 65 for all possible configurations. UNUSED 7 – 0x00 unused Table 68. Register SW3ASTBY - ADDR 0x3D Name Bit # R/W Default Description Sets the SW3A output voltage (independent) or SW3A/B output voltage (single/dual phase), SW3ASTBY 5:0 R/W 0x00 during standby mode. See Table 65 for all possible configurations. Sets the operating output voltage range for SW3A (independent) or SW3A/B (single/dual phase) on standby mode. This bit inherits the value SW3ASTBY 6 R 0x00 configured on bit SW3A[6] during OTP or TBB configuration. See Table 65 for all possible configurations. UNUSED 7 – 0x00 unused PF0100 64 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 69. Register SW3AOFF - ADDR 0x3E Name Bit # R/W Default Description Sets the SW3A output voltage (independent) or SW3A/B output voltage (Single/Dual phase), SW3AOFF 5:0 R/W 0x00 during Sleep mode. See Table 65 for all possible configurations. Sets the operating output voltage range for SW3A (independent) or SW3A/B (single/dual phase) on SW3AOFF 6 R 0x00 sleep mode. This bit inherits the value configured on bit SW3A[6] during OTP or TBB configuration. See Table 65 for all possible configurations. UNUSED 7 – 0x00 unused Table 70. Register SW3AMODE - ADDR 0x3F Name Bit # R/W Default Description Sets the SW3A (independent) or SW3A/B (single/ SW3AMODE 3:0 R/W 0x08 dual phase) switching operation mode. See Table 30 for all possible configurations. UNUSED 4 – 0x00 unused Set status of SW3A (independent) or SW3A/B (single/dual phase) when in sleep mode. SW3AOMODE 5 R/W 0x00 • 0 = OFF • 1 = PFM UNUSED 7:6 – 0x00 unused Table 71. Register SW3ACONF - ADDR 0x40 Name Bit # R/W Default Description SW3A current limit level selection SW3AILIM 0 R/W 0x00 • 0 = High level current limit • 1 = Low level current limit UNUSED 1 R/W 0x00 unused SW3A switching frequency selector. See SW3AFREQ 3:2 R/W 0x00 Table 38. SW3APHASE 5:4 R/W 0x00 SW3A phase clock selection. See Table 36. SW3ADVSSPEED 7:6 R/W 0x00 SW3A DVS speed selection. See Table 35. Table 72. Register SW3BVOLT - ADDR 0x43 Name Bit # R/W Default Description Sets the SW3B output voltage (independent) SW3B 5:0 R/W 0x00 during normal operation mode. See Table 65 for all possible configurations. Sets the operating output voltage range for SW3B (independent). Set during OTP or TBB SW3B 6 R 0x00 configuration only. See Table 65 for all possible configurations. UNUSED 7 – 0x00 unused PF0100 NXP Semiconductors 65
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 73. Register SW3BSTBY - ADDR 0x44 Name Bit # R/W Default Description Sets the SW3B output voltage (independent) SW3BSTBY 5:0 R/W 0x00 during standby mode. See Table 65 for all possible configurations. Sets the operating output voltage range for SW3B (Independent) on standby mode. This bit inherits SW3BSTBY 6 R 0x00 the value configured on bit SW3B[6] during OTP or TBB configuration. See Table 65 for all possible configurations. UNUSED 7 – 0x00 unused Table 74. Register SW3BOFF - ADDR 0x45 Name Bit # R/W Default Description Sets the SW3B output voltage (independent) SW3BOFF 5:0 R/W 0x00 during sleep mode. See Table 65 for all possible configurations. Sets the operating output voltage range for SW3B (independent) on sleep mode. This bit inherits the SW3BOFF 6 R 0x00 value configured on bit SW3B[6] during OTP or TBB configuration. See Table 65 for all possible configurations. UNUSED 7 – 0x00 unused Table 75. Register SW3BMODE - ADDR 0x46 Name Bit # R/W Default Description Sets the SW3B (independent) switching SW3BMODE 3:0 R/W 0x08 operation mode. See Table 30 for all possible configurations. UNUSED 4 – 0x00 unused Set status of SW3B (independent) when in sleep mode. SW3BOMODE 5 R/W 0x00 • 0 = OFF • 1 = PFM UNUSED 7:6 – 0x00 unused Table 76. Register SW3BCONF - ADDR 0x47 Name Bit # R/W Default Description SW3B current limit level selection SW3BILIM 0 R/W 0x00 • 0 = High level Current limit • 1 = Low level Current limit UNUSED 1 R/W 0x00 Unused SW3BFREQ 3:2 R/W 0x00 SW3B switching frequency selector. See Table 38. SW3BPHASE 5:4 R/W 0x00 SW3B phase clock selection. See Table 36. SW3BDVSSPEED 7:6 R/W 0x00 SW3B DVS speed selection. See Table 35. PF0100 66 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.4.4.9 SW3A/B external components Table 77. SW3A/B external component requirements Mode Components Description SW3A/B single SW3A/B dual SW3A independent phase phase SW3B independent C (54) SW3A input capacitor 4.7 μF 4.7 μF 4.7 μF INSW3A C (54) SW3A decoupling input capacitor 0.1 μF 0.1 μF 0.1 μF IN3AHF C (54) SW3B input capacitor 4.7 μF 4.7 μF 4.7 μF INSW3B C (54) SW3B decoupling input capacitor 0.1 μF 0.1 μF 0.1 μF IN3BHF C (54) SW3A output capacitor 3 x 22 μF 2 x 22 μF 2 x 22 μF OSW3A C (54) SW3B output capacitor – 2 x 22 μF 2 x 22 μF OSW3B L SW3A inductor 1.0 μH 1.0 μH 1.0 μH SW3A L SW3B inductor – 1.0 μH 1.0 μH SW3B Notes 54. Use X5R or X7R capacitors. 6.4.4.4.10 SW3A/B specifications Table 78. SW3A/B electrical characteristics All parameters are specified at T to T (See Table 3), V = VIN = 3.6 V, V = 1.5 V, I = 100 mA, MIN MAX IN SW3x SW3x SW3x SW3x_PWRSTG[2:0] = [111], typical external component values, f = 2.0 MHz, single/dual phase and independent mode unless, SW3x otherwise noted. Typical values are characterized at V = VIN = 3.6 V, V = 1.5 V, I = 100 mA, SW3x_PWRSTG[2:0] = [111], IN SW3x SW3x SW3x and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes Switch mode supply SW3a/B VIN Operating input voltage 2.8 – 4.5 V (55) SW3x V Nominal output voltage - Table 65 - V SW3x Output voltage accuracy • PWM, APS 2.8 V < V < 4.5 V, 0 < I < ISW3x IN SW3x MAX • 0.625 V < V < 0.85 V -25 – 25 SW3x • 0.875 V < V < 1.975 V -3.0% – 3.0% SW3x • 2.0 V < V < 3.3 V -6.0% – 6.0% SW3x mV V • SW3xACC % • PFM , steady state (2.8 V < V < 4.5 V, 0 < I < 50 mA) IN SW3x • 0.625 V < V < 0.675 V -65 – 65 SW3x • 0.7 V < V < 0.85 V -45 – 45 SW3x • 0.875 V < V < 1.975 V -3.0% – 3.0% SW3x • 2.0 V < V < 3.3 V -3.0% – 3.0% SW3x Rated output load current • 2.8 V < V < 4.5 V, 0.625 V < V < 3.3 V I IN SW3x mA (56) SW3x • PWM, APS mode single/dual phase – – 2500 • PWM, APS mode independent (per phase) – – 1250 PF0100 NXP Semiconductors 67
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 78. SW3A/B electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = VIN = 3.6 V, V = 1.5 V, I = 100 mA, MIN MAX IN SW3x SW3x SW3x SW3x_PWRSTG[2:0] = [111], typical external component values, f = 2.0 MHz, single/dual phase and independent mode unless, SW3x otherwise noted. Typical values are characterized at V = VIN = 3.6 V, V = 1.5 V, I = 100 mA, SW3x_PWRSTG[2:0] = [111], IN SW3x SW3x SW3x and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes Switch mode supply SW3a/B (continued) Current limiter peak current detection • Single phase (current through inductor) • SW3xILIM = 0 3.5 5.0 6.5 • SW3xILIM = 1 2.7 3.8 4.9 I A SW3xLIM • Independent mode or dual phase (current through inductor per phase) • SW3xILIM = 0 1.8 2.5 3.3 • SW3xILIM = 1 1.3 1.9 2.5 Start-up overshoot V • I = 0.0 mA – – 66 mV SW3xOSH SW3x • DVS clk = 25 mV/4 μs, V = VIN = 4.5 V IN SW3x Turn-on time • Enable to 90% of end value tON – – 500 µs SW3x • I = 0 mA SW3x • DVS clk = 25 mV/4 μs, V = VIN = 4.5 V IN SW3x Switching frequency • SW3xFREQ[1:0] = 00 – 1.0 – f MHz SW3x • SW3xFREQ[1:0] = 01 – 2.0 – • SW3xFREQ[1:0] = 10 – 4.0 – Efficiency (single phase) • f = 2.0 MHz, L 1.0 μH SW3 SW3x • PFM, 1.5 V, 1.0 mA – 84 – η • PFM, 1.5 V, 50 mA – 85 – % SW3AB • APS, PWM 1.5 V, 500 mA – 85 – • APS, PWM 1.5 V, 750 mA – 84 – • APS, PWM 1.5 V, 1250 mA – 80 – • APS, PWM 1.5 V, 2500 mA – 74 – ΔV Output ripple – 10 – mV SW3x V Line regulation (APS, PWM) – – 20 mV SW3xLIR V DC load regulation (APS, PWM) – – 20 mV SW3xLOR Transient load regulation • Transient load = 0.0 mA to I /2, di/dt = 100 mA/μs SW3x V mV SW3xLOTR • Overshoot – – 50 • Undershoot – – 50 Quiescent current • PFM mode (single/dual phase) – 22 – • APS mode (single/dual phase) – 300 – I µA SW3xQ • PFM mode (independent mode) – 50 – • APS mode (SW3A independent mode) – 250 – • APS mode (SW3B independent mode) – 150 – SW3A P-MOSFET R R DS(on) – mΩ ONSW3AP • at V = VIN = 3.3 V 215 245 IN SW3A SW3A N-MOSFET R R DS(on) – mΩ ONSW3AN • at V = VIN = 3.3 V 258 326 IN SW3A PF0100 68 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 78. SW3A/B electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = VIN = 3.6 V, V = 1.5 V, I = 100 mA, MIN MAX IN SW3x SW3x SW3x SW3x_PWRSTG[2:0] = [111], typical external component values, f = 2.0 MHz, single/dual phase and independent mode unless, SW3x otherwise noted. Typical values are characterized at V = VIN = 3.6 V, V = 1.5 V, I = 100 mA, SW3x_PWRSTG[2:0] = [111], IN SW3x SW3x SW3x and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes Switch Mode Supply SW3a/B (Continued) SW3A P-MOSFET leakage current I – – 7.5 µA SW3APQ • V = VIN = 4.5 V IN SW3A SW3A N-MOSFET leakage current I – – 2.5 µA SW3ANQ • V = VIN = 4.5 V IN SW3A SW3B P-MOSFET R R DS(on) – mΩ ONSW3BP • at V = VIN = 3.3 V 215 245 IN SW3B SW3B N-MOSFET R R DS(on) – mΩ ONSW3BN • at V = VIN = 3.3 V 258 326 IN SW3B SW3B P-MOSFET leakage current I – – 7.5 µA SW3BPQ • V = VIN = 4.5 V IN SW3B SW3B N-MOSFET leakage current I – – 2.5 µA SW3BPQ • V = VIN = 4.5 V IN SW3B R Discharge resistance – 600 – Ω SW3xDIS Notes 55. When output is set to > 2.6 V the output follows the input down when V gets near 2.8 V. IN 56. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation: (VIN - V ) = I * (DCR of inductor +R + PCB trace resistance). SW3x SW3x SW3x ONSW3xP 100 100 90 90 80 80 %)) 70 %)) 70 y (y (%60 y (y (%60 cc cc nn 50 nn 50 eie eie EfficiEffic 3400 EfficiEffic 3400 APS 20 PFM 20 PWM 10 10 0 0 0.1 1 10 100 1000 10 100 1000 10000 Load Current (mA) Load Current (mA) Figure 24. SW3AB efficiency waveforms: V = 4.2 V; V = 1.5 V; consumer version IN OUT PF0100 NXP Semiconductors 69
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 100 100 90 90 80 80 %)) 70 %)) 70 y (y (%60 y (y (%60 cc cc nn 50 nn 50 eie eie EfficiEffic 3400 EfficiEffic 3400 APS 20 PFM 20 PWM 10 10 0 0 0.1 1 10 100 1000 10 100 1000 10000 Load Current (mA) Load Current (mA) Figure 25. SW3AB efficiency waveforms: V = 4.2 V; V = 1.5 V; extended industrial version IN OUT 6.4.4.5 SW4 SW4 is a 1.0 A rated single phase buck regulator capable of operating in two modes. In its default mode, it operates as a normal buck regulator with a programmable output between 0.400 V and 3.300 V. It is capable of operating in the three available switching modes: PFM, APS, and PWM, described on Table 30 and configured by the SW4MODE[3:0] bits, as shown in Table 31. If the system requires DDR memory termination, SW4 can be used in its VTT mode. In the VTT mode, its reference voltage tracks the output voltage of SW3A, scaled by 0.5. Furthermore, when in VTT mode, only the PWM switching mode is allowed. The VTT mode can be configured by use of VTT bit in the OTP_SW4_CONFIG register. Figure 26 shows the block diagram and the external component connections for the SW4 regulator. VIN SW4IN SW4MODE CINSW4 ISENSE SW4 SW4LX Controller Driver LSW4 COSW4 EP SW4FAULT I2C Interface Internal I2C Compensation Z2 SW4FB Z1 EA VREF DAC Figure 26. SW4 block diagram 6.4.4.5.1 SW4 setup and control registers To set the SW4 in regulator or VTT mode, bit VTT of the register OTP_SW4_CONF register in Table 137. Extended page 1, page 111, is programmed during OTP or TBB configuration; setting bit VTT to “1” enables SW4 to operate in VTT mode and “0” in regulator mode. See 6.1.2 One time programmability (OTP), page 21 for detailed information on OTP configuration. In regulator mode, the SW4 output voltage is programmable from 0.400 V to 3.300 V; however, bit SW4[6] in the SW4VOLT register is read-only during normal operation. Its value is determined by the default configuration, or may be changed by using the OTP registers. Once SW4[6] is set to “0”, the output is limited to the lower output voltages, from 0.400 V to 1.975 V with 25 mV increments, as determined by the SW4[5:0] bits. Likewise, once the SW4[6] bit is set to "1", the output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V with 50 mV increments, as determined by the SW4[5:0] bits. To optimize the performance of the regulator, it is recommended only voltages from 2.000 V to 3.300 V be used in the high range and the lower range be used for voltages from 0.400 V to 1.975 V. PF0100 70 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW4[5:0], SW4STBY[5:0], and SW4OFF[5:0] bits, respectively. However, the initial state of the SW4[6] bit is copied into bits SW4STBY[6], and SW4OFF[6] bits, so the output voltage range remains the same on all three operating modes. Table 79 shows the output voltage coding valid for SW4. Note: Voltage set points of 0.6 V and below are not supported, except in the VTT mode. Table 79. SW4 output voltage configuration Low output voltage range(57) High output voltage range Set point SW4[6:0] SW4 output Set point SW4[6:0] SW4 output 0 0000000 0.4000 64 1000000 0.8000 1 0000001 0.4250 65 1000001 0.8500 2 0000010 0.4500 66 1000010 0.9000 3 0000011 0.4750 67 1000011 0.9500 4 0000100 0.5000 68 1000100 1.0000 5 0000101 0.5250 69 1000101 1.0500 6 0000110 0.5500 70 1000110 1.1000 7 0000111 0.5750 71 1000111 1.1500 8 0001000 0.6000 72 1001000 1.2000 9 0001001 0.6250 73 1001001 1.2500 10 0001010 0.6500 74 1001010 1.3000 11 0001011 0.6750 75 1001011 1.3500 12 0001100 0.7000 76 1001100 1.4000 13 0001101 0.7250 77 1001101 1.4500 14 0001110 0.7500 78 1001110 1.5000 15 0001111 0.7750 79 1001111 1.5500 16 0010000 0.8000 80 1010000 1.6000 17 0010001 0.8250 81 1010001 1.6500 18 0010010 0.8500 82 1010010 1.7000 19 0010011 0.8750 83 1010011 1.7500 20 0010100 0.9000 84 1010100 1.8000 21 0010101 0.9250 85 1010101 1.8500 22 0010110 0.9500 86 1010110 1.9000 23 0010111 0.9750 87 1010111 1.9500 24 0011000 1.0000 88 1011000 2.0000 25 0011001 1.0250 89 1011001 2.0500 26 0011010 1.0500 90 1011010 2.1000 27 0011011 1.0750 91 1011011 2.1500 28 0011100 1.1000 92 1011100 2.2000 29 0011101 1.1250 93 1011101 2.2500 30 0011110 1.1500 94 1011110 2.3000 31 0011111 1.1750 95 1011111 2.3500 32 0100000 1.2000 96 1100000 2.4000 33 0100001 1.2250 97 1100001 2.4500 34 0100010 1.2500 98 1100010 2.5000 PF0100 NXP Semiconductors 71
