ICGOO在线商城 > 传感器,变送器 > 运动传感器 - 加速计 > MMA7455LT
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
MMA7455LT产品简介:
ICGOO电子元器件商城为您提供MMA7455LT由Freescale Semiconductor设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 MMA7455LT价格参考。Freescale SemiconductorMMA7455LT封装/规格:运动传感器 - 加速计, Accelerometer X, Y, Z Axis ±2g, 4g, 8g 62.5Hz ~ 125Hz 14-LGA (3x5)。您可以下载MMA7455LT参考资料、Datasheet数据手册功能说明书,资料中有MMA7455LT 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
描述 | IC ACCELEROMETER 3AXIS 14-LGA加速计 3-AXIS DIGITAL 2 4 8G |
产品分类 | 加速计运动与定位传感器 |
品牌 | Freescale Semiconductor |
产品手册 | |
产品图片 | |
rohs | RoHS 合规性豁免含铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 加速计,Freescale Semiconductor MMA7455LT- |
数据手册 | |
产品型号 | MMA7455LT |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=20499 |
产品目录绘图 | |
产品目录页面 | |
产品种类 | 加速计 |
传感轴 | X, Y, Z |
供应商器件封装 | 14-LGA(3x5) |
加速 | 2 g, 4 g, 8 g |
加速度范围 | ±2g, 4g, 8g |
单位重量 | 33 mg |
商标 | Freescale Semiconductor |
安装类型 | 表面贴装 |
封装 | Tray |
封装/外壳 | 14-VFLGA |
封装/箱体 | LGA-14 |
工厂包装数量 | 2500 |
带宽 | 6kHz - XY,3.4kHz - Z |
接口 | I²C, SPI |
最大工作温度 | + 85 C |
最小工作温度 | - 40 C |
标准包装 | 2,500 |
灵敏度 | 64 LSB/g |
特色产品 | http://www.digikey.com/cn/zh/ph/Freescale/MMA7455.html |
电压-电源 | 2.4 V ~ 3.6 V |
电源电压-最大 | 3.6 V |
电源电压-最小 | 2.4 V |
电源电流 | 400 uA |
系列 | MMA745xL |
轴 | X,Y,Z |
输出类型 | Digital |
Freescale Semiconductor Document Number: MMA7455L Technical Data Rev 10, 12/2009 ±2g/±4g/±8g Three Axis Low-g Digital Output Accelerometer MMA7455L The MMA7455L is a Digital Output (I2C/SPI), low power, low profile capacitive micromachined accelerometer featuring signal conditioning, a low pass filter, temperature compensation, self-test, configurable to detect 0g through interrupt pins (INT1 or INT2), and pulse detect for quick motion detection. 0g offset and sensitivity are factory set and require no external MMA7455L: XYZ-AXIS devices. The 0g offset can be customer calibrated using assigned 0g registers ACCELEROMETER and g-Select which allows for command selection for 3 acceleration ranges ±2g/±4g/±8g (2g/4g/8g). The MMA7455L includes a Standby Mode that makes it ideal for handheld battery powered electronics. Features • Digital Output (I2C/SPI) Bottom View • 3mm x 5mm x 1mm LGA-14 Package • Self-Test for Z-Axis • Low Voltage Operation: 2.4 V – 3.6 V • User Assigned Registers for Offset Calibration • Programmable Threshold Interrupt Output • Level Detection for Motion Recognition (Shock, Vibration, Freefall) • Pulse Detection for Single or Double Pulse Recognition • Sensitivity (64 LSB/g @ 2g and @ 8g in 10-Bit Mode) 14 LEAD • Selectable Sensitivity (±2g, ±4g, ±8g) for 8-bit Mode LGA • Robust Design, High Shocks Survivability (5,000g) CASE 1977-01 • RoHS Compliant • Environmentally Preferred Product • Low Cost Top View Typical Applications • Cell Phone/PMP/PDA: Image Stability, Text Scroll, Motion Dialing, C P Tap to Mute L/S C • HDD: Freefall Detection S • Laptop PC: Freefall Detection, Anti-Theft 4 1 • Pedometer DVDD_IO 1 13 SDA/SDI/SDO • Motion Sensing, Event Recorder GND 2 12 SDO N/C 3 11 N/C ORDERING INFORMATION IADDR0 4 10 N/C GND 5 9 INT2 Part Number Temperature Range Package Shipping AVDD 6 8 INT1/DRDY MMA7455LT –40 to +85°C LGA-14 Tray 7 MMA7455LR1 –40 to +85°C LGA-14 7” Tape & Reel CS MMA7455LR2 –40 to +85°C LGA-14 13” Tape & Reel Figure1. Pin Connections This document contains certain information on a new product. Specifications and information herein are subject to change without notice. © Freescale Semiconductor, Inc., 2007-2009. All rights reserved.
Contents ELECTRO STATIC DISCHARGE (ESD) ......................................................................................................................................6 PRINCIPLE OF OPERATION ......................................................................................................................................................8 FEATURES ..................................................................................................................................................................................9 Self-Test .........................................................................................................................................................................9 g-Select ..........................................................................................................................................................................9 Standby Mode ................................................................................................................................................................9 Measurement Mode .......................................................................................................................................................9 LEVEL DETECTION ...................................................................................................................................................................10 $18: Control 1 (Read/Write) Setting the Detection Axes for X, Y and Z .......................................................................10 $19: Control 2 (Read/Write) Motion Detection (OR Condition) or Freefall Detection (AND Condition) ........................10 $18: Control 1 (Read/Write): Setting the threshold to be an integer value or an absolute value .................................10 $1A: Level Detection Threshold Limit Value (Read/Write) ...........................................................................................10 THRESHOLD DETECTION FOR MOTION AND FREEFALL CONDITIONS ............................................................................11 CASE 1: Motion Detection ...........................................................................................................................................11 CASE 2: Motion Detection ...........................................................................................................................................11 CASE 3: Freefall Detection ..........................................................................................................................................11 CASE 4: Freefall Detection ..........................................................................................................................................11 PULSE DETECTION ..................................................................................................................................................................12 $18: Control 1 (Read/Write): Disable X, Y or Z for Pulse Detection .............................................................................12 $19: Control 2 (Read/Write): Motion Detection (OR condition) or Freefall Detection (AND condition) ........................12 CASE 1: Single Pulse Motion Detection: X or Y or Z > Pulse Threshold for Time < Pulse Duration ..........................12 CASE 2: Freefall Detection: X and Y and Z < Pulse Threshold for Time > Latency Time ...........................................13 CASE 3: Double Pulse Detection: X OR Y OR Z > Threshold for Pulse Duration1 < PDTime1, Latency Time, .........14 ASSIGNING, CLEARING & DETECTING INTERRUPTS ..........................................................................................................15 Clearing the Interrupt Pins: Register $17 .....................................................................................................................15 Detecting Interrupts ......................................................................................................................................................16 DIGITAL INTERFACE ................................................................................................................................................................16 I2C Slave Interface .......................................................................................................................................................16 SPI Slave Interface ......................................................................................................................................................18 BASIC CONNECTIONS .............................................................................................................................................................19 Pin Descriptions ...........................................................................................................................................................19 Recommended PCB Layout for Interfacing Accelerometer to Microcontroller .............................................................19 REGISTER DEFINITIONS .........................................................................................................................................................21 SOLDERING AND MOUNTING GUIDELINES FOR THE LGA ACCELEROMETER SENSOR TO A PC BOARD ...................29 MMA7455L Sensors Freescale Semiconductor 2
