ICGOO在线商城 > 集成电路(IC) > 数据采集 - 数字电位器 > MCP4252-104E/UN
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
MCP4252-104E/UN产品简介:
ICGOO电子元器件商城为您提供MCP4252-104E/UN由Microchip设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 MCP4252-104E/UN价格参考。MicrochipMCP4252-104E/UN封装/规格:数据采集 - 数字电位器, Digital Potentiometer 100k Ohm 2 Circuit 257 Taps SPI Interface 10-MSOP。您可以下载MCP4252-104E/UN参考资料、Datasheet数据手册功能说明书,资料中有MCP4252-104E/UN 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC POT DGTL 100K 257TAPS 10-MSOP数字电位计 IC Dual 8B V SPI Rheo |
产品分类 | |
品牌 | Microchip Technology |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 数字电位计 IC,Microchip Technology MCP4252-104E/UN- |
数据手册 | http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en532025 |
产品型号 | MCP4252-104E/UN |
POT数量 | Dual |
产品种类 | 数字电位计 IC |
供应商器件封装 | 10-MSOP |
其它名称 | MCP4252-104-E/UN |
包装 | 管件 |
商标 | Microchip Technology |
存储器类型 | 易失 |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Tube |
封装/外壳 | 10-TFSOP,10-MSOP(0.118",3.00mm 宽) |
封装/箱体 | MSOP-10 |
工作温度 | -40°C ~ 125°C |
工作电源电压 | 2.5 V, 3.3 V, 5 V |
工厂包装数量 | 100 |
弧刷存储器 | Volatile |
抽头 | 257 |
接口 | 4 线 SPI(芯片选择) |
数字接口 | Serial (SPI) |
最大工作温度 | + 125 C |
最小工作温度 | - 40 C |
标准包装 | 100 |
每POT分接头 | 256 |
温度系数 | 标准值 150 ppm/°C |
电压-电源 | 1.8 V ~ 5.5 V |
电源电压-最大 | 5.5 V |
电源电压-最小 | 1.8 V |
电源电流 | 1 mA |
电路数 | 2 |
电阻 | 100 kOhms |
电阻(Ω) | 100k |
MCP413X/415X/423X/425X 7/8-Bit Single/Dual SPI Digital POT with Volatile Memory Features Description • Single or Dual Resistor Network options The MCP41XX and MCP42XX devices offer a wide • Potentiometer or Rheostat configuration options range of product offerings using an SPI interface. This family of devices support 7-bit and 8-bit resistor • Resistor Network Resolution networks, and Potentiometer and Rheostat pinouts. - 7-bit: 128 Resistors (129 Steps) - 8-bit: 256 Resistors (257 Steps) Package Types (top view) • R Resistances options of: AB - 5kΩ MCP41X1 MCP41X2 - 10kΩ Single Potentiometer Single Rheostat - 50kΩ CS 1 8 V CS 1 8 V DD DD - 100kΩ SCK 2 7 P0B SCK 2 7 SDO SDI/SDO 3 6 P0W SDI 3 6 P0B • Zero Scale to Full-Scale Wiper operation V 4 5 P0A V 4 5 P0W SS SS • Low Wiper Resistance: 75Ω (typical) PDIP, SOIC, MSOP PDIP, SOIC, MSOP • Low Tempco: - Absolute (Rheostat): 50ppm typical CS 1 8 VDD CS 1 8 VDD (0°C to 70°C) SCK 2 EP 7 P0B SCK 2 EP 7 SDO - Ratiometric (Potentiometer): 15ppm typical SDI/SDO 3 9 6 P0W SDI 3 9 6 P0B • SPI Serial Interface (10MHz, modes 0,0 & 1,1) - High-Speed Read/Writes to wiper registers VSS 4 5 P0A VSS 4 5 P0W 3x3DFN* 3x3DFN* - SDI/SDO multiplexing (MCP41X1 only) • Resistor Network Terminal Disconnect Feature via: MCP42X1 Dual Potentiometers - Shutdown pin (SHDN) D O DN - Terminal Control (TCON) Register CS VD SD SH • Brown-out reset protection (1.5V typical) CS 1 14 VDD 16 15 14 13 • Serial Interface Inactive current (2.5uA typical) SCK 2 13 SDO SCK 1 12 WP SDI 3 12 SHDN • High-Voltage Tolerant Digital Inputs: Up to 12.5V VSS 4 11 WP SDI 2 EP 11 NC • Supports Split Rail Applications P1B 5 10 P0B VSS 3 17 10 P0B • Internal weak pull-up on all digital inputs PP11WA 67 89 PP00WA VSS 4 9 P0W • Wide Operating Voltage: 5 6 7 8 PDIP, SOIC, TSSOP - 2.7V to 5.5V - Device Characteristics B W A A Specified P1 P1 P1 P0 4x4 QFN* - 1.8V to 5.5V - Device Operation • Wide Bandwidth (-3dB) Operation: MCP42X2 Dual Rheostat - 2MHz (typical) for 5.0kΩ device CS 1 10V CS 1 10 VDD DD • Extended temperature range (-40°C to +125°C) SCK 2 9 SDO SCK 2 9 SDO SDI 3 8 P0B EP VSS 4 7 P0W SDI 3 11 8 P0B P1B 5 6 P1W V 4 7 P0W SS P1B 5 6 P1W MSOP, DFN 3x3DFN* * Includes Exposed Thermal Pad (EP); see Table3-1. © 2008 Microchip Technology Inc. DS22060B-page 1
MCP413X/415X/423X/425X Device Block Diagram VDD Power-up/ Resistor P0A Brown-out V Network 0 SS Control (Pot 0) P0W CS SPI Serial Wiper 0 & TCON SCK Interface Register Module & SDI P0B Control SDO Logic (WiperLock™ P1A Resistor NC Technology) Network 1 SHDN (Pot 1) P1W For Dual Potentiometer Wiper 1 Devices Only Memory (4x9) & TCON Wiper0 Register P1B Wiper1 TCON STATUS For Dual Resistor Network Devices Only Device Features Device # of POTs ConWfigipuerar tion Control Interface Memory Type WiperLock Technology POR Wiper Setting RARB eOspisttiaonncse ( k(tΩy)picaW-l( )iRΩpW)er # of Steps ORpaeVnrgDaDeti n(2g) MCP4131 (3) 1 Potentiometer (1) SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0 75 129 1.8V to 5.5V MCP4132 (3) 1 Rheostat SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0 75 129 1.8V to 5.5V MCP4141 1 Potentiometer (1) SPI EE Yes NV Wiper 5.0, 10.0, 50.0, 100.0 75 129 2.7V to 5.5V MCP4142 1 Rheostat SPI EE Yes NV Wiper 5.0, 10.0, 50.0, 100.0 75 129 2.7V to 5.5V MCP4151 (3) 1 Potentiometer (1) SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0 75 257 1.8V to 5.5V MCP4152 (3) 1 Rheostat SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0 75 257 1.8V to 5.5V MCP4161 1 Potentiometer (1) SPI EE Yes NV Wiper 5.0, 10.0, 50.0, 100.0 75 257 2.7V to 5.5V MCP4162 1 Rheostat SPI EE Yes NV Wiper 5.0, 10.0, 50.0, 100.0 75 257 2.7V to 5.5V MCP4231 (3) 2 Potentiometer (1) SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0 75 129 1.8V to 5.5V MCP4232 (3) 2 Rheostat SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0 75 129 1.8V to 5.5V MCP4241 2 Potentiometer (1) SPI EE Yes NV Wiper 5.0, 10.0, 50.0, 100.0 75 129 2.7V to 5.5V MCP4242 2 Rheostat SPI EE Yes NV Wiper 5.0, 10.0, 50.0, 100.0 75 129 2.7V to 5.5V MCP4251 (3) 2 Potentiometer (1) SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0 75 257 1.8V to 5.5V MCP4252 (3) 2 Rheostat SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0 75 257 1.8V to 5.5V MCP4261 2 Potentiometer (1) SPI EE Yes NV Wiper 5.0, 10.0, 50.0, 100.0 75 257 2.7V to 5.5V MCP4262 2 Rheostat SPI EE Yes NV Wiper 5.0, 10.0, 50.0, 100.0 75 257 2.7V to 5.5V Note 1: Floating either terminal (A or B) allows the device to be used as a Rheostat (variable resistor). 2: Analog characteristics only tested from 2.7V to 5.5V unless otherwise noted. 3: Please check Microchip web site for device release and availability. DS22060B-page 2 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 1.0 ELECTRICAL † Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is CHARACTERISTICS a stress rating only and functional operation of the device at those or any other conditions above those indicated in the Absolute Maximum Ratings † operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods Voltage on VDD with respect to VSS............... -0.6V to +7.0V may affect device reliability. Voltage on CS, SCK, SDI, SDI/SDO, and SHDN with respect to V -0.6V to 12.5V SS...................................... Voltage on all other pins (PxA, PxW, PxB, and SDO) with respect to V -0.3V to V + 0.3V SS ............................ DD Input clamp current, I IK (VI < 0, VI > VDD, VI > VPP ON HV pins)......................±20mA Output clamp current, I OK (V < 0 or V > V )..................................................±20mA O O DD Maximum output current sunk by any Output pin ......................................................................................25mA Maximum output current sourced by any Output pin ......................................................................................25mA Maximum current out of V pin.................................100mA SS Maximum current into V pin....................................100mA DD Maximum current into PXA, PXW & PXB pins............±2.5mA Storage temperature ....................................-65°C to +150°C Ambient temperature with power applied .....................................................................-40°C to +125°C Total power dissipation (Note 1)................................400mW Soldering temperature of leads (10 seconds).............+300°C ESD protection on all pins ..................................≥ 4kV (HBM), .......................................................................... ≥ 300V (MM) Maximum Junction Temperature (T ) .........................+150°C J Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - ∑ IOH} + ∑ {(VDD-VOH) x IOH} + ∑(VOl x IOL) © 2008 Microchip Technology Inc. DS22060B-page 3
MCP413X/415X/423X/425X AC/DC CHARACTERISTICS Standard Operating Conditions (unless otherwise specified) Operating Temperature –40°C ≤ T ≤ +125°C (extended) A DC Characteristics All parameters apply across the specified operating ranges unless noted. V = +2.7V to 5.5V, 5kΩ, 10kΩ, 50kΩ, 100kΩ devices. DD Typical specifications represent values for V = 5.5V, T = +25°C. DD A Parameters Sym Min Typ Max Units Conditions Supply Voltage V 2.7 — 5.5 V DD 1.8 — 2.7 V Serial Interface only. CS, SDI, SDO, V V — 12.5V V V ≥ The CS pin will be at one HV SS DD SCK, SHDN pin 4.5V of three input levels Voltage Range VSS — VDD + V VDD < (VIL, VIH or VIHH). (Note6) 8.0V 4.5V V Start Voltage V — — 1.65 V RAM retention voltage (V ) < V DD BOR RAM BOR to ensure Wiper Reset V Rise Rate to V (Note9) V/ms DD DDRR ensure Power-on Reset Delay after device T — 10 20 µs BORD exits the reset state (V > V ) DD BOR Supply Current I — — 450 µA Serial Interface Active, DD (Note10) V = 5.5V, CS = V , SCK @ 5MHz, DD IL write all 0’s to volatile Wiper 0 (address 0h) — 2.5 5 µA Serial Interface Inactive, CS = V , V = 5.5V IH DD — 0.55 1 mA Serial Interface Active, V = 5.5V, CS = V , DD IHH SCK @ 5MHz, decrement volatile Wiper 0 (address 0h) Note 1: Resistance is defined as the resistance between terminal A to terminal B. 2: INL and DNL are measured at V with V = V and V = V . W A DD B SS 3: MCP4XX1 only. 4: MCP4XX2 only, includes V and V . WZSE WFSE 5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted. 6: This specification by design. 7: Non-linearity is affected by wiper resistance (R ), which changes significantly over voltage and W temperature. 8: The MCP4XX1 is externally connected to match the configurations of the MCP41X2 and MCP42X2, and then tested. 9: POR/BOR is not rate dependent. 10: Supply current is independent of current through the resistor network. DS22060B-page 4 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X AC/DC CHARACTERISTICS (CONTINUED) Standard Operating Conditions (unless otherwise specified) Operating Temperature –40°C ≤ T ≤ +125°C (extended) A DC Characteristics All parameters apply across the specified operating ranges unless noted. V = +2.7V to 5.5V, 5kΩ, 10kΩ, 50kΩ, 100kΩ devices. DD Typical specifications represent values for V = 5.5V, T = +25°C. DD A Parameters Sym Min Typ Max Units Conditions Resistance R 4.0 5 6.0 kΩ -502 devices (Note1) AB (± 20%) 8.0 10 12.0 kΩ -103 devices (Note1) 40.0 50 60.0 kΩ -503 devices (Note1) 80.0 100 120.0 kΩ -104 devices (Note1) Resolution N 257 Taps 8-bit No Missing Codes 129 Taps 7-bit No Missing Codes Step Resistance R — R / — Ω 8-bit Note6 S AB (256) — R / — Ω 7-bit Note6 AB (128) Nominal |R - R | — 0.2 1.25 % MCP42X1 devices only AB0 AB1 Resistance Match / R AB |R - R | — 0.25 1.5 % MCP42X2 devices only, BW0 BW1 / R Code = Full-Scale BW Wiper Resistance R — 75 160 Ω V = 5.5 V, I = 2.0mA, code = 00h W DD W (Note3, Note4) — 75 300 Ω V = 2.7 V, I = 2.0mA, code = 00h DD W Nominal ΔR /ΔT — 50 — ppm/°C T = -20°C to +70°C AB A Resistance — 100 — ppm/°C T = -40°C to +85°C A Tempco — 150 — ppm/°C T = -40°C to +125°C A Ratiometeric ΔV /ΔT — 15 — ppm/°C Code = Midscale (80h or 40h) WB Tempco Resistor Terminal V V V V — V V Note5, Note6 A, W, B SS DD Input Voltage Range (Terminals A, B and W) Maximum current I — — 2.5 mA Note6, Worst case current through W through A, W or B wiper when wiper is either Full-Scale or Zero Scale. Leakage current I — 100 — nA MCP4XX1 PxA = PxW = PxB = V WL SS into A, W or B — 100 — nA MCP4XX2 PxB = PxW = V SS Note 1: Resistance is defined as the resistance between terminal A to terminal B. 2: INL and DNL are measured at V with V = V and V = V . W A DD B SS 3: MCP4XX1 only. 4: MCP4XX2 only, includes V and V . WZSE WFSE 5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted. 6: This specification by design. 7: Non-linearity is affected by wiper resistance (R ), which changes significantly over voltage and W temperature. 8: The MCP4XX1 is externally connected to match the configurations of the MCP41X2 and MCP42X2, and then tested. 9: POR/BOR is not rate dependent. 10: Supply current is independent of current through the resistor network. © 2008 Microchip Technology Inc. DS22060B-page 5
MCP413X/415X/423X/425X AC/DC CHARACTERISTICS (CONTINUED) Standard Operating Conditions (unless otherwise specified) Operating Temperature –40°C ≤ T ≤ +125°C (extended) A DC Characteristics All parameters apply across the specified operating ranges unless noted. V = +2.7V to 5.5V, 5kΩ, 10kΩ, 50kΩ, 100kΩ devices. DD Typical specifications represent values for V = 5.5V, T = +25°C. DD A Parameters Sym Min Typ Max Units Conditions Full-Scale Error V -6.0 -0.1 — LSb 5kΩ 8-bit 3.0V ≤ V ≤ 5.5V WFSE DD (MCP4XX1 only) -4.0 -0.1 — LSb 7-bit 3.0V ≤ V ≤ 5.5V DD (8-bit code = -3.5 -0.1 — LSb 10kΩ 8-bit 3.0V ≤ V ≤ 5.5V 100h, DD -2.0 -0.1 — LSb 7-bit 3.0V ≤ V ≤ 5.5V 7-bit code = 80h) DD -0.8 -0.1 — LSb 50kΩ 8-bit 3.0V ≤ V ≤ 5.5V DD -0.5 -0.1 — LSb 7-bit 3.0V ≤ V ≤ 5.5V DD -0.5 -0.1 — LSb 100kΩ 8-bit 3.0V ≤ V ≤ 5.5V DD -0.5 -0.1 — LSb 7-bit 3.0V ≤ V ≤ 5.5V DD Zero-Scale Error V — +0.1 +6.0 LSb 5kΩ 8-bit 3.0V ≤ V ≤ 5.5V WZSE DD (MCP4XX1 only) — +0.1 +3.0 LSb 7-bit 3.0V ≤ V ≤ 5.5V DD (8-bit code = 00h, — +0.1 +3.5 LSb 10kΩ 8-bit 3.0V ≤ V ≤ 5.5V 7-bit code = 00h) DD — +0.1 +2.0 LSb 7-bit 3.0V ≤ V ≤ 5.5V DD — +0.1 +0.8 LSb 50kΩ 8-bit 3.0V ≤ V ≤ 5.5V DD — +0.1 +0.5 LSb 7-bit 3.0V ≤ V ≤ 5.5V DD — +0.1 +0.5 LSb 100kΩ 8-bit 3.0V ≤ V ≤ 5.5V DD — +0.1 +0.5 LSb 7-bit 3.0V ≤ V ≤ 5.5V DD Potentiometer INL -1 ±0.5 +1 LSb 8-bit 3.0V ≤ V ≤ 5.5V DD Integral -0.5 ±0.25 +0.5 LSb 7-bit MCP4XX1 devices only Non-linearity (Note2) Potentiometer DNL -0.5 ±0.25 +0.5 LSb 8-bit 3.0V ≤ V ≤ 5.5V DD Differential -0.25 ±0.125 +0.25 LSb 7-bit MCP4XX1 devices only Non-linearity (Note2) Bandwidth -3dB BW — 2 — MHz 5kΩ 8-bit Code = 80h (See Figure2-64, — 2 — MHz 7-bit Code = 40h load = 30pF) — 1 — MHz 10kΩ 8-bit Code = 80h — 1 — MHz 7-bit Code = 40h — 200 — kHz 50kΩ 8-bit Code = 80h — 200 — kHz 7-bit Code = 40h — 100 — kHz 100kΩ 8-bit Code = 80h — 100 — kHz 7-bit Code = 40h Note 1: Resistance is defined as the resistance between terminal A to terminal B. 2: INL and DNL are measured at V with V = V and V = V . W A DD B SS 3: MCP4XX1 only. 4: MCP4XX2 only, includes V and V . WZSE WFSE 5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted. 6: This specification by design. 7: Non-linearity is affected by wiper resistance (R ), which changes significantly over voltage and W temperature. 8: The MCP4XX1 is externally connected to match the configurations of the MCP41X2 and MCP42X2, and then tested. 9: POR/BOR is not rate dependent. 10: Supply current is independent of current through the resistor network. DS22060B-page 6 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X AC/DC CHARACTERISTICS (CONTINUED) Standard Operating Conditions (unless otherwise specified) Operating Temperature –40°C ≤ T ≤ +125°C (extended) A DC Characteristics All parameters apply across the specified operating ranges unless noted. V = +2.7V to 5.5V, 5kΩ, 10kΩ, 50kΩ, 100kΩ devices. DD Typical specifications represent values for V = 5.5V, T = +25°C. DD A Parameters Sym Min Typ Max Units Conditions Rheostat Integral R-INL -1.5 ±0.5 +1.5 LSb 5kΩ 8-bit 5.5V, I = 900µA W Non-linearity -8.25 +4.5 +8.25 LSb 3.0V, I = 480µA W MCP41X1 (Note7) (Note4, Note8) Section2.0 1.8V MCP4XX2 -1.125 ±0.5 +1.125 LSb 7-bit 5.5V, I = 900µA devices only W (Note4) -6.0 +4.5 +6.0 LSb 3.0V, IW = 480µA (Note7) Section2.0 1.8V -1.5 ±0.5 +1.5 LSb 10kΩ 8-bit 5.5V, I = 450µA W -5.5 +2.5 +5.5 LSb 3.0V, I = 240µA W (Note7) Section2.0 1.8V -1.125 ±0.5 +1.125 LSb 7-bit 5.5V, I = 450µA W -4.0 +2.5 +4.0 LSb 3.0V, I = 240µA W (Note7) Section2.0 1.8V -1.5 ±0.5 +1.5 LSb 50kΩ 8-bit 5.5V, I = 90µA W -2.0 +1 +2.0 LSb 3.0V, I = 48µA W (Note7) Section2.0 1.8V -1.125 ±0.5 +1.125 LSb 7-bit 5.5V, I = 90µA W -1.5 +1 +1.5 LSb 3.0V, I = 48µA W (Note7) Section2.0 1.8V -1.0 ±0.5 +1.0 LSb 100kΩ 8-bit 5.5V, I = 45µA W -1.5 +0.25 +1.5 LSb 3.0V, I = 24µA W (Note7) Section2.0 1.8V -0.8 ±0.5 +0.8 LSb 7-bit 5.5V, I = 45µA W -1.125 +0.25 +1.125 LSb 3.0V, I = 24µA W (Note7) Section2.0 1.8v Note 1: Resistance is defined as the resistance between terminal A to terminal B. 2: INL and DNL are measured at V with V = V and V = V . W A DD B SS 3: MCP4XX1 only. 4: MCP4XX2 only, includes V and V . WZSE WFSE 5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted. 6: This specification by design. 7: Non-linearity is affected by wiper resistance (R ), which changes significantly over voltage and W temperature. 8: The MCP4XX1 is externally connected to match the configurations of the MCP41X2 and MCP42X2, and then tested. 9: POR/BOR is not rate dependent. 10: Supply current is independent of current through the resistor network. © 2008 Microchip Technology Inc. DS22060B-page 7
