ICGOO在线商城 > 集成电路(IC) > 嵌入式 - 微控制器 > MK30DX64VMC7
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
MK30DX64VMC7产品简介:
ICGOO电子元器件商城为您提供MK30DX64VMC7由Freescale Semiconductor设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 MK30DX64VMC7价格参考。Freescale SemiconductorMK30DX64VMC7封装/规格:嵌入式 - 微控制器, ARM® Cortex®-M4 微控制器 IC Kinetis K30 32-位 72MHz 64KB(64K x 8) 闪存 121-MAPBGA(8x8)。您可以下载MK30DX64VMC7参考资料、Datasheet数据手册功能说明书,资料中有MK30DX64VMC7 详细功能的应用电路图电压和使用方法及教程。
MK30DX64VMC7是NXP USA Inc.生产的嵌入式微控制器,属于Kinetis K30系列。该型号基于ARM Cortex-M4内核,具有64KB闪存和16KB SRAM,适用于多种应用场景,尤其适合对性能、功耗和成本有较高要求的嵌入式系统。 主要应用场景: 1. 工业自动化 MK30DX64VMC7在工业自动化领域有广泛应用。它支持实时控制和高效的数据处理,适用于电机控制、传感器数据采集、PLC(可编程逻辑控制器)等设备。其低功耗特性和丰富的外设接口(如UART、SPI、I2C等)使其能够与各种传感器和执行器无缝连接,满足工业环境中对可靠性和稳定性的需求。 2. 消费电子 在消费电子产品中,MK30DX64VMC7可以用于智能家居设备、家电控制、便携式设备等。例如,它可以作为智能插座、智能灯泡或智能门锁的核心控制芯片,提供高效的数据处理能力和低功耗运行,确保设备长时间稳定工作。此外,其内置的USB接口也方便与外部设备进行通信。 3. 物联网(IoT) 该微控制器非常适合用于物联网设备,如智能网关、传感器节点等。它具备强大的网络连接能力,可以通过Wi-Fi、Zigbee或蓝牙模块实现与云端或其他设备的通信。其低功耗特性使得电池供电的物联网设备能够长时间工作,减少了维护成本。 4. 汽车电子 在汽车电子领域,MK30DX64VMC7可用于车身控制模块(BCM)、车载信息娱乐系统、发动机控制单元(ECU)等。它支持多种通信协议,如CAN总线,能够与其他汽车电子设备进行高效通信。同时,其高可靠性和抗干扰能力确保了在复杂电磁环境下的稳定运行。 5. 医疗设备 对于医疗设备,如便携式健康监测仪、血糖仪等,MK30DX64VMC7提供了精确的数据采集和处理能力。其低功耗设计延长了电池寿命,确保设备在户外或移动场景中持续工作。此外,其丰富的外设接口可以连接各种传感器,实现实时健康数据监测。 总之,MK30DX64VMC7凭借其高性能、低功耗和丰富的外设接口,在多个领域展现出广泛的应用前景。
参数 | 数值 |
产品目录 | 集成电路 (IC) |
描述 | IC MCU ARM 64KB FLASH 121MAP |
EEPROM容量 | 2K x 8 |
产品分类 | |
I/O数 | 74 |
品牌 | Freescale Semiconductor |
数据手册 | 点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet |
产品图片 | |
产品型号 | MK30DX64VMC7 |
PCN设计/规格 | http://www.freescale.com/files/shared/doc/pcn/PCN15588.htmhttp://cache.freescale.com/files/shared/doc/pcn/PCN15823.htmhttp://cache.freescale.com/files/shared/doc/pcn/PCN16030.htm |
RAM容量 | 16K x 8 |
rohs | 无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | Kinetis K30 |
供应商器件封装 | 121-MAPBGA (8x8) |
包装 | 托盘 |
外设 | DMA, I²S, LCD, LVD, POR, PWM, WDT |
封装/外壳 | 121-LFBGA |
工作温度 | -40°C ~ 105°C |
振荡器类型 | 内部 |
数据转换器 | A/D 25x16b,D/A 1x12b |
标准包装 | 348 |
核心处理器 | ARM® Cortex®-M4 |
核心尺寸 | 32-位 |
电压-电源(Vcc/Vdd) | 1.71 V ~ 3.6 V |
程序存储器类型 | 闪存 |
程序存储容量 | 64KB(64K x 8) |
连接性 | CAN, I²C, IrDA, SPI, UART/USART |
速度 | 72MHz |
Freescale Semiconductor Document Number: K30P100M72SF1 Data Sheet: Technical Data Rev. 3, 11/2012 K30P100M72SF1 K30 Sub-Family Supports: MK30DX128VLL7, MK30DX256VLL7, MK30DX64VMC7, MK30DX128VMC7, MK30DX256VMC7 Features • Analog modules • Operating Characteristics – Two 16-bit SAR ADCs – Voltage range: 1.71 to 3.6 V – Programmable gain amplifier (PGA) (up to x64) – Flash write voltage range: 1.71 to 3.6 V integrated into each ADC – Temperature range (ambient): -40 to 105°C – 12-bit DAC – Three analog comparators (CMP) containing a 6-bit • Clocks DAC and programmable reference input – 3 to 32 MHz crystal oscillator – Voltage reference – 32 kHz crystal oscillator – Multi-purpose clock generator • Timers – Programmable delay block • System peripherals – Eight-channel motor control/general purpose/PWM – Multiple low-power modes to provide power timer optimization based on application requirements – Two 2-channel quadrature decoder/general purpose – 16-channel DMA controller, supporting up to 63 timers request sources – Periodic interrupt timers – External watchdog monitor – 16-bit low-power timer – Software watchdog – Carrier modulator transmitter – Low-leakage wakeup unit – Real-time clock • Security and integrity modules • Communication interfaces – Hardware CRC module to support fast cyclic – Controller Area Network (CAN) module redundancy checks – Two SPI modules – 128-bit unique identification (ID) number per chip – Two I2C modules – Five UART modules • Human-machine interface – I2S module – Segment LCD controller supporting up to 36 frontplanes and 8 backplanes, or 40 frontplanes and 4 backplanes, depending on the package size – Low-power hardware touch sensor interface (TSI) – General-purpose input/output Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2012 Freescale Semiconductor, Inc.
Table of Contents 1 Ordering parts...........................................................................3 5.4.2 Thermal attributes.................................................20 1.1 Determining valid orderable parts......................................3 6 Peripheral operating requirements and behaviors....................22 2 Part identification......................................................................3 6.1 Core modules....................................................................22 2.1 Description.........................................................................3 6.1.1 Debug trace timing specifications.........................22 2.2 Format...............................................................................3 6.1.2 JTAG electricals....................................................22 2.3 Fields.................................................................................3 6.2 System modules................................................................25 2.4 Example............................................................................4 6.3 Clock modules...................................................................25 3 Terminology and guidelines......................................................4 6.3.1 MCG specifications...............................................25 3.1 Definition: Operating requirement......................................4 6.3.2 Oscillator electrical specifications.........................27 3.2 Definition: Operating behavior...........................................5 6.3.3 32 kHz Oscillator Electrical Characteristics...........30 3.3 Definition: Attribute............................................................5 6.4 Memories and memory interfaces.....................................30 3.4 Definition: Rating...............................................................6 6.4.1 Flash electrical specifications................................30 3.5 Result of exceeding a rating..............................................6 6.4.2 EzPort Switching Specifications............................35 3.6 Relationship between ratings and operating 6.5 Security and integrity modules..........................................36 requirements......................................................................6 6.6 Analog...............................................................................36 3.7 Guidelines for ratings and operating requirements............7 6.6.1 ADC electrical specifications.................................36 3.8 Definition: Typical value.....................................................7 6.6.2 CMP and 6-bit DAC electrical specifications.........43 3.9 Typical value conditions....................................................8 6.6.3 12-bit DAC electrical characteristics.....................46 4 Ratings......................................................................................9 6.6.4 Voltage reference electrical specifications............49 4.1 Thermal handling ratings...................................................9 6.7 Timers................................................................................50 4.2 Moisture handling ratings..................................................9 6.8 Communication interfaces.................................................50 4.3 ESD handling ratings.........................................................9 6.8.1 CAN switching specifications................................50 4.4 Voltage and current operating ratings...............................9 6.8.2 DSPI switching specifications (limited voltage 5 General.....................................................................................10 range)....................................................................51 5.1 AC electrical characteristics..............................................10 6.8.3 DSPI switching specifications (full voltage range).52 5.2 Nonswitching electrical specifications...............................10 6.8.4 I2C switching specifications..................................54 5.2.1 Voltage and current operating requirements.........10 6.8.5 UART switching specifications..............................54 5.2.2 LVD and POR operating requirements.................11 6.8.6 I2S/SAI Switching Specifications..........................54 5.2.3 Voltage and current operating behaviors..............12 6.9 Human-machine interfaces (HMI)......................................58 5.2.4 Power mode transition operating behaviors..........13 6.9.1 TSI electrical specifications...................................58 5.2.5 Power consumption operating behaviors..............14 6.9.2 LCD electrical characteristics................................59 5.2.6 Designing with radiated emissions in mind...........18 7 Dimensions...............................................................................60 5.2.7 Capacitance attributes..........................................18 7.1 Obtaining package dimensions.........................................60 5.3 Switching specifications.....................................................19 8 Pinout........................................................................................61 5.3.1 Device clock specifications...................................19 8.1 K30 Signal Multiplexing and Pin Assignments..................61 5.3.2 General switching specifications...........................19 8.2 K30 Pinouts.......................................................................66 5.4 Thermal specifications.......................................................20 9 Revision History........................................................................68 5.4.1 Thermal operating requirements...........................20 K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 2 Freescale Semiconductor, Inc.
Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: PK30 and MK30 . 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: Q K## A M FFF R T PP CC N 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification K## Kinetis family • K30 A Key attribute • D = Cortex-M4 w/ DSP • F = Cortex-M4 w/ DSP and FPU M Flash memory type • N = Program flash only • X = Program flash and FlexMemory Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 3
Terminology and guidelines Field Description Values FFF Program flash memory size • 32 = 32 KB • 64 = 64 KB • 128 = 128 KB • 256 = 256 KB • 512 = 512 KB • 1M0 = 1 MB R Silicon revision • Z = Initial • (Blank) = Main • A = Revision after main T Temperature range (°C) • V = –40 to 105 • C = –40 to 85 PP Package identifier • FM = 32 QFN (5 mm x 5 mm) • FT = 48 QFN (7 mm x 7 mm) • LF = 48 LQFP (7 mm x 7 mm) • LH = 64 LQFP (10 mm x 10 mm) • MP = 64 MAPBGA (5 mm x 5 mm) • LK = 80 LQFP (12 mm x 12 mm) • LL = 100 LQFP (14 mm x 14 mm) • MC = 121 MAPBGA (8 mm x 8 mm) • LQ = 144 LQFP (20 mm x 20 mm) • MD = 144 MAPBGA (13 mm x 13 mm) • MJ = 256 MAPBGA (17 mm x 17 mm) CC Maximum CPU frequency (MHz) • 5 = 50 MHz • 7 = 72 MHz • 10 = 100 MHz • 12 = 120 MHz • 15 = 150 MHz N Packaging type • R = Tape and reel • (Blank) = Trays 2.4 Example This is an example part number: MK30DN512ZVMD10 3 Terminology and guidelines 3.1 Definition: Operating requirement An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip. K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 4 Freescale Semiconductor, Inc.
Terminology and guidelines 3.1.1 Example This is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed: Symbol Description Min. Max. Unit V 1.0 V core supply 0.9 1.1 V DD voltage 3.2 Definition: Operating behavior An operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions. 3.2.1 Example This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements: Symbol Description Min. Max. Unit I Digital I/O weak pullup/ 10 130 µA WP pulldown current 3.3 Definition: Attribute An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements. 3.3.1 Example This is an example of an attribute: Symbol Description Min. Max. Unit CIN_D Input capacitance: — 7 pF digital pins K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 5
Terminology and guidelines 3.4 Definition: Rating A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. 3.4.1 Example This is an example of an operating rating: Symbol Description Min. Max. Unit V 1.0 V core supply –0.3 1.2 V DD voltage 3.5 Result of exceeding a rating 40 m) 30 p p e ( s in tim 20 Tsohoen l ikaesl iah ocohda roafc pteerrimstiacn beengt icnhsi pto f aeixlucreee idn corneea soef sit sra oppidelrya atins g ratings. e ur Fail 10 0 Operating rating Measured characteristic K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 6 Freescale Semiconductor, Inc.