List of Figures Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Simplified Accelerometer Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Simplified Transducer Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Single Pulse Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Freefall Detection in Pulse Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Double Pulse Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Single Byte Read - The Master is reading one address from the MMA7455L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Multiple Bytes Read - The Master is reading multiple sequential registers from the MMA7455L . . . . . . . . . . . . . . . . . . . . . . .17 Single Byte Write - The Master (MCU) is writing to a single register of the MMA7455L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Multiple Byte Writes - The Master (MCU) is writing to multiple sequential registers of the MMA7455L . . . . . . . . . . . . . . . . . . .17 SPI Timing Diagram for 8-Bit Register Read (4 Wire Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 SPI Timing Diagram for 8-Bit Register Read (3 Wire Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 SPI Timing Diagram for 8-Bit Register Write (3 Wire Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Pinout Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 I2C Connection to MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 SPI Connection to MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Sensing Direction and Output Response at 2g Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Recommended PCB Land Pattern for the 5 x 3 mm LGA Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Incorrect PCB Top Metal Pattern Under Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Correct PCB Top Metal Pattern Under Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Recommended PCB Land Pad, Solder Mask, and Signal Trace Near Package Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Stencil Design Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Temperature Coefficient of Offset (TCO) and Temperature Coefficient of Sensitivity (TCS) Distribution Charts . . . . . . . . . . .32 MMA7455L Current Distribution Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 MMA7455L Sensors Freescale Semiconductor 3
List of Tables Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 $16: Mode Control Register (Read/Write). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Configuring the g-Select for 8-bit output using Register $16 with GLVL[1:0] bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Configuring the Mode using Register $16 with MODE[1:0] bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 THOPT = 0 Absolute; THOPT = 1 Positive Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 $1B: Pulse Detection Threshold Limit Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 $1C: Pulse Duration Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 $1B: Pulse Detection Threshold Limit Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 $1D: Latency Time Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 $1B: Pulse Detection Threshold Limit Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 $1C: Pulse Duration Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 $1D: Latency Time Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 $1E: Time Window for 2nd Pulse Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 $18 Control 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Configuring the Interrupt settings using Register $18 with INTREG[1:0] bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 $17: Interrupt Latch Reset (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 $0A: Detection Source Register (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 User Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 $00: 10bits Output Value X LSB (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 $01: 10bits Output Value X MSB (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 $02: 10bits Output Value Y LSB (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 $03: 10bits Output Value Y MSB (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 $05: 10bits Output Value X MSB (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 $06: 8bits Output Value X (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 $07: 8bits Output Value Y (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 $08: 8bits Output Value Z (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 $09: Status Register (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 $0A: Detection Source Register (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 $0D: I2C Device Address (Bit 6-0: Read only, Bit 7: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 $0E: User Information (Read Only: Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 $0F: “Who Am I” Value (Read only: Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 $10: Offset Drift X LSB (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 $11: Offset Drift X MSB (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 $12: Offset Drift Y LSB (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 $13: Offset Drift Y MSB (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 $14: Offset Drift Z LSB (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 $15: Offset Drift Z MSB (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 $16: Mode Control Register (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Configuring the g-Select for 8-bit output using Register $16 with GLVL[1:0] bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Configuring the Mode using Register $16 with MODE[1:0] bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 $17: Interrupt Latch Reset (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 $18 Control 1 (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Configuring the Interrupt settings using Register $18 with INTREG[1:0] bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 $1B: Pulse Detection Threshold Limit Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 $1C: Pulse Duration Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 $1D: Latency Time Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 $1E: Time Window for 2nd Pulse Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 $1A: Level Detection Threshold Limit Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Acceleration vs. Output (8-bit data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 MMA7455L Sensors Freescale Semiconductor 4
Table1. Pin Descriptions Pin # Pin Name Description Pin Status 1 DVDD_IO Digital Power for I/O pads Input 2 GND Ground Input 3 N/C No internal connection. Leave unconnected or connect to Ground. Input 4 IADDR0 I2C Address Bit 0 (optional)* Input 5 GND Ground Input 6 AVDD Analog Power Input 7 CS SPI Enable (0), I2C Enable (1) Input 8 INT1/DRDY Interrupt 1/ Data Ready Output 9 INT2 Interrupt 2 Output 10 N/C No internal connection. Leave unconnected or connect to Ground. Input 11 N/C Leave unconnected or connect to Ground. Input 12 SDO SPI Serial Data Output Output 13 SDA/SDI/SDO I2C Serial Data (SDA), SPI Serial Data Input (SDI), 3-wire interface Serial Data Output (SDO)Open Drain/Input/Output 14 SCL/SPC I2C Serial Clock (SCL), SPI Serial Clock (SPC) Input *This address selection capability is not enabled at the default state. If the user wants to use it, factory programming is required. If activated (pin4 on the device is active). <$1D= 0001 1101> bit 0 is V on pin 4 DD <$1C=0001 1100> bit 0 is GND on pin 4. If the pin is programmed it cannot be left NC. Figure2. Simplified Accelerometer Functional Block Diagram MMA7455L Sensors Freescale Semiconductor 5
Table2. Maximum Ratings (Maximum ratings are the limits to which the device can be exposed without causing permanent damage.) Rating Symbol Value Unit Maximum Acceleration (all axes) g 5000 g max Analog Supply Voltage AV -0.3 to +3.6 V DD Digital I/O pins Supply Voltage DV -0.3 to +3.6 V DD_IO Drop Test D 1.8 m drop Storage Temperature Range T -40 to +125 °C stg ELECTRO STATIC DISCHARGE (ESD) WARNING: This device is sensitive to electrostatic discharge. Although the Freescale accelerometer contains internal 2000V ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance. MMA7455L Sensors 6 Freescale Semiconductor