MCP413X/415X/423X/425X AC/DC CHARACTERISTICS (CONTINUED) Standard Operating Conditions (unless otherwise specified) Operating Temperature –40°C ≤ T ≤ +125°C (extended) A DC Characteristics All parameters apply across the specified operating ranges unless noted. V = +2.7V to 5.5V, 5kΩ, 10kΩ, 50kΩ, 100kΩ devices. DD Typical specifications represent values for V = 5.5V, T = +25°C. DD A Parameters Sym Min Typ Max Units Conditions Rheostat R-DNL -0.5 ±0.25 +0.5 LSb 5kΩ 8-bit 5.5V, I = 900µA W Differential -1.0 +0.5 +1.0 LSb 3.0V (Note7) Non-linearity Section2.0 1.8V MCP41X1 -0.375 ±0.25 +0.375 LSb 7-bit 5.5V, I = 900µA (Note4, Note8) W MCP4XX2 -0.75 +0.5 +0.75 LSb 3.0V (Note7) devices only Section2.0 1.8V (Note4) -0.5 ±0.25 +0.5 LSb 10kΩ 8-bit 5.5V, I = 450µA W -1.0 +0.25 +1.0 LSb 3.0V (Note7) Section2.0 1.8V -0.375 ±0.25 +0.375 LSb 7-bit 5.5V, I = 450µA W -0.75 +0.5 +0.75 LSb 3.0V (Note7) Section2.0 1.8V -0.5 ±0.25 +0.5 LSb 50kΩ 8-bit 5.5V, I = 90µA W -0.5 ±0.25 +0.5 LSb 3.0V (Note7) Section2.0 1.8V -0.375 ±0.25 +0.375 LSb 7-bit 5.5V, I = 90µA W -0.375 ±0.25 +0.375 LSb 3.0V (Note7) Section2.0 1.8V -0.5 ±0.25 +0.5 LSb 100kΩ 8-bit 5.5V, I = 45µA W -0.5 ±0.25 +0.5 LSb 3.0V (Note7) Section2.0 1.8V -0.375 ±0.25 +0.375 LSb 7-bit 5.5V, I = 45µA W -0.375 ±0.25 +0.375 LSb 3.0V (Note7) 1.8V Capacitance (P ) C — 75 — pF f =1MHz, Code = Full-Scale A AW Capacitance (P ) C — 120 — pF f =1MHz, Code = Full-Scale w W Capacitance (P ) C — 75 — pF f =1MHz, Code = Full-Scale B BW Note 1: Resistance is defined as the resistance between terminal A to terminal B. 2: INL and DNL are measured at V with V = V and V = V . W A DD B SS 3: MCP4XX1 only. 4: MCP4XX2 only, includes V and V . WZSE WFSE 5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted. 6: This specification by design. 7: Non-linearity is affected by wiper resistance (R ), which changes significantly over voltage and W temperature. 8: The MCP4XX1 is externally connected to match the configurations of the MCP41X2 and MCP42X2, and then tested. 9: POR/BOR is not rate dependent. 10: Supply current is independent of current through the resistor network. DS22060B-page 8 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X AC/DC CHARACTERISTICS (CONTINUED) Standard Operating Conditions (unless otherwise specified) Operating Temperature –40°C ≤ T ≤ +125°C (extended) A DC Characteristics All parameters apply across the specified operating ranges unless noted. V = +2.7V to 5.5V, 5kΩ, 10kΩ, 50kΩ, 100kΩ devices. DD Typical specifications represent values for V = 5.5V, T = +25°C. DD A Parameters Sym Min Typ Max Units Conditions Digital Inputs/Outputs (CS, SDI, SDO, SCK, SHDN) Schmitt Trigger V 0.45V — — V 2.7V ≤ V ≤ 5.5V IH DD DD High Input (Allows 2.7V Digital V with DD Threshold 5V Analog V ) DD 0.5V — — V 1.8V ≤ V ≤ 2.7V DD DD Schmitt Trigger V — — 0.2V V IL DD Low Input Threshold Hysteresis of V — 0.1V — V HYS DD Schmitt Trigger Inputs High Voltage Limit V — — 12.5 (6) V Pin can tolerate V or less. MAX MAX Output Low V V — 0.3V V I = 5mA, V = 5.5V OL SS DD OL DD Voltage (SDO) V — 0.3V V I = 1mA, V = 1.8V SS DD OL DD Output High V 0.7V — V V I = -2.5mA, V = 5.5V OH DD DD OH DD Voltage (SDO) 0.7V — V V I = -1mA, V = 1.8V DD DD OL DD Weak Pull-up / I — — 1.75 mA Internal V pull-up, V pull-down, PU DD IHH Pull-down Current V = 5.5V, V = 12.5V DD CS — 170 — µA CS pin, V = 5.5V, V = 3V DD CS CS Pull-up / R — 16 — kΩ V = 5.5V, V = 3V CS DD CS Pull-down Resistance Input Leakage I -1 — 1 µA V = V and V = V IL IN DD IN SS Current Pin Capacitance C , C — 10 — pF f = 20MHz IN OUT C RAM (Wiper) Value Value Range N 0h — 1FFh hex 8-bit device 0h — 1FFh hex 7-bit device POR/BOR Value N — 80h — hex 8-bit device — 40h — hex 7-bit device Note 1: Resistance is defined as the resistance between terminal A to terminal B. 2: INL and DNL are measured at V with V = V and V = V . W A DD B SS 3: MCP4XX1 only. 4: MCP4XX2 only, includes V and V . WZSE WFSE 5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted. 6: This specification by design. 7: Non-linearity is affected by wiper resistance (R ), which changes significantly over voltage and W temperature. 8: The MCP4XX1 is externally connected to match the configurations of the MCP41X2 and MCP42X2, and then tested. 9: POR/BOR is not rate dependent. 10: Supply current is independent of current through the resistor network. © 2008 Microchip Technology Inc. DS22060B-page 9
MCP413X/415X/423X/425X AC/DC CHARACTERISTICS (CONTINUED) Standard Operating Conditions (unless otherwise specified) Operating Temperature –40°C ≤ T ≤ +125°C (extended) A DC Characteristics All parameters apply across the specified operating ranges unless noted. V = +2.7V to 5.5V, 5kΩ, 10kΩ, 50kΩ, 100kΩ devices. DD Typical specifications represent values for V = 5.5V, T = +25°C. DD A Parameters Sym Min Typ Max Units Conditions Power Requirements Power Supply PSS — 0.0015 0.0035 %/% 8-bit V = 2.7V to 5.5V, DD Sensitivity V = 2.7V, Code = 80h A (MCP41X2 and — 0.0015 0.0035 %/% 7-bit V = 2.7V to 5.5V, DD MCP42X2 only) V = 2.7V, Code = 40h A Note 1: Resistance is defined as the resistance between terminal A to terminal B. 2: INL and DNL are measured at V with V = V and V = V . W A DD B SS 3: MCP4XX1 only. 4: MCP4XX2 only, includes V and V . WZSE WFSE 5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted. 6: This specification by design. 7: Non-linearity is affected by wiper resistance (R ), which changes significantly over voltage and W temperature. 8: The MCP4XX1 is externally connected to match the configurations of the MCP41X2 and MCP42X2, and then tested. 9: POR/BOR is not rate dependent. 10: Supply current is independent of current through the resistor network. DS22060B-page 10 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 1.1 SPI Mode Timing Waveforms and Requirements V IHH VIH VIH CS V IL 84 70 72 SCK 83 71 79 78 80 SDO MSb BIT6 - - - - - -1 LSb 75, 76 77 SDI MSb IN BIT6 - - - -1 LSb IN 74 73 FIGURE 1-1: SPI Timing Waveform (Mode=11). TABLE 1-1: SPI REQUIREMENTS (MODE= 11) # Characteristic Symbol Min Max Units Conditions SCK Input Frequency F — 10 MHz V = 2.7V to 5.5V SCK DD — 1 MHz V = 1.8V to 2.7V DD 70 CS Active (V or V ) to SCK↑ input TcsA2scH 60 — ns IL IHH 71 SCK input high time TscH 45 — ns V = 2.7V to 5.5V DD 500 — ns V = 1.8V to 2.7V DD 72 SCK input low time TscL 45 — ns V = 2.7V to 5.5V DD 500 — ns V = 1.8V to 2.7V DD 73 Setup time of SDI input to SCK↑ edge TDIV2scH 10 — ns 74 Hold time of SDI input from SCK↑ edge TscH2DIL 20 — ns 77 CS Inactive (VIH) to SDO output hi-impedance TcsH2DOZ — 50 ns Note1 80 SDO data output valid after SCK↓ edge TscL2DOV — 70 ns VDD = 2.7V to 5.5V 170 ns V = 1.8V to 2.7V DD 83 CS Inactive (V ) after SCK↑ edge TscH2csI 100 — ns V = 2.7V to 5.5V IH DD 1 ms V = 1.8V to 2.7V DD 84 Hold time of CS Inactive (V ) to TcsA2csI 50 — ns IH CS Active (V or V ) IL IHH Note 1: This specification by design. © 2008 Microchip Technology Inc. DS22060B-page 11
MCP413X/415X/423X/425X V IHH V V IH IH 82 CS V IL 84 70 SCK 83 80 71 72 SDO MSb BIT6 - - - - - -1 LSb 75, 76 77 73 SDI MSb IN BIT6 - - - -1 LSb IN 74 FIGURE 1-2: SPI Timing Waveform (Mode= 00). TABLE 1-2: SPI REQUIREMENTS (MODE= 00) # Characteristic Symbol Min Max Units Conditions SCK Input Frequency F — 10 MHz V = 2.7V to 5.5V SCK DD — 1 MHz V = 1.8V to 2.7V DD 70 CS Active (V or V ) to SCK↑ input TcsA2scH 60 — ns IL IHH 71 SCK input high time TscH 45 — ns V = 2.7V to 5.5V DD 500 — ns V = 1.8V to 2.7V DD 72 SCK input low time TscL 45 — ns V = 2.7V to 5.5V DD 500 — ns V = 1.8V to 2.7V DD 73 Setup time of SDI input to SCK↑ edge TDIV2scH 10 — ns 74 Hold time of SDI input from SCK↑ edge TscH2DIL 20 — ns 77 CS Inactive (VIH) to SDO output hi-impedance TcsH2DOZ — 50 ns Note1 80 SDO data output valid after SCK↓ edge TscL2DOV — 70 ns VDD = 2.7V to 5.5V 170 ns V = 1.8V to 2.7V DD 82 SDO data output valid after TssL2doV — 70 ns CS Active (V or V ) IL IHH 83 CS Inactive (V ) after SCK↓ edge TscH2csI 100 — ns V = 2.7V to 5.5V IH DD 1 ms V = 1.8V to 2.7V DD 84 Hold time of CS Inactive (V ) to TcsA2csI 50 — ns IH CS Active (V or V ) IL IHH Note 1: This specification by design. DS22060B-page 12 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X TABLE 1-3: SPI REQUIREMENTS FOR SDI/SDO MULTIPLEXED (READ OPERATION ONLY) (2) Characteristic Symbol Min Max Units Conditions SCK Input Frequency F — 250 kHz V = 2.7V to 5.5V SCK DD CS Active (V or V ) to SCK↑ input TcsA2scH 60 — ns IL IHH SCK input high time TscH 1.8 — us SCK input low time TscL 1.8 — ns Setup time of SDI input to SCK↑ edge TDIV2scH 40 — ns Hold time of SDI input from SCK↑ edge TscH2DIL 40 — ns CS Inactive (VIH) to SDO output hi-impedance TcsH2DOZ — 50 ns Note1 SDO data output valid after SCK↓ edge TscL2DOV — 1.6 us SDO data output valid after TssL2doV — 50 ns CS Active (V or V ) IL IHH CS Inactive (V ) after SCK↓ edge TscH2csI 100 — ns IH Hold time of CS Inactive (V ) to TcsA2csI 50 — ns IH CS Active (V or V ) IL IHH Note 1: This specification by design. 2: This table is for the devices where the SPI’s SDI and SDO pins are multiplexed (SDI/SDO) and a Read command is issued. This is NOT required for SDI/SDO operation with the Increment, Decrement, or Write commands. This data rate can be increased by having external pull-up resistors to increase the rising edges of each bit. © 2008 Microchip Technology Inc. DS22060B-page 13
MCP413X/415X/423X/425X TEMPERATURE CHARACTERISTICS Electrical Specifications: Unless otherwise indicated, V =+2.7V to +5.5V, V =GND. DD SS Parameters Sym Min Typ Max Units Conditions Temperature Ranges Specified Temperature Range T -40 — +125 °C A Operating Temperature Range T -40 — +125 °C A Storage Temperature Range T -65 — +150 °C A Thermal Package Resistances Thermal Resistance, 8L-DFN (3x3) θ — 84.5 — °C/W JA Thermal Resistance, 8L-MSOP θ — 211 — °C/W JA Thermal Resistance, 8L-PDIP θ — 89.3 — °C/W JA Thermal Resistance, 8L-SOIC θ — 149.5 — °C/W JA Thermal Resistance, 10L-DFN (3x3) θ — 57 — °C/W JA Thermal Resistance, 10L-MSOP θ — 211 — °C/W JA Thermal Resistance, 14L-PDIP θ — 70 — °C/W JA Thermal Resistance, 14L-SOIC θ — 95.3 — °C/W JA Thermal Resistance, 14L-TSSOP θ — 100 — °C/W JA Thermal Resistance, 16L-QFN θ — 47 — °C/W JA DS22060B-page 14 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 2.0 TYPICAL PERFORMANCE CURVES Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. Note: Unless otherwise indicated, T = +25°C, V = 5V, V = 0V. A DD SS 650 250 1000 ) (µA)D 556050000 2222....7777VVVV 128-425505°°°CC°CC 200 680000 ng Current (ID 223344050505000000 5555....5555VVVV 128-425505°°°CC°CC R (kOhms)CS110500 ICS --0244200000000 I (µA)CS Operati 11055000 50 RCS --860000 0 0 -1000 0.00 2.00 4.00 6.00 8.00 10.00 12.00 2 3 4 5 6 7 8 9 10 f (MHz) V (V) SCK CS FIGURE 2-1: Device Current (I ) vs. SPI FIGURE 2-3: CS Pull-up/Pull-down DD Frequency (f ) and Ambient Temperature Resistance (R ) and Current (I ) vs. CS Input SCK CS CS (V = 2.7V and 5.5V). Voltage (V ) (V = 5.5V). DD CS DD 3.0 12 A) stby) (µ 22..05 5.5V old (V) 108 5.5V Entry 2.7V Entry Current (I 11..05 ThreshPP 46 5.5V Exit dby 0.5 2.7V CS V 2 2.7V Exit n a St 0.0 0 -40 25 85 125 -40 -20 0 20 40 60 80 100 120 Ambient Temperature (°C) Ambient Temperature (°C) FIGURE 2-2: Device Current (I ) and FIGURE 2-4: CS High Input Entry/Exit SHDN V . (CS = V ) vs. Ambient Temperature. Threshold vs. Ambient Temperature and V . DD DD DD © 2008 Microchip Technology Inc. DS22060B-page 15
MCP413X/415X/423X/425X Note: Unless otherwise indicated, T = +25°C, V = 5V, V = 0V. A DD SS 120 0.3 120 1.25 -40C Rw 25C Rw 85C Rw 125C Rw -40C Rw 25C Rw 85C Rw 125C Rw -40C INL 25C INL 85C INL 125C INL -40C INL 25C INL 85C INL 125C INL R) W 100 -40C DNL 25C DNL 85C DNL 125C DNL 0.2 R) W 100 -40C DNL 25C DNL 85C DNL 125C DNL 0.75 er Resistance ((ohms) 6800 DNL INL -000.1.1Error (LSb) er Resistance ((ohms) 6800 INL -00.2.255Error (LSb) p p DNL Wi 40 125°C85°C -40°C 25°C RW -0.2 Wi 40 125°C85°C 25°C-40°C RW -0.75 20 -0.3 20 -1.25 0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256 Wiper Setting (decimal) Wiper Setting (decimal) FIGURE 2-5: 5kΩ Pot Mode – R (Ω), FIGURE 2-8: 5kΩ Rheo Mode – R (Ω), W W INL (LSb), DNL (LSb) vs. Wiper Setting and INL (LSb), DNL (LSb) vs. Wiper Setting and Ambient Temperature (V = 5.5V). Ambient Temperature (V = 5.5V). DD DD 300 300 0.3 -40C Rw 25C Rw 85C Rw 125C Rw -40C Rw 25C Rw 85C Rw 125C Rw -40C INL 25C INL 85C INL 125C INL 6 ) W 260 --4400CC IDNNLL 2255CC IDNNLL 8855CC IDNNLL 112255CC IDNNLL 0.2 ) W 260 -40C DNL 25C DNL 85C DNL 125C DNL Wiper Resistance (R(ohms)11120482600000 DNL 85°C12I5N°RLCW --0000.1..21Error (LSb) Wiper Resistance (R(ohms)11120482600000 -40°C RW INL 024 Error (LSb) -40°C 25°C 125°C 85°C25°C DNL 20 -0.3 20 -2 0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256 Wiper Setting (decimal) Wiper Setting (decimal) FIGURE 2-6: 5kΩ Pot Mode – R (Ω), FIGURE 2-9: 5kΩ Rheo Mode – R (Ω), W W INL (LSb), DNL (LSb) vs. Wiper Setting and INL (LSb), DNL (LSb) vs. Wiper Setting and Ambient Temperature (V = 3.0V). Ambient Temperature (V = 3.0V). DD DD 0.5 -40C Rw 25C Rw 85C Rw 125C Rw 118 ) W 2500 ---444000CCC RIDNwNLL 222555CCC IRDNwNLL 888555CCC IRDNwNLL 111222555CCC IRDNwNLL 0.4 ) W 2500 --4400CC IDNNLL 2255CC IDNNLL 8855CC IDNNLL 112255CC IDNNLL 98 Wiper Resistance (R(ohms)112505000000000 INL DNL --000000...123..21Error (LSb) Wiper Resistance (R(ohms)112050500000000 RW DINNLL 13578888 Error (LSb) RW 0 -0.3 0 -2 0 64 128 192 256 0 64 128 192 256 Wiper Setting (decimal) Wiper Setting (decimal) Note: Refer to AN1080 for additional informa- Note: Refer to AN1080 for additional informa- tion on the characteristics of the wiper tion on the characteristics of the wiper resistance (R ) with respect to device resistance (R ) with respect to device W W voltage and wiper setting value. voltage and wiper setting value. FIGURE 2-7: 5kΩ Pot Mode – R (Ω), FIGURE 2-10: 5kΩ Rheo Mode – R (Ω), W W INL (LSb), DNL (LSb) vs. Wiper Setting and INL (LSb), DNL (LSb) vs. Wiper Setting and Ambient Temperature (V = 1.8V). Ambient Temperature (V = 1.8V). DD DD DS22060B-page 16 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X Note: Unless otherwise indicated, T = +25°C, V = 5V, V = 0V. A DD SS 5300 6000 ) B A 5000 R 5250 al Resistance ((Ohms) 55125000 5.5V 2.7V R (Ohms)WB234000000000 -40°C n omi 5100 1.8V 1000 2855°°CC N 125°C 5050 0 -40 0 40 80 120 0 32 64 96 128 160 192 224 256 Ambient Temperature (°C) Wiper Setting (decimal) FIGURE 2-11: 5kΩ – Nominal Resistance FIGURE 2-12: 5kΩ – R (Ω) vs. Wiper WB (Ω) vs. Ambient Temperature and V . Setting and Ambient Temperature. DD © 2008 Microchip Technology Inc. DS22060B-page 17
MCP413X/415X/423X/425X Note: Unless otherwise indicated, T = +25°C, V = 5V, V = 0V. A DD SS FIGURE 2-13: 5kΩ – Low-Voltage FIGURE 2-16: 5kΩ – Low-Voltage Decrement Wiper Settling Time (V = 5.5V) Increment Wiper Settling Time (V = 5.5V) DD DD (1µs/Div). (1µs/Div). FIGURE 2-14: 5kΩ – Low-Voltage FIGURE 2-17: 5kΩ – Low-Voltage Decrement Wiper Settling Time (V = 2.7V) Increment Wiper Settling Time (V = 2.7V) DD DD (1µs/Div). (1µs/Div). FIGURE 2-15: 5kΩ – Power-Up Wiper Response Time (20ms/Div). DS22060B-page 18 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X Note: Unless otherwise indicated, T = +25°C, V = 5V, V = 0V. A DD SS 120 0.3 120 1 -40C Rw 25C Rw 85C Rw 125C Rw -40C Rw 25C Rw 85C Rw 125C Rw ) W 100 --4400CC IDNNLL 2255CC IDNNLL 8855CC IDNNLL 112255CC IDNNLL 0.2 ) W 100 --4400CC IDNNLL 2255CC IDNNLL 8855CC IDNNLL 112255CC IDNNLL R R 0.5 Wiper Resistance ((ohms) 468000 125°C 85D°CN2L5°C -40°C INL RW --0000.1..21Error (LSb) Wiper Resistance ((ohms) 468000 125°C85°C 25°C -40°INCL RW DNL -00.5Error (LSb) 20 -0.3 20 -1 0 25 50 75 100125150175200225250 0 32 64 96 128 160 192 224 256 Wiper Setting (decimal) Wiper Setting (decimal) FIGURE 2-18: 10kΩ Pot Mode – R (Ω), FIGURE 2-21: 10kΩ Rheo Mode – R (Ω), W W INL (LSb), DNL (LSb) vs. Wiper Setting and INL (LSb), DNL (LSb) vs. Wiper Setting and Ambient Temperature (V = 5.5V). Ambient Temperature (V = 5.5V). DD DD 300 4 300 0.3 -40C Rw 25C Rw 85C Rw 125C Rw -40C Rw 25C Rw 85C Rw 125C Rw -40C INL 25C INL 85C INL 125C INL ) W 260 --4400CC DINNLL 2255CC IDNNLL 8855CC IDNNLL 112255CC IDNNLL 0.2 ) W 260 -40C DNL 25C DNL 85C DNL 125C DNL 3 R R INL Wiper Resistance ((ohms)11120482600000 DNL -40°C IRNWL --0000.1..21Error (LSb) Wiper Resistance ((ohms)11120482600000 -40°C DNL RW -0121 Error (LSb) 125°C 85°C 25°C 125°C 85°C 25°C 20 -0.3 20 -2 0 32 64 96 128 160 192 224 256 0 25 50 75 100125150175200225250 Wiper Setting (decimal) Wiper Setting (decimal) FIGURE 2-19: 10kΩ Pot Mode – R (Ω), FIGURE 2-22: 10kΩ Rheo Mode – R (Ω), W W INL (LSb), DNL (LSb) vs. Wiper Setting and INL (LSb), DNL (LSb) vs. Wiper Setting and Ambient Temperature (V = 3.0V). Ambient Temperature (V = 3.0V). DD DD e 34500000 ---444000CCC RIDNwNLL 222555CCC IRDNwNLL 888555CCC IRDNwNLL 111222555CCC IRDNwNLL 000...456 R) W 34500000 ---444000CCC RIDNwNLL 222555CCC IRDNwNLL 888555CCC IRDNwNLL 111222555CCC IRDNwNLL 789888 Wiper Resistanc(R)(ohms)W11223505050000000000000 DNL RW INL --000000...123..21Error (LSb) Wiper Resistance ((ohms)11223505050000000000000 RW DNILNL 8123456888888 Error (LSb) 0 -0.3 0 -2 0 64 128 192 256 0 64 128 192 256 Wiper Setting (decimal) Wiper Setting (decimal) Note: Refer to AN1080 for additional informa- Note: Refer to AN1080 for additional informa- tion on the characteristics of the wiper tion on the characteristics of the wiper resistance (R ) with respect to device resistance (R ) with respect to device W W voltage and wiper setting value. voltage and wiper setting value. FIGURE 2-20: 10kΩ Pot Mode – R (Ω), FIGURE 2-23: 10kΩ Rheo Mode – R (Ω), W W INL (LSb), DNL (LSb) vs. Wiper Setting and INL (LSb), DNL (LSb) vs. Wiper Setting and Ambient Temperature (V = 1.8V). Ambient Temperature (V = 1.8V). DD DD © 2008 Microchip Technology Inc. DS22060B-page 19
MCP413X/415X/423X/425X Note: Unless otherwise indicated, T = +25°C, V = 5V, V = 0V. A DD SS 10300 12000 ) B 10250 A 10000 R 10200 al Resistance ((Ohms) 11110000001105050000 5.52V.7V R (Ohms)WB 468000000000 -40°C min 9950 1.8V 2000 2855°°CC o 9900 N 125°C 9850 0 -40 0 40 80 120 0 32 64 96 128 160 192 224 256 Ambient Temperature (°C) Wiper Setting (decimal) FIGURE 2-24: 10kΩ – Nominal Resistance FIGURE 2-25: 10kΩ – R (Ω) vs. Wiper WB (Ω) vs. Ambient Temperature and V . Setting and Ambient Temperature. DD DS22060B-page 20 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X Note: Unless otherwise indicated, T = +25°C, V = 5V, V = 0V. A DD SS FIGURE 2-26: 10kΩ – Low-Voltage FIGURE 2-28: 10kΩ – Low-Voltage Decrement Wiper Settling Time (V = 5.5V) Increment Wiper Settling Time (V = 5.5V) DD DD (1µs/Div). (1µs/Div). FIGURE 2-27: 10kΩ – Low-Voltage FIGURE 2-29: 10kΩ – Low-Voltage Decrement Wiper Settling Time (V = 2.7V) Increment Wiper Settling Time (V = 2.7V) DD DD (1µs/Div). (1µs/Div). © 2008 Microchip Technology Inc. DS22060B-page 21