Terminology and guidelines 3.6 Relationship between ratings and operating requirements O perating rating (min.) O perating require m ent (min.) O perating require m ent (m ax.) O perating rating (m ax.) Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - No permanent failure - No permanent failure Expected permanent failure - Possible decreased life - Correct operation - Possible decreased life - Possible incorrect operation - Possible incorrect operation –∞ ∞ Operating (power on) H andling rating (min.) H andling rating (m ax.) Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure –∞ ∞ Handling (power off) 3.7 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 3.8 Definition: Typical value A typical value is a specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed. K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 7
Terminology and guidelines 3.8.1 Example 1 This is an example of an operating behavior that includes a typical value: Symbol Description Min. Typ. Max. Unit I Digital I/O weak 10 70 130 µA WP pullup/pulldown current 3.8.2 Example 2 This is an example of a chart that shows typical values for various voltage and temperature conditions: 5000 4500 4000 T 3500 J 150 °C A) 3000 μ ( 105 °C P O 2500 T S 25 °C _ D ID 2000 –40 °C 1500 1000 500 0 0.90 0.95 1.00 1.05 1.10 V (V) DD 3.9 Typical value conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit T Ambient temperature 25 °C A V 3.3 V supply voltage 3.3 V DD K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 8 Freescale Semiconductor, Inc.
Ratings 4 Ratings 4.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes T Storage temperature –55 150 °C 1 STG T Solder temperature, lead-free — 260 °C 2 SDR 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.2 Moisture handling ratings Symbol Description Min. Max. Unit Notes MSL Moisture sensitivity level — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 ESD handling ratings Symbol Description Min. Max. Unit Notes V Electrostatic discharge voltage, human body model -2000 +2000 V 1 HBM V Electrostatic discharge voltage, charged-device model -500 +500 V 2 CDM I Latch-up current at ambient temperature of 105°C -100 +100 mA LAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 4.4 Voltage and current operating ratings Symbol Description Min. Max. Unit V Digital supply voltage –0.3 3.8 V DD Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 9
General Symbol Description Min. Max. Unit I Digital supply current — 185 mA DD V Digital input voltage (except RESET, EXTAL, and XTAL) –0.3 5.5 V DIO V Analog1, RESET, EXTAL, and XTAL input voltage –0.3 V + 0.3 V AIO DD I Maximum current single pin limit (applies to all digital pins) –25 25 mA D V Analog supply voltage V – 0.3 V + 0.3 V DDA DD DD V RTC battery supply voltage –0.3 3.8 V BAT 1. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 5 General 5.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. Figure 1. Input signal measurement reference All digital I/O switching characteristics assume: 1. output pins • have C =30pF loads, L • are configured for fast slew rate (PORTx_PCRn[SRE]=0), and • are configured for high drive strength (PORTx_PCRn[DSE]=1) 2. input pins • have their passive filter disabled (PORTx_PCRn[PFE]=0) 5.2 Nonswitching electrical specifications K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 10 Freescale Semiconductor, Inc.
General 5.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements Symbol Description Min. Max. Unit Notes V Supply voltage 1.71 3.6 V DD V Analog supply voltage 1.71 3.6 V DDA V – V V -to-V differential voltage –0.1 0.1 V DD DDA DD DDA V – V V -to-V differential voltage –0.1 0.1 V SS SSA SS SSA V RTC battery supply voltage 1.71 3.6 V BAT V Input high voltage IH • 2.7 V ≤ V ≤ 3.6 V 0.7 × V — V DD DD • 1.7 V ≤ V ≤ 2.7 V 0.75 × V — V DD DD V Input low voltage IL • 2.7 V ≤ V ≤ 3.6 V — 0.35 × V V DD DD • 1.7 V ≤ V ≤ 2.7 V — 0.3 × V V DD DD V Input hysteresis 0.06 × V — V HYS DD I Digital pin negative DC injection current — single pin 1 ICDIO -5 — mA • V < V -0.3V IN SS I Analog2, EXTAL, and XTAL pin DC injection current — 3 ICAIO single pin mA • V < V -0.3V (Negative current injection) -5 — IN SS • V > V +0.3V (Positive current injection) — +5 IN DD I Contiguous pin DC injection current —regional limit, ICcont includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins -25 — mA • Negative current injection — +25 • Positive current injection V V voltage required to retain RAM 1.2 — V RAM DD V V voltage required to retain the VBAT register file V — V RFVBAT BAT POR_VBAT 1. All 5 V tolerant digital I/O pins are internally clamped to V through a ESD protection diode. There is no diode connection SS to V . If V greater than V (=V -0.3V) is observed, then there is no need to provide current limiting resistors at DD IN DIO_MIN SS the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V -V )/|I |. DIO_MIN IN IC 2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 3. All analog pins are internally clamped to V and V through ESD protection diodes. If V is greater than V SS DD IN AIO_MIN (=V -0.3V) and V is less than V (=V +0.3V) is observed, then there is no need to provide current limiting SS IN AIO_MAX DD resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V -V )/|I |. The positive injection current limiting resistor is AIO_MIN IN IC calculated as R=(V -V )/|I |. Select the larger of these two calculated resistances. IN AIO_MAX IC K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 11
General 5.2.2 LVD and POR operating requirements Table 2. V supply LVD and POR operating requirements DD Symbol Description Min. Typ. Max. Unit Notes V Falling VDD POR detect voltage 0.8 1.1 1.5 V POR V Falling low-voltage detect threshold — high 2.48 2.56 2.64 V LVDH range (LVDV=01) Low-voltage warning thresholds — high range 1 V • Level 1 falling (LVWV=00) 2.62 2.70 2.78 V LVW1H V • Level 2 falling (LVWV=01) 2.72 2.80 2.88 V LVW2H V • Level 3 falling (LVWV=10) 2.82 2.90 2.98 V LVW3H V • Level 4 falling (LVWV=11) 2.92 3.00 3.08 V LVW4H V Low-voltage inhibit reset/recover hysteresis — — ±80 — mV HYSH high range V Falling low-voltage detect threshold — low range 1.54 1.60 1.66 V LVDL (LVDV=00) Low-voltage warning thresholds — low range 1 V • Level 1 falling (LVWV=00) 1.74 1.80 1.86 V LVW1L V • Level 2 falling (LVWV=01) 1.84 1.90 1.96 V LVW2L V • Level 3 falling (LVWV=10) 1.94 2.00 2.06 V LVW3L V • Level 4 falling (LVWV=11) 2.04 2.10 2.16 V LVW4L V Low-voltage inhibit reset/recover hysteresis — — ±60 — mV HYSL low range V Bandgap voltage reference 0.97 1.00 1.03 V BG t Internal low power oscillator period — factory 900 1000 1100 μs LPO trimmed 1. Rising thresholds are falling threshold + hysteresis voltage Table 3. VBAT power operating requirements Symbol Description Min. Typ. Max. Unit Notes V Falling VBAT supply POR detect voltage 0.8 1.1 1.5 V POR_VBAT K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 12 Freescale Semiconductor, Inc.
General 5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors Symbol Description Min. Max. Unit Notes V Output high voltage — high drive strength OH • 2.7 V ≤ V ≤ 3.6 V, I = -9mA V – 0.5 — V DD OH DD • 1.71 V ≤ V ≤ 2.7 V, I = -3mA V – 0.5 — V DD OH DD Output high voltage — low drive strength • 2.7 V ≤ V ≤ 3.6 V, I = -2mA V – 0.5 — V DD OH DD • 1.71 V ≤ V ≤ 2.7 V, I = -0.6mA V – 0.5 — V DD OH DD I Output high current total for all ports — 100 mA OHT V Output low voltage — high drive strength OL • 2.7 V ≤ V ≤ 3.6 V, I = 9mA — 0.5 V DD OL • 1.71 V ≤ V ≤ 2.7 V, I = 3mA — 0.5 V DD OL Output low voltage — low drive strength • 2.7 V ≤ V ≤ 3.6 V, I = 2mA — 0.5 V DD OL • 1.71 V ≤ V ≤ 2.7 V, I = 0.6mA — 0.5 V DD OL I Output low current total for all ports — 100 mA OLT I Input leakage current (per pin) for full temperature — 1 μA 1 IN range I Input leakage current (per pin) at 25°C — 0.025 μA 1 IN I Hi-Z (off-state) leakage current (per pin) — 1 μA OZ R Internal pullup resistors 20 50 kΩ 2 PU R Internal pulldown resistors 20 50 kΩ 3 PD 1. Measured at VDD=3.6V 2. Measured at V supply voltage = V min and Vinput = V DD DD SS 3. Measured at V supply voltage = V min and Vinput = V DD DD DD 5.2.4 Power mode transition operating behaviors All specifications except t , and VLLSx→RUN recovery times in the following table POR assume this clock configuration: • CPU and system clocks = 72 MHz • Bus clock = 36 MHz • Flash clock = 24 MHz K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 13
General Table 5. Power mode transition operating behaviors Symbol Description Min. Max. Unit Notes t After a POR event, amount of time from the point V — 300 μs 1 POR DD reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. — 112 μs • VLLS1 → RUN — 74 μs • VLLS2 → RUN — 73 μs • VLLS3 → RUN — 5.9 μs • LLS → RUN — 5.8 μs • VLPS → RUN — 4.2 μs • STOP → RUN 1. Normal boot (FTFL_OPT[LPBOOT]=1) 5.2.5 Power consumption operating behaviors Table 6. Power consumption operating behaviors Symbol Description Min. Typ. Max. Unit Notes I Analog supply current — — See note mA 1 DDA I Run mode current — all peripheral clocks 2 DD_RUN disabled, code executing from flash • @ 1.8V — 21.5 25 mA • @ 3.0V — 21.5 30 mA I Run mode current — all peripheral clocks 3, 4 DD_RUN enabled, code executing from flash • @ 1.8V — 31 34 mA • @ 3.0V • @ 25°C — 31 34 mA • @ 125°C — 32 39 mA I Wait mode high frequency current at 3.0 V — all — 12.5 — mA 2 DD_WAIT peripheral clocks disabled I Wait mode reduced frequency current at 3.0 V — — 7.2 — mA 5 DD_WAIT all peripheral clocks disabled I Very-low-power run mode current at 3.0 V — all — 0.996 — mA 6 DD_VLPR peripheral clocks disabled I Very-low-power run mode current at 3.0 V — all — 1.46 — mA 7 DD_VLPR peripheral clocks enabled Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 14 Freescale Semiconductor, Inc.
General Table 6. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit Notes I Very-low-power wait mode current at 3.0 V — all — 0.61 — mA 8 DD_VLPW peripheral clocks disabled I Stop mode current at 3.0 V DD_STOP • @ –40 to 25°C — 0.35 0.567 mA • @ 70°C — 0.384 0.793 mA • @ 105°C — 0.628 1.2 mA I Very-low-power stop mode current at 3.0 V DD_VLPS • @ –40 to 25°C — 5.9 32.7 μA • @ 70°C — 26.1 59.8 μA • @ 105°C — 98.1 188 μA I Low leakage stop mode current at 3.0 V 9 DD_LLS • @ –40 to 25°C — 2.6 8.6 μA • @ 70°C — 10.3 29.1 μA • @ 105°C — 42.5 92.5 μA I Very low-leakage stop mode 3 current at 3.0 V 9 DD_VLLS3 • @ –40 to 25°C — 1.9 5.8 μA • @ 70°C — 6.9 12.1 μA • @ 105°C — 28.1 41.9 μA I Very low-leakage stop mode 2 current at 3.0 V DD_VLLS2 • @ –40 to 25°C — 1.59 5.5 μA • @ 70°C — 4.3 9.5 μA • @ 105°C — 17.5 34 μA I Very low-leakage stop mode 1 current at 3.0 V DD_VLLS1 • @ –40 to 25°C — 1.47 5.4 μA • @ 70°C — 2.97 8.1 μA • @ 105°C — 12.41 32 μA I Average current with RTC and 32kHz disabled at DD_VBAT 3.0 V • @ –40 to 25°C — 0.19 0.22 μA • @ 70°C — 0.49 0.64 μA • @ 105°C — 2.2 3.2 μA Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 15
General Table 6. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit Notes I Average current when CPU is not accessing RTC 10 DD_VBAT registers • @ 1.8V • @ –40 to 25°C — 0.57 0.67 μA • @ 70°C — 0.90 1.2 μA • @ 105°C — 2.4 3.5 μA • @ 3.0V • @ –40 to 25°C — 0.67 0.94 μA • @ 70°C — 1.0 1.4 μA • @ 105°C — 2.7 3.9 μA 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 72MHz core and system clock, 36MHz bus clock, and 24MHz flash clock. MCG configured for FEE mode. All peripheral clocks disabled. 3. 72MHz core and system clock, 36MHz bus clock, and 24MHz flash clock. MCG configured for FEE mode. All peripheral clocks enabled. 4. Max values are measured with CPU executing DSP instructions. 5. 25MHz core, system, bus and flash clock. MCG configured for FEI mode. 6. 4 MHz core and system clock, 4 MHz and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash. 7. 4 MHz core and system clock, 4 MHz and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash. 8. 4 MHz core and system clock, 4 MHz and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. 9. Data reflects devices with 128 KB of RAM. 10. Includes 32kHz oscillator current and RTC operation. 5.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies. • No GPIOs toggled • Code execution from flash with cache enabled • For the ALLOFF curve, all peripheral clocks are disabled except FTFL K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 16 Freescale Semiconductor, Inc.