Table3. Operating Characteristics Unless otherwise noted: –40°C < T < 85°C, 2.4 V < AV < 3.6 V, Acceleration = 0g, Loaded output. A DD Characteristic Symbol Min Typ Max Unit Analog Supply Voltage Standby/Operation Mode AV 2.4 2.8 3.6 V DD Enable Bus Mode AV 0 V DD Digital I/O Pins Supply Voltage(1) Standby/Operation Mode DVDD_IO 2.4 2.8 3.6 V Enable Bus Mode DVDD_IO 0 V Supply Current Drain Operation Mode I — 400 490 μA DD Pulse Detect Function Mode I — 400 490 μA DD Standby Mode (except data loading and I2C/SPI communication period) I — 2.5 10 μA DD Operating Temperature Range T -40 25 85 °C A 0g Output Signal (T =25°C, AV = 2.8 V) A DD ±2g range (25°C) 8-bit GLVL[1:0]= 0 1 -18 0 18 count ±4g range (25°C) 8-bit GLVL[1:0]= 1 0 -10 0 10 count ±8g range (25°C) 8-bit GLVL[1:0]= 0 0 -5 0 5 count ±8g range (25°C) 10-bit -18 0 18 count Sensitivity (T =25°C, AV = 2.8 V) A DD ±2g range (25°C) 8-bit 58 64 70 count/g ±4g range (25°C) 8-bit 29 32 35 count/g ±8g range (25°C) 8-bit 14.5 16 17.5 count/g ±8g range (25°C) 10-bit 58 64 70 count/g Self-Test Output Response Zout ΔST 32 64 83 count Z Temperature Compensation for Offset T ±3.5 ±0.5 +3.5 mg/°C CO Temperature Sensitivity for Offset T ±0.026 ±0.01 +0.026 mg/°C CS Input High Voltage V 0.7 x DVDD — — V IH Input Low Voltage V — — 0.35 x DVDD V IL Internal Clock Frequency (T = 25°C, AV = 2.8 V) t 140 150 160 kHz A DD CLK SPI Frequency DV < 2.4 V — 4 — MHz DD_IO DV > 2.4 V — 8 — MHz DD_IO Bandwidth for Data Measurement (User Selectable) DFBW 0 — 62.5 — Hz DFBW 1 — 125 — Hz Output Data Rate Output Data Rate is 125 Hz when 62.5 bandwidth is selected. — 125 — Hz Output Data rate is 250 Hz when 125 Hz bandwidth is selected. — 250 — Hz Control Timing Wait Time for I2C/SPI ready after power on t — 1 — ms su Turn On Response Time (Standby to Normal Mode) t — — 20 ms ru Turn Off Response Time (Normal to Standby Mode) t — — 20 ms rd Self-Test Response Time t — — 20 ms st Sensing Element Resonant Frequency XY f — 6.0 — kHz GCELLXY Z f — 3.4 — kHz GCELLZ Nonlinearity (2 g range) -1 — +1 %FS Cross Axis Sensitivity -5 — +5 % 1. It is recommended to tie the analog and digital supply voltages together. MMA7455L Sensors Freescale Semiconductor 7
Table4. Function Parameters for Detection –40°C < T < 85°C, 2.4 V < AV < 3.6 V, unless otherwise specified A DD Characteristic Symbol Min Typ Max Unit Level Detection Detection Threshold Range 0 — FS g Pulse Detection Pulse detection range (Adjustable range) 0.5 — 127 ms Time step for pulse detection — 0.5 — ms Threshold range for pulses 0 — FS g Detection levels for threshold — 127 — Counts Latency timer (Adjustable range) 1 — 150 ms Time Window (Adjustable range) 1 — 250 ms Bandwidth for detecting interrupt* — 600 — Hz Time step for latency timer and time window — 1 — ms Note: The response time is between 10% of full scale V input voltage and 90% of the final operating output voltage. DD *The bandwidth for detecting interrupts in level and pulse is 600Hz which is changed from measurement mode. PRINCIPLE OF OPERATION The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer. The device consists of a surface mi- cromachined capacitive sensing cell (g-cell) and a signal conditioning ASIC contained in a single package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined cap wafer. The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as a set of beams attached to a movable central mass that move between fixed beams. The movable beams can be deflected from their rest position by subjecting the system to an acceleration (Figure3). As the beams attached to the central mass move, the distance from them to the fixed beams on one side will increase by the same amount that the distance to the fixed beams on the other side decreases. The change in distance is a measure of accel- eration. The g-cell beams form two back-to-back capacitors (Figure3). As the center beam moves with acceleration, the distance between the beams changes and each capacitor's value will change, (C = Aε/D). Where A is the area of the beam, ε is the di- electric constant, and D is the distance between the beams. The ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the differ- ence between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a digital output that is proportional to acceleration. Acceleration Figure3. Simplified Transducer Physical Model MMA7455L Sensors 8 Freescale Semiconductor
FEATURES Self-Test The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as hard disk drive protection where system in- tegrity must be ensured over the life of the product. When the self-test function is initiated through the mode control register ($16), accessing the “self-test” bit, an electrostatic force is applied to each axis to cause it to deflect. The Z-axis is trimmed to deflect 1g. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning. g-Select The g-Select feature enables the selection between 3 acceleration ranges for measurement. Depending on the values in the Mode control register ($16), the MMA7455L’s internal gain will be changed allowing it to function with a 2g, 4g or 8g measurement sensitivity. This feature is ideal when a product has applications requiring two or more acceleration ranges for optimum perfor- mance and for enabling multiple functions. The sensitivity can be changed during the operation by modifying the two GLVL bits located in the mode control register. $16: Mode Control Register (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Bit -- DRPD SPI3W STON GLVL[1] GLVL[0] MODE[1] MODE[0] Function 0 0 0 0 0 0 0 0 Default Table5. Configuring the g-Select for 8-bit output using Register $16 with GLVL[1:0] bits GLVL [1:0] g-Range Sensitivity 00 8g 16 LSB/g 01 2g 64 LSB/g 10 4g 32 LSB/g Standby Mode This digital output 3-axis accelerometer provides a standby mode that is ideal for battery operated products. When standby mode is active, the device outputs are turned off, providing significant reduction of operating current. When the device is in standby mode the current will be reduced to 2.5 µA typical. In standby mode the device can read and write to the registers with the I2C/ SPI available, but no new measurements can be taken in this mode as all current consuming parts are off. The mode of the device is controlled through the mode control register by accessing the two mode bits as shown in Table6. Table6. Configuring the Mode using Register $16 with MODE[1:0] bits MODE [1:0] Function 00 Standby Mode 01 Measurement Mode 10 Level Detection Mode 11 Pulse Detection Mode Measurement Mode The device can read XYZ measurements in this mode. The pulse and threshold interrupts are not active. During measurement mode, continuous measurements on all three axes enabled. The g-range for 2g, 4g, or 8g are selectable with 8-bit data and the g-range of 8g is selectable with 10-bit data. The sample rate during measurement mode is 125Hz with 62.5 BW filter selected. The sample rate is 250Hz with the 125 Hz filter selected. Therefore, when a conversion is complete (signaled by the DRDY flag), the next measurement will be ready. When measurements on all three axes are completed, a logic high level is output to the DRDY pin, indicating “measurement data is ready.” The DRDY status can be monitored by the DRDY bit in Status Register (Address: $09). The DRDY pin is kept high until one of the three Output Value Registers are read. If the next measurement data is written before the previous data is read, the DOVR bit in the Status Register will be set. Also note that in measurement mode, level detection mode and pulse detection mode are not available. By default all three axes are enabled. X and/or Y and/or Z can be disabled. There is a choice between detecting an absolute signal or a positive or negative only signal on the enabled axes. There is also a choice between doing a detection for motion where X or Y or Z > Threshold vs. doing a detection for freefall where X & Y & Z < Threshold. MMA7455L Sensors Freescale Semiconductor 9