MCP413X/415X/423X/425X Note: Unless otherwise indicated, T = +25°C, V = 5V, V = 0V. A DD SS 120 0.3 120 0.3 -40C Rw 25C Rw 85C Rw 125C Rw -40C Rw 25C Rw 85C Rw 125C Rw -40C INL 25C INL 85C INL 125C INL -40C INL 25C INL 85C INL 125C INL )W 100 -40C DNL 25C DNL 85C DNL 125C DNL 0.2 )W 100 -40C DNL 25C DNL 85C DNL 125C DNL 0.2 R R INL er Resistance ((ohms) 6800 DNL INL -000.1.1Error (LSb) er Resistance ((ohms) 6800 DNL -000.1.1Error (LSb) Wip 40 25°C -40°C RW -0.2 Wip 40 125°C 85°C 25°C -40°C RW -0.2 125°C 85°C 20 -0.3 20 -0.3 0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256 Wiper Setting (decimal) Wiper Setting (decimal) FIGURE 2-30: 50kΩ Pot Mode – R (Ω), FIGURE 2-33: 50kΩ Rheo Mode – R (Ω), W W INL (LSb), DNL (LSb) vs. Wiper Setting and INL (LSb), DNL (LSb) vs. Wiper Setting and Ambient Temperature (V = 5.5V). Ambient Temperature (V = 5.5V). DD DD 300 1 300 0.3 -40C Rw 25C Rw 85C Rw 125C Rw er Resistance (R)W(ohms)111220482600000 ---444000CCCD DRINNNwLLL 222555CCC IRDNwNLL 888IRN555CCCWL IRDNwNLL 111222555CCC IRDNwNLL -0000..12.1Error (LSb) per Resistance (R) W(ohms)111220482600000 --4400CCD DINNNLLL 2255CC IDNNILNLL 88R55CCW IDNNLL 112255CC IDNNLL --000000...257..52555 Error (LSb) Wip 60 -40°C -0.2 Wi 60 -40°C -0.75 125°C 85°C 25°C 125°C 85°C 25°C 20 -0.3 20 -1 0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256 Wiper Setting (decimal) Wiper Setting (decimal) FIGURE 2-31: 50kΩ Pot Mode – R (Ω), FIGURE 2-34: 50kΩ Rheo Mode – R (Ω), W W INL (LSb), DNL (LSb) vs. Wiper Setting and INL (LSb), DNL (LSb) vs. Wiper Setting and Ambient Temperature (V = 3.0V). Ambient Temperature (V = 3.0V). DD DD 1145000000 -40C Rw 25C Rw 85C Rw 125C Rw 0.5 1145000000 --4400CC RINwL 2255CC RINwL 8855CC RINwL 112255CC RINwL 7738..55 Wiper Resistance (R) W(ohms)11111234567890123000000000000000000000000000000000000000 --4400CC IDNNLL DN2255LCCI NIDRNNLWLL 8855CC IDNNLL 112255CC IDNNLL ----000000000....1234....4321Error (LSb) Wiper Resistance (Rw) (ohms)11110123123456789000000000000000000000000000000000000000 -40C DDNNLL 25C DNL 85C DNLIRNWL125C DNL 38112233445566..38383838383855............555555555555 Error (LSb) 0 -0.5 0 -1.5 0 64 128 192 256 0 25 50 75100125150175200225250 Wiper Setting (decimal) Wiper Setting (decimal) Note: Refer to AN1080 for additional informa- Note: Refer to AN1080 for additional informa- tion on the characteristics of the wiper tion on the characteristics of the wiper resistance (R ) with respect to device resistance (R ) with respect to device W W voltage and wiper setting value. voltage and wiper setting value. FIGURE 2-32: 50kΩ Pot Mode – RW (Ω), FIGURE 2-35: 50kΩ Rheo Mode – RW (Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and INL (LSb), DNL (LSb) vs. Wiper Setting and Ambient Temperature (VDD = 1.8V). Ambient Temperature (VDD = 1.8V). DS22060B-page 22 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X Note: Unless otherwise indicated, T = +25°C, V = 5V, V = 0V. A DD SS 52500 60000 ) AB 52000 50000 R nal Resistance ((Ohms) 55550011050500000000 21..78VV R (Ohms)WB234000000000000 -2450°°CC mi 49500 10000 85°C o N 5.5V 125°C 49000 0 -40 0 40 80 120 0 32 64 96 128 160 192 224 256 Ambient Temperature (°C) Wiper Setting (decimal) FIGURE 2-36: 50kΩ – Nominal Resistance FIGURE 2-37: 50kΩ – R (Ω) vs. Wiper WB (Ω) vs. Ambient Temperature and V . Setting and Ambient Temperature. DD © 2008 Microchip Technology Inc. DS22060B-page 23
MCP413X/415X/423X/425X Note: Unless otherwise indicated, T = +25°C, V = 5V, V = 0V. A DD SS FIGURE 2-38: 50kΩ – Low-Voltage FIGURE 2-40: 50kΩ – Low-Voltage Decrement Wiper Settling Time (V = 5.5V) Increment Wiper Settling Time (V = 5.5V) DD DD (1µs/Div). (1µs/Div). FIGURE 2-39: 50kΩ – Low-Voltage FIGURE 2-41: 50kΩ – Low-Voltage Decrement Wiper Settling Time (V = 2.7V) Increment Wiper Settling Time (V = 2.7V) DD DD (1µs/Div). (1µs/Div). DS22060B-page 24 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X Note: Unless otherwise indicated, T = +25°C, V = 5V, V = 0V. A DD SS 120 0.2 120 0.3 -40C Rw 25C Rw 85C Rw 125C Rw -40C Rw 25C Rw 85C Rw 125C Rw ) W 100 --4400CC IDNNLL 2255CC IDNNLL 8855CC IDNNLL 112255CC IDNNLL ) W 100 --4400CC IDNNLL 2255CC IDNNLL 8855CC IDNNLL 112255CC IDNNLL 0.2 R 0.1 R INL er Resistance ((ohms) 6800 DNL INL -00.1Error (LSb) er Resistance ((ohms) 6800 DNL -000.1.1Error (LSb) Wip 40 25°C -40°C RW Wip 40 125°C 85°C 25°C-40°C RW -0.2 125°C 85°C 20 -0.2 20 -0.3 0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256 Wiper Setting (decimal) Wiper Setting (decimal) FIGURE 2-42: 100kΩ Pot Mode – R (Ω), FIGURE 2-45: 100kΩ Rheo Mode – R W W INL (LSb), DNL (LSb) vs. Wiper Setting and (Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and Ambient Temperature (V = 5.5V). Ambient Temperature (V = 5.5V). DD DD 300 0.6 300 0.2 -40C Rw 25C Rw 85C Rw 125C Rw -40C Rw 25C Rw 85C Rw 125C Rw -40C INL 25C INL 85C INL 125C INL per Resistance (R) W(ohms)111220482600000 --4400CC IDDNNNLLL 2255CC IDNNLL I88RN55CCLW IDNNLL 112255CC IDNNLL --000000...011..10555Error (LSb) per Resistance (Rw) (ohms)111220482600000 -D40NCL DNL 25C DNINLL 85CR DWNL 125C DNL -0000..24.2 Error (LSb) Wi 60 -40°C -0.15 Wi 60 -40°C -0.4 125°C85°C 25°C 125°C 85°C 25°C 20 -0.2 20 -0.6 0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256 Wiper Setting (decimal) Wiper Setting (decimal) FIGURE 2-43: 100kΩ Pot Mode – R (Ω), FIGURE 2-46: 100kΩ Rheo Mode – R W W INL (LSb), DNL (LSb) vs. Wiper Setting and (Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and Ambient Temperature (V = 3.0V). Ambient Temperature (V = 3.0V). DD DD 0.35 -40C Rw 25C Rw 85C Rw 125C Rw 59 -40C Rw 25C Rw 85C Rw 125C Rw -40C INL 25C INL 85C INL 125C INL 54 ) W 25000 --4400CC IDNNLL 2255CC IDNNLL 8855CC IDNNLL 112255CC IDNNLL 0.25 ) W 25000 -40C DNL 25C DNL 85C DNL 125C DNL 49 per Resistance (R(ohms)112050000000000 DNL --0000..01..105555Error (LSb) per Resistance (R(ohms)112050000000000 RINWL 11223344949494 Error (LSb) Wi 5000 INL -0.25 Wi 5000 9 RW DNL 4 0 -0.35 0 -1 0 64 128 192 256 0 64 128 192 256 Wiper Setting (decimal) Wiper Setting (decimal) Note: Refer to AN1080 for additional informa- Note: Refer to AN1080 for additional informa- tion on the characteristics of the wiper tion on the characteristics of the wiper resistance (R ) with respect to device resistance (R ) with respect to device W W voltage and wiper setting value. voltage and wiper setting value. FIGURE 2-44: 100kΩ Pot Mode – R (Ω), FIGURE 2-47: 100kΩ Rheo Mode – R W W INL (LSb), DNL (LSb) vs. Wiper Setting and (Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and Ambient Temperature (V = 1.8V). Ambient Temperature (V = 1.8V). DD DD © 2008 Microchip Technology Inc. DS22060B-page 25
MCP413X/415X/423X/425X Note: Unless otherwise indicated, T = +25°C, V = 5V, V = 0V. A DD SS 103500 120000 ) B 103000 A 100000 R 102500 Nominal Resistance ((Ohms) 1111100000990011299050500500000000000000 2.571.V5.8VV Rwb (Ohms) 24680000000000000000 -281425505°°°CC°CC 98500 0 -40 0 40 80 120 0 32 64 96 128 160 192 224 256 Ambient Temperature (°C) Wiper Setting (decimal) FIGURE 2-48: 100kΩ – Nominal FIGURE 2-49: 100kΩ – R (Ω) vs. Wiper WB Resistance (Ω) vs. Ambient Temperature and Setting and Ambient Temperature. V . DD DS22060B-page 26 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X Note: Unless otherwise indicated, T = +25°C, V = 5V, V = 0V. A DD SS FIGURE 2-50: 100kΩ – Low-Voltage FIGURE 2-52: 100kΩ – Low-Voltage Decrement Wiper Settling Time (V = 5.5V) Increment Wiper Settling Time (V = 2.7V) DD DD (1µs/Div). (1µs/Div). FIGURE 2-51: 100kΩ – Low-Voltage FIGURE 2-53: 100kΩ – Power-Up Wiper Decrement Wiper Settling Time (V = 2.7V) Response Time (1µs/Div). DD (1µs/Div). © 2008 Microchip Technology Inc. DS22060B-page 27
MCP413X/415X/423X/425X Note: Unless otherwise indicated, T = +25°C, V = 5V, V = 0V. A DD SS 0.12 0.1 0.09 0.1 0.08 0.07 0.08 5.5V 0.06 5.5V %0.05 %0.06 0.04 0.04 0.03 3.0V 0.02 0.02 0.01 3.0V 0 0 -40 0 40 80 120 -40 0 40 80 120 Temperature (°C) Temperature (°C) FIGURE 2-54: Resistor Network 0 to FIGURE 2-56: Resistor Network 0 to Resistor Network 1 R (5kΩ) Mismatch vs. V Resistor Network 1 R (50kΩ) Mismatch vs. AB DD AB and Temperature. V and Temperature. DD 0.04 0.05 0.03 0.04 0.02 0.03 5.5V 5.5V 0.01 0.02 % 0 % 0.01 -0.01 0 3.0V 3.0V -0.02 -0.01 -0.03 -0.02 -0.04 -0.03 -40 0 40 80 120 -40 10 60 110 Temperature (°C) Temperature (°C) FIGURE 2-55: Resistor Network 0 to FIGURE 2-57: Resistor Network 0 to Resistor Network 1 R (10kΩ) Mismatch vs. Resistor Network 1 R (100kΩ) Mismatch vs. AB AB V and Temperature. V and Temperature. DD DD DS22060B-page 28 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X Note: Unless otherwise indicated, T = +25°C, V = 5V, V = 0V. A DD SS 2.4 0 -5 2.2 5.5V -10 2 -15 2.7V V (V)IH 11..68 (mA)OH --2250 5.5V I -30 1.4 2.7V -35 1.2 -40 1 -45 -40 0 40 80 120 -40 0 40 80 120 Temperature (°C) Temperature (°C) FIGURE 2-58: V (SDI, SCK, CS, and FIGURE 2-60: I (SDO) vs. V and IH OH DD SHDN) vs. V and Temperature. Temperature. DD 1.4 50 1.3 45 5.5V 5.5V 40 1.2 35 V (V)IL 01..191 I (mA)OL 223050 2.7V 15 0.8 2.7V 10 0.7 5 0.6 0 -40 0 40 80 120 -40 0 40 80 120 Temperature (°C) Temperature (°C) FIGURE 2-59: V (SDI, SCK, CS, and FIGURE 2-61: I (SDO) vs. V and IL OL DD SHDN) vs. V and Temperature. Temperature. DD © 2008 Microchip Technology Inc. DS22060B-page 29
MCP413X/415X/423X/425X Note: Unless otherwise indicated, T = +25°C, 2.1 Test Circuits A V = 5V, V = 0V. DD SS 1.2 +5V 1 5.5V A V 0.8 IN W + VOUT V) (D 0.6 2.7V B - D V 0.4 Offset GND 0.2 2.5V DC 0 -40 0 40 80 120 Temperature (°C) FIGURE 2-64: -3db Gain vs. Frequency FIGURE 2-62: POR/BOR Trip point vs. V DD Test. and Temperature. 15.0 14.5 5.5V z) 14.0 H M 13.5 2.7V k ( c s 13.0 f 12.5 12.0 -40 0 40 80 120 Temperature (°C) FIGURE 2-63: SCK Input Frequency vs. Voltage and Temperature. DS22060B-page 30 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table3-1. Additional descriptions of the device pins follows. TABLE 3-1: PINOUT DESCRIPTION FOR THE MCP413X/415X/423X/425X Pin Single Dual Weak Pull-up/ Standard Function Buffer Rheo Pot (1) Rheo Pot Symbol I/O down (2) Type 8L 8L 10L 14L 16L 1 1 1 1 16 CS I HV w/ST “smart” SPI Chip Select Input 2 2 2 2 1 SCK I HV w/ST “smart” SPI Clock Input 3 — 3 3 2 SDI I HV w/ST “smart” SPI Serial Data Input — 3 — — — SDI/SDO I/O HV w/ST “smart” SPI Serial Data Input/Output (Note1, Note3) 4 4 4 4 3, 4 V — P — Ground SS — — 5 5 5 P1B A Analog No Potentiometer 1 Terminal B — — 6 6 6 P1W A Analog No Potentiometer 1 Wiper Terminal — — — 7 7 P1A A Analog No Potentiometer 1 Terminal A — 5 — 8 8 P0A A Analog No Potentiometer 0 Terminal A 5 6 7 9 9 P0W A Analog No Potentiometer 0 Wiper Terminal 6 7 8 10 10 P0B A Analog No Potentiometer 0 Terminal B — — — 12 13 SHDN I HV w/ST “smart” Hardware Shutdown 7 — 9 13 14 SDO O O No SPI Serial Data Out 8 8 10 14 15 V — P — Positive Power Supply Input DD — — — 11 11,12 NC — — — No Connection 9 9 11 — 17 EP — — — Exposed Pad (Note4) Legend: HV w/ST = High Voltage tolerant input (with Schmidtt trigger input) A = Analog pins (Potentiometer terminals) I = digital input (high Z) O = digital output I/O = Input / Output P = Power Note 1: The 8-lead Single Potentiometer devices are pin limited so the SDO pin is multiplexed with the SDI pin (SDI/SDO pin). After the Address/Command (first 6-bits) are received, If a valid Read command has been requested, the SDO pin starts driving the requested read data onto the SDI/SDO pin. 2: The pin’s “smart” pull-up shuts off while the pin is forced low. This is done to reduce the standby and shutdown current. 3: The SDO is an open drain output, which uses the internal “smart” pull-up. The SDI input data rate can be at the maximum SPI frequency. the SDO output data rate will be limited by the “speed” of the pull-up, customers can increase the rate with external pull-up resistors. 4: The DFN and QFN packages have a contact on the bottom of the package. This contact is conductively connected to the die substrate, and therefore should be unconnected or connected to the same ground as the device’s V pin. SS © 2008 Microchip Technology Inc. DS22060B-page 31
MCP413X/415X/423X/425X 3.1 Chip Select (CS) 3.7 Potentiometer Terminal A The CS pin is the serial interface’s chip select input. The terminal A pin is available on the MCP4XX1 Forcing the CS pin to V enables the serial commands. devices, and is connected to the internal IL Forcing the CS pin to V enables the high-voltage potentiometer’s terminal A. IHH serial commands. The potentiometer’s terminal A is the fixed connection to the Full-Scale wiper value of the digital 3.2 Serial Data In (SDI) potentiometer. This corresponds to a wiper value of 0x100 for 8-bit devices or 0x80 for 7-bit devices. The SDI pin is the serial interfaces Serial Data In pin. This pin is connected to the Host Controllers SDO pin. The terminal A pin does not have a polarity relative to the terminal W or B pins. The terminal A pin can 3.3 Serial Data In / Serial Data Out support both positive and negative current. The voltage on terminal A must be between V and V . (SDI/SDO) SS DD The terminal A pin is not available on the MCP4XX2 On the MCP41X1 devices, pin-out limitations do not devices, and the internally terminal A signal is floating. allow for individual SDI and SDO pins. On these MCP42X1 devices have two terminal A pins, one for devices, the SDI and SDO pins are multiplexed. each resistor network. The MCP41X1 serial interface knows when the pin needs to change from being an input (SDI) to being an 3.8 Shutdown (SHDN) output (SDO). The Host Controller’s SDO pin must be properly protected from a drive conflict. The SHDN pin is used to force the resistor network terminals into the hardware shutdown state. 3.4 Ground (V ) SS 3.9 Serial Data Out (SDO) The V pin is the device ground reference. SS The SDO pin is the serial interfaces Serial Data Out pin. 3.5 Potentiometer Terminal B This pin is connected to the Host Controllers SDI pin. This pin allows the Host Controller to read the digital The terminal B pin is connected to the internal potentiometers registers, or monitor the state of the potentiometer’s terminal B. command error bit. The potentiometer’s terminal B is the fixed connection to the Zero Scale wiper value of the digital 3.10 Positive Power Supply Input (V ) potentiometer. This corresponds to a wiper value of DD 0x00 for both 7-bit and 8-bit devices. The V pin is the device’s positive power supply input. DD The input power supply is relative to V . The terminal B pin does not have a polarity relative to SS the terminal W or A pins. The terminal B pin can While the device V < V (2.7V), the electrical DD min support both positive and negative current. The voltage performance of the device may not meet the data sheet on terminal B must be between VSS and VDD. specifications. MCP42XX devices have two terminal B pins, one for each resistor network. 3.11 No Connection (NC) These pins are not internally connected and should be 3.6 Potentiometer Wiper (W) Terminal either connected to V or V to reduce possible DD SS The terminal W pin is connected to the internal noise coupling. potentiometer’s terminal W (the wiper). The wiper terminal is the adjustable terminal of the digital 3.12 Exposed Pad (EP) potentiometer. The terminal W pin does not have a This pad is conductively connected to the device's polarity relative to terminals A or B pins. The terminal substrate. This pad should be tied to the same potential W pin can support both positive and negative current. as the V pin (or left unconnected). This pad could be The voltage on terminal W must be between V and SS SS used to assist as a heat sink for the device when V . DD connected to a PCB heat sink. MCP42XX devices have two terminal W pins, one for each resistor network. DS22060B-page 32 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 4.0 FUNCTIONAL OVERVIEW 4.1.2 BROWN-OUT RESET When the device powers down, the device V will This Data Sheet covers a family of thirty-two Digital DD cross the V /V voltage. Potentiometer and Rheostat devices that will be POR BOR referred to as MCP4XXX. The MCP4XX1 devices are Once the V voltage decreases below the V /V DD POR BOR the Potentiometer configuration, while the MCP4XX2 voltage the following happens: devices are the Rheostat configuration. • Serial Interface is disabled As the Device Block Diagram shows, there are four If the V voltage decreases below the V voltage DD RAM main functional blocks. These are: the following happens: • POR/BOR Operation • Volatile wiper registers may become corrupted • Memory Map • TCON register may become corrupted • Resistor Network As the voltage recovers above the V /V voltage POR BOR • Serial Interface (SPI) see Section4.1.1 “Power-on Reset”. The POR/BOR operation and the Memory Map are Serial commands not completed due to a brown-out discussed in this section and the Resistor Network and condition may cause the memory location to become SPI operation are described in their own sections. The corrupted. Device Commands commands are discussed in Section7.0. 4.2 Memory Map 4.1 POR/BOR Operation The device memory is 16 locations that are 9-bits wide (16x9 bits). This memory space contains four volatile The Power-on Reset is the case where the device is locations (see Table4-1). having power applied to it from V . The Brown-out SS Reset occurs when a device had power applied to it, TABLE 4-1: MEMORY MAP and that power (voltage) drops below the specified Address Function Memory Type range. 00h Volatile Wiper 0 RAM The devices RAM retention voltage (V ) is lower RAM 01h Volatile Wiper 1 RAM than the POR/BOR voltage trip point (V /V ). The POR BOR maximum V /V voltage is less then 1.8V. 02h Reserved — POR BOR 03h Reserved — When V /V < V < 2.7V, the electrical POR BOR DD performance may not meet the data sheet 04h Volatile TCON Register RAM specifications. In this region, the device is capable of 05h Status Register RAM incrementing, decrementing, reading and writing to its 06h-0Fh Reserved — volatile memory if the proper serial command is executed. 4.2.1 VOLATILE MEMORY (RAM) 4.1.1 POWER-ON RESET There are four Volatile Memory locations. These are: When the device powers up, the device V will cross • Volatile Wiper 0 DD the VPOR/VBOR voltage. Once the VDD voltage crosses • Volatile Wiper 1 the VPOR/VBOR voltage the following happens: (Dual Resistor Network devices only) • Volatile wiper register is loaded with the default • Status Register wiper value • Terminal Control (TCON) Register • The TCON register is loaded it’s default value The volatile memory starts functioning at the RAM • The device is capable of digital operation retention voltage (V ). RAM © 2008 Microchip Technology Inc. DS22060B-page 33