General Figure 2. Run mode supply current vs. core frequency K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 17
General Figure 3. VLPR mode supply current vs. core frequency 5.2.6 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.freescale.com. 2. Perform a keyword search for “EMC design.” 5.2.7 Capacitance attributes Table 7. Capacitance attributes Symbol Description Min. Max. Unit C Input capacitance: analog pins — 7 pF IN_A C Input capacitance: digital pins — 7 pF IN_D K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 18 Freescale Semiconductor, Inc.
General 5.3 Switching specifications 5.3.1 Device clock specifications Table 8. Device clock specifications Symbol Description Min. Max. Unit Notes Normal run mode f System and core clock — 72 MHz SYS f Bus clock — 50 MHz BUS f Flash clock — 25 MHz FLASH f LPTMR clock — 25 MHz LPTMR VLPR mode1 f System and core clock — 4 MHz SYS f Bus clock — 4 MHz BUS f Flash clock — 0.5 MHz FLASH f External reference clock — 16 MHz ERCLK f LPTMR clock — 25 MHz LPTMR_pin f LPTMR external reference clock — 16 MHz LPTMR_ERCLK f FlexCAN external reference clock — 8 MHz FlexCAN_ERCLK f I2S master clock — 12.5 MHz I2S_MCLK f I2S bit clock — 4 MHz I2S_BCLK 1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module. 5.3.2 General switching specifications These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, and I2C signals. Table 9. General switching specifications Symbol Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter 1.5 — Bus clock 1, 2 disabled) — Synchronous path cycles GPIO pin interrupt pulse width (digital glitch filter 100 — ns 3 disabled, analog filter enabled) — Asynchronous path GPIO pin interrupt pulse width (digital glitch filter 16 — ns 3 disabled, analog filter disabled) — Asynchronous path External reset pulse width (digital glitch filter disabled) 100 — ns 3 Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 19
General Table 9. General switching specifications (continued) Symbol Description Min. Max. Unit Notes Mode select (EZP_CS) hold time after reset 2 — Bus clock deassertion cycles Port rise and fall time (high drive strength) 4 • Slew disabled • 1.71 ≤ V ≤ 2.7V — 12 ns DD • 2.7 ≤ V ≤ 3.6V — 6 ns DD • Slew enabled • 1.71 ≤ V ≤ 2.7V — 36 ns DD • 2.7 ≤ V ≤ 3.6V — 24 ns DD Port rise and fall time (low drive strength) 5 • Slew disabled • 1.71 ≤ V ≤ 2.7V — 12 ns DD • 2.7 ≤ V ≤ 3.6V — 6 ns DD • Slew enabled • 1.71 ≤ V ≤ 2.7V — 36 ns DD • 2.7 ≤ V ≤ 3.6V — 24 ns DD 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case. 2. The greater synchronous and asynchronous timing must be met. 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes. 4. 75pF load 5. 15pF load 5.4 Thermal specifications 5.4.1 Thermal operating requirements Table 10. Thermal operating requirements Symbol Description Min. Max. Unit T Die junction temperature –40 125 °C J T Ambient temperature –40 105 °C A K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 20 Freescale Semiconductor, Inc.
General 5.4.2 Thermal attributes Board type Symbol Description 121 100 LQFP Unit Notes MAPBGA Single-layer R Thermal 74 52 °C/W 1, 2 θJA (1s) resistance, junction to ambient (natural convection) Four-layer R Thermal 42 40 °C/W 1, 3 θJA (2s2p) resistance, junction to ambient (natural convection) Single-layer R Thermal 62 42 °C/W 1,3 θJMA (1s) resistance, junction to ambient (200 ft./ min. air speed) Four-layer R Thermal 38 34 °C/W 1,3 θJMA (2s2p) resistance, junction to ambient (200 ft./ min. air speed) — R Thermal 23 25 °C/W 4 θJB resistance, junction to board — R Thermal 19 12 °C/W 5 θJC resistance, junction to case — Ψ Thermal 4 2 °C/W 6 JT characterization parameter, junction to package top outside center (natural convection) 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air) with the single layer board horizontal. For the LQFP, the board meets the JESD51-3 specification. For the MAPBGA, the board meets the JESD51-9 specification. 3. Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental Conditions—Forced Convection (Moving Air) with the board horizontal. For the LQFP, the board meets the JESD51-7 specification. 4. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package. 5. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. 6. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 21
Peripheral operating requirements and behaviors 6 Peripheral operating requirements and behaviors 6.1 Core modules 6.1.1 Debug trace timing specifications Table 11. Debug trace operating behaviors Symbol Description Min. Max. Unit T Clock period Frequency dependent MHz cyc T Low pulse width 2 — ns wl T High pulse width 2 — ns wh T Clock and data rise time — 3 ns r T Clock and data fall time — 3 ns f T Data setup 3 — ns s T Data hold 2 — ns h Figure 4. TRACE_CLKOUT specifications TRACE_CLKOUT Ts Th Ts Th TRACE_D[3:0] Figure 5. Trace data specifications K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 22 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors 6.1.2 JTAG electricals Table 12. JTAG limited voltage range electricals Symbol Description Min. Max. Unit Operating voltage 2.7 3.6 V J1 TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 25 • Serial Wire Debug 0 50 J2 TCLK cycle period 1/J1 — ns J3 TCLK clock pulse width • Boundary Scan 50 — ns • JTAG and CJTAG 20 — ns • Serial Wire Debug 10 — ns J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 0 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1 — ns J11 TCLK low to TDO data valid — 17 ns J12 TCLK low to TDO high-Z — 17 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns Table 13. JTAG full voltage range electricals Symbol Description Min. Max. Unit Operating voltage 1.71 3.6 V J1 TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 20 • Serial Wire Debug 0 40 J2 TCLK cycle period 1/J1 — ns J3 TCLK clock pulse width • Boundary Scan 50 — ns • JTAG and CJTAG 25 — ns • Serial Wire Debug 12.5 — ns J4 TCLK rise and fall times — 3 ns Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 23
Peripheral operating requirements and behaviors Table 13. JTAG full voltage range electricals (continued) Symbol Description Min. Max. Unit J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 0 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1.4 — ns J11 TCLK low to TDO data valid — 22.1 ns J12 TCLK low to TDO high-Z — 22.1 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns J2 J3 J3 TCLK (input) J4 J4 Figure 6. Test clock input timing TCLK J5 J6 Data inputs Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 7. Boundary scan (JTAG) timing K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 24 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors TCLK J9 J10 TDI/TMS Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 8. Test Access Port timing TCLK J14 J13 TRST Figure 9. TRST timing 6.2 System modules There are no specifications necessary for the device's system modules. 6.3 Clock modules K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 25
Peripheral operating requirements and behaviors 6.3.1 MCG specifications Table 14. MCG specifications Symbol Description Min. Typ. Max. Unit Notes f Internal reference frequency (slow clock) — — 32.768 — kHz ints_ft factory trimmed at nominal VDD and 25 °C f Internal reference frequency (slow clock) — user 31.25 — 39.0625 kHz ints_t trimmed Δ Resolution of trimmed average DCO output — ± 0.3 ± 0.6 %f 1 fdco_res_t dco frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM Δf Resolution of trimmed average DCO output — ± 0.2 ± 0.5 %f 1 dco_res_t dco frequency at fixed voltage and temperature — using SCTRIM only Δf Total deviation of trimmed average DCO output — +0.5/-0.7 — %f 1 dco_t dco frequency over voltage and temperature Δf Total deviation of trimmed average DCO output — ± 0.3 ± 0.3 %f 1 dco_t dco frequency over fixed voltage and temperature range of 0–70°C f Internal reference frequency (fast clock) — — 4 — MHz intf_ft factory trimmed at nominal VDD and 25°C f Internal reference frequency (fast clock) — user 3 — 5 MHz intf_t trimmed at nominal VDD and 25 °C f Loss of external clock minimum frequency — (3/5) x — — kHz loc_low RANGE = 00 f ints_t f Loss of external clock minimum frequency — (16/5) x — — kHz loc_high RANGE = 01, 10, or 11 f ints_t FLL f FLL reference frequency range 31.25 — 39.0625 kHz fll_ref f DCO output Low range (DRS=00) 20 20.97 25 MHz 2, 3 dco frequency range 640 × f fll_ref Mid range (DRS=01) 40 41.94 50 MHz 1280 × f fll_ref Mid-high range (DRS=10) 60 62.91 75 MHz 1920 × f fll_ref High range (DRS=11) 80 83.89 100 MHz 2560 × f fll_ref f DCO output Low range (DRS=00) — 23.99 — MHz 4, 5 dco_t_DMX32 frequency 732 × f fll_ref Mid range (DRS=01) — 47.97 — MHz 1464 × f fll_ref Mid-high range (DRS=10) — 71.99 — MHz 2197 × f fll_ref High range (DRS=11) — 95.98 — MHz 2929 × f fll_ref Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 26 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors Table 14. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit Notes J FLL period jitter ps cyc_fll — 180 — • f = 48 MHz VCO — 150 — • f = 98 MHz VCO t FLL target frequency acquisition time — — 1 ms 6 fll_acquire PLL f VCO operating frequency 48.0 — 100 MHz vco I PLL operating current 7 pll — 1060 — µA • PLL @ 96 MHz (f = 8 MHz, f = osc_hi_1 pll_ref 2 MHz, VDIV multiplier = 48) I PLL operating current 7 pll — 600 — µA • PLL @ 48 MHz (f = 8 MHz, f = osc_hi_1 pll_ref 2 MHz, VDIV multiplier = 24) f PLL reference frequency range 2.0 — 4.0 MHz pll_ref J PLL period jitter (RMS) 8 cyc_pll • f = 48 MHz — 120 — ps vco • f = 100 MHz — 50 — ps vco J PLL accumulated jitter over 1µs (RMS) 8 acc_pll • f = 48 MHz — 1350 — ps vco • f = 100 MHz — 600 — ps vco D Lock entry frequency tolerance ± 1.49 — ± 2.98 % lock D Lock exit frequency tolerance ± 4.47 — ± 5.97 % unl t Lock detector detection time — — 150 × 10-6 s 9 pll_lock + 1075(1/ f ) pll_ref 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf ) over voltage and temperature should be considered. dco_t 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 7. Excludes any oscillator currents that are also consuming power while PLL is in operation. 8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 9. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 6.3.2 Oscillator electrical specifications This section provides the electrical characteristics of the module. K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 27
Peripheral operating requirements and behaviors 6.3.2.1 Oscillator DC electrical specifications Table 15. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit Notes V Supply voltage 1.71 — 3.6 V DD I Supply current — low-power mode (HGO=0) 1 DDOSC • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA I Supply current — high gain mode (HGO=1) 1 DDOSC • 32 kHz — 25 — μA • 4 MHz — 400 — μA • 8 MHz (RANGE=01) — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA C EXTAL load capacitance — — — 2, 3 x C XTAL load capacitance — — — 2, 3 y R Feedback resistor — low-frequency, low-power — — — MΩ 2, 4 F mode (HGO=0) Feedback resistor — low-frequency, high-gain — 10 — MΩ mode (HGO=1) Feedback resistor — high-frequency, low-power — — — MΩ mode (HGO=0) Feedback resistor — high-frequency, high-gain — 1 — MΩ mode (HGO=1) R Series resistor — low-frequency, low-power — — — kΩ S mode (HGO=0) Series resistor — low-frequency, high-gain mode — 200 — kΩ (HGO=1) Series resistor — high-frequency, low-power — — — kΩ mode (HGO=0) Series resistor — high-frequency, high-gain mode (HGO=1) — 0 — kΩ Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 28 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors Table 15. Oscillator DC electrical specifications (continued) Symbol Description Min. Typ. Max. Unit Notes V 5 Peak-to-peak amplitude of oscillation (oscillator — 0.6 — V pp mode) — low-frequency, low-power mode (HGO=0) Peak-to-peak amplitude of oscillation (oscillator — V — V DD mode) — low-frequency, high-gain mode (HGO=1) Peak-to-peak amplitude of oscillation (oscillator — 0.6 — V mode) — high-frequency, low-power mode (HGO=0) Peak-to-peak amplitude of oscillation (oscillator — V — V DD mode) — high-frequency, high-gain mode (HGO=1) 1. V =3.3 V, Temperature =25 °C DD 2. See crystal or resonator manufacturer's recommendation 3. C ,C can be provided by using either the integrated capacitors or by using external components. x y 4. When low power mode is selected, R is integrated and must not be attached externally. F 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. 6.3.2.2 Oscillator frequency specifications Table 16. Oscillator frequency specifications Symbol Description Min. Typ. Max. Unit Notes f Oscillator crystal or resonator frequency — low 32 — 40 kHz osc_lo frequency mode (MCG_C2[RANGE]=00) f Oscillator crystal or resonator frequency — high 3 — 8 MHz osc_hi_1 frequency mode (low range) (MCG_C2[RANGE]=01) f Oscillator crystal or resonator frequency — high 8 — 32 MHz osc_hi_2 frequency mode (high range) (MCG_C2[RANGE]=1x) f Input clock frequency (external clock mode) — — 50 MHz 1, 2 ec_extal t Input clock duty cycle (external clock mode) 40 50 60 % dc_extal t Crystal startup time — 32 kHz low-frequency, — 750 — ms 3, 4 cst low-power mode (HGO=0) Crystal startup time — 32 kHz low-frequency, — 250 — ms high-gain mode (HGO=1) Crystal startup time — 8 MHz high-frequency — 0.6 — ms (MCG_C2[RANGE]=01), low-power mode (HGO=0) Crystal startup time — 8 MHz high-frequency — 1 — ms (MCG_C2[RANGE]=01), high-gain mode (HGO=1) 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL. 2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency. 3. Proper PC board layout procedures must be followed to achieve specifications. K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 29