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 79. SW4 output voltage configuration (continued) Low output voltage range(57) High output voltage range Set point SW4[6:0] SW4 output Set point SW4[6:0] SW4 output 35 0100011 1.2750 99 1100011 2.5500 36 0100100 1.3000 100 1100100 2.6000 37 0100101 1.3250 101 1100101 2.6500 38 0100110 1.3500 102 1100110 2.7000 39 0100111 1.3750 103 1100111 2.7500 40 0101000 1.4000 104 1101000 2.8000 41 0101001 1.4250 105 1101001 2.8500 42 0101010 1.4500 106 1101010 2.9000 43 0101011 1.4750 107 1101011 2.9500 44 0101100 1.5000 108 1101100 3.0000 45 0101101 1.5250 109 1101101 3.0500 46 0101110 1.5500 110 1101110 3.1000 47 0101111 1.5750 111 1101111 3.1500 48 0110000 1.6000 112 1110000 3.2000 49 0110001 1.6250 113 1110001 3.2500 50 0110010 1.6500 114 1110010 3.3000 51 0110011 1.6750 115 1110011 Reserved 52 0110100 1.7000 116 1110100 Reserved 53 0110101 1.7250 117 1110101 Reserved 54 0110110 1.7500 118 1110110 Reserved 55 0110111 1.7750 119 1110111 Reserved 56 0111000 1.8000 120 1111000 Reserved 57 0111001 1.8250 121 1111001 Reserved 58 0111010 1.8500 122 1111010 Reserved 59 0111011 1.8750 123 1111011 Reserved 60 0111100 1.9000 124 1111100 Reserved 61 0111101 1.9250 125 1111101 Reserved 62 0111110 1.9500 126 1111110 Reserved 63 0111111 1.9750 127 1111111 Reserved Notes 57. For voltages less than 2.0 V, only use set points 0 to 63. PF0100 72 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Full setup and control of SW4 is done through the I2C registers listed on Table 80, and a detailed description of each one of the registers is provided in Tables 81 to Table 85. Table 80. SW4 register summary Register Address Description SW4VOLT 0x4A Output voltage set point on normal operation SW4STBY 0x4B Output voltage set point on standby SW4OFF 0x4C Output voltage set point on sleep SW4MODE 0x4D Switching mode selector register SW4CONF 0x4E DVS, phase, frequency and ILIM configuration Table 81. Register SW4VOLT - ADDR 0x4A Name Bit # R/W Default Description Sets the SW4 output voltage during normal SW4 5:0 R/W 0x00 operation mode. See Table 79 for all possible configurations. Sets the operating output voltage range for SW4. SW4 6 R 0x00 Set during OTP or TBB configuration only. See Table 79 for all possible configurations. UNUSED 7 – 0x00 unused Table 82. Register SW4STBY - ADDR 0x4B Name Bit # R/W Default Description Sets the SW4 output voltage during standby SW4STBY 5:0 R/W 0x00 mode. See Table 79 for all possible configurations. Sets the operating output voltage range for SW4 on standby mode. This bit inherits the value SW4STBY 6 R 0x00 configured on bit SW4[6] during OTP or TBB configuration. See Table 79 for all possible configurations. UNUSED 7 – 0x00 unused Table 83. Register SW4OFF - ADDR 0x4C Name Bit # R/W Default Description Sets the SW4 output voltage during sleep mode. SW4OFF 5:0 R/W 0x00 See Table 79 for all possible configurations. Sets the operating output voltage range for SW4 on sleep mode. This bit inherits the value SW4OFF 6 R 0x00 configured on bit SW4[6] during OTP or TBB configuration. See Table 79 for all possible configurations. UNUSED 7 – 0x00 unused PF0100 NXP Semiconductors 73
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 84. Register SW4MODE - ADDR 0x4D Name Bit # R/W Default Description Sets the SW4 switching operation mode. SW4MODE 3:0 R/W 0x08 See Table 30 for all possible configurations. UNUSED 4 – 0x00 unused Set status of SW4 when in sleep mode SW4OMODE 5 R/W 0x00 • 0 = OFF • 1 = PFM UNUSED 7:6 – 0x00 unused Table 85. Register SW4CONF - ADDR 0x4E Name Bit # R/W Default Description SW4 current limit level selection SW4ILIM 0 R/W 0x00 • 0 = High level current limit • 1 = Low level current limit UNUSED 1 R/W 0x00 unused SW4FREQ 3:2 R/W 0x00 SW4 switching frequency selector. See Table 38. SW4PHASE 5:4 R/W 0x00 SW4 phase clock selection. See Table 36. SW4DVSSPEED 7:6 R/W 0x00 SW4 DVS speed selection. See Table 35. 6.4.4.5.2 SW4 external components Table 86. SW4 external component requirements Components Description Values C (58) SW4 input capacitor 4.7 μF INSW4 C (58) SW4 decoupling input capacitor 0.1 μF IN4HF C (58) SW4 output capacitor 3 x 22 μF OSW4 L SW4 inductor 1.0 μH SW4 Notes 58. Use X5R or X7R capacitors PF0100 74 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.4.5.3 SW4 specifications Table 87. SW4 electrical characteristics All parameters are specified at T to T (See Table 3), V = VIN = 3.6 V, V = 1.8 V, I = 100 mA, MIN MAX IN SW4 SW4 SW4 SW4_PWRSTG[2:0] = [101], typical external component values, f = 2.0 MHz, single/dual phase and independent mode unless, SW4 otherwise noted. Typical values are characterized at V = VIN = 3.6 V, V = 1.8 V, I = 100 mA, SW4_PWRSTG[2:0] = [101], IN SW4 SW4 SW4 and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes Switch mode supply SW4 VIN Operating input voltage 2.8 – 4.5 V (59) SW4 Nominal output voltage V • Normal operation – Table 79 – V SW4 • VTT mode – V /2 – SW3AFB Output voltage accuracy • PWM, APS, 2.8 V < V < 4.5 V, 0 < I < 1.0 A IN SW4 • 0.625 V < VSW4 < 0.85 V -25 – 25 mV • 0.875 V < VSW4 < 1.975 V -3.0 – 3.0 % • 2.0 V < VSW4 < 3.3 V -6.0 – 6.0 % V SW4ACC • PFM, steady state, 2.8 V < V < 4.5 V, 0 < I < 50 mA IN SW4 • 0.625 V < V < 0.675 V -65 – 65 mV SW4 • 0.7 V < V < 0.85 V -45 – 45 mV SW4 • 0.875 V < V < 1.975 V -3.0 – 3.0 % SW4 • 2.0 V < V < 3.3 V -3.0 – 3.0 % SW4 • VTT Mode , 2.8 V < V < 4.5 V, 0 < I < 1.0 A -40 – 40 mV IN SW4 Rated output load current I – – 1000 mA (60) SW4 • 2.8 V < V < 4.5 V, 0.625 V < V < 3.3 V IN SW4 Current limiter peak current detection Current through inductor I A SW4LIM • SW4ILIM = 0 1.4 2.0 3.0 • SW4ILIM = 1 1.0 1.5 2.4 Start-up overshoot V • I = 0.0 mA – – 66 mV SW4OSH SW4 • DVS clk = 25 mV/4 μs, V = VIN = 4.5 V IN SW4 Turn-on time • Enable to 90% of end value tON – – 500 µs SW4 • I = 0.0 mA SW4 • DVS clk = 25 mV/4 μs, V = VIN = 4.5 V IN SW4 Switching frequency • SW4FREQ[1:0] = 00 – 1.0 – f MHz SW4 • SW4FREQ[1:0] = 01 – 2.0 – • SW4FREQ[1:0] = 10 – 4.0 – Efficiency • f = 2.0 MHz, L = 1.0 μH SW4 SW4 • PFM, 1.8 V, 1.0 mA – 81 – • PFM, 1.8 V, 50 mA – 78 – • APS, PWM 1.8 V, 200 mA – 87 – ηSW4 • APS, PWM 1.8 V, 500 mA – 88 – % • APS, PWM 1.8 V, 1000 mA – 83 – • PWM 0.75 V, 200 mA – 78 – • PWM 0.75 V, 500 mA – 76 – • PWM 0.75 V, 1000 mA – 66 – ΔV Output ripple – 10 – mV SW4 PF0100 NXP Semiconductors 75
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 87. SW4 electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = VIN = 3.6 V, V = 1.8 V, I = 100 mA, MIN MAX IN SW4 SW4 SW4 SW4_PWRSTG[2:0] = [101], typical external component values, f = 2.0 MHz, single/dual phase and independent mode unless, SW4 otherwise noted. Typical values are characterized at V = VIN = 3.6 V, V = 1.8 V, I = 100 mA, SW4_PWRSTG[2:0] = [101], IN SW4 SW4 SW4 and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes Switch mode supply SW4 (continued) V Line regulation (APS, PWM) – – 20 mV SW4LIR V DC load regulation (APS, PWM) – – 20 mV SW4LOR Transient load regulation • Transient load = 0.0 mA to 500 mA, di/dt = 100 mA/μs V mV SW4LOTR • Overshoot – – 50 • Undershoot – – 50 Quiescent current I • PFM mode – 22 – µA SW4Q • APS mode – 145 – SW4 P-MOSFET R R DS(on) – 236 274 mΩ ONSW4P • at V = VIN = 3.3 V IN SW4 SW4 N-MOSFET R R DS(on) – 293 378 mΩ ONSW4N • at V = VIN = 3.3 V IN SW4 SW4 P-MOSFET leakage current I – – 6.0 µA SW4PQ • V = VIN = 4.5 V IN SW4 SW4 N-MOSFET leakage current I – – 2.0 µA SW4NQ • V = VIN = 4.5 V IN SW4 R Discharge resistance – 600 – Ω SW4DIS Notes 59. When output is set to > 2.6 V the output follows the input down when V gets near 2.8 V. IN 60. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation: (VIN - V ) = I * (DCR of inductor +R + PCB trace resistance). SW4 SW4 SW4 ONSW4P 90 100 80 90 70 80 ) %)) %) 70 ficiency (Efficiency (%34560000 fficiency (Efficiency (%34560000 f E E 20 PFM APS 20 10 10 PWM 0 0 0.1 1 10 100 1000 10 100 1000 10000 Load Current (mA) Load Current (mA) Figure 27. SW4 efficiency waveforms: V = 4.2 V; V = 1.8 V; consumer version IN OUT PF0100 76 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 90 100 80 90 80 70 %)) %)) 70 y (y (%60 y (y (%60 cc 50 cc enien 40 enien 50 EfficiEffic 2300 PFM EfficiEffic 234000 APPWSM 10 10 0 0 0.1 1 10 100 1000 10 100 1000 10000 Load Current (mA) Load Current (mA) Figure 28. SW4 efficiency waveforms: V = 4.2 V; V = 1.8 V; extended industrial version IN OUT 6.4.5 Boost regulator SWBST is a boost regulator with a programmable output from 5.0 V to 5.15 V. SWBST can supply the VUSB regulator for the USB PHY in OTG mode, as well as the VBUS voltage. Note that the parasitic leakage path for a boost regulator causes the SWBSTOUT and SWBSTFB voltage to be a Schottky drop below the input voltage whenever SWBST is disabled. The switching NMOS transistor is integrated on-chip. Figure 29 shows the block diagram and component connection for the boost regulator. VIN CINBST LBST SWBSTIN VOBST DBST SWBSTLX SWBSTMODE Driver EP RSENSE OC Controller SWBSTFAULT I2C Interface VREFSC SC VREFUV UV SWBSTFB COSWBST ICnotemrnpaelnsation Z2 Z1 EA VREF Figure 29. Boost regulator architecture PF0100 NXP Semiconductors 77
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.5.1 SWBST setup and control Boost regulator control is done through a single register SWBSTCTL described in Table 88. SWBST is included in the power-up sequence if its OTP power-up timing bits, SWBST_SEQ[4:0], are not all zeros. Table 88. Register SWBSTCTL - ADDR 0x66 Name Bit # R/W Default Description Set the output voltage for SWBST • 00 = 5.000 V SWBST1VOLT 1:0 R/W 0x00 • 01 = 5.050 V • 10 = 5.100 V • 11 = 5.150 V Set the Switching mode on normal operation • 00 = OFF SWBST1MODE 3:2 R 0x02 • 01 = PFM • 10 = Auto (Default)(61) • 11 = APS UNUSED 4 – 0x00 unused Set the switching mode on standby • 00 = OFF SWBST1STBYMODE 6:5 R/W 0x02 • 01 = PFM • 10 = Auto (Default)(61) • 11 = APS UNUSED 7 – 0x00 unused Notes 61. In auto mode, the controller automatically switches between PFM and APS modes depending on the load current. The SWBST regulator starts up by default in the auto mode if SWBST is part of the startup sequence. 6.4.5.2 SWBST external components Table 89. SWBST external component requirements Components Description Values C (62) SWBST input capacitor 10 μF INBST C (62) SWBST decoupling input capacitor 0.1 μF INBSTHF C (62) SWBST output capacitor 2 x 22 μF OBST L SWBST inductor 2.2 μH SBST D SWBST boost diode 1.0 A, 20 V Schottky BST Notes 62. Use X5R or X7R capacitors. PF0100 78 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.5.3 SWBST specifications Table 90. SWBST Electrical Specifications All parameters are specified at T to T (See Table 3), V = VIN = 3.6 V, V = 5.0 V, I = 100 mA, typical external MIN MAX IN SWBST SWBST SWBST component values, f = 2.0 MHz, otherwise noted. Typical values are characterized at V = VIN = 3.6 V, V = 5.0 V, SWBST IN SWBST SWBST I = 100 mA, and 25 °C, unless otherwise noted. SWBST Symbol Parameters Min. Typ. Max. Units Notes Switch mode supply SWBST VIN Input voltage range 2.8 – 4.5 V SWBST V Nominal output voltage – Table 88 – V SWBST Output voltage accuracy V • 2.8 V ≤ V ≤ 4.5 V -4.0 – 3.0 % SWBSTACC IN • 0 < I < ISWBST SWBST MAX Output ripple ΔV • 2.8 V ≤ VIN ≤ 4.5 V – – 120 mV Vp-p SWBST • 0 < I < ISWBST , excluding reverse recovery of SWBST MAX Schottky diode DC load regulation V – 0.5 – mV/mA SWBSTLOR • 0 < I < ISWBST SWBST MAX DC line regulation V – 50 – mV SWBSTLIR • 2.8 V ≤ V ≤ 4.5 V, I = ISWBST IN SWBST MAX Continuous load current I • 2.8 V ≤ V ≤ 3.0 V – – 500 mA SWBST IN • 3.0 V ≤ V ≤ 4.5 V – – 600 IN Quiescent current I – 222 289 μA SWBSTQ • Auto R MOSFET on resistance – 206 306 mΩ DSONBST I Peak current limit 1400 2200 3200 mA (63) SWBSTLIM Start-up overshoot V – – 500 mV SWBSTOSH • I = 0.0 mA SWBST Transient load response V • I from 1.0 mA to 100 mA in 1.0 µs – – 300 mV SWBSTTR SWBST • Maximum transient amplitude Transient load response V • I from 100 mA to 1.0 mA in 1.0 µs – – 300 mV SWBSTTR SWBST • Maximum transient amplitude Transient load response t • I from 1.0 mA to 100 mA in 1.0 µs – – 500 µs SWBSTTR SWBST • Time to settle 80% of transient Transient load response t • I from 100 mA to 1.0 mA in 1.0 µs – – 20 ms SWBSTTR SWBST • Time to settle 80% of transient NMOS Off leakage I – 1.0 5.0 µA SWBSTHSQ • SWBSTIN = 4.5 V, SWBSTMODE [1:0] = 00 Turn-on time tON – – 2.0 ms SWBST • Enable to 90% of V I = 0.0 mA SWBST, SWBST f Switching frequency – 2.0 – MHz SWBST Efficiency η – 86 – % SWBST • I = ISWBST SWBST MAX Notes 63. Only in auto mode. PF0100 NXP Semiconductors 79
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.6 LDO regulators description This section describes the LDO regulators provided by the PF0100. All regulators use the main bandgap as reference. Refer to 6.3 Bias and references block description, page 24 for further information on the internal reference voltages. A low-power mode is automatically activated by reducing bias currents when the load current is less than I_Lmax/5. However, the lowest bias currents may be attained by forcing the part into its low-power mode by setting the VGENxLPWR bit. The use of this bit is only recommended when the load is expected to be less than I_Lmax/50, otherwise performance may be degraded. When a regulator is disabled, the output is discharged by an internal pull-down. The pull-down is also activated when RESETBMCU is low. VINx VINx VREF _ VGENxEN + VGENxLPWR VGENx VGENx I2C Interface CGENx VGENx Discharge Figure 30. General LDO block diagram 6.4.6.1 Transient response waveforms Idealized stimulus and response waveforms for transient line and transient load tests are depicted in Figure 31. Note that the transient line and load response refers to the overshoot, or undershoot only, excluding the DC shift. IMAX IL = IMAX/10 IL = IMAX Overshoot I LOAD V OUT I /10 MAX 1.0 us 1.0 u s Undershoo t Transient Load Stimulus V Transient Load Response OUT VINx_FINAL V V INx_INITIAL Overshoot INx_INITIAL VINx VOUT VINx_FINAL Undershoo t 10 us 10 us Transient Line Stimulus V Transient Line Response OUT Figure 31. Transient waveforms PF0100 80 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.6.2 Short-circuit protection All general purpose LDOs have short-circuit protection capability. The short-circuit protection (SCP) system includes debounced fault condition detection, regulator shutdown, and processor interrupt generation, to contain failures and minimize the chance of product damage. If a short-circuit condition is detected, the LDO is disabled by resetting its VGENxEN bit, while at the same time, an interrupt VGENxFAULTI is generated to flag the fault to the system processor. The VGENxFAULTI interrupt is maskable through the VGENxFAULTM mask bit. The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, the regulators do not automatically disable upon a short- circuit detection. However, the current limiter continues to limit the output current of the regulator. By default, the REGSCPEN is not set; therefore, at start-up none of the regulators is disabled if an overloaded condition occurs. A fault interrupt, VGENxFAULTI, is generated in an overload condition regardless of the state of the REGSCPEN bit. See Table 91 for SCP behavior configuration. Table 91. Short-circuit behavior REGSCPEN[0] Short-circuit behavior 0 Current limit 1 Shutdown 6.4.6.3 LDO regulator control Each LDO is fully controlled through its respective VGENxCTL register. This register enables the user to set the LDO output voltage according to Table 92 for VGEN1 and VGEN2; and uses the voltage set point on Table 93 for VGEN3 through VGEN6. Table 92. VGEN1, VGEN2 output voltage configuration Set point VGENx[3:0] VGENx output (V) 0 0000 0.800 1 0001 0.850 2 0010 0.900 3 0011 0.950 4 0100 1.000 5 0101 1.050 6 0110 1.100 7 0111 1.150 8 1000 1.200 9 1001 1.250 10 1010 1.300 11 1011 1.350 12 1100 1.400 13 1101 1.450 14 1110 1.500 15 1111 1.550 Table 93. VGEN3/ 4/ 5/ 6 output voltage configuration Set point VGENx[3:0] VGENx output (V) 0 0000 1.80 1 0001 1.90 2 0010 2.00 PF0100 NXP Semiconductors 81