MCP413X/415X/423X/425X 4.2.1.1 Status (STATUS) Register The STATUS register is placed at Address 05h. This register contains 5 status bits. These bits show the state of the Shutdown bit. The STATUS register can be accessed via the READ commands. Register4-1 describes each STATUS register bit. REGISTER 4-1: STATUS REGISTER R-1 R-1 R-1 R-1 R-0 R-x R-x R-x R-x D8:D5 RESV RESV RESV SHDN RESV bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 8-5 D8:D5: Reserved. Forced to “1” bit 4-2 RESV: Reserved bit 1 SHDN: Hardware Shutdown pin Status bit (Refer to Section5.3 “Shutdown” for further information) This bit indicates if the Hardware shutdown pin (SHDN) is low. A hardware shutdown disconnects the Terminal A and forces the wiper (Terminal W) to Terminal B (see Figure5-2). While the device is in Hard- ware Shutdown (the SHDN pin is low) the serial interface is operational so the STATUS register may be read. 1 = MCP4XXX is in the Hardware Shutdown state 0 = MCP4XXX is NOT in the Hardware Shutdown state bit 0 RESV: Reserved DS22060B-page 34 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 4.2.1.2 Terminal Control (TCON) Register This register contains 8 control bits. Four bits are for Wiper 0, and four bits are for Wiper 1. Register4-2 describes each bit of the TCON register. The state of each resistor network terminal connection is individually controlled. That is, each terminal connection (A, B and W) can be individually connected/ disconnected from the resistor network. This allows the system to minimize the currents through the digital potentiometer. The value that is written to this register will appear on the resistor network terminals when the serial command has completed. On a POR/BOR this register is loaded with 1FFh (9-bits), for all terminals connected. The Host Controller needs to detect the POR/BOR event and then update the Volatile TCON register value. © 2008 Microchip Technology Inc. DS22060B-page 35
MCP413X/415X/423X/425X REGISTER 4-2: TCON BITS (1, 2) R-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 D8 R1HW R1A R1W R1B R0HW R0A R0W R0B bit 8 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 8 D8: Reserved. Forced to “1” bit 7 R1HW: Resistor 1 Hardware Configuration Control bit This bit forces Resistor 1 into the “shutdown” configuration of the Hardware pin 1 = Resistor 1 is NOT forced to the hardware pin “shutdown” configuration 0 = Resistor 1 is forced to the hardware pin “shutdown” configuration bit 6 R1A: Resistor 1 Terminal A (P1A pin) Connect Control bit This bit connects/disconnects the Resistor 1 Terminal A to the Resistor 1 Network 1 = P1A pin is connected to the Resistor 1 Network 0 = P1A pin is disconnected from the Resistor 1 Network bit 5 R1W: Resistor 1 Wiper (P1W pin) Connect Control bit This bit connects/disconnects the Resistor 1 Wiper to the Resistor 1 Network 1 = P1W pin is connected to the Resistor 1 Network 0 = P1W pin is disconnected from the Resistor 1 Network bit 4 R1B: Resistor 1 Terminal B (P1B pin) Connect Control bit This bit connects/disconnects the Resistor 1 Terminal B to the Resistor 1 Network 1 = P1B pin is connected to the Resistor 1 Network 0 = P1B pin is disconnected from the Resistor 1 Network bit 3 R0HW: Resistor 0 Hardware Configuration Control bit This bit forces Resistor 0 into the “shutdown” configuration of the Hardware pin 1 = Resistor 0 is NOT forced to the hardware pin “shutdown” configuration 0 = Resistor 0 is forced to the hardware pin “shutdown” configuration bit 2 R0A: Resistor 0 Terminal A (P0A pin) Connect Control bit This bit connects/disconnects the Resistor 0 Terminal A to the Resistor 0 Network 1 = P0A pin is connected to the Resistor 0 Network 0 = P0A pin is disconnected from the Resistor 0 Network bit 1 R0W: Resistor 0 Wiper (P0W pin) Connect Control bit This bit connects/disconnects the Resistor 0 Wiper to the Resistor 0 Network 1 = P0W pin is connected to the Resistor 0 Network 0 = P0W pin is disconnected from the Resistor 0 Network bit 0 R0B: Resistor 0 Terminal B (P0B pin) Connect Control bit This bit connects/disconnects the Resistor 0 Terminal B to the Resistor 0 Network 1 = P0B pin is connected to the Resistor 0 Network 0 = P0B pin is disconnected from the Resistor 0 Network Note 1: The hardware SHDN pin (when active) overrides the state of these bits. When the SHDN pin returns to the inactive state, the TCON register will control the state of the terminals. The SHDN pin does not modify the state of the TCON bits. 2: These bits do not affect the wiper register values. DS22060B-page 36 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 5.0 RESISTOR NETWORK 5.1 Resistor Ladder Module The Resistor Network has either 7-bit or 8-bit The resistor ladder is a series of equal value resistors resolution. Each Resistor Network allows zero scale to (RS) with a connection point (tap) between the two full-scale connections. Figure5-1 shows a block resistors. The total number of resistors in the series diagram for the resistive network of a device. (ladder) determines the RAB resistance (see Figure5-1). The end points of the resistor ladder are The Resistor Network is made up of several parts. connected to analog switches which are connected to These include: the device Terminal A and Terminal B pins. The R AB • Resistor Ladder (and R ) resistance has small variations over voltage S • Wiper and temperature. • Shutdown (Terminal Connections) For an 8-bit device, there are 256 resistors in a string Devices have either one or two resistor networks, between terminal A and terminal B. The wiper can be These are referred to as Pot 0 and Pot 1. set to tap onto any of these 256 resistors thus providing 257 possible settings (including terminal A and A terminalB). For a 7-bit device, there are 128 resistors in a string 8-Bit 7-Bit between terminal A and terminal B. The wiper can be N = N = 257 128 set to tap onto any of these 128 resistors thus providing (100h) (80h) 129 possible settings (including terminal A and R (1) R W terminalB). S 256 127 Equation5-1 shows the calculation for the step resistance. RS RW (1) (FFh) (7Fh) 255 126 EQUATION 5-1: RS CALCULATION (FEh) (7Eh) R (1) R W R RAB S RS = (---2---5A---6-B--)- 8-bit Device W R 1 1 RS = (---1---2A---8-B---)- 7-bit Device (01h) (01h) R (1) R W S 0 0 (00h) (00h) R (1) W Analog Mux B Note1: The wiper resistance is dependent on several factors including, wiper code, device V , Terminal voltages (on A, B, DD and W), and temperature. Also for the same conditions, each tap selection resistance has a small variation. This R variation has greater effects on W some specifications (such as INL) for the smaller resistance devices (5.0kΩ) compared to larger resistance devices (100.0kΩ). FIGURE 5-1: Resistor Block Diagram. © 2008 Microchip Technology Inc. DS22060B-page 37
MCP413X/415X/423X/425X 5.2 Wiper A POR/BOR event will load the Volatile Wiper register value with the default value. Table5-2 shows the Each tap point (between the RS resistors) is a default values offered. Custom POR/BOR options are connection point for an analog switch. The opposite available. Contact the local Microchip Sales Office. side of the analog switch is connected to a common signal which is connected to the Terminal W (Wiper) TABLE 5-2: DEFAULT FACTORY pin. SETTINGS SELECTION A value in the volatile wiper register selects which atTThenheraem ls oeiwngleia pscle wteAr idt.cc hanA no t dozcee oc roonlof-n sstehecce,a t l creedo sincrienoscetnotcnlryte i lnactgotdi o dtTnheeser.,r mWcion ntaenlr emBci tnsoa rlt httoeo Resistance Code Typical R ValueAB Default POR Wiper Setting 8W-bipiter C7o-dbeit Terminal W (wiper) to Terminal B (wiper setting of 000h). A full-scale connections, connects the Terminal -502 5.0kΩ Mid-scale 80h 40h W (wiper) to Terminal A (wiper setting of 100h or 80h). -103 10.0kΩ Mid-scale 80h 40h In these configurations the only resistance between the -503 50.0kΩ Mid-scale 80h 40h Terminal W and the other Terminal (A or B) is that of the -104 100.0kΩ Mid-scale 80h 40h analog switches. A wiper setting value greater than full-scale (wiper setting of 100h for 8-bit device or 80h for 7-bit devices) will also be a Full-Scale setting (Terminal W (wiper) connected to Terminal A). Table5-1 illustrates the full wiper setting map. Equation5-2 illustrates the calculation used to deter- mine the resistance between the wiper and terminal B. EQUATION 5-2: R CALCULATION WB R N R = ----A----B------+R 8-bit Device WB (256) W N = 0 to 256 (decimal) R N R = ----A----B------+R 7-bit Device WB (128) W N = 0 to 128 (decimal) TABLE 5-1: VOLATILE WIPER VALUE VS. WIPER POSITION MAP Wiper Setting Properties 7-bit Pot 8-bit Pot 3FFh 3FFh Reserved (Full-Scale (W = A)), 081h 101h Increment and Decrement commands ignored 080h 100h Full-Scale (W = A), Increment commands ignored 07Fh 0FFh W = N 041h 081 040h 080h W = N (Mid-Scale) 03Fh 07Fh W = N 001h 001 000h 000h Zero Scale (W = B) Decrement command ignored DS22060B-page 38 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 5.3 Shutdown 5.3.2 TERMINAL CONTROL REGISTER (TCON) Shutdown is used to minimize the device’s current consumption. The MCP4XXX has two methods to The Terminal Control (TCON) register is a volatile achieve this. These are: register used to configure the connection of each resistor network terminal pin (A, B, and W) to the • Hardware Shutdown Pin (SHDN) Resistor Network. This register is shown in • Terminal Control Register (TCON) Register4-2. The Hardware Shutdown pin is backwards compatible The RxHW bits forces the selected resistor network with the MCP42XXX devices. into the same state as the SHDN pin. Alternate low-power configurations may be achieved with the 5.3.1 HARDWARE SHUTDOWN PIN RxA, RxW, and RxB bits. (SHDN) Note: When the RxHW bit forces the resistor The SHDN pin is available on the dual potentiometer network into the hardware SHDN state, devices. When the SHDN pin is forced active (V ): IL the state of the TCON register RxA, RxW, • The P0A and P1A terminals are disconnected and RxB bits is overridden (ignored). • The P0W and P1W terminals are simultaneously When the state of the RxHW bit no longer connect to the P0B and P1B terminals, forces the resistor network into the hard- respectively (see Figure5-2) ware SHDN state, the TCON register RxA, • The Serial Interface is NOT disabled, and all RxW, and RxB bits return to controlling the Serial Interface activity is executed terminal connection state. In other words, the RxHW bit does not corrupt the state of The Hardware Shutdown pin mode does NOT corrupt the RxA, RxW, and RxB bits. the values in the Volatile Wiper Registers nor the TCON register. When the Shutdown mode is exited 5.3.3 INTERACTION OF SHDN PIN AND (SHDN pin is inactive (V )): IH TCON REGISTER • The device returns to the Wiper setting specified Figure5-3 shows how the SHDN pin signal and the by the Volatile Wiper value RxHW bit signal interact to control the hardware • The TCON register bits return to controlling the shutdown of each resistor network (independently). terminal connection state Using the TCON bits allows each resistor network (Pot A 0 and Pot 1) to be individually “shutdown” while the hardware pin forces both resistor networks to be “shut- k or down” at the same time. w W et N or SHDN (from pin) st To Pot x Hardware si e RxHW Shutdown Control R B (from TCON register) FIGURE 5-2: Hardware Shutdown Resistor Network Configuration. FIGURE 5-3: RxHW bit and SHDN pin Interaction. © 2008 Microchip Technology Inc. DS22060B-page 39
MCP413X/415X/423X/425X NOTES: DS22060B-page 40 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 6.0 SERIAL INTERFACE (SPI) Typical SPI Interfaces are shown in Figure6-1. In the SPI interface, The Master’s Output pin is connected to The MCP4XXX devices support the SPI serial protocol. the Slave’s Input pin and the Master’s Input pin is This SPI operates in the slave mode (does not connected to the Slave’s Output pin. generate the serial clock). The MCP4XXX SPI’s module supports two (of the four) The SPI interface uses up to four pins. These are: standard SPI modes. These are Mode 0,0 and 1,1. • CS - Chip Select The SPI mode is determined by the state of the SCK • SCK - Serial Clock pin (VIH or VIL) on the when the CS pin transitions from • SDI - Serial Data In inactive (VIH) to active (VIL or VIHH). • SDO - Serial Data Out All SPI interface signals are high-voltage tolerant. Typical SPI Interface Connections Host MCP4XXX Controller SDO ( Master Out - Slave In (MOSI) ) SDI SDI ( Master In - Slave Out (MISO) ) SDO SCK SCK I/O (1) CS Typical MCP41X1 SPI Interface Connections (Host Controller Hardware SPI) Host MCP41X1 Controller SDO SDI/SDO SDI R (2) SDI 1 SDO SCK SCK I/O (1) CS Alternate MCP41X1 SPI Interface Connections (Host Controller Firmware SPI) Host MCP41X1 Controller I/O SDI/SDO SDI (SDO/SDI) SDO I/O SCK (SCK) I/O (1) CS Note1: If High voltage commands are desired, some type of external circuitry needs to be implemented. 2: R must be sized to ensure V and V of the devices are met. 1 IL IH FIGURE 6-1: Typical SPI Interface Block Diagram. © 2008 Microchip Technology Inc. DS22060B-page 41
MCP413X/415X/423X/425X 6.1 SDI, SDO, SCK, and CS Operation 6.1.3 SDI/SDO The operation of the four SPI interface pins are Note: MCP41X1 Devices Only . discussed in this section. These pins are: For device packages that do not have enough pins for • SDI (Serial Data In) both an SDI and SDO pin, the SDI and SDO • SDO (Serial Data Out) functionality is multiplexed onto a single I/O pin called • SCK (Serial Clock) SDI/SDO. • CS (Chip Select) The SDO will only be driven for the command error bit The serial interface works on either 8-bit or 16-bit (CMDERR) and during the data bits of a read command boundaries depending on the selected command. The (after the memory address and command has been Chip Select (CS) pin frames the SPI commands. received). 6.1.1 SERIAL DATA IN (SDI) 6.1.3.1 SDI/SDO Operation The Serial Data In (SDI) signal is the data signal into Figure6-2 shows a block diagram of the SDI/SDO pin. the device. The value on this pin is latched on the rising The SDI signal has an internal “smart” pull-up. The edge of the SCK signal. value of this pull-up determines the frequency that data can be read from the device. An external pull-up can be 6.1.2 SERIAL DATA OUT (SDO) added to the SDI/SDO pin to improve the rise time and therefore improve the frequency that data can be read. The Serial Data Out (SDO) signal is the data signal out of the device. The value on this pin is driven on the Note: To support the High voltage requirement of falling edge of the SCK signal. the SDI function, the SDO function is an Once the CS pin is forced to the active level (V or open drain output. IL VIHH), the SDO pin will be driven. The state of the SDO Data written on the SDI/SDO pin can be at the pin is determined by the serial bit’s position in the maximum SPI frequency. command, the command selected, and if there is a Note: Care must be take to ensure that a Drive command error state (CMDERR). conflict does not exist between the Host Controllers SDO pin (or software SDI/SDO pin) and the MCP41x1 SDI/SDO pin (see Figure6-1). On the falling edge of the SCK pin during the C0 bit (see Figure7-1), the SDI/SDO pin will start outputting the SDO value. The SDO signal overrides the control of the smart pull-up, such that whenever the SDI/SDO pin is outputting data, the smart pull-up is enabled. The SDI/SDO pin will change from an input (SDI) to an output (SDO) after the state machine has received the Address and Command bits of the Command Byte. If the command is a Read command, then the SDI/SDO pin will remain an output for the remainder of the command. For any other command, the SDI/SDO pin returns to an input. “smart” pull-up SDI/SDO SDI Open Drain Control SDO Logic FIGURE 6-2: Serial I/O Mux Block Diagram. DS22060B-page 42 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 6.1.4 SERIAL CLOCK (SCK) 6.1.5 THE CS SIGNAL (SPI FREQUENCY OF OPERATION) The Chip Select (CS) signal is used to select the device The SPI interface is specified to operate up to 10MHz. and frame a command sequence. To start a command, The actual clock rate depends on the configuration of or sequence of commands, the CS signal must the system and the serial command used. Table6-1 transition from the inactive state (VIH) to an active state shows the SCK frequency for different configurations. (VIL or VIHH). After the CS signal has gone active, the SDO pin is TABLE 6-1: SCK FREQUENCY driven and the clock bit counter is reset. Command Note: There is a required delay after the CS pin Memory Type Access Write, goes active to the 1st edge of the SCK pin. Read Increment, Decrement If an error condition occurs for an SPI command, then the Command byte’s Command Error (CMDERR) bit Volatile SDI, SDO 10MHz 10MHz (on the SDO pin) will be driven low (V ). To exit the Memory SDI/SDO (1) 250kHz (2) 10MHz error condition, the user must take the CSIL pin to the V IH Note1: MCP41X1 devices only. level. 2: This is the maximum clock frequency When the CS pin returns to the inactive state (V ) the IH without an external pull-up resistor. SPI module resets (including the address pointer). While the CS pin is in the inactive state (V ), the serial IH interface is ignored. This allows the Host Controller to interface to other SPI devices using the same SDI, SDO, and SCK signals. The CS pin has an internal pull-up resistor. The resistor is disabled when the voltage on the CS pin is at the V IL level. This means that when the CS pin is not driven, the internal pull-up resistor will pull this signal to the V IH level. When the CS pin is driven low (V ), the IL resistance becomes very large to reduce the device current consumption. The high voltage capability of the CS pin allows MCP413X/415X/423X/425X devices to be used in systems previously designed for the MCP414X/416X/ 424X/426X devices. © 2008 Microchip Technology Inc. DS22060B-page 43