LEVEL DETECTION The user can access XYZ measurements and can use the level interrupt only. The level detection mechanism has no timers as- sociated with it. Once a set acceleration level is reached the interrupt pin will go high and remain high until the interrupt pin is cleared (See Assigning, Clearing & Detecting Interrupts). By default all three axes are enabled and the detection range is 8g only. X and/or Y and/or Z can be disabled. There is a choice between detecting an Absolute signal or a Positive or Negative only signal on the enabled axes. There is also a choice between doing a detection for Motion where X or Y or Z > Threshold vs. doing a detection for Freefall where X & Y & Z < Threshold. $18: Control 1 (Read/Write) Setting the Detection Axes for X, Y and Z This allows the user to define how many axes to use for detection. All axes are enabled by default. To disable write 1. XDA: Disable X YDA: Disable Y ZDA: Disable Z D7 D6 D5 D4 D3 D2 D1 D0 Reg $18 DFBW THOPT ZDA YDA XDA INTREG[1] INTREG[0] INTPIN Function 0 0 0 0 0 0 0 0 Default $19: Control 2 (Read/Write) Motion Detection (OR Condition) or Freefall Detection (AND Condition) LDPL = 0: Level detection polarity is positive and detecting condition is OR for all 3 axes. X or Y or Z > Threshold ||X|| or ||Y|| or ||Z|| > Threshold LDPL = 1: Level detection polarity is negative detecting condition is AND for all 3 axes. X and Y and Z < Threshold ||X|| and ||Y|| and ||Z|| < Threshold D7 D6 D5 D4 D3 D2 D1 D0 Reg $19 -- -- -- -- -- DRVO PDPL LDPL Function 0 0 0 0 0 0 0 0 Default $18: Control 1 (Read/Write): Setting the threshold to be an integer value or an absolute value This allows the user to set the threshold to be absolute, or to be based on the threshold value as positive or negative. THOPT = 0 Absolute; THOPT = 1 Positive Negative D7 D6 D5 D4 D3 D2 D1 D0 Reg $18 DFBW THOPT ZDA YDA XDA INTREG[1] INTREG[0] INTPIN Function 0 0 0 0 0 0 0 0 Default $1A: Level Detection Threshold Limit Value (Read/Write) When an event is detected the interrupt pin (either INT1 or INT2) will go high. The interrupt pin assignment is set up in Register $18, discussed in the Assigning, Clearing & Detecting Interrupts section. The detection status is monitored by the Detection Source Register $0A. D7 D6 D5 D4 D3 D2 D1 D0 Reg $1A LDTH[7] LDTH[6] LDTH[5] LDTH[4] LDTH[3] LDTH[2] LDTH[1] LDTH[0] Function 0 0 0 0 0 0 0 0 Default LDTH[7:0]: Level detection threshold value. If THOPT bit in Detection Control Register is “0”, it is unsigned 7 bits value and LDTH[7] should be “0”. If THOPT bit is “1”, it is signed 8 bits value. MMA7455L Sensors 10 Freescale Semiconductor
THRESHOLD DETECTION FOR MOTION AND FREEFALL CONDITIONS CASE 1: Motion Detection Integer Value: X >Threshold OR Y >Threshold OR Z > Threshold Reg $18 THOPT=1; Reg 19 LDPL=0, Set Threshold to 3g, which is 47 counts (16 counts/g). Set register $1A LDTH = $2F. TH = $2F CASE 2: Motion Detection Absolute: ||X|| > Threshold OR ||Y|| >Threshold OR ||Z|| > Threshold Reg $18 THOPT=0; Reg 19 LDPL=0, Set Threshold to 3g, which is 47 counts (16 counts/g). Set register $1A LDTH = $2F. TH = $2F TH = $D1 CASE 3: Freefall Detection Integer Value: X < Threshold AND Y < Threshold AND Z <Threshold Reg $18 THOPT=1; Reg 19 LDPL=1, Set Threshold to 0.5g, which is 7 counts (16 counts/g). Set register $1A LDTH = $07 TH = $07 CASE 4: Freefall Detection Absolute: ||X|| <Threshold AND ||Y|| < Threshold AND ||Z||< Threshold Reg $18 THOPT=0; Reg 19 LDPL=1, Set Threshold to +/-0.5g, which is 7 counts (16 counts/g). Set register $1A LDTH = $07. TH = $07 TH = $F9 MMA7455L Sensors Freescale Semiconductor 11
PULSE DETECTION In Pulse Mode, all functions can be active including measurements, level detections and pulse detection. There are two interrupt pins available for detection of level and pulse conditions. The pulse detection has several timing windows associated with it. A single pulse and a double pulse can be detected. Also freefall can be detected. The interrupt pins can be assigned to detect the first pulse on one interrupt and the second pulse on the other interrupt. This is explained on Page 15, under the Assigning, Clear- ing & Detecting Interrupts section. By default all three axes are enabled and the detection range is 8g only. X and/or Y and/or Z can be disabled. There is a choice between doing a detection for Motion detection vs. doing a detection for Freefall. $18: Control 1 (Read/Write): Disable X, Y or Z for Pulse Detection This allows the user to define how many axes to use for detection. All axes are enabled by default. To disable write 1 XDA: Disable X YDA: Disable Y ZDA: Disable Z. D7 D6 D5 D4 D3 D2 D1 D0 Reg $18 DFBW THOPT ZDA YDA XDA INTREG[1] INTREG[0] INTPIN Function 0 0 0 0 0 0 0 0 Default $19: Control 2 (Read/Write): Motion Detection (OR condition) or Freefall Detection (AND condition) PDPL 0: Pulse detection polarity is positive and detecting condition is OR 3 axes. 1: Pulse detection polarity is negative and detecting condition is AND 3 axes. D7 D6 D5 D4 D3 D2 D1 D0 Reg $19 -- -- -- -- -- DRVO PDPL LDPL Function 0 0 0 0 0 0 0 0 Default CASE 1: Single Pulse Motion Detection: X or Y or Z > Pulse Threshold for Time < Pulse Duration For motion detection with single pulse the device must be in pulse mode. PDPL in Register $19 =0 for “OR” motion condition. The Pulse threshold must be set in Register $1B and the pulse duration time window must also be set using Register $1C. The pulse must be detected before the time window closes for the interrupt to trigger. $1B: Pulse Detection Threshold Limit Value (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Reg $1B PDTH[7] PDTH[6] PDTH[5] PDTH[4] PDTH[3] PDTH[2] PDTH[1] PDTH[0] Function 0 0 0 0 0 0 0 0 Default $1C: Pulse Duration Value (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Reg $1C PD[7] PD[6] PD[5] PD[4] PD[3] PD[2] PD[1] PD[0] Function 0 0 0 0 0 0 0 1 Default MMA7455L Sensors 12 Freescale Semiconductor
G Pulse Detection Time duration G th INT pin Time *Note there is up to 1.6ms delay on the interrupt signal Time Single Pulse Detection ($19 PDPL=0 indicating motion detection) Time Window for 2ndpulse $1E TW=0 indicating single pulse Figure4. Single Pulse Detection CASE 2: Freefall Detection: X and Y and Z < Pulse Threshold for Time > Latency Time For freefall detection, set in pulse mode. PDPL in Register $19 =1 for “AND” freefall condition. The Pulse threshold must be set in Register $1B and the pulse latency time window must also be set using Register $1D. All three axes must remain below the threshold longer than the time window for the interrupt to trigger. $1B: Pulse Detection Threshold Limit Value (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Reg $1B PDTH[7] PDTH[6] PDTH[5] PDTH[4] PDTH[3] PDTH[2] PDTH[1] PDTH[0] Function 0 0 0 0 0 0 0 0 Default $1D: Latency Time Value (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Reg $1D LT[7] LT[6] LT[5] LT[4] LT[3] LT[2] LT[1] LT[0] Function 0 0 0 0 0 0 0 1 Default Figure5. Freefall Detection in Pulse Mode MMA7455L Sensors Freescale Semiconductor 13
CASE 3: Double Pulse Detection: X OR Y OR Z > Threshold for Pulse Duration1 < PDTime1, Latency Time, AND X OR Y OR Z > Threshold for Pulse Duration2 < PDTime2 For motion detection with double pulse the device must be in pulse mode. PDPL in Register $19 =0 for “OR” motion condition. The Pulse Threshold must be set in Register $1B and the Pulse Duration Time Window must also be set using Register $1C. Then the Latency Time (time between pulses) must be set in Register $1D and then the Second Time Window must be set in Register $1E for the time window of the second pulse. The pulse must be detected before the time window closes for the interrupt to trigger. $1B: Pulse Detection Threshold Limit Value (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Reg $1B PDTH[7] PDTH[6] PDTH[5] PDTH[4] PDTH[3] PDTH[2] PDTH[1] PDTH[0] Function 0 0 0 0 0 0 0 0 Default $1C: Pulse Duration Value (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Reg $1C PD[7] PD[6] PD[5] PD[4] PD[3] PD[2] PD[1] PD[0] Function 0 0 0 0 0 0 0 1 Default $1D: Latency Time Value (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Reg $1D LT[7] LT[6] LT[5] LT[4] LT[3] LT[2] LT[1] LT[0] Function 0 0 0 0 0 0 0 1 Default $1E: Time Window for 2nd Pulse Value (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Reg $1E TW[7] TW[6] TW[5] TW[4] TW[3] TW[2] TW[1] TW[0] Function 0 0 0 0 0 0 0 0 Default When any of the events are detected, the interrupt pin (either INT1 or INT2) will go high. The interrupt pin assignment is set up in Register $18, discussed in the Assigning, Clearing & Detecting Interrupts section on Page 15. The detection status is monitored by the detection source register $0A. G Pulse Detection Pulse Detection Time Window for Time Window 2ndpulse G th Latency Time Window (2ndpulse ignored here) Time Detection Source PDX or PDY or PDZ bit in Detection Register source register is set. *Note there is up to 1.6ms delay on the interrupt signal Time INT Time Window >0 for 2 pulse detect *Note there is up to 1.6ms delay on the interrupt signal Time Double Pulse Detection ($19 PDPL=0 indicating motion detection) Time Window for 2ndpulse $1E TW>0 indicating double pulse Figure6. Double Pulse Detection MMA7455L Sensors 14 Freescale Semiconductor