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 93. VGEN3/ 4/ 5/ 6 output voltage configuration (continued) Set point VGENx[3:0] VGENx output (V) 3 0011 2.10 4 0100 2.20 5 0101 2.30 6 0110 2.40 7 0111 2.50 8 1000 2.60 9 1001 2.70 10 1010 2.80 11 1011 2.90 12 1100 3.00 13 1101 3.10 14 1110 3.20 15 1111 3.30 Besides the output voltage configuration, the LDOs can be enabled or disabled at anytime during normal mode operation, as well as programmed to stay “ON” or be disabled when the PMIC enters Standby mode. Each regulator has associated I2C bits for this. Table 94 presents a summary of all valid combinations of the control bits on VGENxCTL register and the expected behavior of the LDO output. Table 94. LDO control VGENxEN VGENxLPWR VGENxSTBY STANDBY(64) VGENxOUT 0 X X X Off 1 0 0 X On 1 1 0 X Low power 1 X 1 0 On 1 0 1 1 Off 1 1 1 1 Low power Notes 64. STANDBY refers to a standby event as described earlier. For more detail information, Table 95 through Table 100 provide a description of all registers necessary to operate all six general purpose LDO regulators. Table 95. Register VGEN1CTL - ADDR 0x6C Name Bit # R/W Default Description Sets VGEN1 output voltage. VGEN1 3:0 R/W 0x80 See Table 92 for all possible configurations. Enables or disables VGEN1 output VGEN1EN 4 – 0x00 • 0 = OFF • 1 = ON Set VGEN1 output state when in standby. Refer VGEN1STBY 5 R/W 0x00 to Table 94. Enable low-power mode for VGEN1. Refer to VGEN1LPWR 6 R/W 0x00 Table 94. UNUSED 7 – 0x00 unused PF0100 82 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 96. Register VGEN2CTL - ADDR 0x6D Name Bit # R/W Default Description Sets VGEN2 output voltage. VGEN2 3:0 R/W 0x80 See Table 92 for all possible configurations. Enables or disables VGEN2 output VGEN2EN 4 – 0x00 • 0 = OFF • 1 = ON Set VGEN2 output state when in standby. Refer VGEN2STBY 5 R/W 0x00 to Table 94. Enable low-power mode for VGEN2. Refer to VGEN2LPWR 6 R/W 0x00 Table 94. UNUSED 7 – 0x00 unused Table 97. Register VGEN3CTL - ADDR 0x6E Name Bit # R/W Default Description Sets VGEN3 output voltage. VGEN3 3:0 R/W 0x80 See Table 93 for all possible configurations. Enables or disables VGEN3 output VGEN3EN 4 – 0x00 • 0 = OFF • 1 = ON Set VGEN3 output state when in standby. Refer VGEN3STBY 5 R/W 0x00 to Table 94. Enable low-power mode for VGEN3. Refer to VGEN3LPWR 6 R/W 0x00 Table 94. UNUSED 7 – 0x00 unused Table 98. Register VGEN4CTL - ADDR 0x6F Name Bit # R/W Default Description Sets VGEN4 output voltage. VGEN4 3:0 R/W 0x80 See Table 93 for all possible configurations. Enables or disables VGEN4 output VGEN4EN 4 – 0x00 • 0 = OFF • 1 = ON Set VGEN4 output state when in standby. Refer VGEN4STBY 5 R/W 0x00 to Table 94. Enable low-power mode for VGEN4. Refer to VGEN4LPWR 6 R/W 0x00 Table 94. UNUSED 7 – 0x00 unused PF0100 NXP Semiconductors 83
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 99. Register VGEN5CTL - ADDR 0x70 Name Bit # R/W Default Description Sets VGEN5 output voltage. VGEN5 3:0 R/W 0x80 See Table 93 for all possible configurations. Enables or disables VGEN5 output VGEN5EN 4 – 0x00 • 0 = OFF • 1 = ON Set VGEN5 output state when in standby. Refer VGEN5STBY 5 R/W 0x00 to Table 94. Enable low-power mode for VGEN5. Refer to VGEN5LPWR 6 R/W 0x00 Table 94. UNUSED 7 – 0x00 unused Table 100. Register VGEN6CTL - ADDR 0x71 Name Bit # R/W Default Description Sets VGEN6 output voltage. VGEN6 3:0 R/W 0x80 See Table 93 for all possible configurations. Enables or disables VGEN6 output VGEN6EN 4 – 0x00 • 0 = OFF • 1 = ON Set VGEN6 output state when in standby. Refer VGEN6STBY 5 R/W 0x00 to Table 94. Enable low-power mode for VGEN6. Refer to VGEN6LPWR 6 R/W 0x00 Table 94. UNUSED 7 – 0x00 unused 6.4.6.4 External components Table 101 lists the typical component values for the general purpose LDO regulators. Table 101. LDO external components Regulator Output capacitor (μF)(65) VGEN1 2.2 VGEN2 4.7 VGEN3 2.2 VGEN4 4.7 VGEN5 2.2 VGEN6 2.2 Notes 65. Use X5R/X7R ceramic capacitors. PF0100 84 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.6.5 LDO specifications 6.4.6.5.1 VGEN1 Table 102. VGEN1 electrical characteristics All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.0 V, V [3:0]= 1111, I = 10 mA, typical external MIN MAX IN IN1 GEN1 GEN1 component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, = 3.0 V, V [3:0]= 1111, IN IN1 GEN1 I = 10 mA, and 25 °C, unless otherwise noted. GEN1 Symbol Parameter Min. Typ. Max. Unit Notes VGEN1 V Operating input voltage 1.75 – 3.40 V IN1 VGEN1 Nominal output voltage – Table 92 – V NOM I Operating load current 0.0 – 100 mA GEN1 VGEN1 DC Output voltage tolerance • 1.75 V < V < 3.4 V V IN1 -3.0 – 3.0 % GEN1TOL • 0.0 mA < I < 100 mA GEN1 • VGEN1[3:0] = 0000 to 1111 Load regulation V • (V at I = 100 mA) - (V at I = 0.0 mA) – 0.15 – mV/mA GEN1LOR GEN1 GEN1 GEN1 GEN1 • For any 1.75 V < V < 3.4 V IN1 Line regulation V • (V at V = 3.4 V) - (V at V = 1.75 V) – 0.30 – mV/mA GEN1LIR GEN1 IN1 GEN1 IN1 • For any 0.0 mA < I < 100 mA GEN1 Current limit I 122 167 200 mA GEN1LIM • I when VGEN1 is forced to VGEN1 /2 GEN1 NOM Overcurrent protection threshold IGEN1OCP • IGEN1 required to cause the SCP function to disable LDO when 115 – 200 mA REGSCPEN = 1 Quiescent current I • No load, change in I and I – 14 – μA GEN1Q VIN VIN1 • When VGEN1 enabled VGEN1 AC and transient PSRR • I = 75 mA, 20 Hz to 20 kHz PSRR GEN1 dB (66) VGEN1 • VGEN1[3:0] = 0000 - 1101 50 60 – • VGEN1[3:0] = 1110, 1111 37 45 – Output noise density • V = 1.75 V, I = 75 mA IN1 GEN1 dBV/ NOISEVGEN1 • 100 Hz – <1.0 kHz – -108 -100 √Hz • 1.0 kHz – <10 kHz – -118 -108 • 10 kHz – 1.0 MHz – -124 -112 Turn-on slew rate • 10% to 90% of end value SLWRVGEN1 • 1.75 V ≤ VIN1 ≤ 3.4 V, IGEN1 = 0.0 mA mV/μs • VGEN1[3:0] = 0000 to 0111 – – 12.5 • VGEN1[3:0] = 1000 to 1111 – – 16.5 Turn-on time GEN1 • Enable to 90% of end value, V = 1.75 V, 3.4 V 60 – 500 μs tON IN1 • I = 0.0 mA GEN1 PF0100 NXP Semiconductors 85
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 102. VGEN1 electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.0 V, V [3:0]= 1111, I = 10 mA, typical external MIN MAX IN IN1 GEN1 GEN1 component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, = 3.0 V, V [3:0]= 1111, IN IN1 GEN1 I = 10 mA, and 25 °C, unless otherwise noted. GEN1 Symbol Parameter Min. Typ. Max. Unit Notes VGEN1 AC and transient (continued) Turn-off time GEN1 • Disable to 10% of initial value, V = 1.75 V – – 10 ms tOFF IN1 • I = 0.0 mA GEN1 Start-up overshoot GEN1 – 1.0 2.0 % OSHT • V = 1.75 V, 3.4 V, I = 0.0 mA IN1 GEN1 Transient load response • V = 1.75 V, 3.4 V IN1 VGEN1LOTR • IGEN1 = 10 mA to 100 mA in 1.0 μs. Peak of overshoot or – – 3.0 % undershoot of VGEN1 with respect to final value • Refer to Figure 31 Transient line response • I = 75 mA GEN1 • VIN1 = 1.75 V to VIN1 = 2.25 V for INITIAL FINAL VGEN1LITR VGEN1[3:0] = 0000 to 1101 – 5.0 8.0 mV • VIN1 = V +0.3 V to VIN1 = V +0.8 V for INITIAL GEN1 FINAL GEN1 VGEN1[3:0] = 1110, 1111 • Refer to Figure 31 Notes 66. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout region of the regulator under test. 6.4.6.5.2 VGEN2 Table 103. VGEN2 electrical characteristics All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.0 V, V [3:0] = 1111, I = 10 mA, typical external MIN MAX IN IN1 GEN2 GEN2 component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V = 3.0 V, VGEN2[3:0] = 1111, IN IN1 I = 10 mA and 25 °C, unless otherwise noted. GEN2 Symbol Parameter Min. Typ. Max. Unit Notes VGEN2 V Operating input voltage 1.75 – 3.40 V IN1 VGEN2 Nominal output voltage – Table 92 – V NOM I Operating load current 0.0 – 250 mA GEN2 VGEN2 active mode - DC Output voltagetolerance • 1.75 V < V < 3.4 V V IN1 -3.0 – 3.0 % GEN2TOL • 0.0 mA < I < 250 mA GEN2 • VGEN2[3:0] = 0000 to 1111 Load regulation V • (V at I = 250 mA)- (V at I = 0.0 mA) – 0.05 – mV/mA GEN2LOR GEN2 GEN2 GEN2 GEN2 • For any 1.75 V < V < 3.4 V IN1 Line regulation V • (V at V = 3.4 V) - (V at V = 1.75 V) – 0.50 – mV/mA GEN2LIR GEN2 IN1 GEN2 IN1 • For any 0.0 mA < I < 250 mA GEN2 PF0100 86 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 103. VGEN2 electrical characteristics All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.0 V, V [3:0] = 1111, I = 10 mA, typical external MIN MAX IN IN1 GEN2 GEN2 component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V = 3.0 V, VGEN2[3:0] = 1111, IN IN1 I = 10 mA and 25 °C, unless otherwise noted. GEN2 Symbol Parameter Min. Typ. Max. Unit Notes VGEN2 active mode - DC (continued) Current limit • I when VGEN2 is forced to VGEN2 /2 I GEN2 NOM mA GEN2LIM • MMPF0100 333 417 510 • MMPF0100A 305 417 510 Overcurrent protection threshold • I required to cause the SCP function to disable LDO when GEN2 I REGSCPEN = 1 mA GEN2OCP • MMPF0100 300 – 500 • MMPF0100A 290 – 500 Quiescent current I • No load, change in I and I – 16 – μA GEN2Q VIN VIN1 • When VGEN2 enabled VGEN2 AC and transient PSRR • I = 187.5 mA, 20 Hz to 20 kHz PSRR GEN2 dB (67) VGEN2 • VGEN2[3:0] = 0000 - 1101 50 60 – • VGEN2[3:0] = 1110, 1111 37 45 – Output noise density • V = 1.75 V, I = 187.5 mA IN1 GEN2 NOISEVGEN2 • 100 Hz – <1.0 kHz – -108 -100 dBV/√Hz • 1.0 kHz – <10 kHz – -118 -108 • 10 kHz – 1.0 MHz – -124 -112 Turn-on slew rate • 10% to 90% of end value SLWRVGEN2 • 1.75 V ≤ VIN1 ≤ 3.4 V, IGEN2 = 0.0 mA mV/μs • VGEN2[3:0] = 0000 to 0111 – – 12.5 • VGEN2[3:0] = 1000 to 1111 – – 16.5 Turn-on time GEN2 • Enable to 90% of end value, V = 1.75 V, 3.4 V 60 – 500 μs tON IN1 • I = 0.0 mA GEN2 Turn-off time GEN2 • Disable to 10% of initial value, V = 1.75 V – – 10 ms tOFF IN1 • I = 0.0 mA GEN2 Start-up overshoot GEN2 – 1.0 2.0 % OSHT • V = 1.75 V, 3.4 V, I = 0.0 mA IN1 GEN2 Transient load response • V = 1.75 V, 3.4 V IN1 • I = 25 to 250 mAin 1.0 μs V GEN2 – – 3.0 % GEN2LOTR • Peak of overshoot or undershoot of VGEN2 with respect to final value • Refer to Figure 31 PF0100 NXP Semiconductors 87
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 103. VGEN2 electrical characteristics All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.0 V, V [3:0] = 1111, I = 10 mA, typical external MIN MAX IN IN1 GEN2 GEN2 component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V = 3.0 V, VGEN2[3:0] = 1111, IN IN1 I = 10 mA and 25 °C, unless otherwise noted. GEN2 Symbol Parameter Min. Typ. Max. Unit Notes VGEN2 AC and transient (continued) Transient line response • I = 187.5 mA GEN2 • VIN1 = 1.75 V to VIN1 = 2.25 V for INITIAL FINAL V VGEN2[3:0] = 0000 to 1101 – 5.0 8.0 mV GEN2LITR • VIN1 = V +0.3 V to VIN1 = V +0.8 V for INITIAL GEN2 FINAL GEN2 VGEN2[3:0] = 1110, 1111 • Refer to Figure 31 Notes 67. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout region of the regulator under test. 6.4.6.5.3 VGEN3 Table 104. VGEN3 electrical characteristics All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.6 V, V [3:0] = 1111, I = 10 mA, typical external MIN MAX IN IN2 GEN3 GEN3 component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V = 3.6 V, V [3:0] = 1111, IN IN2 GEN3 I = 10 mA, and 25 °C, unless otherwise noted. GEN3 Symbol Parameter Min. Typ. Max. Unit Notes VGEN3 Operating input voltage V • 1.8 V ≤ VGEN3 ≤ 2.5 V 2.8 – 3.6 V — IN2 • 2.6 V ≤ VGEN3NOM ≤ 3.3 V VGEN3NO – 3.6 (68) NOM + 0.250 M VGEN3 Nominal output voltage – Table 93 – V NOM I Operating load current 0.0 – 100 mA GEN3 VGEN3 DC Output voltage tolerance • VIN2 < V < 3.6 V V MIN IN2 -3.0 – 3.0 % GEN3TOL • 0.0 mA < I < 100 mA GEN3 • VGEN3[3:0] = 0000 to 1111 Load regulation V • (V at I = 100 mA) - (V at I = 0.0 mA) – 0.07 – mV/mA GEN3LOR GEN3 GEN3 GEN3 GEN3 • For any VIN2 < V < 3.6 V MIN IN2 Line regulation V • (V at V = 3.6 V) - (V at VIN2 ) – 0.8 – mV/mA GEN3LIR GEN3 IN2 GEN3 MIN • For any 0.0 mA < I < 100 mA GEN3 Current limit I 127 167 200 mA GEN3LIM • I when VGEN3 is forced to VGEN3 /2 GEN3 NOM Overcurrent protection threshold IGEN3OCP • IGEN3 required to cause the SCP function to disable LDO when 120 – 200 mA REGSCPEN = 1 Quiescent current I • No load, Change in I and I – 13 – μA GEN3Q VIN VIN2 • When VGEN3 enabled PF0100 88 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 104. VGEN3 electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.6 V, V [3:0] = 1111, I = 10 mA, typical external MIN MAX IN IN2 GEN3 GEN3 component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V = 3.6 V, V [3:0] = 1111, IN IN2 GEN3 I = 10 mA, and 25 °C, unless otherwise noted. GEN3 Symbol Parameter Min. Typ. Max. Unit Notes VGEN3 AC and transient PSRR • I = 75 mA, 20 Hz to 20 kHz PSRR GEN3 dB (69) VGEN3 • VGEN3[3:0] = 0000 - 1110, V = VIN2 + 100 mV 35 40 – IN2 MIN • VGEN3[3:0] = 0000 - 1000, V = VGEN3 + 1.0 V 55 60 – IN2 NOM Output noise density • V = VIN2 , I = 75 mA IN2 MIN GEN3 NOISEVGEN3 • 100 Hz – <1.0 kHz – -114 -102 dBV/√Hz • 1.0 kHz – <10 kHz – -129 -123 • 10 kHz – 1.0 MHz – -135 -130 Turn-on slew rate • 10% to 90% of end value • VIN2 ≤ V ≤ 3.6 V I = 0.0 mA MIN IN2 , GEN3 SLWRVGEN3 • VGEN3[3:0] = 0000 to 0011 – – 22.0 mV/μs • VGEN3[3:0] = 0100 to 0111 – – 26.5 • VGEN3[3:0] = 1000 to 1011 – – 30.5 • VGEN3[3:0] = 1100 to 1111 – – 34.5 Turn-on time GEN3 • Enable to 90% of end value, V = VIN2 , 3.6 V 60 – 500 μs tON IN2 MIN • I = 0.0 mA GEN3 Turn-off time GEN3 • Disable to 10% of initial value, V = VIN2 – – 10 ms tOFF IN2 MIN • I = 0.0 mA GEN3 Start-up overshoot GEN3 – 1.0 2.0 % OSHT • V = VIN2 , 3.6 V, I = 0.0 mA IN2 MIN GEN3 Transient load response • V = VIN2 , 3.6 V IN2 MIN VGEN3LOTR • IGEN3 = 10 to 100 mA in 1.0μs – – 3.0 % • Peak of overshoot or undershoot of VGEN3 with respect to final value. Refer to Figure 31 Transient line response • I = 75 mA GEN3 • VIN2 = 2.8 V to VIN2 = 3.3 V for GEN3[3:0] = 0000 to INITIAL FINAL 0111 VGEN3LITR • VIN2INITIAL = VGEN3+0.3 V to VIN2FINAL = VGEN3+0.8 V for – 5.0 8.0 mV VGEN3[3:0] = 1000 to 1010 • VIN2 = V +0.25 V to VIN2 = 3.6 V for VGEN3[3:0] INITIAL GEN3 FINAL = 1011 to 1111 • Refer to Figure 31 Notes 68. When the LDO output voltage is set above 2.6 V, the minimum allowed input voltage needs to be at least the output voltage plus 0.25 V, for proper regulation due to the dropout voltage generated through the internal LDO transistor. 69. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout region of the regulator under test. VIN2 refers to the minimum allowed input voltage for a particular output voltage. MIN PF0100 NXP Semiconductors 89