MCP413X/415X/423X/425X 6.2 The SPI Modes 6.3 SPI Waveforms The SPI module supports two (of the four) standard SPI Figure6-3 through Figure6-8 show the different SPI modes. These are Mode 0,0 and 1,1. The mode is command waveforms. Figure6-3 and Figure6-4 are determined by the state of the SDI pin on the rising read and write commands. Figure6-5 and Figure6-6 edge of the 1st clock bit (of the 8-bit byte). are read commands when the SDI and SDO pins are multiplexed on the same pin (SDI/SDO). Figure6-7 6.2.1 MODE 0,0 and Figure6-8 are increment and decrement In Mode 0,0: SCK idle state = low (V ), data is clocked commands. IL in on the SDI pin on the rising edge of SCK and clocked out on the SDO pin on the falling edge of SCK. 6.2.2 MODE 1,1 In Mode 1,1: SCK idle state = high (V ), data is IH clocked in on the SDI pin on the rising edge of SCK and clocked out on the SDO pin on the falling edge of SCK. VIH VIHH (1) CS V IL SCK Write to SSPBUF CMDERR bit SDO bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 AD3 AD2 AD1 AD0 X D8 D7 D6 D5 D4 D3 D2 D1 D0 SDI bit15 bit14 bit13 bit12 C1 C0 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 Input Sample Note1: V is supported for compability with the MCP414X/6X and MCP424X/6X devices high voltage IHH operation. FIGURE 6-3: 16-Bit Commands (Write, Read) - SPI Waveform (Mode 1,1). V V (1) IH IHH CS V IL SCK Write to SSPBUF CMDERR bit SDO bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 AD3 AD2 AD1 AD0 X D8 D7 D6 D5 D4 D3 D2 D1 D0 SDI bit15 bit14 bit13 bit12 C1 C0 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 Input Sample Note1: V is supported for compability with the MCP414X/6X and MCP424X/6X devices high voltage IHH operation. FIGURE 6-4: 16-Bit Commands (Write, Read) - SPI Waveform (Mode 0,0). DS22060B-page 44 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X V VIHH (1) IH CS V IL SCK Write to SSPBUF CMDERR bit D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 SDO bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 AD3 AD2 AD1 AD0 C1 C0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) SDI bit15 bit14 bit13 bit12 1 1 Input Sample Note1: The SDI pin will read the state of the SDI pin which will be the SDO signal, unless overdriven. 2: V is supported for compability with the MCP414X/6X and MCP424X/6X devices high voltage IHH operation. FIGURE 6-5: 16-Bit Read Command for Devices with SDI/SDO multiplexed - SPI Waveform (Mode 1,1). VIH VIHH (1) CS V IL SCK Write to SSPBUF CMDERR bit X D8 D7 D6 D5 D4 D3 D2 D1 D0 SDO bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 AD3 AD2 AD1 AD0 C1 C0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) SDI bit15 bit14 bit13 bit12 1 1 Input Sample Note1: The SDI pin will read the state of the SDI pin which will be the SDO signal, unless overdriven. 2: V is supported for compability with the MCP414X/6X and MCP424X/6X devices high voltage IHH operation. FIGURE 6-6: 16-Bit Read Command for Devices with SDI/SDO multiplexed - SPI Waveform (Mode 0,0). © 2008 Microchip Technology Inc. DS22060B-page 45
MCP413X/415X/423X/425X CS VIH VIHH (1) V IL SCK Write to SSPBUF CMDERR bit “1” = “Valid” Command/Address “0” = “Invalid” Command/Address SDO bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 SDI AD3 AD2 AD1 AD0 C1 C0 X X bit7 bit0 Input Sample Note1: V is supported for compability with the MCP414X/6X and MCP424X/6X devices high voltage IHH operation. FIGURE 6-7: 8-Bit Commands (Increment, Decrement, Modify - SPI Waveform with PIC MCU (Mode 1,1). VIH VIHH (1) CS V IL SCK Write to SSPBUF CMDERR bit “1” = “Valid” Command/Address “0” = “Invalid” Command/Address SDO bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 SDI AD3 AD2 AD1 AD0 C1 C0 X X bit7 bit0 Input Sample Note1: V is supported for compability with the MCP414X/6X and MCP424X/6X devices high voltage IHH operation. FIGURE 6-8: 8-Bit Commands (Increment, Decrement, Modify - SPI Waveform with PIC MCU (Mode 0,0). DS22060B-page 46 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 7.0 DEVICE COMMANDS 7.1 Command Byte The MCP4XXX’s SPI command format supports 16 The Command Byte has three fields, the Address, the memory address locations and four commands. Each Command, and 2 Data bits, see Figure7-1. Currently command has two modes. These are: only one of the data bits is defined (D8). This is for the Write command. • Normal Serial Commands • High-Voltage Serial Commands The device memory is accessed when the master sends a proper Command Byte to select the desired Normal serial commands are those where the CS pin is operation. The memory location getting accessed is driven to V . High Voltage Serial Commands, CS pin is IL contained in the Command Byte’s AD3:AD0 bits. The driven to V , for compatibility with systems that also IHH action desired is contained in the Command Byte’s support the MCP414X/416X/424X/426X devices. High C1:C0 bits, see Table7-1. C1:C0 determines if the Voltage Serial Commands operate identically to their desired memory location will be read, written, corresponding Normal Serial Command. In each Incremented (wiper setting +1) or Decremented (wiper mode, there are four possible commands. These setting -1). The Increment and Decrement commands commands are shown in Table7-1. are only valid on the volatile wiper registers. The 8-bit commands (Increment Wiper and Decre- As the Command Byte is being loaded into the device ment Wiper commands) contain a Command Byte, (on the SDI pin), the device’s SDO pin is driving. The see Figure7-1, while 16-bit commands (Read Data SDO pin will output high bits for the first six bits of that and Write Data commands) contain a Command Byte command. On the 7th bit, the SDO pin will output the and a Data Byte. The Command Byte contains two data CMDERR bit state (see Section7.3 “Error Condi- bits, see Figure7-1. tion”). The 8th bit state depends on the the command Table7-2 shows the supported commands for each selected. memory location and the corresponding values on the SDI and SDO pins. TABLE 7-1: COMMAND BIT OVERVIEW Table7-3 shows an overview of all the SPI commands C1:C0 Bit and their interaction with other device features. Command # of Bits States 11 Read Data 16-Bits 00 Write Data 16-Bits 01 Increment 8-Bits 10 Decrement 8-Bits 8-bit Command 16-bit Command Command Byte Command Byte Data Byte A A A A C C D D A A A A C C D D D D D D D D D D Command D D D D 1 0 9 8 D D D D 1 0 9 8 7 6 5 4 3 2 1 0 Bits 3 2 1 0 3 2 1 0 C C 1 0 Memory Data Memory Data 0 0 = Write Data Address Bits Address Bits 0 1 = INCR Command Command 1 0 = DECR Bits Bits 1 1 = Read Data FIGURE 7-1: General SPI Command Formats. © 2008 Microchip Technology Inc. DS22060B-page 47
MCP413X/415X/423X/425X TABLE 7-2: MEMORY MAP AND THE SUPPORTED COMMANDS Address SPI String (Binary) Data Command Value Function (10-bits) (1) MOSI (SDI pin) MISO (SDO pin) (2) 00h Volatile Wiper 0 Write Data nn nnnn nnnn 0000 00nn nnnn nnnn 1111 1111 1111 1111 Read Data nn nnnn nnnn 0000 11nn nnnn nnnn 1111 111n nnnn nnnn Increment Wiper — 0000 0100 1111 1111 Decrement Wiper — 0000 1000 1111 1111 01h Volatile Wiper 1 Write Data nn nnnn nnnn 0001 00nn nnnn nnnn 1111 1111 1111 1111 Read Data nn nnnn nnnn 0001 11nn nnnn nnnn 1111 111n nnnn nnnn Increment Wiper — 0001 0100 1111 1111 Decrement Wiper — 0001 1000 1111 1111 02h Reserved — — — — 03h Reserved — — — — 04h Volatile Write Data nn nnnn nnnn 0100 00nn nnnn nnnn 1111 1111 1111 1111 TCON Register Read Data nn nnnn nnnn 0100 11nn nnnn nnnn 1111 111n nnnn nnnn 05h Status Register Read Data nn nnnn nnnn 0101 11nn nnnn nnnn 1111 111n nnnn nnnn 06h-0Fh Reserved — — — — Note 1: The Data Memory is only 9-bits wide, so the MSb is ignored by the device. 2: All these Address/Command combinations are valid, so the CMDERR bit is set. Any other Address/Command combination is a command error state and the CMDERR bit will be clear. DS22060B-page 48 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 7.2 Data Byte 7.3.1 ABORTING A TRANSMISSION Only the Read Command and the Write Command use All SPI transmissions must have the correct number of the Data Byte, see Figure7-1. These commands SCK pulses to be executed. The command is not concatenate the 8-bits of the Data Byte with the one executed until the complete number of clocks have data bit (D8) contained in the Command Byte to form been received. If the CS pin is forced to the inactive state (V ) the serial interface is reset. Partial com- 9-bits of data (D8:D0). The Command Byte format IH mands are not executed. supports up to 9-bits of data so that the 8-bit resistor network can be set to Full-Scale (100h or greater). This SPI is more susceptible to noise than other bus allows wiper connections to Terminal A and to protocols. The most likely case is that this noise TerminalB. corrupts the value of the data being clocked into the The D9 bit is currently unused, and corresponds to the MCP4XXX or the SCK pin is injected with extra clock pulses. This may cause data to be corrupted in the position on the SDO data of the CMDERR bit. device, or a command error to occur, since the address and command bits were not a valid combination. The 7.3 Error Condition extra SCK pulse will also cause the SPI data (SDI) and The CMDERR bit indicates if the four address bits clock (SCK) to be out of sync. Forcing the CS pin to the received (AD3:AD0) and the two command bits inactive state (VIH) resets the serial interface. The SPI received (C1:C0) are a valid combination (see interface will ignore activity on the SDI and SCK pins Table4-1). The CMDERR bit is high if the combination until the CS pin transition to the active state is detected is valid and low if the combination is invalid. (VIH to VIL or VIH to VIHH). SPI commands that do not have a multiple of 8 clocks Note1: When data is not being received by the are ignored. MCP4XXX, It is recommended that the Once an error condition has occurred, any following CS pin be forced to the inactive level (V ) IL commands are ignored. All following SDO bits will be 2: It is also recommended that long low until the CMDERR condition is cleared by forcing continuous command strings should be the CS pin to the inactive state (V ). IH broken down into single commands or shorter continuous command strings. This reduces the probability of noise on the SCK pin corrupting the desired SPI commands. © 2008 Microchip Technology Inc. DS22060B-page 49
MCP413X/415X/423X/425X 7.4 Continuous Commands Note1: It is recommended that while the CS pin is The device supports the ability to execute commands active, only one type of command should continuously. While the CS pin is in the active state be issued. When changing commands, it (V or V ). Any sequence of valid commands may be is recommended to take the CS pin IL IHH received. inactive then force it back to the active state. The following example is a valid sequence of events: 2: It is also recommended that long 1. CS pin driven active (V or V ). IL IHH command strings should be broken down 2. Read Command. into shorter command strings. This 3. Increment Command (Wiper 0). reduces the probability of noise on the 4. Increment Command (Wiper 0). SCK pin corrupting the desired SPI 5. Decrement Command (Wiper 1). command string. 6. Write Command. 7. Write Command. 8. CS pin driven inactive (V ). IH TABLE 7-3: COMMANDS High Voltage Command Name # of Bits (V ) on CS IHH pin? Write Data 16-Bits — Read Data 16-Bits — Increment Wiper 8-Bits — Decrement Wiper 8-Bits — High Voltage Write Data 16-Bits Yes High Voltage Read Data 16-Bits Yes High Voltage Increment Wiper 8-Bits Yes High Voltage Decrement Wiper 8-Bits Yes DS22060B-page 50 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 7.5 Write Data 7.5.1 SINGLE WRITE Normal and High Voltage The write operation requires that the CS pin be in the active state (V or V ). Typically, the CS pin will be in IL IHH Note: The High Voltage Write Data command is the inactive state (V ) and is driven to the active state IH supported for compatability with system (V ). The 16-bit Write Command (Command Byte and IL that also support MCP414X/416X/424X/ Data Byte) is then clocked in on the SCK and SDI pins. 426X devices. Once all 16 bits have been received, the specified The Write command is a 16-bit command. The format volatile address is updated. A write will not occur if the of the command is shown in Figure7-2. write command isn’t exactly 16 clocks pulses. This protects against system issues from corrupting the A Write command to a Volatile memory location memory locations. changes that location after a properly formatted Write Command (16-clock) have been received. Figure6-3 and Figure6-4 show possible waveforms for a single write. COMMAND BYTE DATA BYTE A A A A 0 0 D D D D D D D D D D SDI D D D D 9 8 7 6 5 4 3 2 1 0 3 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Valid Address/Command combination SDO 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 Invalid Address/Command combination (1) Note 1: If an Error Condition occurs (CMDERR = L), all following SDO bits will be low until the CMDERR condition is cleared (the CS pin is forced to the inactive state). FIGURE 7-2: Write Command - SDI and SDO States. © 2008 Microchip Technology Inc. DS22060B-page 51
MCP413X/415X/423X/425X 7.5.2 CONTINUOUS WRITES Continuous writes are possible only when writing to the volatile memory registers (address 00h, 01h, and 04h). Figure7-3 shows the sequence for three continuous writes. The writes do not need to be to the same volatile memory address. COMMAND BYTE DATA BYTE A A A A 0 0 D D D D D D D D D D SDI D D D D 9 8 7 6 5 4 3 2 1 0 3 2 1 0 SDO 1 1 1 1 1 1 1* 1 1 1 1 1 1 1 1 1 A A A A 0 0 D D D D D D D D D D D D D D 9 8 7 6 5 4 3 2 1 0 3 2 1 0 1 1 1 1 1 1 1* 1 1 1 1 1 1 1 1 1 A A A A 0 0 D D D D D D D D D D D D D D 9 8 7 6 5 4 3 2 1 0 3 2 1 0 1 1 1 1 1 1 1* 1 1 1 1 1 1 1 1 1 Note 1: If a Command Error (CMDERR) occurs at this bit location (*), then all following SDO bits will be driven low until the CS pin is driven inactive (V ). IH FIGURE 7-3: Continuous Write Sequence. DS22060B-page 52 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 7.6 Read Data 7.6.1 SINGLE READ Normal and High Voltage The read operation requires that the CS pin be in the active state (V or V ). Typically, the CS pin will be in IL IHH Note: The High Voltage Read Data command is the inactive state (V ) and is driven to the active state IH supported for compatability with system (V or V ). The 16-bit Read Command (Command IL IHH that also support MCP414X/416X/424X/ Byte and Data Byte) is then clocked in on the SCK and 426X devices. SDI pins. The SDO pin starts driving data on the 7th bit The Read command is a 16-bit command. The format (CMDERR bit) and the addressed data comes out on of the command is shown in Figure7-4. the 8th through 16th clocks. Figure6-3 through Figure6-6 show possible waveforms for a single read. The first 6-bits of the Read command determine the address and the command. The 7th clock will output Figure6-5 and Figure6-6 show the single read the CMDERR bit on the SDO pin. The remaining waveforms when the SDI and SDO signals are 9-clocks the device will transmit the 9 data bits (D8:D0) multiplexed on the same pin. For additional information of the specified address (AD3:AD0). on the multiplexing of these signals, refer to Section6.1.3 “SDI/SDO”. Figure7-4 shows the SDI and SDO information for a Read command. COMMAND BYTE DATA BYTE A A A A 1 1 X X X X X X X X X X SDI D D D D 3 2 1 0 SDO 1 1 1 1 1 1 1 D D D D D D D D D Valid Address/Command combination 8 7 6 5 4 3 2 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 Attempted Memory Read of Reserved Memory location. READ DATA FIGURE 7-4: Read Command - SDI and SDO States. © 2008 Microchip Technology Inc. DS22060B-page 53
MCP413X/415X/423X/425X 7.6.2 CONTINUOUS READS Figure7-5 shows the sequence for three continuous reads. The reads do not need to be to the same Continuous reads allows the devices memory to be memory address. read quickly. Continuous reads are possible to all memory locations. COMMAND BYTE DATA BYTE A A A A 1 1 X X X X X X X X X X SDI D D D D 3 2 1 0 SDO 1 1 1 1 1 1 1* D D D D D D D D D 8 7 6 5 4 3 2 1 0 A A A A 1 1 X X X X X X X X X X D D D D 3 2 1 0 1 1 1 1 1 1 1* D D D D D D D D D 8 7 6 5 4 3 2 1 0 A A A A 1 1 X X X X X X X X X X D D D D 3 2 1 0 1 1 1 1 1 1 1* D D D D D D D D D 8 7 6 5 4 3 2 1 0 Note 1: If a Command Error (CMDERR) occurs at this bit location (*), then all following SDO bits will be driven low until the CS pin is driven inactive (V ). IH FIGURE 7-5: Continuous Read Sequence. DS22060B-page 54 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 7.7 Increment Wiper 7.7.1 SINGLE INCREMENT Normal and High Voltage Typically, the CS pin starts at the inactive state (V ), IH but may be already be in the active state due to the Note: The High Voltage Increment Wiper completion of another command. command is supported for compatability with system that also support MCP414X/ Figure6-7 through Figure6-8 show possible 416X/424X/426X devices. waveforms for a single increment. The increment operation requires that the CS pin be in the active state The Increment Command is an 8-bit command. The (V or V ). Typically, the CS pin will be in the inactive IL IHH Increment Command can only be issued to wiper state (V ) and is driven to the active state (V or V ). IH IL IHH memory locations. The format of the command is The 8-bit Increment Command (Command Byte) is shown in Figure7-6. then clocked in on the SDI pin by the SCK pins. The An Increment Command to the wiper memory location SDO pin drives the CMDERR bit on the 7th clock. changes that location after a properly formatted The wiper value will increment up to 100h on 8-bit command (8-clocks) have been received. devices and 80h on 7-bit devices. After the wiper value Increment commands provide a quick and easy has reached Full-Scale (8-bit =100h, 7-bit =80h), the method to modify the value of the wiper location by +1 wiper value will not be incremented further. If the Wiper with minimal overhead. register has a value between 101h and 1FFh, the Increment command is disabled. See Table7-4 for additional information on the Increment Command COMMAND BYTE versus the current volatile wiper value. (INCR COMMAND (n+1) ) The Increment operations only require the Increment command byte while the CS pin is active (V or V ) A A A A 0 1 X X IL IHH for a single increment. SDI D D D D 3 2 1 0 After the wiper is incremented to the desired position, 1 1 1 1 1 1 1* 1 Note 1, 2 the CS pin should be forced to VIH to ensure that SDO unexpected transitions on the SCK pin do not cause 1 1 1 1 1 1 0 0 Note 1, 3 the wiper setting to change. Driving the CS pin to V IH Note1: Only functions when writing the volatile should occur as soon as possible (within device wiper registers (AD3:AD0) 0h and 1h. specifications) after the last desired increment occurs. 2: Valid Address/Command combination. TABLE 7-4: INCREMENT OPERATION VS. 3: Invalid Address/Command combination VOLATILE WIPER VALUE all following SDO bits will be low until the Current Wiper CMDERR condition is cleared. (the CS pin is forced to the inactive Setting Wiper (W) Increment Command state). 7-bit 8-bit Properties Operates? 4: If a Command Error (CMDERR) occurs Pot Pot at this bit location (*), then all following 3FFh 3FFh Reserved No SDO bits will be driven low until the CS 081h 101h (Full-Scale (W = A)) pin is driven inactive (V ). IH 080h 100h Full-Scale (W = A) No 07Fh 0FFh W = N FIGURE 7-6: Increment Command - 041h 081 SDI and SDO States. 040h 080h W = N (Mid-Scale) Yes 03Fh 07Fh W = N 001h 001 000h 000h Zero Scale (W = B) Yes © 2008 Microchip Technology Inc. DS22060B-page 55