ASSIGNING, CLEARING & DETECTING INTERRUPTS Assigning the interrupt pins is done in Register $18. There are 3 combinations for the interrupt pins to be assigned which are outlined below in the table for INTREG[1:0]. $18 Control 1 Register D7 D6 D5 D4 D3 D2 D1 D0 Reg $18 DFBW THOPT ZDA YDA XDA INTREG[1] INTREG[0] INTPIN Function 0 0 0 0 0 0 0 0 Default Table7. Configuring the Interrupt settings using Register $18 with INTREG[1:0] bits INTREG[1:0] “INT1” Register Bit “INT2” Register Bit 00 Level detection Pulse Detection 01 Pulse Detection Level Detection 10 Single Pulse detection Single or Double Pulse Detection 00: INT1 Register is detecting Level while INT2 is detecting Pulse. 01: INT1 Register is detecting Pulse while INT2 is detecting Level. 10: INT1 Register is detecting a Single Pulse and INT2 is detecting Single Pulse (if 2nd Time Window = 0) or if there is a latency time window and second time window > 0 then INT2 will detect the double pulse only. INTPIN: INT1 pin is routed to INT1 bit in Detection Source Register ($0A) and INT2 pin is routed to INT2 bit in Detection Source Register ($0A). INTPIN: INT2 pin is routed to INT1 bit in Detection Source Register ($0A) and INT1 pin is routed to INT2 bit in Detection Source Register ($0A). Note: When INTREG[1:0] =10 for the condition to detect single pulse on INT1 and either single or double pulse on INT2, INT1 register bit can no longer be cleared by setting CLR_INT1 bit. It is cleared by setting CLR_INT2 bit. In this case, setting CLR_INT2 clears both INT1 and INT2 register bits and resets the detection operation. Follow the example given for clearing the interrupts. Clearing the Interrupt Pins: Register $17 $17: Interrupt Latch Reset (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Reg $17 -- -- -- -- -- -- CLR_INT2 CLR_INT1 Function 0 0 0 0 0 0 0 0 Default CLR_INT1 1: Clear “INT1” 0: Do not clear “INT1” CLR_INT2 1: Clear “INT2” 0: Do not clear “INT2” After interrupt has triggered due to a detection, the interrupt pin (INT1 or INT2) need to be cleared by writing a logic 1. Then the interrupt pin should be enabled to trigger the next detection by setting it to a logic 0. This example is to show how to reset the interrupt flags void ClearIntLatch(void) { IIC_ByteWrite(INTRST, 0x03); IIC_ByteWrite(INTRST, 0x00); } MMA7455L Sensors Freescale Semiconductor 15
Detecting Interrupts $0A: Detection Source Register (Read only) D7 D6 D5 D4 D3 D2 D1 D0 Reg $0A LDX LDY LDZ PDX PDY PDZ INT2 INT1 Function 0 0 0 0 0 0 0 0 Default LDX PDZ 1: Level detection event is detected on X-axis 1: 1st pulse is detected on Z-axis 0: Level detection event is not detected on X-axis 0: 1st pulse is detected on Z-axis LDY INT1 1: Level detection event is detected on Y-axis 1: Interrupt assigned by INTRG[1:0] bits in Control 1 0: Level detection event is not detected on Y-axis Register ($18) and is detected LDZ 0: Interrupt assigned by INTRG[1:0] bits in Control 1 Register ($18) and is not detected 1: Level detection event is detected on Z-axis INT2 0: Level detection event is not detected on Z-axis 1: Interrupt assigned by INTRG[1:0] bits in Control 1 PDX Register ($18) and is detected 1: 1st pulse is detected on X-axis 0: Interrupt assigned by INTRG[1:0] bits in Control 1 0: 1st pulse is detected on X-axis Register ($18) and is not detected PDY 1: 1st pulse is detected on Y-axis 0: 1st pulse is detected on Y-axis DIGITAL INTERFACE The MMA7455L has both an I2C and SPI digital output available for a communication interface. CS pin is used for selecting the mode of communication. When CS is low, SPI communication is selected. When CS is high, I2C communication is selected. Note: It is recommended to disable I2C during SPI communication to avoid communication errors between devices using a dif- ferent SPI communication protocol. To disable I2C, set the I2CDIS bit in I2C Device Address register using SPI. I2C Slave Interface I2C is a synchronous serial communication between a master device and one or more slave devices. The master is typically a microcontroller, which provides the serial clock signal and addresses the slave device(s) on the bus. The MMA7455L communi- cates only in slave operation where the device address is $1D. Multiple read and write modes are available. The protocol supports slave only operation. It does not support Hs mode, “10-bit addressing”, “general call” and:”START byte”. SINGLE BYTE READ The MMA7455L has an 10-bit ADC that can sample, convert and return sensor data on request. The transmission of an 8-bit command begins on the falling edge of SCL. After the eight clock cycles are used to send the command, note that the data re- turned is sent with the MSB first once the data is received. Figure7 shows the timing diagram for the accelerometer 8-bit I2C read operation. The Master (or MCU) transmits a start condition (ST) to the MMA7455L, slave address ($1D), with the R/W bit set to “0” for a write, and the MMA7455L sends an acknowledgement. Then the Master (or MCU) transmits the 8-bit address of the register to read and the MMA7455L sends an acknowledgement. The Master (or MCU) transmits a repeated start condition (SR) and then addresses the MMA7455L ($1D) with the R/W bit set to “1” for a read from the previously selected register. The Slave then acknowledges and transmits the data from the requested register. The Master does not acknowledge (NAK) it re- ceived the transmitted data, but transmits a stop condition to end the data transfer. MULTIPLE BYTES READ The MMA7455L automatically increments the received register address commands after a read command is received. Therefore, after following the steps of a single byte read, multiple bytes of data can be read from sequential registers after each MMA7455L acknowledgment (AK) is received until a NACK is received from the Master followed by a stop condition (SP) signalling an end of transmission. See Figure8. MMA7455L Sensors 16 Freescale Semiconductor
SINGLE BYTE WRITE To start a write command, the Master transmits a start condition (ST) to the MMA7455L, slave address ($1D) with the R/W bit set to “0” for a write, the MMA7455L sends an acknowledgement. Then the Master (MCU) transmits the 8-bit address of the register to write to, and the MMA7455L sends an acknowledgement. Then the Master (or MCU) transmits the 8-bit data to write to the designated register and the MMA7455L sends an acknowledgement that it has received the data. Since this transmission is com- plete, the Master transmits a stop condition (SP) to the data transfer. The data sent to the MMA7455L is now stored in the ap- propriate register. See Figure9. Figure7. Single Byte Read - The Master is reading one address from the MMA7455L Figure8. Multiple Bytes Read - The Master is reading multiple sequential registers from the MMA7455L Figure9. Single Byte Write - The Master (MCU) is writing to a single register of the MMA7455L MULTIPLE BYTES WRITE The MMA7455L automatically increments the received register address commands after a write command is received. Therefore, after following the steps of a single byte write, multiple bytes of data can be written to sequential registers after each MMA7455L acknowledgment (ACK) is received. See Figure10. Figure10. Multiple Byte Writes - The Master (MCU) is writing to multiple sequential registers of the MMA7455L MMA7455L Sensors Freescale Semiconductor 17
SPI Slave Interface The MMA7455L also uses serial peripheral interface communication as a digital communication. The SPI communication is pri- marily used for synchronous serial communication between a master device and one or more slave devices. See Figure16 for an example of how to configure one master with one MMA745xL device. The MMA7455L is always operated as a slave device. Typically, the master device would be a microcontroller which would drive the clock (SPC) and chip select (CS) signals. The SPI interface consists of two control lines and two data lines: CS, SPC, SDI, and SDO. The CS, also known as Chip Select, is the slave device enable which is controlled by the SPI master. CS is driven low at the start of a transmission. CS is then driven high at the end of a transmission. SPC is the Serial Port Clock which is also controlled by the SPI master. SDI and SDO are the Serial Port Data Input and the Serial Port Data Output. The SDI and SDO data lines are driven at the falling edge of the SPC and should be captured at the rising edge of the SPC. Read and write register commands are completed in 16 clock pulses or in multiples of 8, in the case of a multiple byte read/write. SPI Read Operation A SPI read transfer consists of a 1-bit Read/Write signal, a 6-bit address, and 1-bit don’t care bit. (1-bit R/W=0 + 6-bits address + 1-bit don’t care). The data to read is sent by the SPI interface during the next transfer. See Figure11 and Figure12 for the timing diagram for an 8-bit read in 4 wire and 3 wire modes, respectively. SPI Write Operation In order to write to one of the 8-bit registers, an 8-bit write command must be sent to the MMA7455L. The write command consists of an MSB (0=read, 1=write) to indicate writing to the MMA7455L register, followed by a 6-bit address and 1 don’t care bit. The command should then be followed the 8-bit data transfer. See Figure13 for the timing diagram for an 8-bit data write. Figure11. SPI Timing Diagram for 8-Bit Register Read (4 Wire Mode) Figure12. SPI Timing Diagram for 8-Bit Register Read (3 Wire Mode) Figure13. SPI Timing Diagram for 8-Bit Register Write (3 Wire Mode) MMA7455L Sensors 18 Freescale Semiconductor