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.4.6.5.4 VGEN4 Table 105. VGEN4 electrical characteristics All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.6 V, V [3:0] = 1111, I = 10 mA, typical external MIN MAX IN IN2 GEN4 GEN4 component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V = 3.6 V, V [3:0] = 1111, IN IN2 GEN4 I = 10 mA, and 25 °C, unless otherwise noted. GEN4 Symbol Parameter Min. Typ. Max. Unit Notes VGEN4 Operating input voltage V • 1.8 V ≤ VGEN4 ≤ 2.5 V 2.8 – 3.6 V — IN2 • 2.6 V ≤ VGEN4NOM≤ 3.3 V VGEN4NO – 3.6 (70) NOM + 0.250 M VGEN4 Nominal output voltage – Table 93 – V NOM I Operating load current 0.0 – 350 mA GEN4 VGEN4 DC Output voltage tolerance • VIN2 < V < 3.6 V V MIN IN2 -3.0 – 3.0 % GEN4TOL • 0.0 mA < I < 350 mA GEN4 • VGEN4[3:0] = 0000 to 1111 Load regulation V • (V at I = 350 mA) - (V at I = 0.0 mA ) – 0.07 – mV/mA GEN4LOR GEN4 GEN4 GEN4 GEN4 • For any VIN2 < V < 3.6 V MIN IN2 Line regulation V • (V at 3.6 V) - (V at VIN2 ) – 0.80 – mV/mA GEN4LIR GEN4 GEN4 MIN • For any 0.0 mA < I < 350 mA GEN4 Current limit I 435 584.5 700 mA GEN4LIM • I when VGEN4 is forced to VGEN4 /2 GEN4 NOM Overcurrent protection threshold IGEN4OCP • IGEN4 required to cause the SCP function to disable LDO when 420 – 700 mA REGSCPEN = 1 Quiescent current I • No load, Change in I and I – 13 – μA GEN4Q VIN VIN2 • When VGEN4 enabled VGEN4 AC and transient PSRR • I = 262.5 mA, 20 Hz to 20 kHz PSRR GEN4 dB (71) VGEN4 • VGEN4[3:0] = 0000 - 1110, V = VIN2 + 100 mV 35 40 – IN2 MIN • VGEN4[3:0] = 0000 - 1000, V = VGEN4 + 1.0 V 55 60 – IN2 NOM Output noise density • V = VIN2 , I = 262.5 mA IN2 MIN GEN4 NOISEVGEN4 • 100 Hz – <1.0 kHz – -114 -102 dBV/√Hz • 1.0 kHz – <10 kHz – -129 -123 • 10 kHz – 1.0 MHz – -135 -130 Turn-on slew rate • 10% to 90% of end value • VIN2 ≤ V ≤ 3.6 V I = 0.0 mA MIN IN2 , GEN4 SLWRVGEN4 • VGEN4[3:0] = 0000 to 0011 – – 22.0 mV/μs • VGEN4[3:0] = 0100 to 0111 – – 26.5 • VGEN4[3:0] = 1000 to 1011 – – 30.5 • VGEN4[3:0] = 1100 to 1111 – – 34.5 PF0100 90 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 105. VGEN4 electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.6 V, V [3:0] = 1111, I = 10 mA, typical external MIN MAX IN IN2 GEN4 GEN4 component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V = 3.6 V, V [3:0] = 1111, IN IN2 GEN4 I = 10 mA, and 25 °C, unless otherwise noted. GEN4 Symbol Parameter Min. Typ. Max. Unit Notes VGEN4 AC AND tRANSIENT (Continued) Turn-on time GEN4 • Enable to 90% of end value, V = VIN2 , 3.6 V 60 – 500 μs tON IN2 MIN • I = 0.0 mA GEN4 Turn-off time GEN4 • Disable to 10% of initial value, V = VIN2 – – 10 ms tOFF IN2 MIN • I = 0.0 mA GEN4 Start-up overshoot GEN4 – 1.0 2.0 % OSHT • V = VIN2 , 3.6 V, I = 0.0 mA IN2 MIN GEN4 Transient load response • V = VIN2 , 3.6 V IN2 MIN VGEN4LOTR • IGEN4 = 35 to 350 mA in 1.0 μs – – 3.0 % • Peak of overshoot or undershoot of VGEN4 with respect to final value. Refer to Figure 31 Transient line response • I = 262.5 mA GEN4 • VIN2 = 2.8 V to VIN2 = 3.3 V for VGEN4[3:0] = 0000 INITIAL FINAL to 0111 VGEN4LITR • VIN2INITIAL = VGEN4+0.3 V to VIN2FINAL = VGEN4+0.8 V for – 5.0 8.0 mV VGEN4[3:0] = 1000 to 1010 • VIN2 = V +0.25 V to VIN2 = 3.6 V for VGEN4[3:0] INITIAL GEN4 FINAL = 1011 to 1111 • Refer to Figure 31 Notes 70. When the LDO output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper regulation due to the dropout voltage generated through the internal LDO transistor. 71. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout region of the regulator under test. VIN2 refers to the minimum allowed input voltage for a particular output voltage. MIN 6.4.6.5.5 VGEN5 Table 106. VGEN5 electrical characteristics All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.6 V, V [3:0] = 1111, I = 10 mA, typical external MIN MAX IN IN3 GEN5 GEN5 component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, VIN3 = 3.6 V, V [3:0] = 1111, IN GEN5 I = 10 mA, and 25 °C, unless otherwise noted. GEN5 Symbol Parameter Min. Typ. Max. Unit Notes VGEN5 Operating input voltage V • 1.8 V ≤ VGEN5 ≤ 2.5 V 2.8 – 4.5 V — IN3 • 2.6 V ≤ VGEN5NOM≤ 3.3 V VGEN5NO – 4.5 (72) NOM + 0.250 M VGEN5 Nominal output voltage – Table 93 – V NOM I Operating load current 0.0 – 100 mA GEN5 PF0100 NXP Semiconductors 91
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 106. VGEN5 electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.6 V, V [3:0] = 1111, I = 10 mA, typical external MIN MAX IN IN3 GEN5 GEN5 component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, VIN3 = 3.6 V, V [3:0] = 1111, IN GEN5 I = 10 mA, and 25 °C, unless otherwise noted. GEN5 Symbol Parameter Min. Typ. Max. Unit Notes VGEN5 active mode – DC Output voltage tolerance • VIN3 < V < 4.5 V V MIN IN3 -3.0 – 3.0 % GEN5TOL • 0.0 mA < I < 100 mA GEN5 • VGEN5[3:0] = 0000 to 1111 Load regulation V • (V at I = 100 mA) - (V at I = 0.0 mA) – 0.10 – mV/mA GEN5LOR GEN5 GEN5 GEN5 GEN5 • For any VIN3 < V < 4.5 mV MIN IN3 Line regulation V • (V at V = 4.5 V) - (V at VIN3 ) – 0.50 – mV/mA GEN5LIR GEN5 IN3 GEN5 MIN • For any 0.0 mA < I < 100 mA GEN5 Current limit I 122 167 200 mA GEN5LIM • I when VGEN5 is forced to VGEN5 /2 GEN5 NOM Overcurrent protection threshold IGEN5OCP • IGEN5 required to cause the SCP function to disable LDO when 120 – 200 mA REGSCPEN = 1 Quiescent current I • No load, Change in I and I – 13 – μA GEN5Q VIN VIN3 • When VGEN5 enabled VGEN5 AC and transient PSRR • I = 75 mA, 20 Hz to 20 kHz PSRR GEN5 dB (73) VGEN5 • VGEN5[3:0] = 0000 - 1111, V = VIN3 + 100 mV 35 40 – IN3 MIN • VGEN5[3:0] = 0000 - 1111, V = VGEN5 + 1.0 V 52 60 – IN3 NOM Output noise density • V = VIN3 , I = 75 mA IN3 MIN GEN5 NOISEVGEN5 • 100 Hz – <1.0 kHz – -114 -102 dBV/√Hz • 1.0 kHz – <10 kHz – -129 -123 • 10 kHz – 1.0 MHz – -135 -130 Turn-on slew rate • 10% to 90% of end value • VIN3 ≤ V ≤ 4.5 mV I = 0.0 mA MIN IN3 , GEN5 SLWRVGEN5 • VGEN5[3:0] = 0000 to 0011 – – 22.0 mV/μs • VGEN5[3:0] = 0100 to 0111 – – 26.5 • VGEN5[3:0] = 1000 to 1011 – – 30.5 • VGEN5[3:0] = 1100 to 1111 – – 34.5 Turn-on time GEN5 • Enable to 90% of end value, V = VIN3 , 4.5 V 60 – 500 μs tON IN3 MIN • I = 0.0 mA GEN5 Turn-off time GEN5 • Disable to 10% of initial value, V = VIN3 – – 10 ms tOFF IN3 MIN • I = 0.0 mA GEN5 Start-up overshoot GEN5 – 1.0 2.0 % OSHT • V = VIN3 , 4.5 V, I = 0.0 mA IN3 MIN GEN5 PF0100 92 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 106. VGEN5 electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.6 V, V [3:0] = 1111, I = 10 mA, typical external MIN MAX IN IN3 GEN5 GEN5 component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, VIN3 = 3.6 V, V [3:0] = 1111, IN GEN5 I = 10 mA, and 25 °C, unless otherwise noted. GEN5 Symbol Parameter Min. Typ. Max. Unit Notes VGEN5 active mode – DC (continued) Transient load response • V = VIN3 , 4.5 V IN3 MIN • I = 10 to 100 mAin 1.0 μs V GEN5 – – 3.0 % GEN5LOTR • Peak of overshoot or undershoot of VGEN5 with respect to final value. • Refer to Figure 31 Transient line response • I = 75 mA GEN5 • VIN3 = 2.8 V to VIN3 = 3.3 V for VGEN5[3:0] = 0000 to INITIAL FINAL V 0111 - 5.0 8.0 mV GEN5LITR • VIN3 = V +0.3 V to VIN3 = V +0.8 V for INITIAL GEN5 FINAL GEN5 VGEN5[3:0] = 1000 to 1111 • Refer to Figure 31 Notes 72. When the LDO output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper regulation due to the dropout voltage generated through the internal LDO transistor. 73. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout region of the regulator under test. VIN3 refers to the minimum allowed input voltage for a particular output voltage. MIN 6.4.6.5.6 VGEN6 Table 107. VGEN6 electrical characteristics All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.6 V, V [3:0] = 1111, I = 10 mA, typical external MIN MAX IN IN3 GEN6 GEN6 component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V = 3.6 V, V [3:0] = 1111, IN IN3 GEN6 I = 10 mA, and 25 °C, unless otherwise noted. GEN6 Symbol Parameter Min. Typ. Max. Unit Notes VGEN6 Operating input voltage 2.8 VIN3 • 1.8 V ≤ VGEN6NOM ≤ 2.5 V VGEN6NO – 4.5 V — • 2.6 V ≤ VGEN6NOM ≤ 3.3 V M+ 0.250 – 4.5 (74) VGEN6 Nominal output voltage – Table 93 – V NOM I Operating load current 0.0 – 200 mA GEN6 VGEN6 DC Output voltage tolerance • VIN3 < V < 4.5 V V MIN IN3 -3.0 – 3.0 % GEN6TOL • 0.0 mA < I < 200 mA GEN6 • VGEN6[3:0] = 0000 to 1111 Load regulation V • (V at I = 200 mA) - (V at I = 0.0 mA) – 0.10 – mV/mA GEN6LOR GEN6 GEN6 GEN6 GEN6 • For any VIN3 < V < 4.5 V MIN IN3 Line regulation V • (V at V = 4.5 V) - (V at VIN3 ) – 0.50 – mV/mA GEN6LIR GEN6 IN3 GEN6 MIN • For any 0.0 mA < I < 200 mA GEN6 Current limit • I when VGEN6 is forced to VGEN6 /2 I GEN6 NOM mA GEN6LIM • MMPF0100 232 333 400 • MMPF0100A 232 333 475 PF0100 NXP Semiconductors 93
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 107. VGEN6 electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.6 V, V [3:0] = 1111, I = 10 mA, typical external MIN MAX IN IN3 GEN6 GEN6 component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V = 3.6 V, V [3:0] = 1111, IN IN3 GEN6 I = 10 mA, and 25 °C, unless otherwise noted. GEN6 Symbol Parameter Min. Typ. Max. Unit Notes VGEN6 DC (continued) Overcurrent protection threshold • I required to cause the SCP function to disable LDO when GEN6 I REGSCPEN = 1 mA GEN6OCP • MMPF0100 220 – 400 • MMPF0100A 220 – 475 Quiescent current I • No load, Change in I and I – 13 – μA GEN6Q VIN VIN3 • When VGEN6 enabled VGEN6 AC and transient PSRR • I = 150 mA, 20 Hz to 20 kHz PSRR GEN6 dB (75) VGEN6 • VGEN6[3:0] = 0000 - 1111, V = VIN3 + 100 mV 35 40 – IN3 MIN • VGEN6[3:0] = 0000 - 1111, V = VGEN6 + 1.0 V 52 60 – IN3 NOM Output noise density • V = VIN3 , I = 150 mA IN3 MIN GEN6 NOISEVGEN6 • 100 Hz – <1.0 kHz – -114 -102 dBV/√Hz • 1.0 kHz – <10 kHz – -129 -123 • 10 kHz – 1.0 MHz – -135 -130 Turn-on slew rate • 10% to 90% of end value • VIN3 ≤ V ≤ 4.5 V I = 0.0 mA MIN IN3 . GEN6 SLWRVGEN6 • VGEN6[3:0] = 0000 to 0011 – – 22.0 mV/μs • VGEN6[3:0] = 0100 to 0111 – – 26.5 • VGEN6[3:0] = 1000 to 1011 – – 30.5 • VGEN6[3:0] = 1100 to 1111 – – 34.5 Turn-on time GEN6 • Enable to 90% of end value, V = VIN3 , 4.5 V 60 – 500 μs tON IN3 MIN • I = 0.0 mA GEN6 Turn-off time GEN6 • Disable to 10% of initial value, V = VIN3 – – 10 ms tOFF IN3 MIN • I = 0.0 mA GEN6 Start-up overshoot GEN6 – 1.0 2.0 % OSHT • V = VIN3 , 4.5 V, I = 0 mA IN3 MIN GEN6 Transient load response • V = VIN3 , 4.5 V IN3 MIN VGEN6LOTR • IGEN6 = 20 to 200 mA in 1.0 μs – – 3.0 % • Peak of overshoot or undershoot of VGEN6 with respect to final value. Refer to Figure 31 PF0100 94 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 107. VGEN6 electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.6 V, V [3:0] = 1111, I = 10 mA, typical external MIN MAX IN IN3 GEN6 GEN6 component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V = 3.6 V, V [3:0] = 1111, IN IN3 GEN6 I = 10 mA, and 25 °C, unless otherwise noted. GEN6 Symbol Parameter Min. Typ. Max. Unit Notes VGEN6 AC and transient (continued) Transient line response • I = 150 mA GEN6 • VIN3 = 2.8 V to VIN3 = 3.3 V for VGEN6[3:0] = 0000 INITIAL FINAL V to 0111 – 5.0 8.0 mV GEN6LITR • VIN3 = V +0.3 V to VIN3 = V +0.8 V for INITIAL GEN6 FINAL GEN6 VGEN6[3:0] = 1000 to 1111 • Refer to Figure 31 Notes 74. When the LDO output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper regulation due to the dropout voltage generated through the internal LDO transistor. 75. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout region of the regulator under test. VIN3 refers to the minimum allowed input voltage for a particular output voltage. MIN 6.4.7 VSNVS LDO/switch VSNVS powers the low-power, SNVS/RTC domain on the processor. It derives its power from either V , or coin cell, and cannot be IN disabled. When powered by both, V takes precedence when above the appropriate comparator threshold. When powered by V , IN IN VSNVS is an LDO capable of supplying seven voltages: 3.0, 1.8, 1.5, 1.3, 1.2, 1.1, and 1.0 V. The bits VSNVSVOLT[2:0] in register VSNVS_CONTROL determine the output voltage. When powered by coin cell, VSNVS is an LDO capable of supplying 1.8, 1.5, 1.3, 1.2, 1.1, or 1.0 V as shown in Table 108. If the 3.0 V option is chosen with the coin cell, VSNVS tracks the coin cell voltage by means of a switch, whose maximum resistance is 100 Ω. In this case, the VSNVS voltage is simply the coin cell voltage minus the voltage drop across the switch, which is 40 mV at a rated maximum load current of 400 μA. The default setting of the VSNVSVOLT[2:0] is 110, or 3.0 V, unless programmed otherwise in OTP. However, when the coin cell is applied for the very first time, VSNVS outputs 1.0 V. Only when V is applied thereafter does VSNVS transition to its default, or programmed IN value if different. Upon subsequent removal of V , with the coin cell attached, VSNVS changes configuration from an LDO to a switch for IN the “110” setting, and remains as an LDO for the other settings, continuing to output the same voltages as when V is applied, providing IN certain conditions are met as described in Table 108. PF0100 V IN 2.25 V (VTL0) - 4.5 V LDO/SWITCH Input LICELL Sense/ VREF _ Charger Selector LDO\ + VSNVS Coin Cell Z 1.8 - 3.3 V I2C Interface Figure 32. VSNVS supply switch architecture Table 108 provides a summary of the VSNVS operation at different input voltage V and with or without coin cell connected to the system. IN PF0100 NXP Semiconductors 95
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 108. VSNVS modes of operation VSNVSVOLT[2:0] VIN Mode 110 > VTH1 VIN LDO 3.0 V 110 < VTL1 Coin cell switch 000 – 101 > VTH0 VIN LDO 000 – 101 < VTL0 Coin cell LDO 6.4.7.0.1 VSNVS control The VSNVS output level is configured through the VSNVSVOLT[2:0]bits on VSNVSCTL register as shown in Table 109. Table 109. Register VSNVSCTL - ADDR 0x6B Name Bit # R/W Default Description Configures VSNVS output voltage.(76) • 000 = 1.0 V • 001 = 1.1 V • 010 = 1.2 V VSNVSVOLT 2:0 R/W 0x80 • 011 = 1.3 V • 100 = 1.5 V • 101 = 1.8 V • 110 = 3.0 V • 111 = RSVD UNUSED 7:3 – 0x00 unused Notes 76. Only valid when a valid input voltage is present. 6.4.7.0.2 VSNVS external components Table 110. VSNVS external components Capacitor Value (μF) VSNVS 0.47 6.4.7.0.3 VSNVS specifications Table 111. VSNVS electrical characteristics All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.0 V, I = 5.0 μA, typical external component values, MIN MAX IN SNVS SNVS unless otherwise noted. Typical values are characterized at V = 3.6 V, V = 3.0 V, I = 5.0 μA, and 25 °C, unless otherwise IN SNVS SNVS noted. Symbol Parameter Min Typ Max Unit Notes VSNVS Operating Input Voltage VIN • Valid coin cell range 1.8 – 3.3 V SNVS • Valid V 2.25 – 4.5 IN Operating load current I 5.0 – 400 μA SNVS • V < V < V INMIN IN INMAX PF0100 96 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 111. VSNVS electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.0 V, I = 5.0 μA, typical external component values, MIN MAX IN SNVS SNVS unless otherwise noted. Typical values are characterized at V = 3.6 V, V = 3.0 V, I = 5.0 μA, and 25 °C, unless otherwise IN SNVS SNVS noted. Symbol Parameter Min Typ Max Unit Notes VSNVS DC, LDO Output voltage • 5.0 μA < I < 400 μA(OFF) SNVS • 3.20 V < VIN < 4.5 V, VSNVSVOLT[2:0] = 110 -5.0% 3.0 7.0% • VTL0/VTH < VIN < 4.5 V, VSNVSVOLT[2:0] = [000] - [101] -8.0% 1.0 - 1.8 7.0% • 5.0μA < I < 400 μA (ON) SNVS V V SNVS • 3.20 V < V < 4.5 V, VSNVSVOLT[2:0] = 110 -5.0% 3.0 5.0% IN • UVDET < V < 4.5 V, VSNVSVOLT[2:0] = [000] - [101] -4.0% 1.0 - 1.8 4.0% IN • 5.0 μA < I < 400 μA (Coin Cell mode) SNVS V -0.04 – V • 2.84 V < V < 3.3 V, VSNVSVOLT[2:0] = 110 COIN COIN COIN -8.0% 1.0 - 1.8 7.0% (77) • 1.8 V < V < 3.3 V, VSNVSVOLT[2:0] = [000] - [101] COIN Dropout voltage VSNVS – – 50 mV DROP • V = V = 2.85 V, VSNVSVOLT[2:0] = 110, I = 400 μA IN COIN SNVS Current limit • MMPF0100 • V > V , VSNVSVOLT[2:0] = 110 750 – 5900 IN TH1 • V > V , VSNVSVOLT[2:0] = 000 to 101 500 – 5900 IN TH0 ISNVS • V < V , VSNVSVOLT[2:0] = 000 to 101 480 – 3600 μA LIM IN TL0 • MMPF0100A • V > V , VSNVSVOLT[2:0] = 110 1100 – 6750 IN TH1 • V > V , VSNVSVOLT[2:0] = 000 to 101 500 – 6750 IN TH0 • V < V , VSNVSVOLT[2:0] = 000 to 101 480 – 4500 IN TL0 V Threshold (coin cell powered to V powered) V going high with IN IN IN V valid coin cell V TH0 • VSNVSVOLT[2:0] = 000, 001, 010, 011, 100, 101 2.25 2.40 2.55 V threshold (V powered to coin cell powered) V going low with IN IN IN V valid coin cell V TL0 • VSNVSVOLT[2:0] = 000, 001, 010, 011, 100, 101 2.20 2.35 2.50 V V threshold hysteresis for V -V 5.0 – – mV HYST1 IN TH1 TL1 V V threshold hysteresis for V -V 5.0 – – mV HYST0 IN TH0 TL0 Output voltage during crossover • VSNVSVOLT[2:0] = 110 VSNVS • V > 2.9 V 2.7 – – V (80) CROSS COIN • Switch to LDO: V > 2.825 V, I = 100 μA IN SNVS • LDO to Switch: V < 3.05 V, I = 100 μA IN SNVS VSNVS AC and transient Turn-on time (load capacitor, 0.47 μF) • V > UVDET to 90% of V tON IN SNVS – – 24 ms (78),(79) SNVS • V = 0.0 V, I = 5.0 μA COIN SNVS • VSNVSVOLT[2:0] = 000 to 110 Start-up overshoot • VSNVSVOLT[2:0] = 000 to 110 V – 40 70 mV SNVSOSH • I = 5.0 μA SNVS • dV /dt = 50 mV/μs IN Transient line response I = 75% of ISNVS SNVS MAX – 32 – V • 3.2 V < V < 4.5 V, VSNVSVOLT[2:0] = 110 mV SNVSLITR IN – 22 – • 2.45 V < V < 4.5 V, VSNVSVOLT[2:0] = [000] - [101] IN PF0100 NXP Semiconductors 97