MCP413X/415X/423X/425X 7.7.2 CONTINUOUS INCREMENTS Increment commands can be sent repeatedly without raising CS until a desired condition is met. The value in Continuous Increments are possible only when writing the Volatile Wiper register can be read using a Read to the wiper registers. Command. Figure7-7 shows a Continuous Increment sequence When executing a continuous command string, The for three continuous writes. The writes do not need to Increment command can be followed by any other valid be to the same volatile memory address. command. When executing an continuous Increment commands, The wiper terminal will move after the command has the selected wiper will be altered from n to n+1 for each been received (8th clock). Increment command received. The wiper value will increment up to 100h on 8-bit devices and 80h on 7-bit After the wiper is incremented to the desired position, devices. After the wiper value has reached Full-Scale the CS pin should be forced to VIH to ensure that (8-bit =100h, 7-bit =80h), the wiper value will not be unexpected transitions (on the SCK pin do not cause incremented further. If the Wiper register has a value the wiper setting to change). Driving the CS pin to VIH between 101h and 1FFh, the Increment command is should occur as soon as possible (within device disabled. specifications) after the last desired increment occurs. COMMAND BYTE COMMAND BYTE COMMAND BYTE (INCR COMMAND (n+1) ) (INCR COMMAND (n+2) ) (INCR COMMAND (n+3) ) A A A A 0 1 X X A A A A 0 1 X X A A A A 0 1 X X SDI D D D D D D D D D D D D 3 2 1 0 3 2 1 0 3 2 1 0 1 1 1 1 1 1 1* 1 1 1 1 1 1 1 1* 1 1 1 1 1 1 1 1* 1 Note 1, 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Note 3, 4 SDO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 Note 3, 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 Note 3, 4 Note1: Only functions when writing the volatile wiper registers (AD3:AD0) 0h and 1h. 2: Valid Address/Command combination. 3: Invalid Address/Command combination. 4: If an Error Condition occurs (CMDERR = L), all following SDO bits will be low until the CMDERR condition is cleared (the CS pin is forced to the inactive state). FIGURE 7-7: Continuous Increment Command - SDI and SDO States. DS22060B-page 56 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 7.8 Decrement Wiper 7.8.1 SINGLE DECREMENT Normal and High Voltage Typically the CS pin starts at the inactive state (V ), but IH may be already be in the active state due to the Note: The High Voltage Decrement Wiper completion of another command. command is supported for compatability with system that also support MCP414X/ Figure6-7 through Figure6-8 show possible 416X/424X/426X devices. waveforms for a single Decrement. The decrement operation requires that the CS pin be in the active state The Decrement Command is an 8-bit command. The (V or V ). Typically the CS pin will be in the inactive IL IHH Decrement Command can only be issued to wiper state (V ) and is driven to the active state (V or V ). IH IL IHH memory locations. The format of the command is Then the 8-bit Decrement Command (Command Byte) shown in Figure7-6. is clocked in on the SDI pin by the SCK pins. The SDO An Decrement Command to the wiper memory location pin drives the CMDERR bit on the 7th clock. changes that location after a properly formatted The wiper value will decrement from the wipers command (8-clocks) have been received. Full-Scale value (100h on 8-bit devices and 80h on Decrement commands provide a quick and easy 7-bit devices). Above the wipers Full-Scale value method to modify the value of the wiper location by -1 (8-bit=101h to 1FFh, 7-bit = 81h to FFh), the with minimal overhead. decrement command is disabled. If the Wiper register has a Zero Scale value (000h), then the wiper value will not decrement. See Table7-4 for additional information COMMAND BYTE on the Decrement Command vs. the current volatile (DECR COMMAND (n+1)) wiper value. The Decrement commands only require the Decrement A A A A 1 0 X X SDI D D D D command byte, while the CS pin is active (VILor VIHH) for a single decrement. 3 2 1 0 1 1 1 1 1 1 1* 1 Note 1, 2 After the wiper is decremented to the desired position, SDO the CS pin should be forced to V to ensure that 1 1 1 1 1 1 0 0 Note 1, 3 IH unexpected transitions on the SCK pin do not cause the wiper setting to change. Driving the CS pin to V Note1: Only functions when writing the volatile IH should occur as soon as possible (within device wiper registers (AD3:AD0) 0h and 1h. specifications) after the last desired decrement occurs. 2: Valid Address/Command combination. 3: Invalid Address/Command combination TABLE 7-5: DECREMENT OPERATION VS. all following SDO bits will be low until the VOLATILE WIPER VALUE CMDERR condition is cleared. Current Wiper (the CS pin is forced to the inactive Setting Wiper (W) Decrement state). Command 4: If a Command Error (CMDERR) occurs 7-bit 8-bit Properties Operates? Pot Pot at this bit location (*), then all following SDO bits will be driven low until the CS 3FFh 3FFh Reserved No pin is driven inactive (V ). 081h 101h (Full-Scale (W = A)) IH 080h 100h Full-Scale (W = A) Yes FIGURE 7-8: Decrement Command - 07Fh 0FFh W = N SDI and SDO States. 041h 081 040h 080h W = N (Mid-Scale) Yes 03Fh 07Fh W = N 001h 001 000h 000h Zero Scale (W = B) No © 2008 Microchip Technology Inc. DS22060B-page 57
MCP413X/415X/423X/425X 7.8.2 CONTINUOUS DECREMENTS Decrement commands can be sent repeatedly without raising CS until a desired condition is met. The value in Continuous Decrements are possible only when writing the Volatile Wiper register can be read using a Read to the wiper registers. Command. Figure7-9 shows a continuous Decrement sequence When executing a continuous command string, The for three continuous writes. The writes do not need to Decrement command can be followed by any other be to the same volatile memory address. valid command. When executing an continuous Decrement commands, The wiper terminal will move after the command has the selected wiper will be altered from n to n-1 for each been received (8th clock). Decrement command received. The wiper value will decrement from the wipers Full-Scale value (100h on After the wiper is decremented to the desired position, 8-bit devices and 80h on 7-bit devices). Above the the CS pin should be forced to VIH to ensure that wipers Full-Scale value (8-bit =101h to 1FFh, “unexpected” transitions (on the SCK pin do not cause 7-bit=81h to FFh), the decrement command is the wiper setting to change). Driving the CS pin to VIH disabled. If the Wiper register has a Zero Scale value should occur as soon as possible (within device (000h), then the wiper value will not decrement. See specifications) after the last desired decrement occurs. Table7-4 for additional information on the Decrement Command vs. the current volatile wiper value. COMMAND BYTE COMMAND BYTE COMMAND BYTE (DECR COMMAND (n-1) ) (DECR COMMAND (n-1) ) (DECR COMMAND (n-1) ) A A A A 1 0 X X A A A A 1 0 X X A A A A 1 0 X X SDI D D D D D D D D D D D D 3 2 1 0 3 2 1 0 3 2 1 0 1 1 1 1 1 1 1* 1 1 1 1 1 1 1 1* 1 1 1 1 1 1 1 1* 1 Note 1, 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Note 3, 4 SDO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 Note 3, 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 Note 3, 4 Note1: Only functions when writing the volatile wiper registers (AD3:AD0) 0h and 1h. 2: Valid Address/Command combination. 3: Invalid Address/Command combination. 4: If an Error Condition occurs (CMDERR = L), all following SDO bits will be low until the CMDERR condition is cleared (the CS pin is forced to the inactive state). FIGURE 7-9: Continuous Decrement Command - SDI and SDO States. DS22060B-page 58 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 8.0 APPLICATIONS EXAMPLES 5V Voltage 3V Digital potentiometers have a multitude of practical Regulator uses in modern electronic circuits. The most popular uses include precision calibration of set point thresh- olds, sensor trimming, LCD bias trimming, audio atten- PIC MCU MCP4XXX uation, adjustable power supplies, motor control overcurrent trip setting, adjustable gain amplifiers and SDI SDI offset trimming. The MCP413X/415X/423X/425X CS CS SCK SCK devices can be used to replace the common mechani- cal trim pot in applications where the operating and SHDN SHDN terminal voltages are within CMOS process limitations (V = 2.7V to 5.5V). SDO SDO DD 8.1 Split Rail Applications FIGURE 8-1: Example Split Rail System1. All inputs that would be used to interface to a Host Controller support High Voltage on their input pin. This allows the MCP4XXX device to be used in split power Voltage 5V rail applications. Regulator An example of this is a battery application where the 3V PIC® MCU is directly powered by the battery supply PIC MCU MCP4XXX (4.8V) and the MCP4XXX device is powered by the 3.3V regulated voltage. SDI SDI CS CS For SPI applications, these inputs are: SCK SCK • CS SHDN SHDN • SCK • SDI (or SDI/SDO) SDO SDO • SHDN FIGURE 8-2: Example Split Rail Figure8-1 through Figure8-2 show three example split System2. rail systems. In this system, the MCP4XXX interface input signals need to be able to support the PIC MCU TABLE 8-1: V - V COMPARISONS output high voltage (V ). OH IH OH PIC (1) MCP4XXX (2) In Example #1 (Figure8-1), the MCP4XXX interface Comment input signals need to be able to support the PIC MCU V V V V V V DD IH OH DD IH OH output high voltage (V ). If the split rail voltage delta OH 5.5 4.4 4.4 2.7 1.215 — (3) becomes too large, then the customer may be required to do some level shifting due to MCP4XXX V levels 5.0 4.0 4.0 3.0 1.35 — (3) OH related to Host Controller V levels. 4.5 3.6 3.6 3.3 1.485 — (3) IH In Example #2 (Figure8-2), the MCP4XXX interface 3.3 2.64 2.64 4.5 2.025 — (3) input signals need to be able to support the lower 3.0 2.4 2.4 5.0 2.25 — (3) voltage of the PIC MCU output high voltage level (VOH). 2.7 2.16 2.16 5.5 2.475 — (3) Table8-1 shows an example PIC microcontroller I/O Note 1: VOH minimum = 0.8 * VDD; voltage specifications and the MCP4XXX VOL maximum = 0.6V specifications. So this PIC MCU operating at 3.3V will VIH minimum = 0.8 * VDD; drive a VOH at 2.64V, and for the MCP4XXX operating VIL maximum = 0.2 * VDD; at 5.5V, the VIH is 2.47V. Therefore, the interface 2: VOH minimum (SDA only) =; signals meet specifications. V maximum = 0.2 * V OL DD V minimum = 0.45 * V ; IH DD V maximum = 0.2 * V IL DD 3: The only MCP4XXX output pin is SDO, which is Open-Drain (or Open-Drain with Internal Pull-up) with High Voltage Support © 2008 Microchip Technology Inc. DS22060B-page 59
MCP413X/415X/423X/425X 8.2 Techniques to force the CS pin to VIHH PIC10F206 R 1 The circuit in Figure8-3 shows a method using the GP0 TC1240A doubling charge pump. When the SHDN pin MCP4XXX is high, the TC1240A is off, and the level on the CS pin is controlled by the PIC® microcontrollers (MCUs) IO2 pin. GP2 CS When the SHDN pin is low, the TC1240A is on and the C1 C2 V voltage is 2 * V . The resistor R allows the CS OUT DD 1 pin to go higher than the voltage such that the PIC MCU’s IO2 pin “clamps” at approximately VDD. FIGURE 8-4: MCP4XXX Non-Volatile Digital Potentiometer Evaluation Board (MCP402XEV) implementation to generate the TC1240A V voltage. IHH PIC MCU VIN C+ C1 SHDN C- 8.3 Using Shutdown Modes V IO1 OUT Figure8-5 shows a possible application circuit where the independent terminals could be used. MCP402X Disconnecting the wiper allows the transistor input to R 1 CS be taken to the Bias voltage level (disconnecting A and IO2 or B may be desired to reduce system current). C 2 Disconnecting Terminal A modifies the transistor input by the R rheostat value to the Common B. BW Disconnecting Terminal B modifies the transistor input FIGURE 8-3: Using the TC1240A to by the RAW rheostat value to the Common A. The generate the V voltage. Common A and Common B connections could be IHH connected to V and V . DD SS The circuit in Figure8-4 shows the method used on the MCP402X Non-volatile Digital Potentiometer Evalua- tion Board (Part Number: MCP402XEV). This method requires that the system voltage be approximately 5V. Common A This ensures that when the PIC10F206 enters a brown-out condition, there is an insufficient voltage level on the CS pin to change the stored value of the Input wiper. The MCP402X Non-volatile Digital A Potentiometer Evaluation Board User’s Guide (DS51546) contains a complete schematic. GP0 is a general purpose I/O pin, while GP2 can either be a general purpose I/O pin or it can output the internal clock. To base W For the serial commands, configure the GP2 pin as an of Transistor input (high-impedance). The output state of the GP0 (or Amplifier) pin will determine the voltage on the CS pin (V or V ). IL IH For high-voltage serial commands, force the GP0 output pin to output a high level (V ) and configure the OH GP2 pin to output the internal clock. This will form a B charge pump and increase the voltage on the CS pin Input (when the system voltage is approximately 5V). Common B Balance Bias FIGURE 8-5: Example Application Circuit using Terminal Disconnects. DS22060B-page 60 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 8.4 Design Considerations 8.4.2 LAYOUT CONSIDERATIONS In the design of a system with the MCP4XXX devices, Inductively-coupled AC transients and digital switching the following considerations should be taken into noise can degrade the input and output signal integrity, account: potentially masking the MCP4XXX’s performance. Careful board layout minimizes these effects and • Power Supply Considerations increases the Signal-to-Noise Ratio (SNR). Multi-layer • Layout Considerations boards utilizing a low-inductance ground plane, isolated inputs, isolated outputs and proper decoupling 8.4.1 POWER SUPPLY are critical to achieving the performance that the silicon CONSIDERATIONS is capable of providing. Particularly harsh The typical application will require a bypass capacitor environments may require shielding of critical signals. in order to filter high-frequency noise, which can be If low noise is desired, breadboards and wire-wrapped induced onto the power supply's traces. The bypass boards are not recommended. capacitor helps to minimize the effect of these noise sources on signal integrity. Figure8-6 illustrates an 8.4.3 RESISTOR TEMPCO appropriate bypass strategy. Characterization curves of the resistor temperature In this example, the recommended bypass capacitor coefficient (Tempco) are shown in Figure2-11, value is 0.1µF. This capacitor should be placed as Figure2-24, Figure2-36, and Figure2-48. close (within 4mm) to the device power pin (V ) as DD These curves show that the resistor network is possible. designed to correct for the change in resistance as The power source supplying these devices should be temperature increases. This technique reduces the as clean as possible. If the application circuit has end to end change is R resistance. AB separate digital and analog power supplies, V and DD V should reside on the analog plane. 8.4.4 HIGH VOLTAGE TOLERANT PINS SS High Voltage support (V ) on the Serial Interface pins IHH V supports two features. These are: DD • In-Circuit Accommodation of split rail applications and power supply sync issues 0.1µF • Compatability with systems that also support V MCP414X/416X /424X/426X devices DD 0.1µF r e oll r t n o A 15X/X croc W 13X/4X/425 U/D ®C Mi 43 PI P2 C4 B M CS V V SS SS FIGURE 8-6: Typical Microcontroller Connections. © 2008 Microchip Technology Inc. DS22060B-page 61
MCP413X/415X/423X/425X NOTES: DS22060B-page 62 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 9.0 DEVELOPMENT SUPPORT 9.2 Technical Documentation Several additional technical documents are available to 9.1 Development Tools assist you in your design and development. These technical documents include Application Notes, Several development tools are available to assist in Technical Briefs, and Design Guides. Table9-2 shows your design and evaluation of the MCP4XXX devices. some of these documents. The currently available tools are shown in Table9-1. These boards may be purchased directly from the Microchip web site at www.microchip.com. TABLE 9-1: DEVELOPMENT TOOLS Board Name Part # Supported Devices MCP42XX Digital Potentiometer PICtail Plus Demo MCP42XXDM-PTPLS MCP42XX Board MCP4XXX Digital Potentiometer Daughter Board (1) MCP4XXXDM-DB MCP42XXX, MCP42XX, MCP4021, and MCP4011 8-pin SOIC/MSOP/TSSOP/DIP Evaluation Board SOIC8EV Any 8-pin device in DIP, SOIC, MSOP, or TSSOP package 14-pin SOIC/MSOP/DIP Evaluation Board SOIC14EV Any 14-pin device in DIP, SOIC, or MSOP package Note1: Requires the use of a PICDEM Demo board (see User’s Guide for details) TABLE 9-2: TECHNICAL DOCUMENTATION Application Title Literature # Note Number AN1080 Understanding Digital Potentiometers Resistor Variations DS01080 AN737 Using Digital Potentiometers to Design Low Pass Adjustable Filters DS00737 AN692 Using a Digital Potentiometer to Optimize a Precision Single Supply Photo Detect DS00692 AN691 Optimizing the Digital Potentiometer in Precision Circuits DS00691 AN219 Comparing Digital Potentiometers to Mechanical Potentiometers DS00219 — Digital Potentiometer Design Guide DS22017 — Signal Chain Design Guide DS21825 © 2008 Microchip Technology Inc. DS22060B-page 63