BASIC CONNECTIONS Pin Descriptions Table8. Pin Descriptions Top View Pin Pin # Pin Name Description Status C 1 DVDD_IO Digital Power for I/O pads Input P S L/ 2 GND Ground Input C S 3 N/C No internal connection. Leave Input 4 unconnected or connect to Ground. 1 DVDD_IO 1 3 SDA/SDI/SDO 4 IADDR0 I2C Address Bit 0 Input 1 5 GND Ground Input GND 2 2 SDO 1 6 AVDD Analog Power Input N/C 3 11 N/C 7 CS SPI Enable (0), I2C Enable (1) Input IADDR0 4 0 N/C 8 INT1/DRDY Interrupt 1/ Data Ready Output 1 9 INT2 Interrupt 2 Output GND 5 9 INT2 10 N/C No internal connection. Leave Input AVDD 6 8 INT1/DRDY unconnected or connect to Ground. 11 N/C No internal connection. Leave Input 7 unconnected or connect to Ground. S 12 SDO SPI Serial Data Output Output C 13 SDA/SDI/SDO I2C Serial Data (SDA), SPI Serial Open Figure14. Pinout Description Data Input (SDI), 3-wire interface Drain/ Serial Data Output (SDO) Input/ Output 14 SCL/SPC I2C Serial Clock (SCL), SPI Serial Input Clock (SPC) Recommended PCB Layout for Interfacing Accelerometer to Microcontroller Figure15. I2C Connection to MCU MMA7455L Sensors Freescale Semiconductor 19
Figure16. SPI Connection to MCU NOTES: 1. Use a 0.1 μF and a 10 μF capacitor on AV to and DV to decouple the power source. DD DD 2. Physical coupling distance of the accelerometer to the microcontroller should be minimal. 3. PCB layout of power and ground should not couple power supply noise. 4. Accelerometer and microcontroller should not be a high current path. 5. Any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency (sampling frequency). This will prevent aliasing errors. 6. Physical distance of the two GND pins (Pin 2 and Pin 5) tied together should be at the shortest distance. MMA7455L Sensors 20 Freescale Semiconductor
Table9. User Register Summary Address Name Definition Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 $00 XOUTL 10 bits output value X LSB XOUT[7] XOUT[6] XOUT[5] XOUT[4] XOUT[3] XOUT[2] XOUT[1] XOUT[0] $01 XOUTH 10 bits output value X MSB -- -- -- -- -- -- XOUT[9] XOUT[8] $02 YOUTL 10 bits output value Y LSB YOUT[7] YOUT[6] YOUT[5] YOUT[4] YOUT[3] YOUT[2] YOUT[1] YOUT[0] $03 YOUTH 10 bits output value Y MSB -- -- -- -- -- -- YOUT[9] YOUT[8] $04 ZOUTL 10 bits output value Z LSB ZOUT[7] ZOUT[6] ZOUT[5] ZOUT[4] ZOUT[3] ZOUT[2] ZOUT[1] ZOUT[0] $05 ZOUTH 10 bits output value Z MSB -- -- -- -- -- -- ZOUT[9] ZOUT[8] $06 XOUT8 8 bits output value X XOUT[7] XOUT[6] XOUT[5] XOUT[4] XOUT[3] XOUT[2] XOUT[1] XOUT[0] $07 YOUT8 8 bits output value Y YOUT[7] YOUT[6] YOUT[5] YOUT[4] YOUT[3] YOUT[2] YOUT[1] YOUT[0] $08 ZOUT8 8 bits output value Z ZOUT[7] ZOUT[6] ZOUT[5] ZOUT[4] ZOUT[3] ZOUT[2] ZOUT[1] ZOUT[0] $09 STATUS Status registers -- -- -- -- -- PERR DOVR DRDY $0A DETSRC Detection source registers LDX LDY LDZ PDX PDY PDZ INT2 INT1 $0B TOUT “Temperature output value” (Optional) TMP[7] TMP[6] TMP[5] TMP[4] TMP[3] TMP[2] TMP[1] TMP[0] $0C (Reserved) -- -- -- -- -- -- -- -- $0D I2CAD I2C device address I2CDIS DAD[6] DAD[5] DAD[4] DAD[3] DAD[2] DAD[1] DAD[0] $0E USRINF User information (Optional) UI[7] UI[6] UI[5] UI[4] UI[3] UI[2] UI[1] UI[0] $0F WHOAMI “Who am I” value (Optional) ID[7] ID[6] ID[5] ID[4] ID[3] ID[2] ID[1] ID[0] $10 XOFFL Offset drift X value (LSB) XOFF[7] XOFF[6] XOFF[5] XOFF[4] XOFF[3] XOFF[2] XOFF[1] XOFF[0] $11 XOFFH Offset drift X value (MSB) -- -- -- -- -- XOFF[10] XOFF[9] XOFF[8] $12 YOFFL Offset drift Y value (LSB) YOFF[7] YOFF[6] YOFF[5] YOFF[4] YOFF[3] YOFF[2] YOFF[1] YOFF[0] $13 YOFFH Offset drift Y value (MSB) -- -- -- -- -- YOFF[10] YOFF[9] YOFF[8] $14 ZOFFL Offset drift Z value (LSB) ZOFF[7] ZOFF[6] ZOFF[5] ZOFF[4] ZOFF[3] ZOFF[2] ZOFF[1] ZOFF[0] $15 ZOFFH Offset drift Z value (MSB) -- -- -- -- -- ZOFF[10] ZOFF[9] ZOFF[8] $16 MCTL Mode control -- DRPD SPI3W STON GLVL[1] GLVL[0] MOD[1] MOD[0] $17 INTRST Interrupt latch reset -- -- -- -- -- -- CLRINT2 CLRINT1 $18 CTL1 Control 1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN $19 CTL2 Control 2 -- -- -- -- -- DRVO PDPL LDPL $1A LDTH Level detection threshold limit value LDTH[7] LDTH[6] LDTH[5] LDTH[4] LDTH[3] LDTH[2] LDTH[1] LDTH[0] $1B PDTH Pulse detection threshold limit value PDTH[7] PDTH[6] PDTH[5] PDTH[4] PDTH[3] PDTH[2] PDTH[1] PDTH[0] $1C PW Pulse duration value PD[7] PD[6] PD[5] PD[4] PD[3] PD[2] PD[1] PD[0] $1D LT Latency time value LT[7] LT[6] LT[5] LT[4] LT[3] LT[2] LT[1] LT[0] $1E TW Time window for 2nd pulse value TW[7] TW[6] TW[5] TW[4] TW[3] TW[2] TW[1] TW[0] $1F (Reserved) -- -- -- -- -- -- -- -- REGISTER DEFINITIONS $00: 10bits Output Value X LSB (Read only) D7 D6 D5 D4 D3 D2 D1 D0 Bit XOUT [7] XOUT [6] XOUT [5] XOUT [4] XOUT [3] XOUT [2] XOUT [1] XOUT[0] Function 0 0 0 0 0 0 0 0 Default Signed byte data (2’s complement): 0g = 10’h000 Reading low byte XOUTL latches high byte XOUTH to allow 10-bit reads. XOUTH should be read directly following XOUTL read. MMA7455L Sensors Freescale Semiconductor 21
$01: 10bits Output Value X MSB (Read only) D7 D6 D5 D4 D3 D2 D1 D0 Bit -- -- -- -- -- -- XOUT [9] XOUT[8] Function 0 0 0 0 0 0 0 0 Default Signed byte data (2’s complement): 0g = 10’h000 Reading low byte XOUTL latches high byte XOUTH to allow 10-bit reads. XOUTH should be read directly following XOUTL read. $02: 10bits Output Value Y LSB (Read only) D7 D6 D5 D4 D3 D2 D1 D0 Bit YOUT [7] YOUT [6] YOUT [5] YOUT [4] YOUT [3] YOUT [2] YOUT [1] YOUT[0] Function 0 0 0 0 0 0 0 0 Default Signed byte data (2’s complement): 0g = 10’h000 Reading low byte YOUTL latches high byte YOUTH to allow coherent 10-bit reads. YOUTH should be read directly following YOUTL. $03: 10bits Output Value Y MSB (Read only) D7 D6 D5 D4 D3 D2 D1 D0 Bit -- -- -- -- -- -- YOUT [9] YOUT[8] Function 0 0 0 0 0 0 0 0 Default Signed byte data (2’s complement): 0g = 10’h000 Reading low byte ZOUTL latches high byte ZOUTH to allow coherent 10-bit reads. ZOUTH should be read directly following ZOUTL. $04: 10bits Output Value Z LSB (Read only) D7 D6 D5 D4 D3 D2 D1 D0 Bit ZOUT [7] ZOUT [6] ZOUT [5] ZOUT [4] ZOUT [3] ZOUT [2] ZOUT [1] ZOUT[0] Function 0 0 0 0 0 0 0 0 Default Signed byte data (2’s complement): 0g = 10’h000 Reading low byte ZOUTL latches high byte ZOUTH to allow coherent 10-bit reads. ZOUTH should be read directly following ZOUTL. $05: 10bits Output Value Z MSB (Read only) D7 D6 D5 D4 D3 D2 D1 D0 Bit -- -- -- -- -- -- ZOUT [9] ZOUT[8] Function 0 0 0 0 0 0 0 0 Default $06: 8bits Output Value X (Read only) D7 D6 D5 D4 D3 D2 D1 D0 Bit XOUT[7] XOUT [6] XOUT [5] XOUT [4] XOUT [3] XOUT [2] XOUT [1] XOUT [0] Function 0 0 0 0 0 0 0 0 Default Signed byte data (2’s complement): 0g = 8’h00 $07: 8bits Output Value Y (Read only) D7 D6 D5 D4 D3 D2 D1 D0 Bit YOUT[7] YOUT [6] YOUT [5] YOUT [4] YOUT [3] YOUT [2] YOUT [1] YOUT [0] Function 0 0 0 0 0 0 0 0 Default Signed byte data (2’s complement): 0g = 8’h00 MMA7455L Sensors 22 Freescale Semiconductor
$08: 8bits Output Value Z (Read only) D7 D6 D5 D4 D3 D2 D1 D0 Bit ZOUT[7] ZOUT [6] ZOUT [5] ZOUT [4] ZOUT [3] ZOUT [2] ZOUT [1] ZOUT [0] Function 0 0 0 0 0 0 0 0 Default Signed byte data (2’s complement): 0g = 8’h00 $09: Status Register (Read only) D7 D6 D5 D4 D3 D2 D1 D0 Bit -- -- -- -- -- PERR DOVR DRDY Function 0 0 0 0 0 0 0 0 Default DRDY PERR 1: Data is ready 1: Parity error is detected in trim data. Then, self-test is dis- 0: Data is not ready abled DOVR 0: Parity error is not detected in trim data 1: Data is over written 0: Data is not over written $0A: Detection Source Register (Read only) D7 D6 D5 D4 D3 D2 D1 D0 Bit LDX LDY LDZ PDX PDY PDZ INT2 INT1 Function 0 0 0 0 0 0 0 0 Default LDX PDZ *Note 1: Level detection detected on X-axis 1: Pulse is detected on Z-axis at single pulse detection 0: Level detection not detected on X-axis 0: Pulse is not detected on Z-axis at single pulse detection LDY Note: This bit value is not valid at double pulse detection 1: Level detection detected on Y-axis INT1 0: Level detection not detected on Y-axis 1: Interrupt assigned by INTRG[1:0] bits in Control 1 LDZ Register ($18) and is detected 1: Level detection detected on Z-axis 0: Interrupt assigned by INTRG[1:0] bits in Control 1 Register ($18) and is not detected 0: Level detection not detected on Z-axis INT2 PDX *Note 1: Interrupt assigned by INTRG[1:0] bits in Control 1 1: Pulse is detected on X-axis at single pulse detection Register ($18) and is detected 0: Pulse is not detected on X-axis at single pulse detection 0: Interrupt assigned by INTRG[1:0] bits in Control 1 PDY *Note Register ($18) and is not detected 1: Pulse is detected on Y-axis at single pulse detection *Note: Must define DRDY to be an output to either INT1 or 0: Pulse is not detected on Y-axis at single pulse detection not. This is done through bit DRPD located in Register $16. $0D: I2C Device Address (Bit 6-0: Read only, Bit 7: Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Bit I2CDIS DVAD[6] DVAD[5] DVAD[4] DVAD[3] DVAD[2] DVAD[1] DVAD[0] Function 0 0 0 1 1 1 0 1 Default I2CDIS 0: I2C and SPI are available. 1: I2C is disabled. DVAD[6:0]: I2C device address $0E: User Information (Read Only: Optional) D7 D6 D5 D4 D3 D2 D1 D0 Bit UI[7] UI[6] UI[5] UI[4] UI[3] UI[2] UI[1] UI[0] Function 0/OTP 0/OTP 0/OTP 0/OTP 0/OTP 0/OTP 0/OTP 0/OTP Default UI2[7:0]: User information MMA7455L Sensors Freescale Semiconductor 23