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 111. VSNVS electrical characteristics (continued) All parameters are specified at T to T (See Table 3), V = 3.6 V, V = 3.0 V, I = 5.0 μA, typical external component values, MIN MAX IN SNVS SNVS unless otherwise noted. Typical values are characterized at V = 3.6 V, V = 3.0 V, I = 5.0 μA, and 25 °C, unless otherwise IN SNVS SNVS noted. Symbol Parameter Min Typ Max Unit Notes VSNVS AC and transient (continued) Transient load response • VSNVSVOLT[2:0] = 110 2.8 – – V • 3.1 V (UVDETL)< V ≤ 4.5 V IN • I = 75 to 750 μA SNVS V • VSNVSVOLT[2:0] = 000 to 101 SNVSLOTR – 1.0 2.0 % • 2.45 V < V ≤ 4.5 V IN • VTL0 > VIN, 1.8 V ≤ V ≤ 3.3 V COIN • I = 40 to 400 μA SNVS • Refer to Figure 31 VSNVS DC, switch Operating input voltage V 1.8 – 3.3 V INSNVS • Valid coin cell range I Operating load current 5.0 – 400 μA SNVS Internal switch R R DS(on) – – 100 Ω DSONSNVS • V = 2.6 V COIN V threshold (V powered to coin cell powered) VTL1 IN IN 2.725 2.90 3.00 V (80) • VSNVSVOLT[2:0] = 110 V threshold (coin cell powered to V powered) VTH1 IN IN 2.775 2.95 3.1 V • VSNVSVOLT[2:0] = 110 Notes 77. For 1.8 V I limited to 100 μA for V < 2.1 V SNVS COIN 78. The start-up of VSNVS is not monotonic. It first rises to 1.0 V and then settles to its programmed value within the specified tr time. 1 79. From coin cell insertion to VSNVS =1.0 V, the delay time is typically 400 ms. 80. During crossover from VIN to LICELL, the VSNVS output voltage may drop to 2.7 V before going to the LICELL voltage. Though this is outside the specified DC voltage level for the VDD_SNVS_IN pin of the i.MX 6, this momentary drop does not cause any malfunction. The i.MX 6’s RTC continues to operate through the transition, and as a worst case it may switch to the internal RC oscillator for a few clock cycles before switching back to the external crystal oscillator. 6.4.7.1 Coin cell battery backup The LICELL pin provides for a connection of a coin cell backup battery or a “super” capacitor. If the voltage at VIN goes below the V IN threshold (V and V ), contact-bounced, or removed, the coin cell maintained logic is powered by the voltage applied to LICELL. The TL1 TL0 supply for internal logic and the VSNVS rail switches over to the LICELL pin when VIN goes below VTL1 or VTL0, even in the absence of a voltage at the LICELL pin, resulting in clearing of memory and turning off of VSNVS. When system operation below VTL1 is required, for systems not utilizing a coin cell, connect the LICELL pin to any system voltage between 1.8 V and 3.0 V. A small capacitor should be placed from LICELL to ground under all circumstances. 6.4.7.1.1 Coin cell charger control The coin cell charger circuit functions as a current-limited voltage source, resulting in the CC/CV taper characteristic typically used for rechargeable Lithium-Ion batteries. The coin cell charger is enabled via the COINCHEN bit while the coin cell voltage is programmable through the VCOIN[2:0] bits on register COINCTL on Table 113. The coin cell charger voltage is programmable. In the on state, the charger current is fixed at ICOINHI. In Sleep and Standby modes, the charger current is reduced to a typical 10 μA. In the off state, coin cell charging is not available as the main battery could be depleted unnecessarily. The coin cell charging stops when V is below UVDET. IN PF0100 98 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 112. Coin cell charger voltage VCOIN[2:0] V (V)(81) COIN 000 2.50 001 2.70 010 2.80 011 2.90 100 3.00 101 3.10 110 3.20 111 3.30 Notes 81. Coin cell voltages selected based on the type of LICELL used on the system. Table 113. Register COINCTL - ADDR 0x1A Name Bit # R/W Default Description Coin cell charger output voltage selection. VCOIN 2:0 R/W 0x00 See Table 112 for all options selectable through these bits. COINCHEN 3 R/W 0x00 Enable or disable the coin cell charger UNUSED 7:4 – 0x00 unused 6.4.7.1.2 External components Table 114. Coin cell charger external components Component Value Units LICELL bypass capacitor 100 nF 6.4.7.1.3 Coin cell specifications Table 115. Coin cell charger specifications Parameter Typ Unit Voltage accuracy 100 mV Coin cell charge current in on mode ICOINHI 60 μA Current accuracy 30 % PF0100 NXP Semiconductors 99
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 2 6.5 Control interface I C block description The PF0100 contains an I2C interface port which allows access by a processor, or any I2C master, to the register set. Via these registers the resources of the IC can be controlled. The registers also provide status information about how the IC is operating. The SCL and SDA lines should be routed away from noisy signals and planes to minimize noise pick up. To prevent reflections in the SCL and SDA traces from creating false pulses, the rise and fall times of the SCL and SDA signals must be greater than 20 ns. This can be accomplished by reducing the drive strength of the I2C master via software. The i.MX6 I2C driver defaults to a 40 Ω drive strength. It is recommended to use a drive strength of 80 Ω or higher to increase the edge times. Alternatively, this can be accomplished by using small capacitors from SCL and SDA to ground. For example, use 5.1 pF capacitors from SCL and SDA to ground for bus pull-up resistors of 4.8 kΩ. 2 6.5.1 I C device ID I2C interface protocol requires a device ID for addressing the target IC on a multi-device bus. To allow flexibility in addressing for bus conflict avoidance, fuse programmability is provided to allow configuration for the lower 3 address LSB(s). Refer to 6.1.2 One time programmability (OTP), page 21 for more details. This product supports 7-bit addressing only; support is not provided for 10-bit or general call addressing. Note, when the TBB bits for the I2C slave address are written, the next access to the chip, must then use the new slave address; these bits take affect right away. 2 6.5.2 I C operation The I2C mode of the interface is implemented generally following the fast mode definition which supports up to 400 kbits/s operation (exceptions to the standard are noted to be 7-bit only addressing and no support for general call addressing.) Timing diagrams, electrical specifications, and further details can be found in the I2C specification, which is available for download at: http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf I2C read operations are also performed in byte increments separated by an ACK. Read operations also begin with the MSB and each byte is sent out unless a STOP command or NACK is received prior to completion. The following examples show how to write and read data to and from the IC. The host initiates and terminates all communication. The host sends a master command packet after driving the start condition. The device responds to the host if the master command packet contains the corresponding slave address. In the following examples, the device is shown always responding with an ACK to transmissions from the host. If at any time a NACK is received, the host should terminate the current transaction and retry the transaction. Host can Packet Device Master Driven Data also drive Type Address Register Address (byte 0) another Start instead of Stop 7 0 7 0 7 0 Host SDA START 0 STOP R/W Slave SDA AC AC AC K K K Figure 33. I2C write example Host can also PTaycpkeet ADdedvreicses Register Address Device Address PMIC Driven Data drive another Start instead of Stop 23 16 15 8 7 0 Host SDA START 0 START 1 NCAK STOP R/W R/W 7 0 A A A Slave SDA C C C K K K Figure 34. I2C read example PF0100 100 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.5.3 Interrupt handling The system is informed about important events based on interrupts. Unmasked interrupt events are signaled to the processor by driving the INTB pin low. Each interrupt is latched so even if the interrupt source becomes inactive, the interrupt remains set until cleared. Each interrupt can be cleared by writing a “1” to the appropriate bit in the Interrupt Status register; this also causes the INTB pin to go high. If there are multiple interrupt bits set the INTB pin remains low until all are either masked or cleared. If a new interrupt occurs while the processor clears an existing interrupt bit, the INTB pin remains low. Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result, when a masked interrupt bit goes high, the INTB pin does not go low. A masked interrupt can still be read from the Interrupt Status register. This gives the processor the option of polling for status from the IC. The IC powers up with all interrupts masked, so the processor must initially poll the device to determine if any interrupts are active. Alternatively, the processor can unmask the interrupt bits of interest. If a masked interrupt bit was already high, the INTB pin goes low after unmasking. The sense registers contain status and input sense bits so the system processor can poll the current state of interrupt sources. They are read only, and not latched or clearable. Interrupts generated by external events are debounced; therefore, the event needs to be stable throughout the debounce period before an interrupt is generated. Nominal debounce periods for each event are documented in the INT summary Table 116. Due to the asynchronous nature of the debounce timer, the effective debounce time can vary slightly. 6.5.4 Interrupt bit summary Table 116 summarizes all interrupt, mask, and sense bits associated with INTB control. For more detailed behavioral descriptions, refer to the related chapters. Table 116. Interrupt, mask and sense bits Interrupt Mask Sense Purpose Trigger Debounce time (ms) Low input voltage detect LOWVINI LOWVINM LOWVINS H to L 3.9(82) Sense is 1 if below 2.80 V threshold Power on button event H to L 31.25(82) PWRONI PWRONM PWRONS Sense is 1 if PWRON is high. L to H 31.25 Thermal 110 °C threshold THERM110 THERM110M THERM110S Dual 3.9 Sense is 1 if above threshold Thermal 120 °C threshold THERM120 THERM120M THERM120S Dual 3.9 Sense is 1 if above threshold Thermal 125 °C threshold THERM125 THERM125M THERM125S Dual 3.9 Sense is 1 if above threshold Thermal 130 °C threshold THERM130 THERM130M THERM130S Dual 3.9 Sense is 1 if above threshold Regulator 1A overcurrent limit SW1AFAULTI SW1AFAULTM SW1AFAULTS L to H 8.0 Sense is 1 if above current limit Regulator 1B overcurrent limit SW1BFAULTI SW1BFAULTM SW1BFAULTS L to H 8.0 Sense is 1 if above current limit Regulator 1C overcurrent limit SW1CFAULTI SW1CFAULTM SW1CFAULTS L to H 8.0 Sense is 1 if above current limit Regulator 2 overcurrent limit SW2FAULTI SW2FAULTM SW2FAULTS L to H 8.0 Sense is 1 if above current limit Regulator 3A overcurrent limit SW3AFAULTI SW3AFAULTM SW3AFAULTS L to H 8.0 Sense is 1 if above current limit Regulator 3B overcurrent limit SW3BFAULTI SW3BFAULTM SW3BFAULTS L to H 8.0 Sense is 1 if above current limit Regulator 4 overcurrent limit SW4FAULTI SW4FAULTM SW4FAULTS L to H 8.0 Sense is 1 if above current limit PF0100 NXP Semiconductors 101
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 116. Interrupt, mask and sense bits (continued) Interrupt Mask Sense Purpose Trigger Debounce time (ms) SWBST overcurrent limit SWBSTFAULTI SWBSTFAULTM SWBSTFAULTS L to H 8.0 Sense is 1 if above current limit VGEN1 overcurrent limit VGEN1FAULTI VGEN1FAULTM VGEN1FAULTS L to H 8.0 Sense is 1 if above current limit VGEN2 overcurrent limit VGEN2FAULTI VGEN2FAULTM VGEN2FAULTS L to H 8.0 Sense is 1 if above current limit VGEN3 overcurrent limit VGEN3FAULTI VGEN3FAULTM VGEN3FAULTS L to H 8.0 Sense is 1 if above current limit VGEN4 overcurrent limit VGEN4FAULTI VGEN4FAULTM VGEN4FAULTS L to H 8.0 Sense is 1 if above current limit VGEN5 overcurrent limit VGEN5FAULTI VGEN5FAULTM VGEN1FAULTS L to H 8.0 Sense is 1 if above current limit VGEN6 overcurrent limit VGEN6FAULTI VGEN6FAULTM VGEN6FAULTS L to H 8.0 Sense is 1 if above current limit 1 or 2 bit error detected in OTP registers OTP_ECCI OTP_ECCM OTP_ECCS L to H 8.0 Sense is 1 if error detected Notes 82. Debounce timing for the falling edge can be extended with PWRONDBNC[1:0]. A full description of all interrupt, mask, and sense registers is provided in Tables 117 to 128. Table 117. Register INTSTAT0 - ADDR 0x05 Name Bit # R/W Default Description PWRONI 0 R/W1C 0 Power on interrupt bit LOWVINI 1 R/W1C 0 Low-voltage interrupt bit THERM110I 2 R/W1C 0 110 °C Thermal interrupt bit THERM120I 3 R/W1C 0 120 °C Thermal interrupt bit THERM125I 4 R/W1C 0 125 °C Thermal interrupt bit THERM130I 5 R/W1C 0 130 °C Thermal interrupt bit UNUSED 7:6 – 00 unused Table 118. Register INTMASK0 - ADDR 0x06 Name Bit # R/W Default Description PWRONM 0 R/W1C 1 Power on interrupt mask bit LOWVINM 1 R/W1C 1 Low-voltage interrupt mask bit THERM110M 2 R/W1C 1 110 °C thermal interrupt mask bit THERM120M 3 R/W1C 1 120 °C thermal interrupt mask bit THERM125M 4 R/W1C 1 125 °C thermal interrupt mask bit THERM130M 5 R/W1C 1 130 °C thermal interrupt mask bit UNUSED 7:6 – 00 unused PF0100 102 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 119. Register INTSENSE0 - ADDR 0x07 Name Bit # R/W Default Description Power on sense bit PWRONS 0 R 0 • 0 = PWRON low • 1 = PWRON high Low-voltage sense bit LOWVINS 1 R 0 • 0 = VIN > 2.8 V • 1 = VIN ≤ 2.8 V 110 °C thermal sense bit THERM110S 2 R 0 • 0 = Below threshold • 1 = Above threshold 120 °C thermal sense bit THERM120S 3 R 0 • 0 = Below threshold • 1 = Above threshold 125 °C thermal sense bit THERM125S 4 R 0 • 0 = Below threshold • 1 = Above threshold 130 °C thermal sense bit THERM130S 5 R 0 • 0 = Below threshold • 1 = Above threshold UNUSED 6 – 0 unused Additional VDDOTP voltage sense pin VDDOTPS 7 R 00 • 0 = VDDOTP grounded • 1 = VDDOTP to VCOREDIG or greater Table 120. Register INTSTAT1 - ADDR 0x08 Name Bit # R/W Default Description SW1AFAULTI 0 R/W1C 0 SW1A overcurrent interrupt bit SW1BFAULTI 1 R/W1C 0 SW1B overcurrent interrupt bit SW1CFAULTI 2 R/W1C 0 SW1C overcurrent interrupt bit SW2FAULTI 3 R/W1C 0 SW2 overcurrent interrupt bit SW3AFAULTI 4 R/W1C 0 SW3A overcurrent interrupt bit SW3BFAULTI 5 R/W1C 0 SW3B overcurrent interrupt bit SW4FAULTI 6 R/W1C 0 SW4 overcurrent interrupt bit UNUSED 7 – 0 unused Table 121. Register INTMASK1 - ADDR 0x09 Name Bit # R/W Default Description SW1AFAULTM 0 R/W 1 SW1A overcurrent interrupt mask bit SW1BFAULTM 1 R/W 1 SW1B overcurrent interrupt mask bit SW1CFAULTM 2 R/W 1 SW1C overcurrent interrupt mask bit SW2FAULTM 3 R/W 1 SW2 overcurrent interrupt mask bit SW3AFAULTM 4 R/W 1 SW3A overcurrent interrupt mask bit SW3BFAULTM 5 R/W 1 SW3B overcurrent interrupt mask bit PF0100 NXP Semiconductors 103