MCP413X/415X/423X/425X NOTES: DS22060B-page 64 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X 10.0 PACKAGING INFORMATION 10.1 Package Marking Information 8-Lead DFN (3x3) Example: Part Number Code Part Number Code MCP4131-502E/MF DAAE MCP4132-502E/MF DAAY XXXX DAAE YYWW MCP4131-103E/MF DAAF MCP4132-103E/MF DAAZ 0817 NNN MCP4131-104E/MF DAAH MCP4132-104E/MF DABB 256 MCP4131-503E/MF DAAG MCP4132-503E/MF DABA MCP4151-502E/MF DAAP MCP4152-502E/MF DAAA MCP4151-103E/MF DAAQ MCP4152-103E/MF DABD MCP4151-104E/MF DAAS MCP4152-104E/MF DAAD MCP4151-503E/MF DAAR MCP4152-503E/MF DAAC 8-Lead MSOP Example Part Number Code Part Number Code MCP4131-502E/MS 413152 MCP4132-502E/MS 413252 XXXXXX 413152 MCP4131-103E/MS 413113 MCP4132-103E/MS 413213 YWWNNN 817256 MCP4131-104E/MS 413114 MCP4132-104E/MS 413214 MCP4131-503E/MS 413153 MCP4132-503E/MS 413253 MCP4151-502E/MS 415152 MCP4152-502E/MS 415252 MCP4151-103E/MS 415113 MCP4152-103E/MS 415213 MCP4151-104E/MS 415114 MCP4152-104E/MS 415214 MCP4151-503E/MS 415153 MCP4152-503E/MS 415253 8-Lead PDIP Example XXXXXXXX 4131-502 E/P e3256 XXXXXNNN YYWW 0817 8-Lead SOIC Example XXXXXXXX 4131502E XXXXYYWW SN^e^3^0817 NNN 256 Legend: XX...X Customer-specific information Y Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week ‘01’) NNN Alphanumeric traceability code e3 Pb-free JEDEC designator for Matte Tin (Sn) * This package is Pb-free. The Pb-free JEDEC designator ( e 3 ) can be found on the outer packaging for this package. Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. © 2008 Microchip Technology Inc. DS22060B-page 65
MCP413X/415X/423X/425X Package Marking Information (Continued) 10-Lead DFN (3x3) Example: Part Number Code Part Number Code XXXX BAEH YYWW MCP4232-502E/MF BAEH MCP4252-502E/MF BAES 0817 NNN MCP4232-103E/MF BAEJ MCP4252-103E/MF BAET 256 MCP4232-104E/MF BAEL MCP4252-104E/MF BAEV MCP4232-503E/MF BAEK MCP4252-503E/MF BAEU 10-Lead MSOP Example XXXXXX Part Number Code Part Number Code 423252 YWWNNN MCP4232-502E/MS 423252 MCP4252-502E/MS 425252 817256 MCP4232-103E/MS 423213 MCP4252-103E/MS 425213 MCP4232-104E/MS 423214 MCP4252-104E/MS 425214 MCP4232-503E/MS 423253 MCP4252-503E/MS 425253 14-Lead PDIP Example XXXXXXXXXXXXXX MCP4251 XXXXXXXXXXXXXX 502E/P^e^3 YYWWNNN 0817256 14-Lead SOIC (.150”) Example XXXXXXXXXXX MCP4251 XXXXXXXXXXX 502E/SL^e^3 YYWWNNN 0817256 14-Lead TSSOP Example XXXXXXXX 4251502E YYWW 0817 NNN 256 16-Lead QFN Example XXXXX 4251 XXXXXX 502 XXXXXX E/ML^e^3 YWWNNN 0817256 DS22060B-page 66 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)(cid:15)(cid:16)(cid:6)(cid:10)(cid:8)(cid:17)(cid:10)(cid:6)(cid:12)(cid:18)(cid:8)(cid:19)(cid:20)(cid:8)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:6)(cid:14)(cid:21)(cid:6)(cid:22)(cid:5)(cid:8)(cid:23)(cid:24)(cid:17)(cid:25)(cid:8)(cid:26)(cid:8)(cid:27)(cid:28)(cid:27)(cid:28)(cid:29)(cid:30)(cid:31)(cid:8) (cid:8)!(cid:20)(cid:7)"(cid:8)#(cid:15)(cid:17)(cid:19)$ (cid:19)(cid:20)(cid:12)(cid:5)% 2(cid:21)(cid:20)(cid:14)%(cid:22)(cid:13)(cid:14)&(cid:21) %(cid:14)(cid:19)!(cid:20)(cid:20)(cid:13)(cid:24)%(cid:14)(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)"(cid:20)(cid:11))(cid:18)(cid:24)(cid:12) ’(cid:14)(cid:10)(cid:25)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:19)(cid:18)$(cid:18)(cid:19)(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:22)%%(cid:10)133)))(cid:28)&(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:28)(cid:19)(cid:21)&3(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12) D e b N N L EXPOSEDPAD E E2 K NOTE1 1 2 2 1 NOTE1 D2 TOPVIEW BOTTOMVIEW A NOTE2 A3 A1 4(cid:24)(cid:18)% (cid:17)(cid:27)55(cid:27)(cid:17),(cid:23),(cid:8)(cid:3) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:14)5(cid:18)&(cid:18)% (cid:17)(cid:27)6 67(cid:17) (cid:17)(cid:7)8 6!&((cid:13)(cid:20)(cid:14)(cid:21)$(cid:14)(cid:30)(cid:18)(cid:24) 6 9 (cid:30)(cid:18)%(cid:19)(cid:22) (cid:13) (cid:4)(cid:28):.(cid:14)/(cid:3)0 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14);(cid:13)(cid:18)(cid:12)(cid:22)% (cid:7) (cid:4)(cid:28)9(cid:4) (cid:4)(cid:28)(cid:6)(cid:4) (cid:29)(cid:28)(cid:4)(cid:4) (cid:3)%(cid:11)(cid:24)"(cid:21)$$(cid:14) (cid:7)(cid:29) (cid:4)(cid:28)(cid:4)(cid:4) (cid:4)(cid:28)(cid:4)(cid:15) (cid:4)(cid:28)(cid:4). 0(cid:21)(cid:24)%(cid:11)(cid:19)%(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:7)+ (cid:4)(cid:28)(cid:15)(cid:4)(cid:14)(cid:8),2 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) (cid:2) +(cid:28)(cid:4)(cid:4)(cid:14)/(cid:3)0 ,#(cid:10)(cid:21) (cid:13)"(cid:14)(cid:30)(cid:11)"(cid:14)<(cid:18)"%(cid:22) ,(cid:15) (cid:4)(cid:28)(cid:4)(cid:4) = (cid:29)(cid:28):(cid:4) 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)<(cid:18)"%(cid:22) , +(cid:28)(cid:4)(cid:4)(cid:14)/(cid:3)0 ,#(cid:10)(cid:21) (cid:13)"(cid:14)(cid:30)(cid:11)"(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) (cid:2)(cid:15) (cid:4)(cid:28)(cid:4)(cid:4) = (cid:15)(cid:28)(cid:5)(cid:4) 0(cid:21)(cid:24)%(cid:11)(cid:19)%(cid:14)<(cid:18)"%(cid:22) ( (cid:4)(cid:28)(cid:15). (cid:4)(cid:28)+(cid:4) (cid:4)(cid:28)+. 0(cid:21)(cid:24)%(cid:11)(cid:19)%(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) 5 (cid:4)(cid:28)(cid:15)(cid:4) (cid:4)(cid:28)+(cid:4) (cid:4)(cid:28).. 0(cid:21)(cid:24)%(cid:11)(cid:19)%(cid:9)%(cid:21)(cid:9),#(cid:10)(cid:21) (cid:13)"(cid:14)(cid:30)(cid:11)" > (cid:4)(cid:28)(cid:15)(cid:4) = = (cid:19)(cid:20)(cid:12)(cid:5)(cid:11)% (cid:29)(cid:28) (cid:30)(cid:18)(cid:24)(cid:14)(cid:29)(cid:14)(cid:31)(cid:18) !(cid:11)(cid:25)(cid:14)(cid:18)(cid:24)"(cid:13)#(cid:14)$(cid:13)(cid:11)%!(cid:20)(cid:13)(cid:14)&(cid:11)(cid:26)(cid:14)(cid:31)(cid:11)(cid:20)(cid:26)’(cid:14)(!%(cid:14)&! %(cid:14)((cid:13)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14))(cid:18)%(cid:22)(cid:18)(cid:24)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:22)(cid:11)%(cid:19)(cid:22)(cid:13)"(cid:14)(cid:11)(cid:20)(cid:13)(cid:11)(cid:28) (cid:15)(cid:28) (cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)&(cid:11)(cid:26)(cid:14)(cid:22)(cid:11)(cid:31)(cid:13)(cid:14)(cid:21)(cid:24)(cid:13)(cid:14)(cid:21)(cid:20)(cid:14)&(cid:21)(cid:20)(cid:13)(cid:14)(cid:13)#(cid:10)(cid:21) (cid:13)"(cid:14)%(cid:18)(cid:13)(cid:14)((cid:11)(cid:20) (cid:14)(cid:11)%(cid:14)(cid:13)(cid:24)" (cid:28) +(cid:28) (cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)(cid:18) (cid:14) (cid:11))(cid:14) (cid:18)(cid:24)(cid:12)!(cid:25)(cid:11)%(cid:13)"(cid:28) (cid:5)(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:18)(cid:24)(cid:12)(cid:14)(cid:11)(cid:24)"(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:18)(cid:24)(cid:12)(cid:14)(cid:10)(cid:13)(cid:20)(cid:14)(cid:7)(cid:3)(cid:17),(cid:14)-(cid:29)(cid:5)(cid:28).(cid:17)(cid:28) /(cid:3)01 /(cid:11) (cid:18)(cid:19)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:28)(cid:14)(cid:23)(cid:22)(cid:13)(cid:21)(cid:20)(cid:13)%(cid:18)(cid:19)(cid:11)(cid:25)(cid:25)(cid:26)(cid:14)(cid:13)#(cid:11)(cid:19)%(cid:14)(cid:31)(cid:11)(cid:25)!(cid:13)(cid:14) (cid:22)(cid:21))(cid:24)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13) (cid:28) (cid:8),21 (cid:8)(cid:13)$(cid:13)(cid:20)(cid:13)(cid:24)(cid:19)(cid:13)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)’(cid:14)! !(cid:11)(cid:25)(cid:25)(cid:26)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13)’(cid:14)$(cid:21)(cid:20)(cid:14)(cid:18)(cid:24)$(cid:21)(cid:20)&(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:10)!(cid:20)(cid:10)(cid:21) (cid:13) (cid:14)(cid:21)(cid:24)(cid:25)(cid:26)(cid:28) (cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:23)(cid:13)(cid:19)(cid:22)(cid:24)(cid:21)(cid:25)(cid:21)(cid:12)(cid:26)(cid:2)(cid:20)(cid:11))(cid:18)(cid:24)(cid:12)0(cid:4)(cid:5)(cid:9)(cid:4):(cid:15)/ © 2008 Microchip Technology Inc. DS22060B-page 67
MCP413X/415X/423X/425X (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)(cid:15)(cid:16)(cid:6)(cid:10)(cid:8)(cid:17)(cid:10)(cid:6)(cid:12)(cid:18)(cid:8)(cid:19)(cid:20)(cid:8)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:6)(cid:14)(cid:21)(cid:6)(cid:22)(cid:5)(cid:8)(cid:23)(cid:24)(cid:17)(cid:25)(cid:8)(cid:26)(cid:8)(cid:27)(cid:28)(cid:27)(cid:28)(cid:29)(cid:30)(cid:31)(cid:8) (cid:8)!(cid:20)(cid:7)"(cid:8)#(cid:15)(cid:17)(cid:19)$ (cid:19)(cid:20)(cid:12)(cid:5)% 2(cid:21)(cid:20)(cid:14)%(cid:22)(cid:13)(cid:14)&(cid:21) %(cid:14)(cid:19)!(cid:20)(cid:20)(cid:13)(cid:24)%(cid:14)(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)"(cid:20)(cid:11))(cid:18)(cid:24)(cid:12) ’(cid:14)(cid:10)(cid:25)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:19)(cid:18)$(cid:18)(cid:19)(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:22)%%(cid:10)133)))(cid:28)&(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:28)(cid:19)(cid:21)&3(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12) DS22060B-page 68 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)(cid:15)(cid:16)(cid:6)(cid:10)(cid:8)&’(cid:3)(cid:4)(cid:13)’(cid:5)(cid:8)(cid:23)(cid:9)(cid:25)(cid:8)(cid:26)(cid:8)(cid:27)(cid:29)(cid:29)(cid:8) (cid:13)(cid:10)(cid:8)!(cid:20)(cid:7)"(cid:8)#(cid:9)(cid:15)&(cid:9)$ (cid:19)(cid:20)(cid:12)(cid:5)% 2(cid:21)(cid:20)(cid:14)%(cid:22)(cid:13)(cid:14)&(cid:21) %(cid:14)(cid:19)!(cid:20)(cid:20)(cid:13)(cid:24)%(cid:14)(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)"(cid:20)(cid:11))(cid:18)(cid:24)(cid:12) ’(cid:14)(cid:10)(cid:25)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:19)(cid:18)$(cid:18)(cid:19)(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:22)%%(cid:10)133)))(cid:28)&(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:28)(cid:19)(cid:21)&3(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12) N NOTE1 E1 1 2 3 D E A A2 L A1 c e eB b1 b 4(cid:24)(cid:18)% (cid:27)60;,(cid:3) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:14)5(cid:18)&(cid:18)% (cid:17)(cid:27)6 67(cid:17) (cid:17)(cid:7)8 6!&((cid:13)(cid:20)(cid:14)(cid:21)$(cid:14)(cid:30)(cid:18)(cid:24) 6 9 (cid:30)(cid:18)%(cid:19)(cid:22) (cid:13) (cid:28)(cid:29)(cid:4)(cid:4)(cid:14)/(cid:3)0 (cid:23)(cid:21)(cid:10)(cid:14)%(cid:21)(cid:14)(cid:3)(cid:13)(cid:11)%(cid:18)(cid:24)(cid:12)(cid:14)(cid:30)(cid:25)(cid:11)(cid:24)(cid:13) (cid:7) = = (cid:28)(cid:15)(cid:29)(cid:4) (cid:17)(cid:21)(cid:25)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:7)(cid:15) (cid:28)(cid:29)(cid:29). (cid:28)(cid:29)+(cid:4) (cid:28)(cid:29)(cid:6). /(cid:11) (cid:13)(cid:14)%(cid:21)(cid:14)(cid:3)(cid:13)(cid:11)%(cid:18)(cid:24)(cid:12)(cid:14)(cid:30)(cid:25)(cid:11)(cid:24)(cid:13) (cid:7)(cid:29) (cid:28)(cid:4)(cid:29). = = (cid:3)(cid:22)(cid:21)!(cid:25)"(cid:13)(cid:20)(cid:14)%(cid:21)(cid:14)(cid:3)(cid:22)(cid:21)!(cid:25)"(cid:13)(cid:20)(cid:14)<(cid:18)"%(cid:22) , (cid:28)(cid:15)(cid:6)(cid:4) (cid:28)+(cid:29)(cid:4) (cid:28)+(cid:15). (cid:17)(cid:21)(cid:25)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)<(cid:18)"%(cid:22) ,(cid:29) (cid:28)(cid:15)(cid:5)(cid:4) (cid:28)(cid:15).(cid:4) (cid:28)(cid:15)9(cid:4) 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) (cid:2) (cid:28)+(cid:5)9 (cid:28)+:. (cid:28)(cid:5)(cid:4)(cid:4) (cid:23)(cid:18)(cid:10)(cid:14)%(cid:21)(cid:14)(cid:3)(cid:13)(cid:11)%(cid:18)(cid:24)(cid:12)(cid:14)(cid:30)(cid:25)(cid:11)(cid:24)(cid:13) 5 (cid:28)(cid:29)(cid:29). (cid:28)(cid:29)+(cid:4) (cid:28)(cid:29).(cid:4) 5(cid:13)(cid:11)"(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:19) (cid:28)(cid:4)(cid:4)9 (cid:28)(cid:4)(cid:29)(cid:4) (cid:28)(cid:4)(cid:29). 4(cid:10)(cid:10)(cid:13)(cid:20)(cid:14)5(cid:13)(cid:11)"(cid:14)<(cid:18)"%(cid:22) ((cid:29) (cid:28)(cid:4)(cid:5)(cid:4) (cid:28)(cid:4):(cid:4) (cid:28)(cid:4)(cid:16)(cid:4) 5(cid:21))(cid:13)(cid:20)(cid:14)5(cid:13)(cid:11)"(cid:14)<(cid:18)"%(cid:22) ( (cid:28)(cid:4)(cid:29)(cid:5) (cid:28)(cid:4)(cid:29)9 (cid:28)(cid:4)(cid:15)(cid:15) 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)(cid:8)(cid:21))(cid:14)(cid:3)(cid:10)(cid:11)(cid:19)(cid:18)(cid:24)(cid:12)(cid:14)(cid:14)? (cid:13)/ = = (cid:28)(cid:5)+(cid:4) (cid:19)(cid:20)(cid:12)(cid:5)(cid:11)% (cid:29)(cid:28) (cid:30)(cid:18)(cid:24)(cid:14)(cid:29)(cid:14)(cid:31)(cid:18) !(cid:11)(cid:25)(cid:14)(cid:18)(cid:24)"(cid:13)#(cid:14)$(cid:13)(cid:11)%!(cid:20)(cid:13)(cid:14)&(cid:11)(cid:26)(cid:14)(cid:31)(cid:11)(cid:20)(cid:26)’(cid:14)(!%(cid:14)&! %(cid:14)((cid:13)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14))(cid:18)%(cid:22)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:22)(cid:11)%(cid:19)(cid:22)(cid:13)"(cid:14)(cid:11)(cid:20)(cid:13)(cid:11)(cid:28) (cid:15)(cid:28) ?(cid:14)(cid:3)(cid:18)(cid:12)(cid:24)(cid:18)$(cid:18)(cid:19)(cid:11)(cid:24)%(cid:14)0(cid:22)(cid:11)(cid:20)(cid:11)(cid:19)%(cid:13)(cid:20)(cid:18) %(cid:18)(cid:19)(cid:28) +(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24) (cid:14)(cid:2)(cid:14)(cid:11)(cid:24)"(cid:14),(cid:29)(cid:14)"(cid:21)(cid:14)(cid:24)(cid:21)%(cid:14)(cid:18)(cid:24)(cid:19)(cid:25)!"(cid:13)(cid:14)&(cid:21)(cid:25)"(cid:14)$(cid:25)(cid:11) (cid:22)(cid:14)(cid:21)(cid:20)(cid:14)(cid:10)(cid:20)(cid:21)%(cid:20)! (cid:18)(cid:21)(cid:24) (cid:28)(cid:14)(cid:17)(cid:21)(cid:25)"(cid:14)$(cid:25)(cid:11) (cid:22)(cid:14)(cid:21)(cid:20)(cid:14)(cid:10)(cid:20)(cid:21)%(cid:20)! (cid:18)(cid:21)(cid:24) (cid:14) (cid:22)(cid:11)(cid:25)(cid:25)(cid:14)(cid:24)(cid:21)%(cid:14)(cid:13)#(cid:19)(cid:13)(cid:13)"(cid:14)(cid:28)(cid:4)(cid:29)(cid:4)@(cid:14)(cid:10)(cid:13)(cid:20)(cid:14) (cid:18)"(cid:13)(cid:28) (cid:5)(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:18)(cid:24)(cid:12)(cid:14)(cid:11)(cid:24)"(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:18)(cid:24)(cid:12)(cid:14)(cid:10)(cid:13)(cid:20)(cid:14)(cid:7)(cid:3)(cid:17),(cid:14)-(cid:29)(cid:5)(cid:28).(cid:17)(cid:28) /(cid:3)01(cid:14)/(cid:11) (cid:18)(cid:19)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:28)(cid:14)(cid:23)(cid:22)(cid:13)(cid:21)(cid:20)(cid:13)%(cid:18)(cid:19)(cid:11)(cid:25)(cid:25)(cid:26)(cid:14)(cid:13)#(cid:11)(cid:19)%(cid:14)(cid:31)(cid:11)(cid:25)!(cid:13)(cid:14) (cid:22)(cid:21))(cid:24)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13) (cid:28) (cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:23)(cid:13)(cid:19)(cid:22)(cid:24)(cid:21)(cid:25)(cid:21)(cid:12)(cid:26)(cid:2)(cid:20)(cid:11))(cid:18)(cid:24)(cid:12)0(cid:4)(cid:5)(cid:9)(cid:4)(cid:29)9/ © 2008 Microchip Technology Inc. DS22060B-page 69