Peripheral operating requirements and behaviors 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. NOTE The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode. 6.3.3 32 kHz Oscillator Electrical Characteristics This section describes the module electrical characteristics. 6.3.3.1 32 kHz oscillator DC electrical specifications Table 17. 32kHz oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit V Supply voltage 1.71 — 3.6 V BAT R Internal feedback resistor — 100 — MΩ F C Parasitical capacitance of EXTAL32 and XTAL32 — 5 7 pF para V 1 Peak-to-peak amplitude of oscillation — 0.6 — V pp 1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices. 6.3.3.2 32kHz oscillator frequency specifications Table 18. 32kHz oscillator frequency specifications Symbol Description Min. Typ. Max. Unit Notes f Oscillator crystal — 32.768 — kHz osc_lo t Crystal start-up time — 1000 — ms 1 start v Externally provided input clock amplitude 700 — V mV 2, 3 ec_extal32 BAT 1. Proper PC board layout procedures must be followed to achieve specifications. 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected. 3. The parameter specified is a peak-to-peak value and V and V specifications do not apply. The voltage of the applied IH IL clock must be within the range of V to V . SS BAT 6.4 Memories and memory interfaces 6.4.1 Flash electrical specifications This section describes the electrical characteristics of the flash memory module. K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 30 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors 6.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 19. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit Notes t Longword Program high-voltage time — 7.5 18 μs hvpgm4 t Sector Erase high-voltage time — 13 113 ms 1 hversscr t Erase Block high-voltage time for 32 KB — 52 452 ms 1 hversblk32k t Erase Block high-voltage time for 256 KB — 104 904 ms 1 hversblk256k 1. Maximum time based on expectations at cycling end-of-life. 6.4.1.2 Flash timing specifications — commands Table 20. Flash command timing specifications Symbol Description Min. Typ. Max. Unit Notes Read 1s Block execution time t • 32 KB data flash — — 0.5 ms rd1blk32k t • 256 KB program flash — — 1.7 ms rd1blk256k t Read 1s Section execution time (data flash — — 60 μs 1 rd1sec1k sector) t Read 1s Section execution time (program flash — — 60 μs 1 rd1sec2k sector) t Program Check execution time — — 45 μs 1 pgmchk t Read Resource execution time — — 30 μs 1 rdrsrc t Program Longword execution time — 65 145 μs pgm4 Erase Flash Block execution time 2 t • 32 KB data flash — 55 465 ms ersblk32k t • 256 KB program flash — 122 985 ms ersblk256k t Erase Flash Sector execution time — 14 114 ms 2 ersscr Program Section execution time t • 512 B program flash — 2.4 — ms pgmsec512p t • 512 B data flash — 4.7 — ms pgmsec512d t • 1 KB program flash — 4.7 — ms pgmsec1kp t • 1 KB data flash — 9.3 — ms pgmsec1kd t Read 1s All Blocks execution time — — 1.8 ms rd1all t Read Once execution time — — 25 μs 1 rdonce t Program Once execution time — 65 — μs pgmonce t Erase All Blocks execution time — 175 1500 ms 2 ersall Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 31
Peripheral operating requirements and behaviors Table 20. Flash command timing specifications (continued) Symbol Description Min. Typ. Max. Unit Notes t Verify Backdoor Access Key execution time — — 30 μs 1 vfykey Swap Control execution time t • control code 0x01 — 200 — μs swapx01 t • control code 0x02 — 70 150 μs swapx02 t • control code 0x04 — 70 150 μs swapx04 t • control code 0x08 — — 30 μs swapx08 Program Partition for EEPROM execution time t • 32 KB FlexNVM — 70 — ms pgmpart32k Set FlexRAM Function execution time: t • Control Code 0xFF — 50 — μs setramff t • 8 KB EEPROM backup — 0.3 0.5 ms setram8k t • 32 KB EEPROM backup — 0.7 1.0 ms setram32k Byte-write to FlexRAM for EEPROM operation t Byte-write to erased FlexRAM location execution — 175 260 μs 3 eewr8bers time Byte-write to FlexRAM execution time: t • 8 KB EEPROM backup — 340 1700 μs eewr8b8k t • 16 KB EEPROM backup — 385 1800 μs eewr8b16k t • 32 KB EEPROM backup — 475 2000 μs eewr8b32k Word-write to FlexRAM for EEPROM operation t Word-write to erased FlexRAM location — 175 260 μs eewr16bers execution time Word-write to FlexRAM execution time: t • 8 KB EEPROM backup — 340 1700 μs eewr16b8k t • 16 KB EEPROM backup — 385 1800 μs eewr16b16k t • 32 KB EEPROM backup — 475 2000 μs eewr16b32k Longword-write to FlexRAM for EEPROM operation t Longword-write to erased FlexRAM location — 360 540 μs eewr32bers execution time Longword-write to FlexRAM execution time: t • 8 KB EEPROM backup — 545 1950 μs eewr32b8k t • 16 KB EEPROM backup — 630 2050 μs eewr32b16k t • 32 KB EEPROM backup — 810 2250 μs eewr32b32k 1. Assumes 25 MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased. K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 32 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors 6.4.1.3 Flash high voltage current behaviors Table 21. Flash high voltage current behaviors Symbol Description Min. Typ. Max. Unit I Average current adder during high voltage — 2.5 6.0 mA DD_PGM flash programming operation I Average current adder during high voltage — 1.5 4.0 mA DD_ERS flash erase operation 6.4.1.4 Reliability specifications Table 22. NVM reliability specifications Symbol Description Min. Typ.1 Max. Unit Notes Program Flash t Data retention after up to 10 K cycles 5 50 — years nvmretp10k t Data retention after up to 1 K cycles 20 100 — years nvmretp1k n Cycling endurance 10 K 50 K — cycles 2 nvmcycp Data Flash t Data retention after up to 10 K cycles 5 50 — years nvmretd10k t Data retention after up to 1 K cycles 20 100 — years nvmretd1k n Cycling endurance 10 K 50 K — cycles 2 nvmcycd FlexRAM as EEPROM t Data retention up to 100% of write endurance 5 50 — years nvmretee100 t Data retention up to 10% of write endurance 20 100 — years nvmretee10 Write endurance 3 n • EEPROM backup to FlexRAM ratio = 16 35 K 175 K — writes nvmwree16 n • EEPROM backup to FlexRAM ratio = 128 315 K 1.6 M — writes nvmwree128 n • EEPROM backup to FlexRAM ratio = 512 1.27 M 6.4 M — writes nvmwree512 n • EEPROM backup to FlexRAM ratio = 4096 10 M 50 M — writes nvmwree4k n • EEPROM backup to FlexRAM ratio = 8192 20 M 100 M — writes nvmwree8k 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at -40°C ≤ T ≤ 125°C. j 3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM. 6.4.1.5 Write endurance to FlexRAM for EEPROM When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values. K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 33
Peripheral operating requirements and behaviors The bytes not assigned to data flash via the FlexNVM partition code are used by the flash memory module to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space. While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used. EEPROM – 2 × EEESPLIT × EEESIZE Writes_subsystem = × Write_efficiency × n nvmcycd EEESPLIT × EEESIZE where • Writes_subsystem — minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance) • EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with the Program Partition command • EEESPLIT — FlexRAM split factor for subsystem; entered with the Program Partition command • EEESIZE — allocated FlexRAM based on DEPART; entered with the Program Partition command • Write_efficiency — • 0.25 for 8-bit writes to FlexRAM • 0.50 for 16-bit or 32-bit writes to FlexRAM • n — data flash cycling endurance (the following graph assumes 10,000 nvmcycd cycles) K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 34 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors Figure 10. EEPROM backup writes to FlexRAM 6.4.2 EzPort Switching Specifications Table 23. EzPort switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V EP1 EZP_CK frequency of operation (all commands except — f /2 MHz SYS READ) EP1a EZP_CK frequency of operation (READ command) — f /8 MHz SYS EP2 EZP_CS negation to next EZP_CS assertion 2 x t — ns EZP_CK EP3 EZP_CS input valid to EZP_CK high (setup) 5 — ns EP4 EZP_CK high to EZP_CS input invalid (hold) 5 — ns EP5 EZP_D input valid to EZP_CK high (setup) 2 — ns EP6 EZP_CK high to EZP_D input invalid (hold) 5 — ns EP7 EZP_CK low to EZP_Q output valid — 16 ns EP8 EZP_CK low to EZP_Q output invalid (hold) 0 — ns EP9 EZP_CS negation to EZP_Q tri-state — 12 ns K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 35
Peripheral operating requirements and behaviors EZP_CK EP3 EP4 EP2 EZP_CS EP9 EP8 EP7 EZP_Q (output) EP5 EP6 EZP_D (input) Figure 11. EzPort Timing Diagram 6.5 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. 6.6 Analog 6.6.1 ADC electrical specifications The 16-bit accuracy specifications listed in Table 24 and Table 25 are achievable on the differential pins ADCx_DP0, ADCx_DM0. The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 26 and Table 27. All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 36 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors 6.6.1.1 16-bit ADC operating conditions Table 24. 16-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit Notes V Supply voltage Absolute 1.71 — 3.6 V DDA ΔV Supply voltage Delta to V (V - V ) -100 0 +100 mV 2 DDA DD DD DDA ΔV Ground voltage Delta to V (V - V ) -100 0 +100 mV 2 SSA SS SS SSA V ADC reference 1.13 V V V REFH DDA DDA voltage high V ADC reference V V V V REFL SSA SSA SSA voltage low V Input voltage • 16-bit differential mode VREFL — 31/32 * V ADIN VREFH • All other modes VREFL — VREFH C Input capacitance • 16-bit mode — 8 10 pF ADIN • 8-/10-/12-bit modes — 4 5 R Input resistance — 2 5 kΩ ADIN R Analog source 13-/12-bit modes 3 AS resistance f < 4 MHz — — 5 kΩ ADCK f ADC conversion ≤ 13-bit mode 1.0 — 18.0 MHz 4 ADCK clock frequency f ADC conversion 16-bit mode 2.0 — 12.0 MHz 4 ADCK clock frequency C ADC conversion ≤ 13 bit modes 5 rate rate No ADC hardware averaging 20.000 — 818.330 Ksps Continuous conversions enabled, subsequent conversion time C ADC conversion 16-bit mode 5 rate rate No ADC hardware averaging 37.037 — 461.467 Ksps Continuous conversions enabled, subsequent conversion time 1. Typical values assume V = 3.0 V, Temp = 25 °C, f = 1.0 MHz unless otherwise stated. Typical values are for DDA ADCK reference only and are not tested in production. 2. DC potential difference. 3. This resistance is external to MCU. The analog source resistance must be kept as low as possible to achieve the best results. The results in this data sheet were derived from a system which has < 8 Ω analog source resistance. The R /C AS AS time constant should be kept to < 1ns. 4. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear. 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 37