$0F: “Who Am I” Value (Read only: Optional) D7 D6 D5 D4 D3 D2 D1 D0 Bit ID[7] ID [6] ID [5] ID [4] ID [3] ID [2] ID [1] ID [0] Function 0/OTP 0/OTP 0/OTP 0/OTP 0/OTP 0/OTP 0/OTP 0/OTP Default $10: Offset Drift X LSB (Read/Write) The following Offset Drift Registers are used for setting and storing the offset calibrations to eliminate the 0g offset. Please refer to Freescale application note AN3745 for detailed instructions on the process to set and store the calibration values. D7 D6 D5 D4 D3 D2 D1 D0 Bit XOFF[7] XOFF [6] XOFF [5] XOFF [4] XOFF [3] XOFF [2] XOFF [1] XOFF [0] Function 0 0 0 0 0 0 0 0 Default Signed byte data (2’s complement): User level offset trim value for X-axis Bit XOFF[7] XOFF[6] XOFF[5] XOFF[4] XOFF[3] XOFF[2] XOFF[1] XOFF[0] Weight* 64 LSB 32 LSB 16 LSB 8 LSB 4 LSB 2 LSB 1 LSB 0.5 LSB *Bit weight is for 8g 10-bit data output. Typical value for reference only. Variation is specified in “Electrical Characteristics” section. $11: Offset Drift X MSB (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Bit -- -- -- -- -- XOFF [10] XOFF [9] XOFF [8] Function 0 0 0 0 0 0 0 0 Default Signed byte data (2’s complement): User level offset trim value for X-axis $12: Offset Drift Y LSB (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Bit YOFF[7] YOFF [6] YOFF [5] YOFF [4] YOFF [3] YOFF [2] YOFF [1] YOFF [0] Function 0 0 0 0 0 0 0 0 Default Signed byte data (2’s complement): User level offset trim value for Y-axis Bit YOFF[7] YOFF[6] YOFF[5] YOFF[4] YOFF[3] YOFF[2] YOFF[1] YOFF[0] Weight* 64 LSB 32 LSB 16 LSB 8 LSB 4 LSB 2 LSB 1 LSB 0.5 LSB *Bit weight is for 2g 8-bit data output. Typical value for reference only. Variation is specified in “Electrical Characteristics” section. $13: Offset Drift Y MSB (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Bit -- -- -- -- -- YOFF [10] YOFF [9] YOFF [8] Function 0 0 0 0 0 0 0 0 Default Signed byte data (2’s complement): User level offset trim value for Y-axis Bit YOFF[10] YOFF[9] YOFF[8] Weight* Polarity 256 LSB 128 LSB *Bit weight is for 2g 8-bit data output. Typical value for reference only. Variation is specified in “Electrical Characteristics” section. MMA7455L Sensors 24 Freescale Semiconductor
$14: Offset Drift Z LSB (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Bit ZOFF[7] ZOFF[6] ZOFF[5] ZOFF[4] ZOFF[3] ZOFF[2] ZOFF[1] ZOFF[0] Function 0 0 0 0 0 0 0 0 Default Signed byte data (2’s complement): User level offset trim value for Z-axis Bit ZOFF[7] ZOFF[6] ZOFF[5] ZOFF[4] ZOFF[3] ZOFF[2] ZOFF[1] ZOFF[0] Weight* 64 LSB 32 LSB 16 LSB 8 LSB 4 LSB 2 LSB 1 LSB 0.5 LSB *Bit weight is for 2g 8-bit data output. Typical value for reference only. Variation is specified in “Electrical Characteristics” section. $15: Offset Drift Z MSB (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Bit -- -- -- -- -- ZOFF[10] ZOFF[9] ZOFF[8] Function 0 0 0 0 0 0 0 0 Default Signed byte data (2’s complement): User level offset trim value for Z-axis Bit ZOFF[10] ZOFF[9] ZOFF[8] Weight* Polarity 256 LSB 128 LSB *Bit weight is for 2g 8-bit data output. Typical value for reference only. Variation is specified in “Electrical Characteristics” section. $16: Mode Control Register (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Bit -- DRPD SPI3W STON GLVL[1] GLVL[0] MODE[1] MODE[0] Function 0 0 0 0 0 0 0 0 Default Table10. Configuring the g-Select for 8-bit output using Register $16 with GLVL[1:0] bits GLVL [1:0] g-Range Sensitivity 00 8g 16 LSB/g 01 2g 64 LSB/g 10 4g 32 LSB/g GLVL [1:0] 01: Measurement Mode 00: 8g is selected for measurement range. 10: Level Detection Mode 10: 4g is selected for measurement range. 11: Pulse Detection Mode 01: 2g is selected for measurement range. SPI3W STON 0: SPI is 4 wire mode 0: Self-test is not enabled 1: SPI is 3 wire mode 1: Self-test is enabled DRPD MODE [1:0] 0: Data ready status is output to INT1/DRDY PIN 00: Standby Mode 1: Data ready status is not output to INT1/DRDY PIN Table11. Configuring the Mode using Register $16 with MODE[1:0] bits MODE [1:0] Function 00 Standby Mode 01 Measurement Mode 10 Level Detection Mode 11 Pulse Detection Mode MMA7455L Sensors Freescale Semiconductor 25
$17: Interrupt Latch Reset (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Bit -- -- -- -- -- -- CLR_INT2 CLR_INT1 Function 0 0 0 0 0 0 0 0 Default CLR_INT1 1: Clear “INT1” and LDX/LDY/LDZ or PDX/PDY/PDZ bits in Detection Source Register ($0A) depending on Control1($18) INTREG[1:0] setting. 0: Do not clear “INT1” LDX/LDY/LDZ or PDX/PDY/PDZ bits in Detection Source Register ($0A) CLR_INT2 1: Clear “INT2” and LDX/LDY/LDZ or PDX/PDY/PDZ bits in Detection Source Register ($0A) depending on Control1($18) INTREG[1:0] setting. 0: Do not clear “INT2” and LDX/LDY/LDZ or PDX/PDY/PDZ bits in Detection Source Register ($0A). $18 Control 1 (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Bit DFBW THOPT ZDA YDA XDA INTREG[1] INTREG[0] INTPIN Function 0 0 0 0 0 0 0 0 Default Table12. Configuring the Interrupt settings using Register $18 with INTREG[1:0] bits INTREG[1:0] “INT1” Register Bit “INT2” Register Bit 00 Level detection Pulse Detection 01 Pulse Detection Level Detection 10 Single Pulse detection Single or Double Pulse Detection 00: INT1 Register is detecting Level while INT2 is detecting Pulse. 01: INT1 Register is detecting Pulse while INT2 is detecting Level. 10: INT1 Register is detecting a Single Pulse and INT2 is detecting Single Pulse (if 2nd Time Window = 0) or if there is a latency time window and second time window > 0 then INT2 will detect the double pulse only. INTPIN: INT1 pin is routed to INT1 bit in Detection Source Register ($0A) and INT2 pin is routed to INT2 bit in Detection Source Register ($0A). INTPIN: INT2 pin is routed to INT1 bit in Detection Source Register ($0A) and INT1 pin is routed to INT2 bit in Detection Source Register ($0A). XDA THOPT (This bit is valid for level detection only, not valid 1: X-axis is disabled for detection. for pulse detection) 0: X-axis is enabled for detection. 0: Threshold value is absolute only 1: Integer value is available. YDA 1: Y-axis is disabled for detection. DFBW 0: Y-axis is enabled for detection. 0: Digital filter band width is 62.5 Hz 1: Digital filter band width is 125 Hz ZDA 1: Z-axis is disabled for detection. 0: Z-axis is enabled for detection. $19: Control 2 (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Bit DRVO PDPL LDPL Function 0 0 0 0 0 0 0 0 Default LDPL PDPL 0: Level detection polarity is positive and detecting condition 0: Pulse detection polarity is positive and detecting condition is OR 3 axes. is OR 3 axes. 1: Level detection polarity is negative detecting condition is 1: Pulse detection polarity is negative and detecting condition AND 3 axes. is AND 3 axes. DRVO 0: Standard drive strength on SDA/SDO pin 1: Strong drive strength on SDA/SDO pin MMA7455L Sensors 26 Freescale Semiconductor
$1A: Level Detection Threshold Limit Value (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Bit LDTH[7] LDTH[6] LDTH[5] LDTH[4] LDTH[3] LDTH[2] LDTH[1] LDTH[0] Function 0 0 0 0 0 0 0 0 Default LDTH[7:0]: Level detection threshold value. If THOPT bit in Detection Control Register is “0”, it is unsigned 7 bits value and LDTH[7] should be “0”. If THOPT bit is “1”, it is signed 8 bits value. $1B: Pulse Detection Threshold Limit Value (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Bit XPDTH PDTH[6] PDTH[5] PDTH[4] PDTH[3] PDTH[2] PDTH[1] PDTH[0] Function 0 0 0 0 0 0 0 0 Default PDTH[6:0]: Pulse detection threshold value (unsigned 7 bits). XPDTH: This bit should be “0”. $1C: Pulse Duration Value (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Bit PD[7] PD[6] PD[5] PD[4] PD[3] PD[2] PD[1] PD[0] Function 0 0 0 0 0 0 0 0 Default Min: PD[7:0] = 4’h01 = 0.5 ms Max: PD[7:0] = 4’hFF = 127 ms 1 LSB = 0.5 ms $1D: Latency Time Value (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Bit LT[7] LT[6] LT[5] LT[4] LT[3] LT[2] LT[1] LT[0] Function 0 0 0 0 0 0 0 0 Default Min: LT[7:0] = 8’h01 = 1 ms Max: LT[7:0] = 8’hFF = 255 ms 1 LSB = 1 ms $1E: Time Window for 2nd Pulse Value (Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 Bit TW[7] TW[6] TW[5] TW[4] TW[3] TW[2] TW[1] TW[0] Function 0 0 0 0 0 0 0 0 Default Min: TW[7:0] = 8’h01 = 1 ms (Single pulse detection) Max: TW[7:0] = 8’hFF = 255 ms 1 LSB = 1 ms MMA7455L Sensors Freescale Semiconductor 27