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 121. Register INTMASK1 - ADDR 0x09 (continued) Name Bit # R/W Default Description SW4FAULTM 6 R/W 1 SW4 overcurrent interrupt mask bit UNUSED 7 – 0 unused Table 122. Register INTSENSE1 - ADDR 0x0A Name Bit # R/W Default Description SW1A overcurrent sense bit SW1AFAULTS 0 R 0 • 0 = Normal operation • 1 = Above current limit SW1B overcurrent sense bit SW1BFAULTS 1 R 0 • 0 = Normal operation • 1 = Above current limit SW1C overcurrent sense bit SW1CFAULTS 2 R 0 • 0 = Normal operation • 1 = Above current limit SW2 overcurrent sense bit SW2FAULTS 3 R 0 • 0 = Normal operation • 1 = Above current limit SW3A overcurrent sense bit SW3AFAULTS 4 R 0 • 0 = Normal operation • 1 = Above current limit SW3B overcurrent sense bit SW3BFAULTS 5 R 0 • 0 = Normal operation • 1 = Above current limit SW4 overcurrent sense bit SW4FAULTS 6 R 0 • 0 = Normal operation • 1 = Above current limit UNUSED 7 – 0 unused Table 123. Register INTSTAT3 - ADDR 0x0E Name Bit # R/W Default Description SWBSTFAULTI 0 R/W1C 0 SWBST overcurrent limit interrupt bit UNUSED 6:1 – 0x00 unused OTP_ECCI 7 R/W1C 0 OTP error interrupt bit Table 124. Register INTMASK3 - ADDR 0x0F Name Bit # R/W Default Description SWBSTFAULTM 0 R/W 1 SWBST overcurrent limit interrupt mask bit UNUSED 6:1 – 0x00 unused OTP_ECCM 7 R/W 1 OTP error interrupt mask bit PF0100 104 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 125. Register INTSENSE3 - ADDR 0x10 Name Bit # R/W Default Description SWBST overcurrent limit sense bit SWBSTFAULTS 0 R 0 • 0 = Normal operation • 1 = Above current limit UNUSED 6:1 – 0x00 unused OTP error sense bit OTP_ECCS 7 R 0 • 0 = No error detected • 1 = OTP error detected Table 126. Register INTSTAT4 - ADDR 0x11 Name Bit # R/W Default Description VGEN1FAULTI 0 R/W1C 0 VGEN1 overcurrent interrupt bit VGEN2FAULTI 1 R/W1C 0 VGEN2 overcurrent interrupt bit VGEN3FAULTI 2 R/W1C 0 VGEN3 overcurrent interrupt bit VGEN4FAULTI 3 R/W1C 0 VGEN4 overcurrent interrupt bit VGEN5FAULTI 4 R/W1C 0 VGEN5 overcurrent interrupt bit VGEN6FAULTI 5 R/W1C 0 VGEN6 overcurrent interrupt bit UNUSED 7:6 – 00 unused Table 127. Register INTMASK4 - ADDR 0x12 Name Bit # R/W Default Description VGEN1FAULTM 0 R/W 1 VGEN1 overcurrent interrupt mask bit VGEN2FAULTM 1 R/W 1 VGEN2 overcurrent interrupt mask bit VGEN3FAULTM 2 R/W 1 VGEN3 overcurrent interrupt mask bit VGEN4FAULTM 3 R/W 1 VGEN4 overcurrent interrupt mask bit VGEN5FAULTM 4 R/W 1 VGEN5 overcurrent interrupt mask bit VGEN6FAULTM 5 R/W 1 VGEN6 overcurrent interrupt mask bit UNUSED 7:6 – 00 unused Table 128. Register INTSENSE4 - ADDR 0x13 Name Bit # R/W Default Description VGEN1 overcurrent sense bit VGEN1FAULTS 0 R 0 • 0 = Normal operation • 1 = Above current limit VGEN2 overcurrent sense bit VGEN2FAULTS 1 R 0 • 0 = Normal operation • 1 = Above current limit VGEN3 overcurrent sense bit VGEN3FAULTS 2 R 0 • 0 = Normal operation • 1 = Above current limit VGEN4 overcurrent sense bit VGEN4FAULTS 3 R 0 • 0 = Normal operation • 1 = Above current limit PF0100 NXP Semiconductors 105
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 128. Register INTSENSE4 - ADDR 0x13 (continued) Name Bit # R/W Default Description VGEN5 overcurrent sense bit VGEN5FAULTS 4 R 0 • 0 = Normal operation • 1 = Above current limit VGEN6 overcurrent sense bit VGEN6FAULTS 5 R 0 • 0 = Normal operation • 1 = Above current limit UNUSED 7:6 – 00 unused 6.5.5 Specific registers 6.5.5.1 IC and version identification The IC and other version details can be read via identification bits. These are hard-wired on chip and described in Tables 129 to 131. Table 129. Register DEVICEID - ADDR 0x00 Name Bit # R/W Default Description Die version. DEVICEID 3:0 R 0x00 • 0000 = PF0100 UNUSED 7:4 – 0x01 unused Table 130. Register SILICON REV- ADDR 0x03 Name Bit # R/W Default Description Represents the metal mask revision • Pass 0.0 = 0000 METAL_LAYER_REV 3:0 R 0x00 • . • . • Pass 0.15 = 1111 Represents the full mask revision • Pass 1.0 = 0001 FULL_LAYER_REV 7:4 R 0x01 • . • . • Pass 15.0 = 1111 Table 131. Register FABID - ADDR 0x04 Name Bit # R/W Default Description Allows for characterizing different options within FIN 1:0 R 0x00 the same reticule FAB 3:2 R 0x00 Represents the wafer manufacturing facility Unused 7:0 R 0x00 unused 6.5.5.2 Embedded memory There are four register banks of general purpose embedded memory to store critical data. The data written to MEMA[7:0], MEMB[7:0], MEMC[7:0], and MEMD[7:0] is maintained by the coin cell when the main battery is deeply discharged, removed, or contact-bounced. The contents of the embedded memory are reset by COINPORB. The banks can be used for any system need for bit retention with coin cell backup. PF0100 106 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 132. Register MEMA ADDR 0x1C Name Bit # R/W Default Description MEMA 7:0 R/W 0 Memory bank A Table 133. Register MEMB ADDR 0x1D Name Bit # R/W Default Description MEMB 7:0 R/W 0 Memory bank B Table 134. Register MEMC ADDR 0x1E Name Bit # R/W Default Description MEMC 7:0 R/W 0 Memory bank C Table 135. Register MEMD ADDR 0x1F Name Bit # R/W Default Description MEMD 7:0 R/W 0 Memory bank D 6.5.6 Register bitmap The register map is comprised of thirty-two pages, and its address and data fields are each eight bits wide. Only the first two pages can be accessed. On each page, registers 0 to 0x7F are referred to as 'functional', and registers 0x80 to 0xFF as 'extended'. On each page, the functional registers are the same, but the extended registers are different. To access registers in Table 137. Extended page 1, page 111, one must first write 0x01 to the page register at address 0x7F, and to access registers in Table 138. Extended Page 2, page 115, one must first write 0x02 to the page register at address 0x7F. To access Table 136. Functional page, page 108 from one of the extended pages, no write to the page register is necessary. Registers missing in the sequence are reserved; reading from them returns a value 0x00, and writing to them has no effect. The contents of all registers are given in the tables defined in this chapter; each table is structure as follows: Name: Name of the bit. Bit #: The bit location in the register (7-0) R/W: Read / Write access and control • R is read-only access • R/W is read and write access • RW1C is read and write access with write 1 to clear Reset: Reset signals are color coded based on the following legend. Bits reset by SC and VCOREDIG_PORB Bits reset by PWRON or loaded default or OTP configuration Bits reset by DIGRESETB Bits reset by PORB or RESETBMCU Bits reset by VCOREDIG_PORB Bits reset by POR or OFFB Default: The value after reset, as noted in the default column of the memory map. • Fixed defaults are explicitly declared as 0 or 1. • “X” corresponds to read/write bits which are initialized at start-up, based on the OTP fuse settings or default if VDDOTP = 1.5 V. Bits are subsequently I2C modifiable, when their reset has been released. “X” may also refer to bits which may have other dependencies. For example, some bits may depend on the version of the IC, or a value from an analog block, for instance the sense bits for the interrupts. PF0100 NXP Semiconductors 107
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS 6.5.6.1 Register map Table 136. Functional page BITS[7:0] Add Register name R/W Default 7 6 5 4 3 2 1 0 – – – – DEVICE ID [3:0] 00 DeviceID R 8'b0001_0000 0 0 0 1 0 0 0 0 FULL_LAYER_REV[3:0] METAL_LAYER_REV[3:0] 03 SILICONREVID R 8'b0001_0000 X X X X X X X X – – – – FAB[1:0] FIN[1:0] 04 FABID R 8'b0000_0000 0 0 0 0 0 0 0 0 – – THERM130I THERM125I THERM120I THERM110I LOWVINI PWRONI 05 INTSTAT0 RW1C 8'b0000_0000 0 0 0 0 0 0 0 0 – – THERM130M THERM125M THERM120M THERM110M LOWVINM PWRONM 06 INTMASK0 R/W 8'b0011_1111 0 0 1 1 1 1 1 1 VDDOTPS RSVD THERM130S THERM125S THERM120S THERM110S LOWVINS PWRONS 07 INTSENSE0 R 8'b00xx_xxxx 0 0 x x x x x x – SW4FAULTI SW3BFAULTI SW3AFAULTI SW2FAULTI SW1CFAULTI SW1BFAULTI SW1AFAULTI 08 INTSTAT1 RW1C 8'b0000_0000 0 0 0 0 0 0 0 0 – SW4FAULTM SW3BFAULTM SW3AFAULTM SW2FAULTM SW1CFAULTM SW1BFAULTM SW1AFAULTM 09 INTMASK1 R/W 8'b0111_1111 0 1 1 1 1 1 1 1 – SW4FAULTS SW3BFAULTS SW3AFAULTS SW2FAULTS SW1CFAULTS SW1BFAULTS SW1AFAULTS 0A INTSENSE1 R 8'b0xxx_xxxx 0 x x x x x x x OTP_ECCI – – – – – – SWBSTFAULTI 0E INTSTAT3 RW1C 8'b0000_0000 0 0 0 0 0 0 0 0 OTP_ECCM – – – – – – SWBSTFAULTM 0F INTMASK3 R/W 8'b1000_0001 1 0 0 0 0 0 0 1 OTP_ECCS – – – – – – SWBSTFAULTS 10 INTSENSE3 R 8'b0000_000x 0 0 0 0 0 0 0 x – – VGEN6FAULTI VGEN5FAULTI VGEN4FAULTI VGEN3FAULTI VGEN2FAULTI VGEN1FAULTI 11 INTSTAT4 RW1C 8'b0000_0000 0 0 0 0 0 0 0 0 VGEN6 VGEN5 VGEN4 VGEN3 VGEN2 VGEN1 – – FAULTM FAULTM FAULTM FAULTM FAULTM FAULTM 12 INTMASK4 R/W 8'b0011_1111 0 0 1 1 1 1 1 1 VGEN6 VGEN5 VGEN4 VGEN3 VGEN2 VGEN1 – – FAULTS FAULTS FAULTS FAULTS FAULTS FAULTS 13 INTSENSE4 R 8'b00xx_xxxx 0 0 x x x x x x – – – – COINCHEN VCOIN[2:0] 1A COINCTL R/W 8'b0000_0000 0 0 0 0 0 0 0 0 PF0100 108 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 136. Functional page (continued) BITS[7:0] Add Register name R/W Default 7 6 5 4 3 2 1 0 REGSCPEN STANDBYINV STBYDLY[1:0] PWRONBDBNC[1:0] PWRONRSTEN RESTARTEN 1B PWRCTL R/W 8'b0001_0000 0 0 0 1 0 0 0 0 MEMA[7:0] 1C MEMA R/W 8'b0000_0000 0 0 0 0 0 0 0 0 MEMB[7:0] 1D MEMB R/W 8'b0000_0000 0 0 0 0 0 0 0 0 MEMC[7:0] 1E MEMC R/W 8'b0000_0000 0 0 0 0 0 0 0 0 MEMD[7:0] 1F MEMD R/W 8'b0000_0000 0 0 0 0 0 0 0 0 – – SW1AB[5:0] 20 SW1ABVOLT R/W/M 8'b00xx_xxxx 0 0 x x x x x x – – SW1ABSTBY[5:0] 21 SW1ABSTBY R/W 8'b00xx_xxxx 0 0 x x x x x x – – SW1ABOFF[5:0] 22 SW1ABOFF R/W 8'b00xx_xxxx 0 0 x x x x x x – – SW1ABOMODE – SW1ABMODE[3:0] 23 SW1ABMODE R/W 8'b0000_1000 0 0 0 0 1 0 0 0 SW1ABDVSSPEED[1:0] SW1BAPHASE[1:0] SW1ABFREQ[1:0] – SW1ABILIM 24 SW1ABCONF R/W 8'bxx00_xx00 x x 0 0 x x 0 0 – – SW1C[5:0] 2E SW1CVOLT R/W 8'b00xx_xxxx 0 0 x x x x x x – – SW1CSTBY[5:0] 2F SW1CSTBY R/W 8'b00xx_xxxx 0 0 x x x x x x – – SW1COFF[5:0] 30 SW1COFF R/W 8'b00xx_xxxx 0 0 x x x x x x – – SW1COMODE – SW1CMODE[3:0] 31 SW1CMODE R/W 8'b0000_1000 0 0 0 0 1 0 0 0 SW1CDVSSPEED[1:0] SW1CPHASE[1:0] SW1CFREQ[1:0] – SW1CILIM 32 SW1CCONF R/W 8'bxx00_xx00 x x 0 0 x x 0 0 – SW2[6:0] 35 SW2VOLT R/W 8'b0xxx_xxxx 0 x x x x x x x – SW2STBY[6:0] 36 SW2STBY R/W 8'b0xxx_xxxx 0 x x x x x x x – SW2OFF[6:0] 37 SW2OFF R/W 8'b0xxx_xxxx 0 x x x x x x x PF0100 NXP Semiconductors 109
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 136. Functional page (continued) BITS[7:0] Add Register name R/W Default 7 6 5 4 3 2 1 0 – – SW2OMODE – SW2MODE[3:0] 38 SW2MODE R/W 8'b0000_1000 0 0 0 0 1 0 0 0 SW2DVSSPEED[1:0] SW2PHASE[1:0] SW2FREQ[1:0] – SW2ILIM 39 SW2CONF R/W 8'bxx01_xx00 x x 0 1 x x 0 0 – SW3A[6:0] 3C SW3AVOLT R/W 8'b0xxx_xxxx 0 x x x x x x x – SW3ASTBY[6:0] 3D SW3ASTBY R/W 8'b0xxx_xxxx 0 x x x x x x x – SW3AOFF[6:0] 3E SW3AOFF R/W 8'b0xxx_xxxx 0 x x x x x x x SW3AOMODE – SW3AMODE[3:0] 3F SW3AMODE R/W 8'b0000_1000 0 0 0 0 1 0 0 0 SW3ADVSSPEED[1:0] SW3APHASE[1:0] SW3AFREQ[1:0] – SW3AILIM 40 SW3ACONF R/W 8'bxx10_xx00 x x 1 0 x x 0 0 – SW3B[6:0] 43 SW3BVOLT R/W 8'b0xxx_xxxx 0 x x x x x x x – SW3BSTBY[6:0] 44 SW3BSTBY R/W 8'b0xxx_xxxx 0 x x x x x x x – SW3BOFF[6:0] 45 SW3BOFF R/W 8'b0xxx_xxxx 0 x x x x x x x – – SW3BOMODE – SW3BMODE[3:0] 46 SW3BMODE R/W 8'b0000_1000 0 0 0 0 1 0 0 0 SW3BDVSSPEED[1:0] SW3BPHASE[1:0] SW3BFREQ[1:0] – SW3BILIM 47 SW3BCONF R/W 8'bxx10_xx00 x x 1 0 x x 0 0 – SW4[6:0] 4A SW4VOLT R/W 8'b0xxx_xxxx 0 x x x x x x x – SW4STBY[6:0] 4B SW4STBY R/W 8'b0xxx_xxxx 0 x x x x x x x – SW4OFF[6:0] 4C SW4OFF R/W 8'b0xxx_xxxx 0 x x x x x x x – – SW4OMODE – SW4MODE[3:0] 4D SW4MODE R/W 8'b0000_1000 0 0 0 0 1 0 0 0 SW4DVSSPEED[1:0] SW4PHASE[1:0] SW4FREQ[1:0] – SW4ILIM 4E SW4CONF R/W 8'bxx11_xx00 x x 1 1 x x 0 0 PF0100 110 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 136. Functional page (continued) BITS[7:0] Add Register name R/W Default 7 6 5 4 3 2 1 0 – SWBST1STBYMODE[1:0] – SWBST1MODE[1:0] SWBST1VOLT[1:0] 66 SWBSTCTL R/W 8'b0xx0_10xx 0 x x 0 1 0 x x – – – VREFDDREN – – – – 6A VREFDDRCTL R/W 8'b000x_0000 0 0 0 x 0 0 0 0 – – – – – VSNVSVOLT[2:0] 6B VSNVSCTL R/W 8'b0000_0xxx 0 0 0 0 0 0 x x – VGEN1LPWR VGEN1STBY VGEN1EN VGEN1[3:0] 6C VGEN1CTL R/W 8'b000x_xxxx 0 0 0 x x x x x – VGEN2LPWR VGEN2STBY VGEN2EN VGEN2[3:0] 6D VGEN2CTL R/W 8'b000x_xxxx 0 0 0 x x x x x – VGEN3LPWR VGEN3STBY VGEN3EN VGEN3[3:0] 6E VGEN3CTL R/W 8'b000x_xxxx 0 0 0 x x x x x – VGEN4LPWR VGEN4STBY VGEN4EN VGEN4[3:0] 6F VGEN4CTL R/W 8'b000x_xxxx 0 0 0 x x x x x – VGEN5LPWR VGEN5STBY VGEN5EN VGEN5[3:0] 70 VGEN5CTL R/W 8'b000x_xxxx 0 0 0 x x x x x – VGEN6LPWR VGEN6STBY VGEN6EN VGEN6[3:0] 71 VGEN6CTL R/W 8'b000x_xxxx 0 0 0 x x x x x – – – PAGE[4:0] 7F Page Register R/W 8'b0000_0000 0 0 0 0 0 0 0 0 Table 137. Extended page 1 BITS[7:0] Address Register name TYPE Default 7 6 5 4 3 2 1 0 OTP FUSE – – – – – – – OTP FUSE READ READ EN 80 R/W 8'b000x_xxx0 EN 0 0 0 x x x x 0 RL TRIM START RL PWBRTN FORCE PWRCTL RL PWRCTL RL OTP RL OTP ECC RL OTP FUSE FUSE 84 OTP LOAD MASK R/W 8'b0000_0000 0 0 0 0 0 0 0 0 – – – ECC5_SE ECC4_SE ECC3_SE ECC2_SE ECC1_SE 8A OTP ECC SE1 R 8'bxxx0_0000 x x x 0 0 0 0 0 – – – ECC10_SE ECC9_SE ECC8_SE ECC7_SE ECC6_SE 8B OTP ECC SE2 R 8'bxxx0_0000 x x x 0 0 0 0 0 – – – ECC5_DE ECC4_DE ECC3_DE ECC2_DE ECC1_DE 8C OTP ECC DE1 R 8'bxxx0_0000 x x x 0 0 0 0 0 PF0100 NXP Semiconductors 111