Peripheral operating requirements and behaviors SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT ZADIN SIMPLIFIED Pad Z CHANNEL SELECT AS leakage due to CIRCUIT ADC SAR R input R ENGINE AS protection ADIN V ADIN C V AS AS R ADIN IINNPPUUTT PPIINN R ADIN INPUT PIN R ADIN INPUT PIN C ADIN Figure 12. ADC input impedance equivalency diagram 6.6.1.2 16-bit ADC electrical characteristics Table 25. 16-bit ADC characteristics (V = V , V = V ) REFH DDA REFL SSA Symbol Description Conditions1 Min. Typ.2 Max. Unit Notes I Supply current 0.215 — 1.7 mA 3 DDA_ADC ADC • ADLPC = 1, ADHSC = 0 1.2 2.4 3.9 MHz tADACK = 1/ asynchronous f clock source • ADLPC = 1, ADHSC = 1 2.4 4.0 6.1 MHz ADACK f ADACK • ADLPC = 0, ADHSC = 0 3.0 5.2 7.3 MHz • ADLPC = 0, ADHSC = 1 4.4 6.2 9.5 MHz Sample Time See Reference Manual chapter for sample times TUE Total unadjusted • 12-bit modes — ±4 ±6.8 LSB4 5 error • <12-bit modes — ±1.4 ±2.1 DNL Differential non- • 12-bit modes — ±0.7 -1.1 to +1.9 LSB4 5 linearity -0.3 to 0.5 • <12-bit modes — ±0.2 INL Integral non- • 12-bit modes — ±1.0 -2.7 to +1.9 LSB4 5 linearity -0.7 to +0.5 • <12-bit modes — ±0.5 E Full-scale error • 12-bit modes — -4 -5.4 LSB4 V = FS ADIN V • <12-bit modes — -1.4 -1.8 DDA 5 Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 38 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors Table 25. 16-bit ADC characteristics (V = V , V = V ) (continued) REFH DDA REFL SSA Symbol Description Conditions1 Min. Typ.2 Max. Unit Notes E Quantization • 16-bit modes — -1 to 0 — LSB4 Q error • ≤13-bit modes — — ±0.5 ENOB Effective number 16-bit differential mode 6 of bits • Avg = 32 12.8 14.5 — bits • Avg = 4 11.9 13.8 — bits 16-bit single-ended mode • Avg = 32 12.2 13.9 — bits • Avg = 4 11.4 13.1 — bits Signal-to-noise See ENOB SINAD 6.02 × ENOB + 1.76 dB plus distortion THD Total harmonic 16-bit differential mode 7 distortion • Avg = 32 — –94 — dB 16-bit single-ended mode — -85 — dB • Avg = 32 SFDR Spurious free 16-bit differential mode 7 dynamic range • Avg = 32 82 95 — dB 16-bit single-ended mode 78 90 — dB • Avg = 32 E Input leakage I × R mV I = IL In AS In error leakage current (refer to the MCU's voltage and current operating ratings) Temp sensor Across the full temperature — 1.715 — mV/°C slope range of the device V Temp sensor 25 °C — 719 — mV TEMP25 voltage 1. All accuracy numbers assume the ADC is calibrated with V = V REFH DDA 2. Typical values assume V = 3.0 V, Temp = 25°C, f = 2.0 MHz unless otherwise stated. Typical values are for DDA ADCK reference only and are not tested in production. 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed. 4. 1 LSB = (V - V )/2N REFH REFL 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11) 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz. 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz. K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 39
Peripheral operating requirements and behaviors Figure 13. Typical ENOB vs. ADC_CLK for 16-bit differential mode Figure 14. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 40 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors 6.6.1.3 16-bit ADC with PGA operating conditions Table 26. 16-bit ADC with PGA operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit Notes V Supply voltage Absolute 1.71 — 3.6 V DDA V PGA ref voltage VREF_OU VREF_OU VREF_OU V 2, 3 REFPGA T T T V Input voltage V — V V ADIN SSA DDA V Input Common V — V V CM SSA DDA Mode range R Differential input Gain = 1, 2, 4, 8 — 128 — kΩ IN+ to IN-4 PGAD impedance Gain = 16, 32 — 64 — Gain = 64 — 32 — R Analog source — 100 — Ω 5 AS resistance T ADC sampling 1.25 — — µs 6 S time C ADC conversion ≤ 13 bit modes 18.484 — 450 Ksps 7 rate rate No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50 MHz 16 bit modes 37.037 — 250 Ksps 8 No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50 MHz 1. Typical values assume V = 3.0 V, Temp = 25°C, f = 6 MHz unless otherwise stated. Typical values are for DDA ADCK reference only and are not tested in production. 2. ADC must be configured to use the internal voltage reference (VREF_OUT) 3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other than the output of the VREF module, the VREF module must be disabled. 4. For single ended configurations the input impedance of the driven input is R /2 PGAD 5. The analog source resistance (R ), external to MCU, should be kept as minimum as possible. Increased R causes drop AS AS in PGA gain without affecting other performances. This is not dependent on ADC clock frequency. 6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for F =4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at in 8 MHz ADC clock. 7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1 8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1 K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 41
Peripheral operating requirements and behaviors 6.6.1.4 16-bit ADC with PGA characteristics with Chop enabled (ADC_PGA[PGACHPb] =0) Table 27. 16-bit ADC with PGA characteristics Symbol Description Conditions Min. Typ.1 Max. Unit Notes I Supply current Low power — 420 644 μA 2 DDA_PGA (ADC_PGA[PGALPb]=0) I Input DC current A 3 DC_PGA Gain =1, V =1.2V, — 1.54 — μA REFPGA V =0.5V CM Gain =64, V =1.2V, — 0.57 — μA REFPGA V =0.1V CM G Gain4 • PGAG=0 0.95 1 1.05 RAS < 100Ω • PGAG=1 1.9 2 2.1 • PGAG=2 3.8 4 4.2 • PGAG=3 7.6 8 8.4 • PGAG=4 15.2 16 16.6 • PGAG=5 30.0 31.6 33.2 • PGAG=6 58.8 63.3 67.8 BW Input signal • 16-bit modes — — 4 kHz bandwidth • < 16-bit modes — — 40 kHz PSRR Power supply Gain=1 — -84 — dB V = 3V DDA rejection ratio ±100mV, f = 50Hz, VDDA 60Hz CMRR Common mode • Gain=1 — -84 — dB V = CM rejection ratio 500mVpp, • Gain=64 — -85 — dB f = 50Hz, VCM 100Hz V Input offset — 0.2 — mV Output offset = OFS voltage V *(Gain+1) OFS T Gain switching — — 10 µs 5 GSW settling time dG/dT Gain drift over full • Gain=1 — 6 10 ppm/°C temperature range • Gain=64 — 31 42 ppm/°C dG/dV Gain drift over • Gain=1 — 0.07 0.21 %/V V from 1.71 DDA DDA supply voltage • Gain=64 to 3.6V — 0.14 0.31 %/V E Input leakage All modes I × R mV I = leakage IL In AS In error current (refer to the MCU's voltage and current operating ratings) Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 42 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors Table 27. 16-bit ADC with PGA characteristics (continued) Symbol Description Conditions Min. Typ.1 Max. Unit Notes V Maximum V 6 PP,DIFF differential input signal swing where V = V × 0.583 X REFPGA SNR Signal-to-noise • Gain=1 80 90 — dB 16-bit ratio differential • Gain=64 52 66 — dB mode, Average=32 THD Total harmonic • Gain=1 85 100 — dB 16-bit distortion differential • Gain=64 49 95 — dB mode, Average=32, f =100Hz in SFDR Spurious free • Gain=1 85 105 — dB 16-bit dynamic range differential • Gain=64 53 88 — dB mode, Average=32, f =100Hz in ENOB Effective number • Gain=1, Average=4 11.6 13.4 — bits 16-bit of bits differential • Gain=64, Average=4 7.2 9.6 — bits mode,f =100Hz in • Gain=1, Average=32 12.8 14.5 — bits • Gain=2, Average=32 11.0 14.3 — bits • Gain=4, Average=32 7.9 13.8 — bits • Gain=8, Average=32 7.3 13.1 — bits • Gain=16, Average=32 6.8 12.5 — bits • Gain=32, Average=32 6.8 11.5 — bits • Gain=64, Average=32 7.5 10.6 — bits SINAD Signal-to-noise See ENOB 6.02 × ENOB + 1.76 dB plus distortion ratio 1. Typical values assume V =3.0V, Temp=25°C, f =6MHz unless otherwise stated. DDA ADCK 2. This current is a PGA module adder, in addition to ADC conversion currents. 3. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage (V ) and the PGA gain. CM 4. Gain = 2PGAG 5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored. 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting. 6.6.2 CMP and 6-bit DAC electrical specifications Table 28. Comparator and 6-bit DAC electrical specifications Symbol Description Min. Typ. Max. Unit V Supply voltage 1.71 — 3.6 V DD Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 43
Peripheral operating requirements and behaviors Table 28. Comparator and 6-bit DAC electrical specifications (continued) Symbol Description Min. Typ. Max. Unit I Supply current, High-speed mode (EN=1, PMODE=1) — — 200 μA DDHS I Supply current, low-speed mode (EN=1, PMODE=0) — — 20 μA DDLS V Analog input voltage V – 0.3 — V V AIN SS DD V Analog input offset voltage — — 20 mV AIO V Analog comparator hysteresis1 H • CR0[HYSTCTR] = 00 — 5 — mV • CR0[HYSTCTR] = 01 — 10 — mV • CR0[HYSTCTR] = 10 — 20 — mV • CR0[HYSTCTR] = 11 — 30 — mV V Output high V – 0.5 — — V CMPOh DD V Output low — — 0.5 V CMPOl t Propagation delay, high-speed mode (EN=1, 20 50 200 ns DHS PMODE=1) t Propagation delay, low-speed mode (EN=1, 80 250 600 ns DLS PMODE=0) Analog comparator initialization delay2 — — 40 μs I 6-bit DAC current adder (enabled) — 7 — μA DAC6b INL 6-bit DAC integral non-linearity –0.5 — 0.5 LSB3 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB 1. Typical hysteresis is measured with input voltage range limited to 0.6 to V -0.6V. DD 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level. 3. 1 LSB = V /64 reference K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 44 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors 0.08 0.07 0.06 0.05 HYSTCTR Setting V) s ( eri 00 er 0.04 yst 01 H P 1100 M C 0.03 11 0.02 0.01 0 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 Vin level (V) Figure 15. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0) K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 45
Peripheral operating requirements and behaviors 0.18 0.16 0.14 0.12 HYSTCTR Setting V) s ( 0.1 eri 00 er yst 01 H P P 00.0088 1100 M C 11 0.06 0.04 0.02 0 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 Vin level (V) Figure 16. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1) 6.6.3 12-bit DAC electrical characteristics 6.6.3.1 12-bit DAC operating requirements Table 29. 12-bit DAC operating requirements Symbol Desciption Min. Max. Unit Notes V Supply voltage 1.71 3.6 V DDA V Reference voltage 1.13 3.6 V 1 DACR T Temperature Operating temperature °C A range of the device C Output load capacitance — 100 pF 2 L I Output load current — 1 mA L 1. The DAC reference can be selected to be V or the voltage output of the VREF module (VREF_OUT) DDA 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 46 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors 6.6.3.2 12-bit DAC operating behaviors Table 30. 12-bit DAC operating behaviors Symbol Description Min. Typ. Max. Unit Notes I Supply current — low-power mode — — 150 μA DDA_DACL P I Supply current — high-speed mode — — 700 μA DDA_DACH P t Full-scale settling time (0x080 to 0xF7F) — — 100 200 μs 1 DACLP low-power mode t Full-scale settling time (0x080 to 0xF7F) — — 15 30 μs 1 DACHP high-power mode t Code-to-code settling time (0xBF8 to 0xC08) — 0.7 1 μs 1 CCDACLP — low-power mode and high-speed mode V DAC output voltage range low — high-speed — — 100 mV dacoutl mode, no load, DAC set to 0x000 V DAC output voltage range high — high- V — V mV dacouth DACR DACR speed mode, no load, DAC set to 0xFFF −100 INL Integral non-linearity error — high speed — — ±8 LSB 2 mode DNL Differential non-linearity error — V > 2 — — ±1 LSB 3 DACR V DNL Differential non-linearity error — V = — — ±1 LSB 4 DACR VREF_OUT V Offset error — ±0.4 ±0.8 %FSR 5 OFFSET E Gain error — ±0.1 ±0.6 %FSR 5 G PSRR Power supply rejection ratio, V ≥ 2.4 V 60 — 90 dB DDA T Temperature coefficient offset voltage — 3.7 — μV/C 6 CO T Temperature coefficient gain error — 0.000421 — %FSR/C GE Rop Output resistance load = 3 kΩ — — 250 Ω SR Slew rate -80h→ F7Fh→ 80h V/μs • High power (SP ) 1.2 1.7 — HP • Low power (SP ) 0.05 0.12 — LP CT Channel to channel cross talk — — -80 dB BW 3dB bandwidth kHz • High power (SP ) 550 — — HP • Low power (SP ) 40 — — LP 1. Settling within ±1 LSB 2. The INL is measured for 0 + 100 mV to V −100 mV DACR 3. The DNL is measured for 0 + 100 mV to V −100 mV DACR 4. The DNL is measured for 0 + 100 mV to V −100 mV with V > 2.4 V DACR DDA 5. Calculated by a best fit curve from V + 100 mV to V − 100 mV SS DACR 6. V = 3.0 V, reference select set for V (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to DDA DDA 0x800, temperature range is across the full range of the device K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 47
Peripheral operating requirements and behaviors Figure 17. Typical INL error vs. digital code K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 48 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors Figure 18. Offset at half scale vs. temperature 6.6.4 Voltage reference electrical specifications Table 31. VREF full-range operating requirements Symbol Description Min. Max. Unit Notes V Supply voltage 1.71 3.6 V DDA T Temperature Operating temperature °C A range of the device C Output load capacitance 100 nF 1, 2 L 1. C must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external L reference. 2. The load capacitance should not exceed +/-25% of the nominal specified C value over the operating temperature range of L the device. K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 49