SENSING DIRECTION AND OUTPUT RESPONSE The following figure shows sensing direction and the output response for 2g mode. DirectionofEarth'sgravityfield.* TopView 6 5 4 3 2 1 7 14 SideView 8 9 10 11 12 13 Top 4 1 7 1 13 XOUT@0g=$00 8 6 Y @+1g=$3F Bottom 32 1211 ZOOUUTT@0g=$00 109 54 XYOUT@@00gg==$$0000 OUT 4 10 11 3 ZOUT@+1g=$3F 5 9 12 2 Bottom 6 8 13 1 7 1 4 Top X @+1g=$3F 13 12 11 10 9 8 X @-1g=$C1 OUT OUT X @0g=$00 Y @0g=$00 Y @0g=$00 OUT OUT OUT Y @0g=$00 Z @0g=$00 14 7 Z @0g=$00 OUT OUT OUT Z @-1g=$C1 OUT 1 2 3 4 5 6 X @0g=$00 OUT Y @-1g=$C1 OUT Z @0g=$00 OUT * When positioned as shown, the Earth’s gravity will result in a positive 1g output. Figure17. Sensing Direction and Output Response at 2g Mode Table13. Acceleration vs. Output (8-bit data) FS Mode Acceleration Output 2g Mode -2g $80 -1g $C1 0g $00 +1g $3F +2g $7F 4g Mode -4g $80 -1g $E1 0g $00 +1g $1F +4g $7F 8g Mode -8g $80 -1g $F1 0g $00 +1g $0F +8g $7F MMA7455L Sensors 28 Freescale Semiconductor
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads. SOLDERING AND MOUNTING GUIDELINES FOR THE LGA ACCELEROMETER SENSOR TO A PC BOARD These guideline are for soldering and mounting the LGA package inertial sensors to printed circuit boards (PCBs). The purpose is to minimize the stress on the package after board mounting. The MMA7455L digital output accelerometer uses the Land Grid Array (LGA) package platform. This section describes suggested methods of soldering these devices to the PC board for con- sumer applications. Figure18 shows the recommended PCB land pattern for the package. Figure18. Recommended PCB Land Pattern for the 5 x 3 mm LGA Package MMA7455L Sensors Freescale Semiconductor 29
OVERVIEW OF SOLDERING CONSIDERATIONS Information provided here is based on experiments executed on LGA devices. They do not represent exact conditions present at a customer site. Hence, information herein should be used as a guidance only and process and design optimizations are recommended to develop an application specific solution. It should be noted that with the proper PCB footprint and solder stencil designs the package will self-align during the solder reflow process. The following are the recommended guidelines to follow for mounting LGA sensors for consumer applications. PCB MOUNTING RECOMMENDATIONS 1. The PCB land should be designed with Non Solder Mask Defined (NSMD) as shown in Figure21. 2. No additional metal pattern underneath package as shown in Figure20. 3. PCB land pad is 0.9 mm x 0.6 mm which is the size of the package pad plus 0.1 mm as shown in Figure21. 4. The solder mask opening is equal to the size of the PCB land pad plus an extra 0.1mm as shown in Figure21. 5. The stencil aperture size is equal to the PCB land pad – 0.025mm. LGA package w/ solder PCB top metal layer Example of 2 layer PCB Top metal pattern uTnodpe mrpeataclk paagtetearnrea VViiaa ssttrruuccttuurree uunnddeerr under package area package area Figure19. Incorrect PCB Top Metal Pattern Under Figure20. Correct PCB Top Metal Pattern Under Package Package Signal trace near PCB land pattern -NSMD package: 0.1mm width Pad Dimension by Package and min. 0.5mm length are recommended. Wider trace can be 0.5 mm continued after these. 0.8 mm Cu: 0.9 x 0.6 mm sq. Wider trace SM opening = PCB land pad + 0.1mm = 1.0 x 0.7mm sq. Figure21. Recommended PCB Land Pad, Solder Mask, and Signal Trace Near Package Design MMA7455L Sensors 30 Freescale Semiconductor
Signal trace near package Package footprint Stencil opening = PCB landing pad -0.025mm = 0.575mmx0,875mm 10x0.8mm 14x0.575mm 14x0.875mm Figure22. Stencil Design Guidelines 6. Do not place any components or vias at a distance less than 2mm from the package land area. This may cause additional package stress if it is too close to the package land area. 7. Signal traces connected to pads should be as symmetric as possible. Put dummy traces on NC pads in order to have same length of exposed trace for all pads. Signal traces with 0.1mm width and min. 0.5mm length for all PCB land pads near the package are recommended as shown in Figure21 and Figure22. Wider trace can be continued after the 0.5mm zone. 8. Use a standard pick and place process and equipment. Do not us a hand soldering process. 9. It is recommended to use a cleanable solder paste with an additional cleaning step after SMT mount. 10. Do not use a screw down or stacking to fix the PCB into an enclosure because this could bend the PCB putting stress on the package. 11. The PCB should be rated for the multiple lead-free reflow condition with max 260°C temperature. Please cross reference with the device data sheet for mounting guidelines specific to the exact device used. Freescale LGA sensors are compliant with Restrictions on Hazardous Substances (RoHS), having halide free molding compound (green) and lead-free terminations. These terminations are compatible with tin-lead (Sn-Pb) as well as tin-silver-copper (Sn-Ag-Cu) solder paste soldering processes. Reflow profiles applicable to those processes can be used successfully for solder- ing the devices. MMA7455L Sensors Freescale Semiconductor 31
Xoff_mg/degreeC_-40to85 Xsens_%/DegreeC_-40to85 LSL Target USL LSL Target USL -3 -2 -1 0 1 2 3 -0.02 -0.01 0 0.01 0.02 Yoff_mg/degreeC_-40to85 Ysens_%/DegreeC_-40to85 LSL Target USL LSL Target USL -3 -2 -1 0 1 2 3 -0.02 -0.01 0 0.01 0.02 Zoff_mg/degreeC_-40to85 Zsens_%/DegreeC_-40to85 LSL Target USL LSL Target USL -3 -2 -1 0 1 2 3 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 Figure23. MMA7455L Temperature Coefficient of Offset (TCO) and Temperature Coefficient of Sensitivity (TCS) Distribution Charts Figure24. MMA7455L Current Distribution Charts MMA7455L Sensors 32 Freescale Semiconductor
PACKAGE DIMENSIONS CASE 1977-01 ISSUE A 14-LEAD LGA MMA7455L Sensors Freescale Semiconductor 33
PACKAGE DIMENSIONS CASE 1977-01 ISSUE A 14-LEAD LGA MMA7455L Sensors 34 Freescale Semiconductor
How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Information in this document is provided solely to enable system and software Freescale Halbleiter Deutschland GmbH Technical Information Center implementers to use Freescale Semiconductor products. There are no express or Schatzbogen 7 implied copyright licenses granted hereunder to design or fabricate any integrated 81829 Muenchen, Germany circuits or integrated circuits based on the information in this document. +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) Freescale Semiconductor reserves the right to make changes without further notice to +33 1 69 35 48 48 (French) any products herein. Freescale Semiconductor makes no warranty, representation or www.freescale.com/support guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any Japan: product or circuit, and specifically disclaims any and all liability, including without Freescale Semiconductor Japan Ltd. limitation consequential or incidental damages. “Typical” parameters that may be Headquarters provided in Freescale Semiconductor data sheets and/or specifications can and do vary ARCO Tower 15F in different applications and actual performance may vary over time. All operating 1-8-1, Shimo-Meguro, Meguro-ku, parameters, including “Typicals”, must be validated for each customer application by Tokyo 153-0064 Japan customer’s technical experts. Freescale Semiconductor does not convey any license 0120 191014 or +81 3 5437 9125 under its patent rights nor the rights of others. Freescale Semiconductor products are support.japan@freescale.com not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, Asia/Pacific: or for any other application in which the failure of the Freescale Semiconductor product Freescale Semiconductor China Ltd. could create a situation where personal injury or death may occur. Should Buyer Exchange Building 23F purchase or use Freescale Semiconductor products for any such unintended or No. 118 Jianguo Road unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and Chaoyang District its officers, employees, subsidiaries, affiliates, and distributors harmless against all Beijing 100022 China claims, costs, damages, and expenses, and reasonable attorney fees arising out of, +86 010 5879 8000 directly or indirectly, any claim of personal injury or death associated with such support.asia@freescale.com unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. Fax: +1-303-675-2150 All other product or service names are the property of their respective owners. LDCForFreescaleSemiconductor@hibbertgroup.com © Freescale Semiconductor, Inc. 2009. All rights reserved. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http:/www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. MMA7455L Rev. 10 12/2009