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 137. Extended page 1 (continued) BITS[7:0] Address Register name TYPE Default 7 6 5 4 3 2 1 0 – – – ECC10_DE ECC9_DE ECC8_DE ECC7_DE ECC6_DE 8D OTP ECC DE2 R 8'bxxx0_0000 x x x 0 0 0 0 0 – – SW1AB_VOLT[5:0] A0 OTP SW1AB VOLT R/W 8'b00xx_xxxx 0 0 x x x x x x – SW1AB_SEQ[4:0] A1 OTP SW1AB SEQ R/W 8'b000x_xxXx 0 0 0 x x x X x – – – – SW1_CONFIG[1:0] SW1AB_FREQ[1:0] OTP SW1AB A2 R/W 8'b0000_xxxx CONFIG 0 0 0 0 x x x x – – SW1C_VOLT[5:0] A8 OTP SW1C VOLT R/W 8'b00xx_xxxx 0 0 x x x x x x – SW1C_SEQ[4:0] A9 OTP SW1C SEQ R/W 8'b000x_xxxx 0 0 0 x x x x x – – – – – – SW1C_FREQ[1:0] OTP SW1C AA R/W 8'b0000_00xx CONFIG 0 0 0 0 0 0 x x – SW2_VOLT[5:0] AC OTP SW2 VOLT R/W 8'b0xxx_xxxx 0 x x x x x x x – – SW2_SEQ[4:0] AD OTP SW2 SEQ R/W 8'b000x_xxxx 0 0 0 x x x x x – – – – – – SW2_FREQ[1:0] AE OTP SW2 CONFIG R/W 8'b0000_00xx 0 0 0 0 0 0 x x – SW3A_VOLT[6:0] B0 OTP SW3A VOLT R/W 8'b0xxx_xxxx 0 x x x x x x x – – SW3A_SEQ[4:0] B1 OTP SW3A SEQ R/W 8'b000x_xxxx 0 0 0 x x x x x – – – – SW3_CONFIG[1:0] SW3A_FREQ[1:0] OTP SW3A B2 R/W 8'b0000_xxxx CONFIG 0 0 0 0 x x x x – SW3B_VOLT[6:0] B4 OTP SW3B VOLT R/W 8'b0xxx_xxxx 0 x x x x x x x – – SW3B_SEQ[4:0] B5 OTP SW3B SEQ R/W 8'b000x_xxxx 0 0 0 x x x x x – – – – – – SW3B_CONFIG[1:0] OTP SW3B B6 R/W 8'b0000_00xx CONFIG 0 0 0 0 0 0 x x PF0100 112 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 137. Extended page 1 (continued) BITS[7:0] Address Register name TYPE Default 7 6 5 4 3 2 1 0 – SW4_VOLT[6:0] B8 OTP SW4 VOLT R/W 8'b00xx_xxxx 0 0 x x x x x x – – – SW4_SEQ[4:0] B9 OTP SW4 SEQ R/W 8'b000x_xxxx 0 0 0 x x x x x – – – VTT – – SW4_FREQ[1:0] BA OTP SW4 CONFIG R/W 8'b000x_xxxx 0 0 0 x x x x x – – – – – – SWBST_VOLT[1:0] BC OTP SWBST VOLT R/W 8'b0000_00xx 0 0 0 0 0 0 x x – – – SWBST_SEQ[4:0] BD OTP SWBST SEQ R/W 8'b0000_xxxx 0 0 0 0 x x x x – – – – – VSNVS_VOLT[2:0] C0 OTP VSNVS VOLT R/W 8'b0000_0xxx 0 0 0 0 0 0 x x – – – VREFDDR_SEQ[4:0] OTP VREFDDR C4 R/W 8'b000x_x0xx SEQ 0 0 0 x x 0 x x – – – – VGEN1_VOLT[3:0] C8 OTP VGEN1 VOLT R/W 8'b0000_xxxx 0 0 0 0 x x x x – – – VGEN1_SEQ[4:0] C9 OTP VGEN1 SEQ R/W 8'b000x_xxxx 0 0 0 x x x x x – – – – VGEN2_VOLT[3:0] CC OTP VGEN2 VOLT R/W 8'b0000_xxxx 0 0 0 0 x x x x – – – VGEN2_SEQ[4:0] CD OTP VGEN2 SEQ R/W 8'b000x_xxxx 0 0 0 x x x x x – – – – VGEN3_VOLT[3:0] D0 OTP VGEN3 VOLT R/W 8'b0000_xxxx 0 0 0 0 x x x x – – – VGEN3_SEQ[4:0] D1 OTP VGEN3 SEQ R/W 8'b000x_xxxx 0 0 0 x x x x x – – – – VGEN4_VOLT[3:0] D4 OTP VGEN4 VOLT R/W 8'b0000_xxxx 0 0 0 0 x x x x – – – VGEN4_SEQ[4:0] D5 OTP VGEN4 SEQ R/W 8'b000x_xxxx 0 0 0 x x x x x PF0100 NXP Semiconductors 113
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 137. Extended page 1 (continued) BITS[7:0] Address Register name TYPE Default 7 6 5 4 3 2 1 0 – – – – VGEN5_VOLT[3:0] D8 OTP VGEN5 VOLT R/W 8'b0000_xxxx 0 0 0 0 x x x x – – – VGEN5_SEQ[4:0] D9 OTP VGEN5 SEQ R/W 8'b000x_xxxx 0 0 0 x x x x x – – – – VGEN6_VOLT[3:0] DC OTP VGEN6 VOLT R/W 8'b0000_xxxx 0 0 0 0 x x x x – – – VGEN6_SEQ[4:0] DD OTP VGEN6 SEQ R/W 8'b000x_xxxx 0 0 0 x x x x x PWRON_ – – – SWDVS_CLK1[1:0] SEQ_CLK_SPEED1[1:0] CFG1 E0 OTP PU CONFIG1 R/W 8'b000x_xxxx 0 0 0 x x x x x PWRON_ – – – SWDVS_CLK2[1:0] SEQ_CLK_SPEED2[1:0] CFG2 E1 OTP PU CONFIG2 R/W 8'b000x_xxxx 0 0 0 x x x x x PWRON_ – – – SWDVS_CLK3[1:0] SEQ_CLK_SPEED3[1:0] CFG3 E2 OTP PU CONFIG3 R/W 8'b000x_xxxx 0 0 0 x x x x x PWRON_CFG – – – SWDVS_CLK3_XOR SEQ_CLK_SPEED_XOR OTP PU CONFIG _XOR E3 R 8'b000x_xxxx XOR 0 0 0 x x x x x SOFT_FUSE_ TBB_POR – – – – FUSE_POR1 – E4 (83) OTP FUSE POR1 R/W 8'b0000_00x0 POR 0 0 0 0 0 0 x 0 RSVD RSVD – – – – FUSE_POR2 – E5 OTP FUSE POR1 R/W 8'b0000_00x0 0 0 0 0 0 0 x 0 RSVD RSVD – – – – FUSE_POR3 – E6 OTP FUSE POR1 R/W 8'b0000_00x0 0 0 0 0 0 0 x 0 FUSE_POR_X RSVD RSVD – – – – – OTP FUSE POR OR E7 R 8'b0000_00x0 XOR 0 0 0 0 0 0 x 0 – – – – – – – OTP_PG_EN E8 OTP PWRGD EN R/W/M 8'b0000_000x 0 0 0 0 0 0 x 0 EN_ECC_ EN_ECC_ EN_ECC_ EN_ECC_ EN_ECC_ – – – BANK5 BANK4 BANK3 BANK2 BANK1 F0 OTP EN ECCO R/W 8'b000x_xxxx 0 0 0 x x x x x EN_ECC_ EN_ECC_ EN_ECC_ EN_ECC_ EN_ECC_ – – – BANK10 BANK9 BANK8 BANK7 BANK6 F1 OTP EN ECC1 R/W 8'b000x_xxxx 0 0 0 x x x x x – – – – RSVD F4 OTP SPARE2_4 R/W 8'b0000_xxxx 0 0 0 0 x x x x PF0100 114 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 137. Extended page 1 (continued) BITS[7:0] Address Register name TYPE Default 7 6 5 4 3 2 1 0 – – – – – RSVD F5 OTP SPARE4_3 R/W 8'b0000_0xxx 0 0 0 0 0 x x x – – – – – – RSVD F6 OTP SPARE6_2 R/W 8'b0000_00xx 0 0 0 0 0 0 x x – – – – – – – RSVD F7 OTP SPARE7_1 R/W 8'b0000_0xxx 0 0 0 0 0 x x x – – – – – – – OTP_DONE FE OTP DONE R/W 8'b0000_000x 0 0 0 0 0 0 0 x I2C_SLV – – – – I2C_SLV ADDR[2:0] ADDR[3] FF OTP I2C ADDR R/W 8'b0000_0xxx 0 0 0 0 1 x x x Notes 83. In the MMPF0100 FUSE_POR1, FUSE_POR2, and FUSE_POR3 are XOR’ed into the FUSE_POR_XOR bit. The FUSE_POR_XOR has to be 1 for fuses to be loaded. This can be achieved by setting any one or all of the FUSE_PORx bits. In MMPF0100A, the XOR function is removed. It is required to set all of the FUSE_PORx bits to be able to load the fuses. Table 138. Extended Page 2 BITS[7:0] Address Register name TYPE Default 7 6 5 4 3 2 1 0 RSVD RSVD RSVD RSVD RSVD SW1AB_PWRSTG[2:0] 81 SW1AB PWRSTG R/W 8'b1111_1111 1 1 1 1 1 1 1 1 PWRSTGRSVD 82 PWRSTG RSVD R 8'b0000_0000 0 0 0 0 0 0 0 0 RSVD RSVD RSVD RSVD RSVD SW1C_PWRSTG[2:0] 83 SW1C PWRSTG R 8'b1111_1111 1 1 1 1 1 1 1 1 RSVD RSVD RSVD RSVD RSVD SW2_PWRSTG[2:0] 84 SW2 PWRSTG R 8'b1111_1111 1 1 1 1 1 1 1 1 RSVD RSVD RSVD RSVD RSVD SW3A_PWRSTG[2:0] 85 SW3A PWRSTG R 8'b1111_1111 1 1 1 1 1 1 1 1 RSVD RSVD RSVD RSVD RSVD SW3B_PWRSTG[2:0] 86 SW3B PWRSTG R 8'b1111_1111 1 1 1 1 1 1 1 1 FSLEXT_ PWRGD_ THERM_ SHDWN_ RSVD RSVD RSVD SW4_PWRSTG[2:0] 87 SW4 PWRSTG R 8'b0111_1111 DISABLE DISABLE 0 0 1 1 1 1 1 1 OTP_ – – – – – – PWRGD_EN PWRCTRL OTP SHDWN_EN 88 R/W 8'b0000_0001 CTRL 0 0 0 0 0 0 0 1 I2C_WRITE_ADDRESS_TRAP[7:0] I2C WRITE 8D R/W 8'b0000_0000 ADDRESS TRAP 0 0 0 0 0 0 0 0 PF0100 NXP Semiconductors 115
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 138. Extended Page 2 (continued) BITS[7:0] Address Register name TYPE Default 7 6 5 4 3 2 1 0 LET_IT_ ROLL RSVD RSVD I2C_TRAP_PAGE[4:0] 8E I2C TRAP PAGE R/W 8'b0000_0000 0 0 0 0 0 0 0 0 I2C_WRITE_ADDRESS_COUNTER[7:0] 8F I2C TRAP CNTR R/W 8'b0000_0000 0 0 0 0 0 0 0 0 SDA_DRV[1:0] SDWNB_DRV[1:0] INTB_DRV[1:0] RESETBMCU_DRV[1:0] 90 IO DRV R/W 8'b00xx_xxxx 0 0 x x x x x x AUTO_ECC AUTO_ECC AUTO_ECC_B AUTO_ECC AUTO_ECC_B – – – _BANK5 _BANK4 ANK3 _BANK2 ANK1 DO OTP AUTO ECC0 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 AUTO_ECC_B AUTO_ECC AUTO_ECC_B AUTO_ECCBA AUTO_ECC_B – – – ANK10 _BANK9 ANK8 NK7 ANK6 D1 OTP AUTO ECC1 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 RSVD D8 (84) Reserved – 8'b0000_0000 0 0 0 0 0 0 0 0 RSVD D9 (84) Reserved – 8'b0000_0000 0 0 0 0 0 0 0 0 ECC1_EN_ ECC1_CALC_ ECC1_CIN_TBB[5:0] TBB CIN E1 OTP ECC CTRL1 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ECC2_EN_ ECC2_CALC_ ECC2_CIN_TBB[5:0] TBB CIN E2 OTP ECC CTRL2 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ECC3_EN_ ECC3_CALC_ ECC3_CIN_TBB[5:0] TBB CIN E3 OTP ECC CTRL3 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ECC4_EN_ ECC4_CALC_ ECC4_CIN_TBB[5:0] TBB CIN E4 OTP ECC CTRL4 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ECC5_EN_ ECC5_CALC_ ECC5_CIN_TBB[5:0] TBB CIN E5 OTP ECC CTRL5 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ECC6_EN_ ECC6_CALC_ ECC6_CIN_TBB[5:0] TBB CIN E6 OTP ECC CTRL6 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ECC7_EN_ ECC7_CALC_ ECC7_CIN_TBB[5:0] TBB CIN E7 OTP ECC CTRL7 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ECC8_EN_ ECC8_CALC_ ECC8_CIN_TBB[5:0] TBB CIN E8 OTP ECC CTRL8 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 PF0100 116 NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS Table 138. Extended Page 2 (continued) BITS[7:0] Address Register name TYPE Default 7 6 5 4 3 2 1 0 ECC9_EN_ ECC9_CALC_ ECC9_CIN_TBB[5:0] TBB CIN E9 OTP ECC CTRL9 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ECC10_EN_T ECC10_CALC ECC10_CIN_TBB[5:0] BB _CIN EA OTP ECC CTRL10 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ANTIFUSE1_E ANTIFUSE1_L ANTIFUSE1_R – – – – BYPASS1 N OAD W F1 OTP FUSE CTRL1 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ANTIFUSE2_E ANTIFUSE2_L ANTIFUSE2_R – – – – BYPASS2 N OAD W F2 OTP FUSE CTRL2 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ANTIFUSE3_E ANTIFUSE3_L ANTIFUSE3_R – – – – BYPASS3 N OAD W F3 OTP FUSE CTRL3 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ANTIFUSE4_E ANTIFUSE4_L ANTIFUSE4_R – – – – BYPASS4 N OAD W F4 OTP FUSE CTRL4 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ANTIFUSE5_E ANTIFUSE5_L ANTIFUSE5_R – – – – BYPASS5 N OAD W F5 OTP FUSE CTRL5 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ANTIFUSE6_E ANTIFUSE6_L ANTIFUSE6_R – – – – BYPASS6 N OAD W F6 OTP FUSE CTRL6 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ANTIFUSE7_E ANTIFUSE7_L ANTIFUSE7_R – – – – BYPASS7 N OAD W F7 OTP FUSE CTRL7 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ANTIFUSE8_E ANTIFUSE8_L ANTIFUSE8_R – – – – BYPASS8 N OAD W F8 OTP FUSE CTRL8 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ANTIFUSE9_E ANTIFUSE99_ ANTIFUSE9_R – – – – BYPASS9 N LOAD W F9 OTP FUSE CTRL9 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 ANTIFUSE10_ ANTIFUSE10_ ANTIFUSE10_ – – – – BYPASS10 EN LOAD RW FA OTP FUSE CTRL10 R/W 8'b0000_0000 0 0 0 0 0 0 0 0 Notes 84. Do not write in reserved registers. PF0100 NXP Semiconductors 117
TYPICAL APPLICATIONS 7 Typical applications 7.1 Introduction Figure 35 provides a typical application diagram of the PF0100 PMIC together with its functional components. For details on component references and additional components such as filters, refer to the individual sections. 7.1.1 Application diagram VIN1 1.0uF PF0100 SW1FB SW1AB Output 2.2uF VGVEINN11 V10G0EmNA1 SiSnWgl1eA/D/Bua l DOri/vPe SSWW11AALINX Vin 4.7uF 1.0uH 4.7uF VGEN2 V25G0EmNA2 25B0u0 cmkA O/P SW1BLX 2 x22uF VIN2 Drive SW1BIN 21..20uuFF VGEVNIN32 V10G0EmNA3 SW1CLX Vin 4.7uF 1.0uHSW1C Output O/P 4.7uF VGEN4 V35G0EmNA4 20SB0Wu0 c1mkCA Drive SSWW11CCFINB Vin 4.7uF 3 x 22uF 1.0uF VIN3 VIN3 Core Control logic SW1VSSSNS 22..22uuFF VVGGEENN56 V2V10G0G00EEmmNNAA65 Initialization State Machine 20BS0u0W cm2k A DOri/vPe SSSSWWWW2222FLIINNXB Vin 4.7uF 1.0uHSW2 Ou3t pxu 2t2uF OTP Supplies SW3AFB VDVDDIODOTP VDDOTP Control SW3A/B DOri/vPe SSWW33AAILNX Vin 4.7uF 1.0uH SW32A x O2u2tupFut VDDIO CONTROL Single/Dual 4.7k 4.7k 0.1uF InteI2rCfa ce 25BD0u0D cRmkA DOri/vPe SSWW33BBLINX 1.0uH 2 x 22uF SCL MTCoU SDA DVS CONTROL SW3BFB Vin 4.7uF SW3B Output DVS Control SW3VSSSNS SW4FB SW4 SW4IN Vin 4.7uF SW4 Output 2210unFF VVCCOORREERDEIGF RemIg2aisCpt er Trim-In-Package 10B0u0 cmkA DOri/vPe GSWND4RLXEF1 2.2uHVin 101u.F0uH 3 x 22uF Reference Clocks and SWBSTLX SWBST 1uF VCORE Generation resets S60W0B mSAT DOri/vPe SWBSTIN Vin Output GNDREF Boost SWBSTFB 2.2uF 2 x 22uF 1uF VREFDDR VSW3A VINREFDDR 100nF Clocks VHALF 32kHz and 16MHz Package Pin Legend 100nF Output Pin Input Pin Bi-directional Pin Vin VIN 1uF LICELL CLhia Crgeellr SBuopefps tl y 100nF VSNVS Coin Cell Battery VSNVS 0.47uF ICTEST VS100kW2PWRON STANDBY RESETBMCUV100kSW2SDWNB V100kSW2INTB V100kSW2 To/From AP Figure 35. Typical application schematic PF0100 118 NXP Semiconductors
TYPICAL APPLICATIONS 7.1.2 Bill of materials The following table provides a complete list of the recommended components on a full featured system using the PF0100 Device for -40 °C to 85 °C applications. Components are provided with an example part number; equivalent components may be used. Table 139. Bill of materials -40 °C to 85 °C applications (85) Value Qty Description Part# Manufacturer Component/pin PMIC 1 Power management IC MMPF0100 Freescale Buck, SW1AB - (0.300-1.875 V), 2.5 A 2.5 x 2 x 1.2 1.0 μH 1 I = 3.4 A for 10% drop, DFE252012R-H-1R0M TOKO INC. Output inductor SAT DCR = 49 mΩ MAX 22 μH 4 10 V X5R 0603 GRM188R61A226ME15 Murata Output capacitance 4.7 μF 2 10 V X5R 0402 GRM155R61A475MEAA Murata Input capacitance 0.1 μF 1 10 V X5R 0201 GRM033R61A104ME84 Murata Input capacitance Buck, SW1C - (0.300-1.875 V), 2.0 A 2.5 x 2 x 1.2 1.0 μH 1 I = 3.0 A for 10% drop, DFE252012C-1R0M TOKO INC. Output inductor SAT DCR = 59 mΩ MAX 22 μF 3 10 V X5R 0603 GRM188R61A226ME15 Murata Output capacitance 4.7 μF 1 10 V X5R 0402 GRM155R61A475MEAA Murata Input capacitance 0.1 μF 1 10 V X5R 0201 GRM033R61A104ME84 Murata Input capacitance Buck, SW2 - (0.400-3.300 V), 2.0 A 2.5 x 2 x 1.2 1.0 μH 1 I = 3.0 A for 10% drop, DFE252012C-1R0M TOKO INC. Output inductor SAT DCR = 59 mΩ MAX 22 μF 3 10 V X5R 0603 GRM188R61A226ME15 Murata Output capacitance 4.7 μF 1 10 V X5R 0402 GRM155R61A475MEAA Murata Input capacitance 0.1 μF 1 10 V X5R 0201 GRM033R61A104ME84 Murata Input capacitance Buck, SW3AB - (0.400-3.300 V), 2.5 A 2.5 x 2 x 1.2 1.0 μH 1 I = 3.4 A for 10% drop, DFE252012R-1R0M TOKO INC. Output inductor SAT DCR = 49 mΩ MAX 22 μF 3 10 V X5R 0603 GRM188R61A226ME15 Murata Output capacitance 4.7 μF 2 10 V X5R 0402 GRM155R61A475MEAA Murata Input capacitance 0.1 μF 1 10 V X5R 0201 GRM033R61A104ME84 Murata Input capacitance Buck, SW4 - (0.400-3.300V), 1.0 A 2 x 1.6 x 0.9 1.0 μH 1 I = 2.0 A for 30% drop, LQM2MPN1R0MGH Murata Output inductor SAT DCR = 80 mΩ MAX 22 μF 3 10 V X5R 0603 GRM188R61A226ME15 Murata Output capacitance 4.7 μF 2 10 V X5R 0402 GRM155R61A475MEAA Murata Input capacitance 0.1 μF 1 10 V X5R 0201 GRM033R61A104ME84 Murata Input capacitance PF0100 NXP Semiconductors 119
TYPICAL APPLICATIONS Table 139. Bill of materials -40 °C to 85 °C applications (continued) (85) Value Qty Description Part# Manufacturer Component/pin BOOST, SWBST - 5.0 V, 600 mA 2 x 1.6 x 1 2.2 μH 1 DFE201610E-2R2M TOKO INC. Output inductor I = 2.4 A for 10% drop SAT 22 μF 2 10 V X5R 0603 GRM188R61A226ME15D Murata Output capacitance 10 μF 3 10 V X5R 0402 GRM155R61A106ME11 Murata Input capacitance 2.2 μF 1 10 V X5R 0201 GRM033R61A225ME47 Murata Input capacitance 0.1 μF 1 10 V X5R 0201 GRM033R61A104KE84 Murata Input capacitance 1.0 A 1 DIODE SCH PWR RECT 1.0 A 20V SMT MBR120LSFT3G ON Semiconductor Schottky diode LDO, VGEN1, 2, 3, 4, 5, 6 4.7 μF 1 10 V X5R 0402 GRM155R61A475MEAA Murata VGEN2,4 output capacitors 2.2 μF 1 10 V X5R 0201 GRM033R61A225ME47 Murata VGEN1,3,5,6 output capacitors 1.0 μF 1 10 V X5R 0402 GRM033R61A105ME44 Murata VGEN1,2,3,4,5,6 input capacitors Miscellaneous VCORE, VCOREDIG, 1.0 μF 1 10 V X5R 0402 GRM033R61A105ME44 Murata VREFDDR, VINREFDDR, VIN capacitors 0.22 μF 1 10 V X5R 0201 GRM033R61A224ME90 Murata VCOREREF output capacitor 0.47 μF 1 10 V X5R 0201 GRM033R61A474ME90 Murata VSNVS output capacitor 0.1 μF 1 10 V X5R 0201 GRM033R61A104KE84 Murata VHALF, VINREFDDR, VDDIO, LICELL capacitors 100 kΩ 2 RES MF 100 k 1/16 W 1% 0402 RC0402FR-07100KL Yageo America Pull-up resistors 4.7 kΩ 2 RES MF 4.70K 1/20W 1% 0201 RC0201FR-074K7L Yageo America I2C pull-up resistors Notes 85. NXP does not assume liability, endorse, or warrant components from external manufacturers referenced in circuit drawings or tables. While NXP offers component recommendations in this configuration, it is the customer’s responsibility to validate their application. PF0100 120 NXP Semiconductors