Peripheral operating requirements and behaviors Table 32. VREF full-range operating behaviors Symbol Description Min. Typ. Max. Unit Notes V Voltage reference output with factory trim at 1.1915 1.195 1.1977 V out nominal V and temperature=25C DDA V Voltage reference output — factory trim 1.1584 — 1.2376 V out V Voltage reference output — user trim 1.193 — 1.197 V out V Voltage reference trim step — 0.5 — mV step V Temperature drift (Vmax -Vmin across the full — — 80 mV tdrift temperature range) I Bandgap only current — — 80 µA 1 bg I Low-power buffer current — — 360 uA 1 lp I High-power buffer current — — 1 mA 1 hp ΔV Load regulation µV 1, 2 LOAD • current = ± 1.0 mA — 200 — T Buffer startup time — — 100 µs stup V Voltage drift (Vmax -Vmin across the full voltage — 2 — mV 1 vdrift range) 1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register. 2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load Table 33. VREF limited-range operating requirements Symbol Description Min. Max. Unit Notes T Temperature 0 50 °C A Table 34. VREF limited-range operating behaviors Symbol Description Min. Max. Unit Notes V Voltage reference output with factory trim 1.173 1.225 V out 6.7 Timers See General switching specifications. 6.8 Communication interfaces K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 50 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors 6.8.1 CAN switching specifications See General switching specifications. 6.8.2 DSPI switching specifications (limited voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 35. Master mode DSPI timing (limited voltage range) Num Description Min. Max. Unit Notes Operating voltage 2.7 3.6 V Frequency of operation — 25 MHz DS1 DSPI_SCK output cycle time 2 x t — ns BUS DS2 DSPI_SCK output high/low time (t /2) − 2 (t /2) + 2 ns SCK SCK DS3 DSPI_PCSn valid to DSPI_SCK delay (t x 2) − — ns 1 BUS 2 DS4 DSPI_SCK to DSPI_PCSn invalid delay (t x 2) − — ns 2 BUS 2 DS5 DSPI_SCK to DSPI_SOUT valid — 8.5 ns DS6 DSPI_SCK to DSPI_SOUT invalid −2 — ns DS7 DSPI_SIN to DSPI_SCK input setup 15 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. DSPI_PCSn DS3 DS2 DS1 DS4 DSPI_SCK DS8 (CPOL=0) DS7 DSPI_SIN First data Data Last data DS5 DS6 DSPI_SOUT First data Data Last data Figure 19. DSPI classic SPI timing — master mode K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 51
Peripheral operating requirements and behaviors Table 36. Slave mode DSPI timing (limited voltage range) Num Description Min. Max. Unit Operating voltage 2.7 3.6 V Frequency of operation 12.5 MHz DS9 DSPI_SCK input cycle time 4 x t — ns BUS DS10 DSPI_SCK input high/low time (t /2) − 2 (t /2) + 2 ns SCK SCK DS11 DSPI_SCK to DSPI_SOUT valid — 10 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 14 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 14 ns DSPI_SS DS10 DS9 DSPI_SCK (CPOL=0) DS15 DS12 DS11 DS16 DSPI_SOUT First data Data Last data DS13 DS14 DSPI_SIN First data Data Last data Figure 20. DSPI classic SPI timing — slave mode 6.8.3 DSPI switching specifications (full voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 37. Master mode DSPI timing (full voltage range) Num Description Min. Max. Unit Notes Operating voltage 1.71 3.6 V 1 Frequency of operation — 12.5 MHz DS1 DSPI_SCK output cycle time 4 x t — ns BUS Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 52 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors Table 37. Master mode DSPI timing (full voltage range) (continued) Num Description Min. Max. Unit Notes DS2 DSPI_SCK output high/low time (t /2) - 4 (t + 4 ns SCK SCK/2) DS3 DSPI_PCSn valid to DSPI_SCK delay (t x 2) − — ns 2 BUS 4 DS4 DSPI_SCK to DSPI_PCSn invalid delay (t x 2) − — ns 3 BUS 4 DS5 DSPI_SCK to DSPI_SOUT valid — 10 ns DS6 DSPI_SCK to DSPI_SOUT invalid -4.5 — ns DS7 DSPI_SIN to DSPI_SCK input setup 20.5 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced. 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. DSPI_PCSn DS3 DS2 DS1 DS4 DSPI_SCK DS8 (CPOL=0) DS7 DSPI_SIN First data Data Last data DS5 DS6 DSPI_SOUT First data Data Last data Figure 21. DSPI classic SPI timing — master mode Table 38. Slave mode DSPI timing (full voltage range) Num Description Min. Max. Unit Operating voltage 1.71 3.6 V Frequency of operation — 6.25 MHz DS9 DSPI_SCK input cycle time 8 x t — ns BUS DS10 DSPI_SCK input high/low time (t /2) - 4 (t + 4 ns SCK SCK/2) DS11 DSPI_SCK to DSPI_SOUT valid — 20 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 19 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 19 ns K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 53
Peripheral operating requirements and behaviors DSPI_SS DS10 DS9 DSPI_SCK (CPOL=0) DS15 DS12 DS11 DS16 DSPI_SOUT First data Data Last data DS13 DS14 DSPI_SIN First data Data Last data Figure 22. DSPI classic SPI timing — slave mode 6.8.4 I2C switching specifications See General switching specifications. 6.8.5 UART switching specifications See General switching specifications. 6.8.6 I2S/SAI Switching Specifications This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures. 6.8.6.1 Normal Run, Wait and Stop mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes. K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 54 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors Table 39. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 40 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ — 15 ns I2S_RX_FS output valid S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ -1.0 — ns I2S_RX_FS output invalid S7 I2S_TX_BCLK to I2S_TXD valid — 15 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before 20.5 — ns I2S_RX_BCLK S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ S4 I2S_RX_BCLK (output) S4 S5 S6 I2S_TX_FS/ I2S_RX_FS (output) S9 S10 I2S_TX_FS/ I2S_RX_FS (input) S7 S7 S8 S8 I2S_TXD S9 S10 I2S_RXD Figure 23. I2S/SAI timing — master modes Table 40. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% MCLK period (input) Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 55
Peripheral operating requirements and behaviors Table 40. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (full voltage range) (continued) Num. Characteristic Min. Max. Unit S13 I2S_TX_FS/I2S_RX_FS input setup before 5.8 — ns I2S_TX_BCLK/I2S_RX_BCLK S14 I2S_TX_FS/I2S_RX_FS input hold after 2 — ns I2S_TX_BCLK/I2S_RX_BCLK S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 5.8 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 — 25 ns 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear S11 S12 I2S_TX_BCLK/ S12 I2S_RX_BCLK (input) S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 S14 I2S_TX_FS/ I2S_RX_FS (input) S15 S19 S15 S16 S16 I2S_TXD S17 S18 I2S_RXD Figure 24. I2S/SAI timing — slave modes 6.8.6.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes. Table 41. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 62.5 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 250 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 56 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors Table 41. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued) Num. Characteristic Min. Max. Unit S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ — 45 ns I2S_RX_FS output valid S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ 0 — ns I2S_RX_FS output invalid S7 I2S_TX_BCLK to I2S_TXD valid — 45 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before 53 — ns I2S_RX_BCLK S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ S4 I2S_RX_BCLK (output) S4 S5 S6 I2S_TX_FS/ I2S_RX_FS (output) S9 S10 I2S_TX_FS/ I2S_RX_FS (input) S7 S7 S8 S8 I2S_TXD S9 S10 I2S_RXD Figure 25. I2S/SAI timing — master modes Table 42. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 250 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% MCLK period (input) S13 I2S_TX_FS/I2S_RX_FS input setup before 30 — ns I2S_TX_BCLK/I2S_RX_BCLK S14 I2S_TX_FS/I2S_RX_FS input hold after 7.6 — ns I2S_TX_BCLK/I2S_RX_BCLK S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 67 ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 57
Peripheral operating requirements and behaviors Table 42. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued) Num. Characteristic Min. Max. Unit S17 I2S_RXD setup before I2S_RX_BCLK 30 — ns S18 I2S_RXD hold after I2S_RX_BCLK 6.5 — ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 — 72 ns 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear S11 S12 I2S_TX_BCLK/ S12 I2S_RX_BCLK (input) S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 S14 I2S_TX_FS/ I2S_RX_FS (input) S15 S19 S15 S16 S16 I2S_TXD S17 S18 I2S_RXD Figure 26. I2S/SAI timing — slave modes 6.9 Human-machine interfaces (HMI) 6.9.1 TSI electrical specifications Table 43. TSI electrical specifications Symbol Description Min. Typ. Max. Unit Notes V Operating voltage 1.71 — 3.6 V DDTSI C Target electrode capacitance range 1 20 500 pF 1 ELE f Reference oscillator frequency — 8 15 MHz 2, 3 REFmax f Electrode oscillator frequency — 1 1.8 MHz 2, 4 ELEmax C Internal reference capacitor — 1 — pF REF V Oscillator delta voltage — 500 — mV 2, 5 DELTA I Reference oscillator current source base current μA 2, 6 REF — 2 3 • 2 μA setting (REFCHRG = 0) • 32 μA setting (REFCHRG = 15) — 36 50 Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 58 Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors Table 43. TSI electrical specifications (continued) Symbol Description Min. Typ. Max. Unit Notes I Electrode oscillator current source base current μA 2, 7 ELE — 2 3 • 2 μA setting (EXTCHRG = 0) • 32 μA setting (EXTCHRG = 15) — 36 50 Pres5 Electrode capacitance measurement precision — 8.3333 38400 fF/count 8 Pres20 Electrode capacitance measurement precision — 8.3333 38400 fF/count 9 Pres100 Electrode capacitance measurement precision — 8.3333 38400 fF/count 10 MaxSens Maximum sensitivity 0.008 1.46 — fF/count 11 Res Resolution — — 16 bits T Response time @ 20 pF 8 15 25 μs 12 Con20 I Current added in run mode — 55 — μA TSI_RUN I Low power mode current adder — 1.3 2.5 μA 13 TSI_LP 1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed. 2. Fixed external capacitance of 20 pF. 3. REFCHRG = 2, EXTCHRG=0. 4. REFCHRG = 0, EXTCHRG = 10. 5. V = 3.0 V. DD 6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current. 7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current. 8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16. 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16. 10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16. 11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity depends on the configuration used. The documented values are provided as examples calculated for a specific configuration of operating conditions using the following equation: (C * I )/( I * PS * NSCN) ref ext ref The typical value is calculated with the following configuration: Iext = 6 μA (EXTCHRG = 2), PS = 128, NSCN = 2, Iref = 16 μA (REFCHRG = 7), Cref = 1.0 pF The minimum value is calculated with the following configuration: Iext = 2 μA (EXTCHRG = 0), PS = 128, NSCN = 32, Iref = 32 μA (REFCHRG = 15), Cref = 0.5 pF The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be measured by a single count. 12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, EXTCHRG = 7. 13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window. 6.9.2 LCD electrical characteristics Table 44. LCD electricals Symbol Description Min. Typ. Max. Unit Notes f LCD frame frequency 28 30 58 Hz Frame C LCD charge pump capacitance — nominal value — 100 — nF 1 LCD C LCD bypass capacitance — nominal value — 100 — nF 1 BYLCD C LCD glass capacitance — 2000 8000 pF 2 Glass Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 59
Dimensions Table 44. LCD electricals (continued) Symbol Description Min. Typ. Max. Unit Notes V V 3 IREG IREG Δ V TRIM resolution — — 3.0 % V RTRIM IREG IREG — V ripple IREG I V current adder — RVEN = 1 — 1 — µA 4 VIREG IREG I RBIAS current adder RBIAS — 10 — µA • LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) — 1 — µA • LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) R RBIAS resistor values RBIAS • LADJ = 10 or 11 — High load (LCD glass — 0.28 — MΩ capacitance ≤ 8000 pF) • LADJ = 00 or 01 — Low load (LCD glass — 2.98 — MΩ capacitance ≤ 2000 pF) VLL2 VLL2 voltage VLL3 VLL3 voltage 1. The actual value used could vary with tolerance. 2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter within the device's reference manual. 3. V maximum should never be externally driven to any level other than V - 0.15 V IREG DD 4. 2000 pF load LCD, 32 Hz frame frequency 7 Dimensions 7.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to www.freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package Then use this document number 100-pin LQFP 98ASS23308W 121-pin MAPBGA 98ASA00344D K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 60 Freescale Semiconductor, Inc.
Pinout 8 Pinout 8.1 K30 Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. 121 100 Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort MAP LQFP BGA E4 1 PTE0 ADC1_SE4a ADC1_SE4a PTE0 SPI1_PCS1 UART1_TX I2C1_SDA RTC_CLKOUT E3 2 PTE1/ ADC1_SE5a ADC1_SE5a PTE1/ SPI1_SOUT UART1_RX I2C1_SCL SPI1_SIN LLWU_P0 LLWU_P0 E2 3 PTE2/ ADC1_SE6a ADC1_SE6a PTE2/ SPI1_SCK UART1_CTS_ LLWU_P1 LLWU_P1 b F4 4 PTE3 ADC1_SE7a ADC1_SE7a PTE3 SPI1_SIN UART1_RTS_ SPI1_SOUT b E7 — VDD VDD VDD F7 — VSS VSS VSS H7 5 PTE4/ DISABLED PTE4/ SPI1_PCS0 UART3_TX LLWU_P2 LLWU_P2 G4 6 PTE5 DISABLED PTE5 SPI1_PCS2 UART3_RX F3 7 PTE6 DISABLED PTE6 SPI1_PCS3 UART3_CTS_ I2S0_MCLK b E6 8 VDD VDD VDD G7 9 VSS VSS VSS F1 10 PTE16 ADC0_SE4a ADC0_SE4a PTE16 SPI0_PCS0 UART2_TX FTM_CLKIN0 FTM0_FLT3 F2 11 PTE17 ADC0_SE5a ADC0_SE5a PTE17 SPI0_SCK UART2_RX FTM_CLKIN1 LPTMR0_ ALT3 G1 12 PTE18 ADC0_SE6a ADC0_SE6a PTE18 SPI0_SOUT UART2_CTS_ I2C0_SDA b G2 13 PTE19 ADC0_SE7a ADC0_SE7a PTE19 SPI0_SIN UART2_RTS_ I2C0_SCL b L6 — VSS VSS VSS H1 14 ADC0_DP1 ADC0_DP1 ADC0_DP1 H2 15 ADC0_DM1 ADC0_DM1 ADC0_DM1 J1 16 ADC1_DP1 ADC1_DP1 ADC1_DP1 J2 17 ADC1_DM1 ADC1_DM1 ADC1_DM1 K1 18 PGA0_DP/ PGA0_DP/ PGA0_DP/ ADC0_DP0/ ADC0_DP0/ ADC0_DP0/ ADC1_DP3 ADC1_DP3 ADC1_DP3 K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 61
Pinout 121 100 Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort MAP LQFP BGA K2 19 PGA0_DM/ PGA0_DM/ PGA0_DM/ ADC0_DM0/ ADC0_DM0/ ADC0_DM0/ ADC1_DM3 ADC1_DM3 ADC1_DM3 L1 20 PGA1_DP/ PGA1_DP/ PGA1_DP/ ADC1_DP0/ ADC1_DP0/ ADC1_DP0/ ADC0_DP3 ADC0_DP3 ADC0_DP3 L2 21 PGA1_DM/ PGA1_DM/ PGA1_DM/ ADC1_DM0/ ADC1_DM0/ ADC1_DM0/ ADC0_DM3 ADC0_DM3 ADC0_DM3 F5 22 VDDA VDDA VDDA G5 23 VREFH VREFH VREFH G6 24 VREFL VREFL VREFL F6 25 VSSA VSSA VSSA L3 26 VREF_OUT/ VREF_OUT/ VREF_OUT/ CMP1_IN5/ CMP1_IN5/ CMP1_IN5/ CMP0_IN5/ CMP0_IN5/ CMP0_IN5/ ADC1_SE18 ADC1_SE18 ADC1_SE18 K5 27 DAC0_OUT/ DAC0_OUT/ DAC0_OUT/ CMP1_IN3/ CMP1_IN3/ CMP1_IN3/ ADC0_SE23 ADC0_SE23 ADC0_SE23 L7 — RTC_ RTC_ RTC_ WAKEUP_B WAKEUP_B WAKEUP_B L4 28 XTAL32 XTAL32 XTAL32 L5 29 EXTAL32 EXTAL32 EXTAL32 K6 30 VBAT VBAT VBAT H5 31 PTE24 ADC0_SE17 ADC0_SE17 PTE24 UART4_TX EWM_OUT_b J5 32 PTE25 ADC0_SE18 ADC0_SE18 PTE25 UART4_RX EWM_IN H6 33 PTE26 DISABLED PTE26 UART4_CTS_ RTC_CLKOUT b J6 34 PTA0 JTAG_TCLK/ TSI0_CH1 PTA0 UART0_CTS_ FTM0_CH5 JTAG_TCLK/ EZP_CLK SWD_CLK/ b/ SWD_CLK EZP_CLK UART0_COL_ b H8 35 PTA1 JTAG_TDI/ TSI0_CH2 PTA1 UART0_RX FTM0_CH6 JTAG_TDI EZP_DI EZP_DI J7 36 PTA2 JTAG_TDO/ TSI0_CH3 PTA2 UART0_TX FTM0_CH7 JTAG_TDO/ EZP_DO TRACE_SWO/ TRACE_SWO EZP_DO H9 37 PTA3 JTAG_TMS/ TSI0_CH4 PTA3 UART0_RTS_ FTM0_CH0 JTAG_TMS/ SWD_DIO b SWD_DIO J8 38 PTA4/ NMI_b/ TSI0_CH5 PTA4/ FTM0_CH1 NMI_b EZP_CS_b LLWU_P3 EZP_CS_b LLWU_P3 K7 39 PTA5 DISABLED PTA5 FTM0_CH2 CMP2_OUT I2S0_TX_ JTAG_TRST_ BCLK b E5 40 VDD VDD VDD G3 41 VSS VSS VSS K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 62 Freescale Semiconductor, Inc.
Pinout 121 100 Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort MAP LQFP BGA K8 42 PTA12 CMP2_IN0 CMP2_IN0 PTA12 CAN0_TX FTM1_CH0 I2S0_TXD0 FTM1_QD_ PHA L8 43 PTA13/ CMP2_IN1 CMP2_IN1 PTA13/ CAN0_RX FTM1_CH1 I2S0_TX_FS FTM1_QD_ LLWU_P4 LLWU_P4 PHB K9 44 PTA14 DISABLED PTA14 SPI0_PCS0 UART0_TX I2S0_RX_ I2S0_TXD1 BCLK L9 45 PTA15 DISABLED PTA15 SPI0_SCK UART0_RX I2S0_RXD0 J10 46 PTA16 DISABLED PTA16 SPI0_SOUT UART0_CTS_ I2S0_RX_FS I2S0_RXD1 b/ UART0_COL_ b H10 47 PTA17 ADC1_SE17 ADC1_SE17 PTA17 SPI0_SIN UART0_RTS_ I2S0_MCLK b L10 48 VDD VDD VDD K10 49 VSS VSS VSS L11 50 PTA18 EXTAL0 EXTAL0 PTA18 FTM0_FLT2 FTM_CLKIN0 K11 51 PTA19 XTAL0 XTAL0 PTA19 FTM1_FLT0 FTM_CLKIN1 LPTMR0_ ALT1 J11 52 RESET_b RESET_b RESET_b G11 53 PTB0/ LCD_P0/ LCD_P0/ PTB0/ I2C0_SCL FTM1_CH0 FTM1_QD_ LCD_P0 LLWU_P5 ADC0_SE8/ ADC0_SE8/ LLWU_P5 PHA ADC1_SE8/ ADC1_SE8/ TSI0_CH0 TSI0_CH0 G10 54 PTB1 LCD_P1/ LCD_P1/ PTB1 I2C0_SDA FTM1_CH1 FTM1_QD_ LCD_P1 ADC0_SE9/ ADC0_SE9/ PHB ADC1_SE9/ ADC1_SE9/ TSI0_CH6 TSI0_CH6 G9 55 PTB2 LCD_P2/ LCD_P2/ PTB2 I2C0_SCL UART0_RTS_ FTM0_FLT3 LCD_P2 ADC0_SE12/ ADC0_SE12/ b TSI0_CH7 TSI0_CH7 G8 56 PTB3 LCD_P3/ LCD_P3/ PTB3 I2C0_SDA UART0_CTS_ FTM0_FLT0 LCD_P3 ADC0_SE13/ ADC0_SE13/ b/ TSI0_CH8 TSI0_CH8 UART0_COL_ b E11 57 PTB7 LCD_P7/ LCD_P7/ PTB7 LCD_P7 ADC1_SE13 ADC1_SE13 D11 58 PTB8 LCD_P8 LCD_P8 PTB8 UART3_RTS_ LCD_P8 b E10 59 PTB9 LCD_P9 LCD_P9 PTB9 SPI1_PCS1 UART3_CTS_ LCD_P9 b D10 60 PTB10 LCD_P10/ LCD_P10/ PTB10 SPI1_PCS0 UART3_RX FTM0_FLT1 LCD_P10 ADC1_SE14 ADC1_SE14 C10 61 PTB11 LCD_P11/ LCD_P11/ PTB11 SPI1_SCK UART3_TX FTM0_FLT2 LCD_P11 ADC1_SE15 ADC1_SE15 B10 62 PTB16 LCD_P12/ LCD_P12/ PTB16 SPI1_SOUT UART0_RX EWM_IN LCD_P12 TSI0_CH9 TSI0_CH9 E9 63 PTB17 LCD_P13/ LCD_P13/ PTB17 SPI1_SIN UART0_TX EWM_OUT_b LCD_P13 TSI0_CH10 TSI0_CH10 K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 63
Pinout 121 100 Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort MAP LQFP BGA D9 64 PTB18 LCD_P14/ LCD_P14/ PTB18 CAN0_TX FTM2_CH0 I2S0_TX_ FTM2_QD_ LCD_P14 TSI0_CH11 TSI0_CH11 BCLK PHA C9 65 PTB19 LCD_P15/ LCD_P15/ PTB19 CAN0_RX FTM2_CH1 I2S0_TX_FS FTM2_QD_ LCD_P15 TSI0_CH12 TSI0_CH12 PHB F10 66 PTB20 LCD_P16 LCD_P16 PTB20 CMP0_OUT LCD_P16 F9 67 PTB21 LCD_P17 LCD_P17 PTB21 CMP1_OUT LCD_P17 F8 68 PTB22 LCD_P18 LCD_P18 PTB22 CMP2_OUT LCD_P18 E8 69 PTB23 LCD_P19 LCD_P19 PTB23 SPI0_PCS5 LCD_P19 B9 70 PTC0 LCD_P20/ LCD_P20/ PTC0 SPI0_PCS4 PDB0_EXTRG I2S0_TXD1 LCD_P20 ADC0_SE14/ ADC0_SE14/ TSI0_CH13 TSI0_CH13 D8 71 PTC1/ LCD_P21/ LCD_P21/ PTC1/ SPI0_PCS3 UART1_RTS_ FTM0_CH0 I2S0_TXD0 LCD_P21 LLWU_P6 ADC0_SE15/ ADC0_SE15/ LLWU_P6 b TSI0_CH14 TSI0_CH14 C8 72 PTC2 LCD_P22/ LCD_P22/ PTC2 SPI0_PCS2 UART1_CTS_ FTM0_CH1 I2S0_TX_FS LCD_P22 ADC0_SE4b/ ADC0_SE4b/ b CMP1_IN0/ CMP1_IN0/ TSI0_CH15 TSI0_CH15 B8 73 PTC3/ LCD_P23/ LCD_P23/ PTC3/ SPI0_PCS1 UART1_RX FTM0_CH2 CLKOUT I2S0_TX_ LCD_P23 LLWU_P7 CMP1_IN1 CMP1_IN1 LLWU_P7 BCLK — 74 VSS VSS VSS A11 75 VLL3 VLL3 VLL3 A10 76 VLL2 VLL2 VLL2 A9 77 VLL1 VLL1 VLL1 B11 78 VCAP2 VCAP2 VCAP2 C11 79 VCAP1 VCAP1 VCAP1 A8 80 PTC4/ LCD_P24 LCD_P24 PTC4/ SPI0_PCS0 UART1_TX FTM0_CH3 CMP1_OUT LCD_P24 LLWU_P8 LLWU_P8 D7 81 PTC5/ LCD_P25 LCD_P25 PTC5/ SPI0_SCK LPTMR0_ I2S0_RXD0 CMP0_OUT LCD_P25 LLWU_P9 LLWU_P9 ALT2 C7 82 PTC6/ LCD_P26/ LCD_P26/ PTC6/ SPI0_SOUT PDB0_EXTRG I2S0_RX_ I2S0_MCLK LCD_P26 LLWU_P10 CMP0_IN0 CMP0_IN0 LLWU_P10 BCLK B7 83 PTC7 LCD_P27/ LCD_P27/ PTC7 SPI0_SIN I2S0_RX_FS LCD_P27 CMP0_IN1 CMP0_IN1 A7 84 PTC8 LCD_P28/ LCD_P28/ PTC8 I2S0_MCLK LCD_P28 ADC1_SE4b/ ADC1_SE4b/ CMP0_IN2 CMP0_IN2 D6 85 PTC9 LCD_P29/ LCD_P29/ PTC9 I2S0_RX_ FTM2_FLT0 LCD_P29 ADC1_SE5b/ ADC1_SE5b/ BCLK CMP0_IN3 CMP0_IN3 C6 86 PTC10 LCD_P30/ LCD_P30/ PTC10 I2C1_SCL I2S0_RX_FS LCD_P30 ADC1_SE6b ADC1_SE6b C5 87 PTC11/ LCD_P31/ LCD_P31/ PTC11/ I2C1_SDA I2S0_RXD1 LCD_P31 LLWU_P11 ADC1_SE7b ADC1_SE7b LLWU_P11 B6 — PTC12 LCD_P32 LCD_P32 PTC12 UART4_RTS_ LCD_P32 b K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 64 Freescale Semiconductor, Inc.