TYPICAL APPLICATIONS The following table provides a complete list of the recommended components on a full featured system using the PF0100 Device for -40 °C to 105 °C applications. Components are provided with an example part number; equivalent components may be used. Table 140. Bill of materials -40 °C to 105 °C applications (86) Value Qty Description Part# Manufacturer Component/pin PMIC 1 Power management IC MMPF0100 Freescale Buck, SW1AB - (0.300-1.875 V), 2.5 A 2.5 x 2 x 1.2 1.0 μH 1 I = 3.4 A for 10% drop DFE252012R-H-1R0M TOKO INC. Output inductor SAT DCR = 49 mΩ MAX 22 μH 4 10 V X7T 0805 GRM21BD71A226ME44 Murata Output capacitance 4.7 μF 2 10 V X7S 0603 GRM188C71A475KE11 Murata Input capacitance 0.1 μF 1 10 V X7S 0201 GRM033C71A104KE14 Murata Input capacitance Buck, SW1C - (0.300-1.875 V), 2.0 A 2 x 1.6 x 1 1.0 μH 1 DFE201610E-1R0M TOKO INC. Output inductor I = 2.9 A for 10% drop SAT 22 μF 3 10 V X7T 0805 GRM21BD71A226ME44 Murata Output capacitance 4.7 μF 1 10 V X7S 0603 GRM188C71A475KE11 Murata Input capacitance 0.1 μF 1 10 V X7S 0201 GRM033C71A104KE14 Murata Input capacitance Buck, SW1ABC - (0.300-1.875 V), 4.5 A 4.2 x 4.2 x 2 1.0 μH 1 I = 5.1 A for 10% drop, FDSD0420-H-1R0M TOKO INC. Output inductor SAT DCR = 29 mΩ MAX 22 μF 6 10 V X7T 0805 GRM21BD71A226ME44 Murata Output capacitance 4.7 μF 2 10 V X7S 0603 GRM188C71A475KE11 Murata Input capacitance 0.1 μF 1 10 V X7S 0201 GRM033C71A104KE14 Murata Input capacitance Buck, SW2 - (0.400-3.300 V), 2.0 A 2 x 1.6 x 1 1.0 μH 1 DFE201610E-1R0M TOKO INC. Output inductor I = 2.9 A for 10% drop SAT 22 μF 3 10 V X7T 0805 GRM21BD71A226ME44 Murata Output capacitance 4.7 μF 1 10 V X7S 0603 GRM188C71A475KE11 Murata Input capacitance 0.1 μF 1 10 V X7S 0201 GRM033C71A104KE14 Murata Input capacitance Buck, SW3AB - (0.400-3.300 V), 2.5 A 2 x 1.6 x 1 1.0 μH 1 DFE201610E-1R0M TOKO INC. Output inductor I = 2.9 A for 10% drop SAT 22 μF 3 10 V X7T 0805 GRM21BD71A226ME44 Murata Output capacitance 4.7 μF 1 10 V X7S 0603 GRM188C71A475KE11 Murata Input capacitance 0.1 μF 1 10 V X7S 0201 GRM033C71A104KE14 Murata Input capacitance Buck, SW4 - (0.400-3.300V), 1.0 A 2 x 1.6 x 1 1.0 μH 1 DFE201610E-1R0M Murata Output inductor I = 2.9 A for 30% drop SAT 22 μF 3 10 V X7T 0805 GRM21BD71A226ME44 Murata Output capacitance 4.7 μF 1 10 V X7S 0603 GRM188C71A475KE11 Murata Input capacitance 0.1 μF 1 10 V X7S 0201 GRM033C71A104KE14 Murata Input capacitance PF0100 NXP Semiconductors 121
TYPICAL APPLICATIONS Table 140. Bill of materials -40 °C to 105 °C applications (continued) (86) Value Qty Description Part# Manufacturer Component/pin BOOST, SWBST - 5.0 V, 600 mA 2 x 1.6 x 1 2.2 μH 1 DFE201610E-2R2M TOKO INC. Output inductor I = 2.4 A for 10% drop SAT 22 μF 2 10 V X7T 0805 GRM21BD71A226ME44 Murata Output capacitance 10 μF 3 10 V X7T 0603 GRM188D71A106MA73 Murata Input capacitance 2.2 μF 1 10 V X7S 0402 GRM155C71A225KE11 Murata Input capacitance 0.1 μF 1 10 V X7S 0201 GRM033C71A104KE14 Murata Input capacitance 1.0 A 1 DIODE SCH PWR RECT 1A 20V SMT MBR120LSFT3G ON Semiconductor Schottky diode LDO, VGEN1, 2, 3, 4, 5, 6 4.7 μF 1 10 V X7S 0603 GRM188C71A475KE11 Murata VGEN2,4 output capacitors 2.2 μF 1 10 V X7S 0402 GRM155C71A225KE11 Murata VGEN1,3,5,6 output capacitors 1.0 μF 1 10 V X7S 0402 GRM155C71A105KE11 Murata VGEN1,2,3,4,5,6 input capacitors Miscellaneous VCORE, VCOREDIG, 1.0 μF 1 10 V X7S 0402 GRM155C71A105KE11 Murata VREFDDR, VINREFDDR, VIN capacitors 0.22 μF 1 10 V X7R 0402 GRM155R71A224KE01 Murata VCOREREF output capacitor 0.47 μF 1 10 V X7R 0402 GRM155R71A474KE01 Murata VSNVS output capacitor 0.1 μF 1 10 V X7S 0201 GRM033C71A104KE14 Murata VHALF, VINREFDDR, VDDIO, LICELL capacitors 100 kΩ 2 RES MF 100 k 1/16 W 1% 0402 RC0402FR-07100KL Yageo America Pull-up resistors 4.7 kΩ 2 RES MF 4.70K 1/20W 1% 0201 RC0201FR-074K7L Yageo America I2C pull-up resistors Notes 86. NXP does not assume liability, endorse, or warrant components from external manufacturers referenced in circuit drawings or tables. While NXP offers component recommendations in this configuration, it is the customer’s responsibility to validate their application. PF0100 122 NXP Semiconductors
TYPICAL APPLICATIONS 7.2 PF0100 layout guidelines 7.2.1 General board recommendations 1. It is recommended to use an eight layer board stack-up arranged as follows: • High current signal • GND • Signal • Power • Power • Signal • GND • High current signal 2. Allocate TOP and BOTTOM PCB Layers for POWER ROUTING (high current signals), copper-pour the unused area. 3. Use internal layers sandwiched between two GND planes for the SIGNAL routing. 7.2.2 Component placement It is desirable to keep all component related to the power stage as close to the PMIC as possible, specially decoupling input and output capacitors. 7.2.3 General routing requirements 1. Some recommended things to keep in mind for manufacturability: • Via in pads require a 4.5 mil minimum annular ring. Pad must be 9.0 mils larger than the hole • Maximum copper thickness for lines less than 5.0 mils wide is 0.6 oz copper • Minimum allowed spacing between line and hole pad is 3.5 mils • Minimum allowed spacing between line and line is 3.0 mils 2. Care must be taken with SWxFB pins traces. These signals are susceptible to noise and must be routed far away from power, clock, or high power signals, like the ones on the SWxIN, SWx, SWxLX, SWBSTIN, SWBST, and SWBSTLX pins. They could be also shielded. 3. Shield feedback traces of the regulators and keep them as short as possible (trace them on the bottom so the ground and power planes shield these traces). 4. Avoid coupling traces between important signal/low noise supplies (like REFCORE, VCORE, VCOREDIG) from any switching node (i.e. SW1ALX, SW1BLX, SW1CLX, SW2LX, SW3ALX, SW3BLX, SW4LX, and SWBSTLX). 5. Make sure all components related to a specific block are referenced to the corresponding ground. 7.2.4 Parallel routing requirements 1. I2C signal routing • CLK is the fastest signal of the system, so it must be given special care. • To avoid contamination of these delicate signals by nearby high power or high frequency signals, it is a good practice to shield them with ground planes placed on adjacent layers. Make sure the ground plane is uniform throughout the whole signal trace length. PF0100 NXP Semiconductors 123
TYPICAL APPLICATIONS Figure 36. Recommended shielding for critical signals • These signals can be placed on an outer layer of the board to reduce their capacitance with respect to the ground plane. • Care must be taken with these signals not to contaminate analog signals, as they are high frequency signals. Another good practice is to trace them perpendicularly on different layers, so there is a minimum area of proximity between signals. 7.2.5 Switching regulator layout recommendations 1. Per design, the switching regulators in PF0100 are designed to operate with only one input bulk capacitor. However, it is recommended to add a high frequency filter input capacitor (CIN_hf), to filter out any noise at the regulator input. This capacitor should be in the range of 100 nF and should be placed right next to or under the IC, closest to the IC pins. 2. Make high-current ripple traces low-inductance (short, high W/L ratio). 3. Make high-current traces wide or copper islands. 4. Make high-current traces symetrical for dual–phase regulators (SW1, SW3). VIN SWxIN CIN_HF CIN SWxLX SWx Driver Controller L COUT SWxFB Compensation Figure 37. Generic buck regulator architecture PF0100 124 NXP Semiconductors
TYPICAL APPLICATIONS Figure 38. Layout example for buck regulators 7.3 Thermal information 7.3.1 Rating data The thermal rating data of the packages has been simulated with the results listed in Table 6. Junction to ambient thermal resistance nomenclature: the JEDEC specification reserves the symbol R or θJA (Theta-JA) strictly for θJA junction-to-ambient thermal resistance on a 1s test board in natural convection environment. R or θJMA (Theta-JMA) is used for both θJMA junction-to-ambient on a 2s2p test board in natural convection and for junction-to-ambient with forced convection on both 1s and 2s2p test boards. It is anticipated the generic name, Theta-JA, continues to be commonly used. The JEDEC standards can be consulted at http://www.jedec.org. 7.3.2 Estimation of junction temperature An estimation of the chip junction temperature T can be obtained from the equation: J T = T + (R x P ) J A θJA D with: T = Ambient temperature for the package in °C A RθJA = Junction to ambient thermal resistance in °C/W P = Power dissipation in the package in W D The junction to ambient thermal resistance is an industry standard value providing a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board R and the value obtained on a four θJA layer board R . Actual application PCBs show a performance close to the simulated four layer board value although this may be θJMA somewhat degraded in case of significant power dissipated by other components placed close to the device. At a known board temperature, the junction temperature T is estimated using the following equation J T = T + (R x P ) with J B θJB D T = Board temperature at the package perimeter in °C B R = Junction to board thermal resistance in °C/W θJB P = Power dissipation in the package in W D When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. See 6 Functional block requirements and behaviors, page 18 for more details on thermal management. PF0100 NXP Semiconductors 125
PACKAGING 8 Packaging 8.1 Packaging dimensions Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and perform a keyword search for the drawing’s document number. See the 4.2 Thermal characteristics, page 11 section for specific thermal characteristics for each package. Table 141. Package drawing information Package Suffix Package outline drawing number 56 QFN 8x8 mm - 0.5 mm pitch. E-Type (full lead) EP 98ASA00405D 56 QFN 8x8 mm - 0.5 mm pitch. WF-Type (wettable flank) ES 98ASA00589D PF0100 126 NXP Semiconductors
PACKAGING PF0100 NXP Semiconductors 127
PACKAGING PF0100 128 NXP Semiconductors
PACKAGING PF0100 NXP Semiconductors 129
PACKAGING PF0100 130 NXP Semiconductors
PACKAGING PF0100 NXP Semiconductors 131
PACKAGING PF0100 132 NXP Semiconductors
REFERENCE SECTION 9 Reference section 9.1 Reference documents Table 142. PF0100 reference documents Reference Description AN4536 MMPF0100 OTP programming instructions PF0100 NXP Semiconductors 133
REVISION HISTORY 10 Revision history Revision Date Description of Changes 1.0 7/2011 • Preliminary specification release 2.0 8/2012 • NPI phase: prototype major updates throughout cycle 3.0 10/2012 • Initial production release 4.0 5/2013 • Table 4. Added recommended pin connection when regulators are unused • Update Table 9. Current Consumption summary • Table 10. Removed VREFDDR_VOLT row • Removed automatic fuse programming feature • Updated Max frequency specification for the 16 MHz clock to 17.2 MHz • Table 17. Added specification for derived 2.0 Mhz clock • Added Clock adjustment • Table 22. Updated VREFDDR minimum Current limit specification • Updated Block diagram for all Switching Regulators • Updated current limit and overcurrent protection minimum specification on LDOS • Table 111. Update VTH0 and VTL0 specification on VSNVS • Updated Table 137, Address FF • Updated Table 138, address D8 and D9 • Update Figure 35. Typical application diagram • Removed Part Identification section 5.0 7/2013 • Added part numbers to the ordering information for the MMPF0100A • Added corrections and notes to the document to accomodate the new part numbers, where identified by MMPF0100A • VIN threshold (coin cell powered to VIN powered) Max. changed to 3.1 6.0 8/2013 • Removed LICELL connection to VIN on PF0100A • Removed 4.7 μF LICELL bypass capacitor as coin cell replacement 7.0 12/2013 • Updated typical and max Off Current • Add bypass capacitor in VDDIO • Added industrial part numbers PMPF0100xxANES • Added parts F3 and F4 • Added Table 3, Ambient temperature range and updated specification headers accordingly. • Increased max standby and sleep currents on Extended Industrial parts. • Update output accuracy on SW1A/B, SW1C, SW2, SW3A/B and SW4. • Corrected the default value on DEVICEID register, bit4 (unused) from 0 to 1. • Corrected default register values on Table 118. • Added VDDIO capacitor to Miscellaneous in the BOM 8.0 4/2014 • Corrected VDDOTP maximum rating • Corrected SWBSTFB maximum rating • Corrected inductor Isat for SW1ABC single phase mode from 4.5 A to 6.0 A • Added note to clarify SWBST default operation in Auto mode • Corrected default value of bits in SILICONREVID register in Table 136 • Changed VSNVS current limit for PF0100A • Noted that voltage settings 0.6V and below are not supported • VSNVS Turn On Delay (td1) spec corrected from 15 ms to 5.0 ms • Updated per GPCN 16298 6/2014 • Corrected GPCN number in the revision history table (16220 changed to 16298) 9.0 7/2014 • Updated VTL1, VTH1, and VSNVSCROSS threshold specifications • Added F6 part • Changes documented in GPCN 16369 • Added new part numbers MMPF0100F9ANES and MMPF0100FAANES to Table 1 10.0 7/2015 • Updated Table 10 11.0 8/2015 • Removed MMPF0100F3EP and MMPF0100F4EP from Orderable Parts table PF0100 134 NXP Semiconductors
REVISION HISTORY Revision Date Description of Changes • Updated Table 53 • Updated Table 62 • Updated Table 77 • Updated Table 86 • Fixed typo in Table 138 • Updated Table 139 • Added Table 140 12.0 9/2015 • Corrected the default register value for SW1ABMODE in Table 46 • Corrected the default register value for SW1CMODE in Table 51 • Corrected the default register value for SW2MODE in Table 60 • Corrected the default register value for SW3AMODE in Table 70 • Corrected the default register value for SW3BMODE in Table 75 • Corrected the default register value for SW4MODE in Table 84 • Updated Figure 35 • Removed MMPF0100NPEP, MMPF0100F0EP, MMPF0100F1EP, and MMPF0100F2EP from Orderable Part Variations. No longer manufactured. 13.0 12/2015 • Updated Table 10 • Reformatted to newer template form and style 14.0 3/2016 • Updated SW2 current capability from 2000 mA to 2500 mA for F9/FA versions 15.0 5/2016 • Changed Table 10 row - Default I2C Address from 0x80 to 0x08 for F9 and FA • Added NP version to OTP's with SW2 current capability of 2500 mA 16.0 9/2016 • Added MMPF0100FBANES part number to Table 1 • Added FB OTP option to Table 10 • Added MMPF0100FCAEP, MMPF0100FDAEP, and MMPF0100FCANES part numbers to Table 1 17.0 1/2017 • Added OTP configurations for FC and FD to Table 10 PF0100 NXP Semiconductors 135
How to Reach Us: Information in this document is provided solely to enable system and software implementers to use NXP products. Home Page: There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits NXP.com based on the information in this document. NXP reserves the right to make changes without further notice to any Web Support: products herein. http://www.nxp.com/support NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: http://www.nxp.com/terms-of-use.html. NXP, the NXP logo, Freescale, the Freescale logo and SMARTMOS are trademarks of NXP Semiconductors N.V. All other product or service names are the property of their respective owners. All rights reserved. © NXP Semiconductors N.V. 2017 Document Number: MMPF0100 Rev. 17.0 1/2017