Pinout 121 100 Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort MAP LQFP BGA A6 — PTC13 LCD_P33 LCD_P33 PTC13 UART4_CTS_ LCD_P33 b A5 — PTC14 LCD_P34 LCD_P34 PTC14 UART4_RX LCD_P34 — 88 VSS VSS VSS — 89 VDD VDD VDD D5 90 PTC16 LCD_P36 LCD_P36 PTC16 UART3_RX LCD_P36 C4 91 PTC17 LCD_P37 LCD_P37 PTC17 UART3_TX LCD_P37 B4 92 PTC18 LCD_P38 LCD_P38 PTC18 UART3_RTS_ LCD_P38 b A4 — PTC19 LCD_P39 LCD_P39 PTC19 UART3_CTS_ LCD_P39 b D4 93 PTD0/ LCD_P40 LCD_P40 PTD0/ SPI0_PCS0 UART2_RTS_ LCD_P40 LLWU_P12 LLWU_P12 b D3 94 PTD1 LCD_P41/ LCD_P41/ PTD1 SPI0_SCK UART2_CTS_ LCD_P41 ADC0_SE5b ADC0_SE5b b C3 95 PTD2/ LCD_P42 LCD_P42 PTD2/ SPI0_SOUT UART2_RX LCD_P42 LLWU_P13 LLWU_P13 B3 96 PTD3 LCD_P43 LCD_P43 PTD3 SPI0_SIN UART2_TX LCD_P43 A3 97 PTD4/ LCD_P44 LCD_P44 PTD4/ SPI0_PCS1 UART0_RTS_ FTM0_CH4 EWM_IN LCD_P44 LLWU_P14 LLWU_P14 b A2 98 PTD5 LCD_P45/ LCD_P45/ PTD5 SPI0_PCS2 UART0_CTS_ FTM0_CH5 EWM_OUT_b LCD_P45 ADC0_SE6b ADC0_SE6b b/ UART0_COL_ b B2 99 PTD6/ LCD_P46/ LCD_P46/ PTD6/ SPI0_PCS3 UART0_RX FTM0_CH6 FTM0_FLT0 LCD_P46 LLWU_P15 ADC0_SE7b ADC0_SE7b LLWU_P15 A1 100 PTD7 LCD_P47 LCD_P47 PTD7 CMT_IRO UART0_TX FTM0_CH7 FTM0_FLT1 LCD_P47 K3 — NC NC NC H4 — NC NC NC J3 — NC NC NC H3 — NC NC NC K4 — NC NC NC J9 — NC NC NC J4 — NC NC NC H11 — NC NC NC F11 — NC NC NC B1 — NC NC NC C2 — NC NC NC C1 — NC NC NC D2 — NC NC NC D1 — NC NC NC E1 — NC NC NC B5 — NC NC NC K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 65
Pinout 8.2 K30 Pinouts The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section. K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 66 Freescale Semiconductor, Inc.
Pinout 1 5 4 3 2 1 0 1 1 1 1 P 1 9 8 P P P P _ P P P _ _ _ _ U _ _ _ U U U U W U U U W W W W L W W W L L L L L L L L TD7 TD6/L TD5 TD4/L TD3 TD2/L TD1 TD0/L TC18 TC17 TC16 DD SS TC11/ TC10 TC9 TC8 TC7 TC6/L TC5/L TC4/L CAP1 CAP2 LL1 LL2 P P P P P P P P P P P V V P P P P P P P P V V V V 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PTE0 1 75 VLL3 PTE1/LLWU_P0 2 74 VSS PTE2/LLWU_P1 3 73 PTC3/LLWU_P7 PTE3 4 72 PTC2 PTE4/LLWU_P2 5 71 PTC1/LLWU_P6 PTE5 6 70 PTC0 PTE6 7 69 PTB23 VDD 8 68 PTB22 VSS 9 67 PTB21 PTE16 10 66 PTB20 PTE17 11 65 PTB19 PTE18 12 64 PTB18 PTE19 13 63 PTB17 ADC0_DP1 14 62 PTB16 ADC0_DM1 15 61 PTB11 ADC1_DP1 16 60 PTB10 ADC1_DM1 17 59 PTB9 PGA0_DP/ADC0_DP0/ADC1_DP3 18 58 PTB8 PGA0_DM/ADC0_DM0/ADC1_DM3 19 57 PTB7 PGA1_DP/ADC1_DP0/ADC0_DP3 20 56 PTB3 PGA1_DM/ADC1_DM0/ADC0_DM3 21 55 PTB2 VDDA 22 54 PTB1 VREFH 23 53 PTB0/LLWU_P5 VREFL 24 52 RESET_b VSSA 25 51 PTA19 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 8 3 2 2 T 4 5 6 0 1 2 3 3 5 D S 2 4 4 5 6 7 D S 8 N5/ADC1_SE1 N3/ADC0_SE2 XTAL3 EXTAL3 VBA PTE2 PTE2 PTE2 PTA PTA PTA PTA PTA4/LLWU_P PTA VD VS PTA1 TA13/LLWU_P PTA1 PTA1 PTA1 PTA1 VD VS PTA1 _I _I P 0 1 P P M M C C 5/ T/ N U _I O 1 _ P 0 M C T/C DA U O _ F E R V Figure 27. K30 100 LQFP Pinout Diagram K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 67
Revision History 1 2 3 4 5 6 7 8 9 10 11 PTD4/ PTC4/ A PTD7 PTD5 PTC19 PTC14 PTC13 PTC8 VLL1 V L L 2 VLL3 A LLWU_P14 LLWU_P8 PTD6/ PTC3/ B NC PTD3 PTC18 NC PTC12 PTC7 PTC0 PTB16 VCAP2 B LLWU_P15 LLWU_P7 PTD2/ PTC11/ PTC6/ C NC NC PTC17 PTC10 PTC2 PTB19 PTB11 VCAP1 C LLWU_P13 LLWU_P11 LLWU_P10 PTD0/ PTC5/ PTC1/ D NC NC PTD1 PTC16 PTC9 PTB18 PTB10 PTB8 D LLWU_P12 LLWU_P9 LLWU_P6 PTE2/ PTE1/ E NC PTE0 VDD VDD VDD PTB23 PTB17 PTB9 PTB7 E LLWU_P1 LLWU_P0 F PTE16 PTE17 PTE6 PTE3 VDDA VSSA VSS PTB22 PTB21 PTB20 NC F PTB0/ G PTE18 PTE19 VSS P T E 5 V R E F H V R E FL V S S PTB3 PTB2 PTB1 G LLWU_P5 PTE4/ H ADC0_DP1ADC0_DM1 NC NC PTE24 PTE26 PTA1 PTA3 PTA17 NC H LLWU_P2 PTA4/ J A D C 1 _ D P 1 A D C 1 _ D M 1 N C NC PTE25 PTA0 PTA2 NC PTA16 RESET_b J LLWU_P3 PGA0_DP/ PGA0_DM/ DAC0_OUT/ K ADC0_DP0/ADC0_DM0/ NC NC CMP1_IN3/ VBAT PTA5 PTA12 PTA14 VSS PTA19 K ADC1_DP3ADC1_DM3 ADC0_SE23 VREF_OUT/ PGA1_DP/ PGA1_DM/ CMP1_IN5/ RTC_ PTA13/ L ADC1_DP0/ADC1_DM0/CMP0_IN5/ XTAL32 EXTAL32 VSS WAKEUP_B LLWU_P4 PTA15 VDD PTA18 L ADC0_DP3ADC0_DM3 ADC1_SE18 1 2 3 4 5 6 7 8 9 10 11 Figure 28. K30 121 MAPBGA Pinout Diagram 9 Revision History The following table provides a revision history for this document. Table 45. Revision History Rev. No. Date Substantial Changes 1 3/2012 Initial public release Table continues on the next page... K30 Sub-Family Data Sheet, Rev. 3, 11/2012. 68 Freescale Semiconductor, Inc.
Revision History Table 45. Revision History (continued) Rev. No. Date Substantial Changes 2 4/2012 • Replaced TBDs throughout. • Updated "Power consumption operating behaviors" table. • Updated "ADC electrical specifications" section. • Updated "VREF full-range operating behaviors" table. • Updated "I2S/SAI Switching Specifications" section. • Updated "TSI electrical specifications" table. 3 11/2012 • Updated orderable part numbers. • Updated the maximum input voltage (V ) specification in the "16-bit ADC operating ADIN conditions" section. K30 Sub-Family Data Sheet, Rev. 3, 11/2012. Freescale Semiconductor, Inc. 69
How to Reach Us: Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied Home Page: copyright licenses granted hereunder to design or fabricate any integrated circuits or www.freescale.com integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any Web Support: products herein. Freescale Semiconductor makes no warranty, representation, or http://www.freescale.com/support guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any USA/Europe or Locations Not Listed: product or circuit, and specifically disclaims any liability, including without limitation Freescale Semiconductor consequential or incidental damages. "Typical" parameters that may be provided in Technical Information Center, EL516 Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, 2100 East Elliot Road including "Typicals", must be validated for each customer application by customer's Tempe, Arizona 85284 technical experts. Freescale Semiconductor does not convey any license under its patent +1-800-521-6274 or +1-480-768-2130 rights nor the rights of others. Freescale Semiconductor products are not designed, www.freescale.com/support intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other Europe, Middle East, and Africa: application in which failure of the Freescale Semiconductor product could create a Freescale Halbleiter Deutschland GmbH situation where personal injury or death may occur. Should Buyer purchase or use Technical Information Center Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, Schatzbogen 7 affiliates, and distributors harmless against all claims, costs, damages, and expenses, and 81829 Muenchen, Germany reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury +44 1296 380 456 (English) or death associated with such unintended or unauthorized use, even if such claims alleges +46 8 52200080 (English) that Freescale Semiconductor was negligent regarding the design or manufacture of the part. +49 89 92103 559 (German) +33 1 69 35 48 48 (French) RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. www.freescale.com/support For further information, see http://www.freescale.com or contact your Freescale Japan: sales representative. Freescale Semiconductor Japan Ltd. For information on Freescale's Environmental Products program, go to Headquarters http://www.freescale.com/epp. ARCO Tower 15F Freescale, the Freescale logo and Kinetis are trademarks of Freescale 1-8-1, Shimo-Meguro, Meguro-ku, Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM is the registered Tokyo 153-0064 trademark of ARM Limited. Cortex-M4 is the trademark of ARM Limited. Japan © 2012 Freescale Semiconductor, Inc. 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Document Number: K30P100M72SF1 Rev. 3, 11/2012
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: N XP: MK30DX256VLL7 MK30DX128VMC7 MK30DX256VMC7 MK30DX64VMC7 MK30DX128VLL7