MCP413X/415X/423X/425X (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)(cid:24)(cid:13)(cid:14)((cid:20)(cid:8)) (cid:6)(cid:10)(cid:10)(cid:8)*(cid:16)(cid:12)(cid:10)(cid:13)’(cid:5)(cid:8)(cid:9)(cid:6)(cid:14)(cid:21)(cid:6)(cid:22)(cid:5)(cid:8)(cid:23)(cid:24))(cid:25)(cid:8)#(cid:24))*(cid:9)$ (cid:19)(cid:20)(cid:12)(cid:5)% 2(cid:21)(cid:20)(cid:14)%(cid:22)(cid:13)(cid:14)&(cid:21) %(cid:14)(cid:19)!(cid:20)(cid:20)(cid:13)(cid:24)%(cid:14)(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)"(cid:20)(cid:11))(cid:18)(cid:24)(cid:12) ’(cid:14)(cid:10)(cid:25)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:19)(cid:18)$(cid:18)(cid:19)(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:22)%%(cid:10)133)))(cid:28)&(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:28)(cid:19)(cid:21)&3(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12) D N E E1 NOTE1 1 2 e b c A A2 φ A1 L1 L 4(cid:24)(cid:18)% (cid:17)(cid:27)55(cid:27)(cid:17),(cid:23),(cid:8)(cid:3) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:14)5(cid:18)&(cid:18)% (cid:17)(cid:27)6 67(cid:17) (cid:17)(cid:7)8 6!&((cid:13)(cid:20)(cid:14)(cid:21)$(cid:14)(cid:30)(cid:18)(cid:24) 6 9 (cid:30)(cid:18)%(cid:19)(cid:22) (cid:13) (cid:4)(cid:28):.(cid:14)/(cid:3)0 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14);(cid:13)(cid:18)(cid:12)(cid:22)% (cid:7) = = (cid:29)(cid:28)(cid:29)(cid:4) (cid:17)(cid:21)(cid:25)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:7)(cid:15) (cid:4)(cid:28)(cid:16). (cid:4)(cid:28)9. (cid:4)(cid:28)(cid:6). (cid:3)%(cid:11)(cid:24)"(cid:21)$$(cid:14) (cid:7)(cid:29) (cid:4)(cid:28)(cid:4)(cid:4) = (cid:4)(cid:28)(cid:29). 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)<(cid:18)"%(cid:22) , (cid:5)(cid:28)(cid:6)(cid:4)(cid:14)/(cid:3)0 (cid:17)(cid:21)(cid:25)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)<(cid:18)"%(cid:22) ,(cid:29) +(cid:28)(cid:4)(cid:4)(cid:14)/(cid:3)0 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) (cid:2) +(cid:28)(cid:4)(cid:4)(cid:14)/(cid:3)0 2(cid:21)(cid:21)%(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) 5 (cid:4)(cid:28)(cid:5)(cid:4) (cid:4)(cid:28):(cid:4) (cid:4)(cid:28)9(cid:4) 2(cid:21)(cid:21)%(cid:10)(cid:20)(cid:18)(cid:24)% 5(cid:29) (cid:4)(cid:28)(cid:6).(cid:14)(cid:8),2 2(cid:21)(cid:21)%(cid:14)(cid:7)(cid:24)(cid:12)(cid:25)(cid:13) (cid:3) (cid:4)A = 9A 5(cid:13)(cid:11)"(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:19) (cid:4)(cid:28)(cid:4)9 = (cid:4)(cid:28)(cid:15)+ 5(cid:13)(cid:11)"(cid:14)<(cid:18)"%(cid:22) ( (cid:4)(cid:28)(cid:15)(cid:15) = (cid:4)(cid:28)(cid:5)(cid:4) (cid:19)(cid:20)(cid:12)(cid:5)(cid:11)% (cid:29)(cid:28) (cid:30)(cid:18)(cid:24)(cid:14)(cid:29)(cid:14)(cid:31)(cid:18) !(cid:11)(cid:25)(cid:14)(cid:18)(cid:24)"(cid:13)#(cid:14)$(cid:13)(cid:11)%!(cid:20)(cid:13)(cid:14)&(cid:11)(cid:26)(cid:14)(cid:31)(cid:11)(cid:20)(cid:26)’(cid:14)(!%(cid:14)&! %(cid:14)((cid:13)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14))(cid:18)%(cid:22)(cid:18)(cid:24)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:22)(cid:11)%(cid:19)(cid:22)(cid:13)"(cid:14)(cid:11)(cid:20)(cid:13)(cid:11)(cid:28) (cid:15)(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24) (cid:14)(cid:2)(cid:14)(cid:11)(cid:24)"(cid:14),(cid:29)(cid:14)"(cid:21)(cid:14)(cid:24)(cid:21)%(cid:14)(cid:18)(cid:24)(cid:19)(cid:25)!"(cid:13)(cid:14)&(cid:21)(cid:25)"(cid:14)$(cid:25)(cid:11) (cid:22)(cid:14)(cid:21)(cid:20)(cid:14)(cid:10)(cid:20)(cid:21)%(cid:20)! (cid:18)(cid:21)(cid:24) (cid:28)(cid:14)(cid:17)(cid:21)(cid:25)"(cid:14)$(cid:25)(cid:11) (cid:22)(cid:14)(cid:21)(cid:20)(cid:14)(cid:10)(cid:20)(cid:21)%(cid:20)! (cid:18)(cid:21)(cid:24) (cid:14) (cid:22)(cid:11)(cid:25)(cid:25)(cid:14)(cid:24)(cid:21)%(cid:14)(cid:13)#(cid:19)(cid:13)(cid:13)"(cid:14)(cid:4)(cid:28)(cid:29).(cid:14)&&(cid:14)(cid:10)(cid:13)(cid:20)(cid:14) (cid:18)"(cid:13)(cid:28) +(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:18)(cid:24)(cid:12)(cid:14)(cid:11)(cid:24)"(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:18)(cid:24)(cid:12)(cid:14)(cid:10)(cid:13)(cid:20)(cid:14)(cid:7)(cid:3)(cid:17),(cid:14)-(cid:29)(cid:5)(cid:28).(cid:17)(cid:28) /(cid:3)01 /(cid:11) (cid:18)(cid:19)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:28)(cid:14)(cid:23)(cid:22)(cid:13)(cid:21)(cid:20)(cid:13)%(cid:18)(cid:19)(cid:11)(cid:25)(cid:25)(cid:26)(cid:14)(cid:13)#(cid:11)(cid:19)%(cid:14)(cid:31)(cid:11)(cid:25)!(cid:13)(cid:14) (cid:22)(cid:21))(cid:24)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13) (cid:28) (cid:8),21 (cid:8)(cid:13)$(cid:13)(cid:20)(cid:13)(cid:24)(cid:19)(cid:13)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)’(cid:14)! !(cid:11)(cid:25)(cid:25)(cid:26)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13)’(cid:14)$(cid:21)(cid:20)(cid:14)(cid:18)(cid:24)$(cid:21)(cid:20)&(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:10)!(cid:20)(cid:10)(cid:21) (cid:13) (cid:14)(cid:21)(cid:24)(cid:25)(cid:26)(cid:28) (cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:23)(cid:13)(cid:19)(cid:22)(cid:24)(cid:21)(cid:25)(cid:21)(cid:12)(cid:26)(cid:2)(cid:20)(cid:11))(cid:18)(cid:24)(cid:12)0(cid:4)(cid:5)(cid:9)(cid:29)(cid:29)(cid:29)/ DS22060B-page 70 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)) (cid:6)(cid:10)(cid:10)(cid:8)*(cid:16)(cid:12)(cid:10)(cid:13)’(cid:5)(cid:8)(cid:23))(cid:19)(cid:25)(cid:8)(cid:26)(cid:8)(cid:19)(cid:6)(((cid:20)+(cid:18)(cid:8)(cid:27)(cid:30)(cid:31)(cid:29)(cid:8) (cid:8)!(cid:20)(cid:7)"(cid:8)#)*&,$ (cid:19)(cid:20)(cid:12)(cid:5)% 2(cid:21)(cid:20)(cid:14)%(cid:22)(cid:13)(cid:14)&(cid:21) %(cid:14)(cid:19)!(cid:20)(cid:20)(cid:13)(cid:24)%(cid:14)(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)"(cid:20)(cid:11))(cid:18)(cid:24)(cid:12) ’(cid:14)(cid:10)(cid:25)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:19)(cid:18)$(cid:18)(cid:19)(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:22)%%(cid:10)133)))(cid:28)&(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:28)(cid:19)(cid:21)&3(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12) D e N E E1 NOTE1 1 2 3 b h α h c A A2 φ A1 L L1 β 4(cid:24)(cid:18)% (cid:17)(cid:27)55(cid:27)(cid:17),(cid:23),(cid:8)(cid:3) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:14)5(cid:18)&(cid:18)% (cid:17)(cid:27)6 67(cid:17) (cid:17)(cid:7)8 6!&((cid:13)(cid:20)(cid:14)(cid:21)$(cid:14)(cid:30)(cid:18)(cid:24) 6 9 (cid:30)(cid:18)%(cid:19)(cid:22) (cid:13) (cid:29)(cid:28)(cid:15)(cid:16)(cid:14)/(cid:3)0 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14);(cid:13)(cid:18)(cid:12)(cid:22)% (cid:7) = = (cid:29)(cid:28)(cid:16). (cid:17)(cid:21)(cid:25)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:7)(cid:15) (cid:29)(cid:28)(cid:15). = = (cid:3)%(cid:11)(cid:24)"(cid:21)$$(cid:14)(cid:14)? (cid:7)(cid:29) (cid:4)(cid:28)(cid:29)(cid:4) = (cid:4)(cid:28)(cid:15). 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)<(cid:18)"%(cid:22) , :(cid:28)(cid:4)(cid:4)(cid:14)/(cid:3)0 (cid:17)(cid:21)(cid:25)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)<(cid:18)"%(cid:22) ,(cid:29) +(cid:28)(cid:6)(cid:4)(cid:14)/(cid:3)0 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) (cid:2) (cid:5)(cid:28)(cid:6)(cid:4)(cid:14)/(cid:3)0 0(cid:22)(cid:11)&$(cid:13)(cid:20)(cid:14)B(cid:21)(cid:10)%(cid:18)(cid:21)(cid:24)(cid:11)(cid:25)C (cid:22) (cid:4)(cid:28)(cid:15). = (cid:4)(cid:28).(cid:4) 2(cid:21)(cid:21)%(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) 5 (cid:4)(cid:28)(cid:5)(cid:4) = (cid:29)(cid:28)(cid:15)(cid:16) 2(cid:21)(cid:21)%(cid:10)(cid:20)(cid:18)(cid:24)% 5(cid:29) (cid:29)(cid:28)(cid:4)(cid:5)(cid:14)(cid:8),2 2(cid:21)(cid:21)%(cid:14)(cid:7)(cid:24)(cid:12)(cid:25)(cid:13) (cid:3) (cid:4)A = 9A 5(cid:13)(cid:11)"(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:19) (cid:4)(cid:28)(cid:29)(cid:16) = (cid:4)(cid:28)(cid:15). 5(cid:13)(cid:11)"(cid:14)<(cid:18)"%(cid:22) ( (cid:4)(cid:28)+(cid:29) = (cid:4)(cid:28).(cid:29) (cid:17)(cid:21)(cid:25)"(cid:14)(cid:2)(cid:20)(cid:11)$%(cid:14)(cid:7)(cid:24)(cid:12)(cid:25)(cid:13)(cid:14)(cid:23)(cid:21)(cid:10) (cid:4) .A = (cid:29).A (cid:17)(cid:21)(cid:25)"(cid:14)(cid:2)(cid:20)(cid:11)$%(cid:14)(cid:7)(cid:24)(cid:12)(cid:25)(cid:13)(cid:14)/(cid:21)%%(cid:21)& (cid:5) .A = (cid:29).A (cid:19)(cid:20)(cid:12)(cid:5)(cid:11)% (cid:29)(cid:28) (cid:30)(cid:18)(cid:24)(cid:14)(cid:29)(cid:14)(cid:31)(cid:18) !(cid:11)(cid:25)(cid:14)(cid:18)(cid:24)"(cid:13)#(cid:14)$(cid:13)(cid:11)%!(cid:20)(cid:13)(cid:14)&(cid:11)(cid:26)(cid:14)(cid:31)(cid:11)(cid:20)(cid:26)’(cid:14)(!%(cid:14)&! %(cid:14)((cid:13)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14))(cid:18)%(cid:22)(cid:18)(cid:24)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:22)(cid:11)%(cid:19)(cid:22)(cid:13)"(cid:14)(cid:11)(cid:20)(cid:13)(cid:11)(cid:28) (cid:15)(cid:28) ?(cid:14)(cid:3)(cid:18)(cid:12)(cid:24)(cid:18)$(cid:18)(cid:19)(cid:11)(cid:24)%(cid:14)0(cid:22)(cid:11)(cid:20)(cid:11)(cid:19)%(cid:13)(cid:20)(cid:18) %(cid:18)(cid:19)(cid:28) +(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24) (cid:14)(cid:2)(cid:14)(cid:11)(cid:24)"(cid:14),(cid:29)(cid:14)"(cid:21)(cid:14)(cid:24)(cid:21)%(cid:14)(cid:18)(cid:24)(cid:19)(cid:25)!"(cid:13)(cid:14)&(cid:21)(cid:25)"(cid:14)$(cid:25)(cid:11) (cid:22)(cid:14)(cid:21)(cid:20)(cid:14)(cid:10)(cid:20)(cid:21)%(cid:20)! (cid:18)(cid:21)(cid:24) (cid:28)(cid:14)(cid:17)(cid:21)(cid:25)"(cid:14)$(cid:25)(cid:11) (cid:22)(cid:14)(cid:21)(cid:20)(cid:14)(cid:10)(cid:20)(cid:21)%(cid:20)! (cid:18)(cid:21)(cid:24) (cid:14) (cid:22)(cid:11)(cid:25)(cid:25)(cid:14)(cid:24)(cid:21)%(cid:14)(cid:13)#(cid:19)(cid:13)(cid:13)"(cid:14)(cid:4)(cid:28)(cid:29).(cid:14)&&(cid:14)(cid:10)(cid:13)(cid:20)(cid:14) (cid:18)"(cid:13)(cid:28) (cid:5)(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:18)(cid:24)(cid:12)(cid:14)(cid:11)(cid:24)"(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:18)(cid:24)(cid:12)(cid:14)(cid:10)(cid:13)(cid:20)(cid:14)(cid:7)(cid:3)(cid:17),(cid:14)-(cid:29)(cid:5)(cid:28).(cid:17)(cid:28) /(cid:3)01 /(cid:11) (cid:18)(cid:19)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:28)(cid:14)(cid:23)(cid:22)(cid:13)(cid:21)(cid:20)(cid:13)%(cid:18)(cid:19)(cid:11)(cid:25)(cid:25)(cid:26)(cid:14)(cid:13)#(cid:11)(cid:19)%(cid:14)(cid:31)(cid:11)(cid:25)!(cid:13)(cid:14) (cid:22)(cid:21))(cid:24)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13) (cid:28) (cid:8),21 (cid:8)(cid:13)$(cid:13)(cid:20)(cid:13)(cid:24)(cid:19)(cid:13)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)’(cid:14)! !(cid:11)(cid:25)(cid:25)(cid:26)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13)’(cid:14)$(cid:21)(cid:20)(cid:14)(cid:18)(cid:24)$(cid:21)(cid:20)&(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:10)!(cid:20)(cid:10)(cid:21) (cid:13) (cid:14)(cid:21)(cid:24)(cid:25)(cid:26)(cid:28) (cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:23)(cid:13)(cid:19)(cid:22)(cid:24)(cid:21)(cid:25)(cid:21)(cid:12)(cid:26)(cid:2)(cid:20)(cid:11))(cid:18)(cid:24)(cid:12)0(cid:4)(cid:5)(cid:9)(cid:4).(cid:16)/ © 2008 Microchip Technology Inc. DS22060B-page 71
MCP413X/415X/423X/425X (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)) (cid:6)(cid:10)(cid:10)(cid:8)*(cid:16)(cid:12)(cid:10)(cid:13)’(cid:5)(cid:8)(cid:23))(cid:19)(cid:25)(cid:8)(cid:26)(cid:8)(cid:19)(cid:6)(((cid:20)+(cid:18)(cid:8)(cid:27)(cid:30)(cid:31)(cid:29)(cid:8) (cid:8)!(cid:20)(cid:7)"(cid:8)#)*&,$ (cid:19)(cid:20)(cid:12)(cid:5)% 2(cid:21)(cid:20)(cid:14)%(cid:22)(cid:13)(cid:14)&(cid:21) %(cid:14)(cid:19)!(cid:20)(cid:20)(cid:13)(cid:24)%(cid:14)(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)"(cid:20)(cid:11))(cid:18)(cid:24)(cid:12) ’(cid:14)(cid:10)(cid:25)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:19)(cid:18)$(cid:18)(cid:19)(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:22)%%(cid:10)133)))(cid:28)&(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:28)(cid:19)(cid:21)&3(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12) DS22060B-page 72 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X -(cid:29)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)(cid:15)(cid:16)(cid:6)(cid:10)(cid:8)(cid:17)(cid:10)(cid:6)(cid:12)(cid:18)(cid:8)(cid:19)(cid:20)(cid:8)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:6)(cid:14)(cid:21)(cid:6)(cid:22)(cid:5)(cid:8)(cid:23)(cid:24)(cid:17)(cid:25)(cid:8)(cid:26)(cid:8)(cid:27)(cid:28)(cid:27)(cid:28)(cid:29)(cid:30)(cid:31)(cid:8) (cid:8)!(cid:20)(cid:7)"(cid:8)#(cid:15)(cid:17)(cid:19)$ (cid:19)(cid:20)(cid:12)(cid:5)% 2(cid:21)(cid:20)(cid:14)%(cid:22)(cid:13)(cid:14)&(cid:21) %(cid:14)(cid:19)!(cid:20)(cid:20)(cid:13)(cid:24)%(cid:14)(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)"(cid:20)(cid:11))(cid:18)(cid:24)(cid:12) ’(cid:14)(cid:10)(cid:25)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:19)(cid:18)$(cid:18)(cid:19)(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:22)%%(cid:10)133)))(cid:28)&(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:28)(cid:19)(cid:21)&3(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12) D e b N N L K E E2 EXPOSED PAD NOTE1 NOTE1 1 2 2 1 D2 TOPVIEW BOTTOMVIEW A A3 A1 NOTE2 4(cid:24)(cid:18)% (cid:17)(cid:27)55(cid:27)(cid:17),(cid:23),(cid:8)(cid:3) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:14)5(cid:18)&(cid:18)% (cid:17)(cid:27)6 67(cid:17) (cid:17)(cid:7)8 6!&((cid:13)(cid:20)(cid:14)(cid:21)$(cid:14)(cid:30)(cid:18)(cid:24) 6 (cid:29)(cid:4) (cid:30)(cid:18)%(cid:19)(cid:22) (cid:13) (cid:4)(cid:28).(cid:4)(cid:14)/(cid:3)0 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14);(cid:13)(cid:18)(cid:12)(cid:22)% (cid:7) (cid:4)(cid:28)9(cid:4) (cid:4)(cid:28)(cid:6)(cid:4) (cid:29)(cid:28)(cid:4)(cid:4) (cid:3)%(cid:11)(cid:24)"(cid:21)$$(cid:14) (cid:7)(cid:29) (cid:4)(cid:28)(cid:4)(cid:4) (cid:4)(cid:28)(cid:4)(cid:15) (cid:4)(cid:28)(cid:4). 0(cid:21)(cid:24)%(cid:11)(cid:19)%(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:7)+ (cid:4)(cid:28)(cid:15)(cid:4)(cid:14)(cid:8),2 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) (cid:2) +(cid:28)(cid:4)(cid:4)(cid:14)/(cid:3)0 ,#(cid:10)(cid:21) (cid:13)"(cid:14)(cid:30)(cid:11)"(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) (cid:2)(cid:15) (cid:15)(cid:28)(cid:15)(cid:4) (cid:15)(cid:28)+. (cid:15)(cid:28)(cid:5)9 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)<(cid:18)"%(cid:22) , +(cid:28)(cid:4)(cid:4)(cid:14)/(cid:3)0 ,#(cid:10)(cid:21) (cid:13)"(cid:14)(cid:30)(cid:11)"(cid:14)<(cid:18)"%(cid:22) ,(cid:15) (cid:29)(cid:28)(cid:5)(cid:4) (cid:29)(cid:28).9 (cid:29)(cid:28)(cid:16). 0(cid:21)(cid:24)%(cid:11)(cid:19)%(cid:14)<(cid:18)"%(cid:22) ( (cid:4)(cid:28)(cid:29)9 (cid:4)(cid:28)(cid:15). (cid:4)(cid:28)+(cid:4) 0(cid:21)(cid:24)%(cid:11)(cid:19)%(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) 5 (cid:4)(cid:28)+(cid:4) (cid:4)(cid:28)(cid:5)(cid:4) (cid:4)(cid:28).(cid:4) 0(cid:21)(cid:24)%(cid:11)(cid:19)%(cid:9)%(cid:21)(cid:9),#(cid:10)(cid:21) (cid:13)"(cid:14)(cid:30)(cid:11)" > (cid:4)(cid:28)(cid:15)(cid:4) = = (cid:19)(cid:20)(cid:12)(cid:5)(cid:11)% (cid:29)(cid:28) (cid:30)(cid:18)(cid:24)(cid:14)(cid:29)(cid:14)(cid:31)(cid:18) !(cid:11)(cid:25)(cid:14)(cid:18)(cid:24)"(cid:13)#(cid:14)$(cid:13)(cid:11)%!(cid:20)(cid:13)(cid:14)&(cid:11)(cid:26)(cid:14)(cid:31)(cid:11)(cid:20)(cid:26)’(cid:14)(!%(cid:14)&! %(cid:14)((cid:13)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14))(cid:18)%(cid:22)(cid:18)(cid:24)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:22)(cid:11)%(cid:19)(cid:22)(cid:13)"(cid:14)(cid:11)(cid:20)(cid:13)(cid:11)(cid:28) (cid:15)(cid:28) (cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)&(cid:11)(cid:26)(cid:14)(cid:22)(cid:11)(cid:31)(cid:13)(cid:14)(cid:21)(cid:24)(cid:13)(cid:14)(cid:21)(cid:20)(cid:14)&(cid:21)(cid:20)(cid:13)(cid:14)(cid:13)#(cid:10)(cid:21) (cid:13)"(cid:14)%(cid:18)(cid:13)(cid:14)((cid:11)(cid:20) (cid:14)(cid:11)%(cid:14)(cid:13)(cid:24)" (cid:28) +(cid:28) (cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)(cid:18) (cid:14) (cid:11))(cid:14) (cid:18)(cid:24)(cid:12)!(cid:25)(cid:11)%(cid:13)"(cid:28) (cid:5)(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:18)(cid:24)(cid:12)(cid:14)(cid:11)(cid:24)"(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:18)(cid:24)(cid:12)(cid:14)(cid:10)(cid:13)(cid:20)(cid:14)(cid:7)(cid:3)(cid:17),(cid:14)-(cid:29)(cid:5)(cid:28).(cid:17)(cid:28) /(cid:3)01 /(cid:11) (cid:18)(cid:19)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:28)(cid:14)(cid:23)(cid:22)(cid:13)(cid:21)(cid:20)(cid:13)%(cid:18)(cid:19)(cid:11)(cid:25)(cid:25)(cid:26)(cid:14)(cid:13)#(cid:11)(cid:19)%(cid:14)(cid:31)(cid:11)(cid:25)!(cid:13)(cid:14) (cid:22)(cid:21))(cid:24)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13) (cid:28) (cid:8),21 (cid:8)(cid:13)$(cid:13)(cid:20)(cid:13)(cid:24)(cid:19)(cid:13)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)’(cid:14)! !(cid:11)(cid:25)(cid:25)(cid:26)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13)’(cid:14)$(cid:21)(cid:20)(cid:14)(cid:18)(cid:24)$(cid:21)(cid:20)&(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:10)!(cid:20)(cid:10)(cid:21) (cid:13) (cid:14)(cid:21)(cid:24)(cid:25)(cid:26)(cid:28) (cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:23)(cid:13)(cid:19)(cid:22)(cid:24)(cid:21)(cid:25)(cid:21)(cid:12)(cid:26)(cid:2)(cid:20)(cid:11))(cid:18)(cid:24)(cid:12)0(cid:4)(cid:5)(cid:9)(cid:4):+/ © 2008 Microchip Technology Inc. DS22060B-page 73
MCP413X/415X/423X/425X -(cid:29)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)(cid:15)(cid:16)(cid:6)(cid:10)(cid:8)(cid:17)(cid:10)(cid:6)(cid:12)(cid:18)(cid:8)(cid:19)(cid:20)(cid:8)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:6)(cid:14)(cid:21)(cid:6)(cid:22)(cid:5)(cid:8)(cid:23)(cid:24)(cid:17)(cid:25)(cid:8)(cid:26)(cid:8)(cid:27)(cid:28)(cid:27)(cid:28)(cid:29)(cid:30)(cid:31)(cid:8) (cid:8)!(cid:20)(cid:7)"(cid:8)#(cid:15)(cid:17)(cid:19)$ (cid:19)(cid:20)(cid:12)(cid:5)% 2(cid:21)(cid:20)(cid:14)%(cid:22)(cid:13)(cid:14)&(cid:21) %(cid:14)(cid:19)!(cid:20)(cid:20)(cid:13)(cid:24)%(cid:14)(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)"(cid:20)(cid:11))(cid:18)(cid:24)(cid:12) ’(cid:14)(cid:10)(cid:25)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:19)(cid:18)$(cid:18)(cid:19)(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:22)%%(cid:10)133)))(cid:28)&(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:28)(cid:19)(cid:21)&3(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12) DS22060B-page 74 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X -(cid:29)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)(cid:24)(cid:13)(cid:14)((cid:20)(cid:8)) (cid:6)(cid:10)(cid:10)(cid:8)*(cid:16)(cid:12)(cid:10)(cid:13)’(cid:5)(cid:8)(cid:9)(cid:6)(cid:14)(cid:21)(cid:6)(cid:22)(cid:5)(cid:8)(cid:23).(cid:19)(cid:25)(cid:8)#(cid:24))*(cid:9)$ (cid:19)(cid:20)(cid:12)(cid:5)% 2(cid:21)(cid:20)(cid:14)%(cid:22)(cid:13)(cid:14)&(cid:21) %(cid:14)(cid:19)!(cid:20)(cid:20)(cid:13)(cid:24)%(cid:14)(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)"(cid:20)(cid:11))(cid:18)(cid:24)(cid:12) ’(cid:14)(cid:10)(cid:25)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:19)(cid:18)$(cid:18)(cid:19)(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:22)%%(cid:10)133)))(cid:28)&(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:28)(cid:19)(cid:21)&3(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12) D N E E1 NOTE1 1 2 b e c A A2 φ L A1 L1 4(cid:24)(cid:18)% (cid:17)(cid:27)55(cid:27)(cid:17),(cid:23),(cid:8)(cid:3) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:14)5(cid:18)&(cid:18)% (cid:17)(cid:27)6 67(cid:17) (cid:17)(cid:7)8 6!&((cid:13)(cid:20)(cid:14)(cid:21)$(cid:14)(cid:30)(cid:18)(cid:24) 6 (cid:29)(cid:4) (cid:30)(cid:18)%(cid:19)(cid:22) (cid:13) (cid:4)(cid:28).(cid:4)(cid:14)/(cid:3)0 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14);(cid:13)(cid:18)(cid:12)(cid:22)% (cid:7) = = (cid:29)(cid:28)(cid:29)(cid:4) (cid:17)(cid:21)(cid:25)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:7)(cid:15) (cid:4)(cid:28)(cid:16). (cid:4)(cid:28)9. (cid:4)(cid:28)(cid:6). (cid:3)%(cid:11)(cid:24)"(cid:21)$$(cid:14) (cid:7)(cid:29) (cid:4)(cid:28)(cid:4)(cid:4) = (cid:4)(cid:28)(cid:29). 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)<(cid:18)"%(cid:22) , (cid:5)(cid:28)(cid:6)(cid:4)(cid:14)/(cid:3)0 (cid:17)(cid:21)(cid:25)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)<(cid:18)"%(cid:22) ,(cid:29) +(cid:28)(cid:4)(cid:4)(cid:14)/(cid:3)0 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) (cid:2) +(cid:28)(cid:4)(cid:4)(cid:14)/(cid:3)0 2(cid:21)(cid:21)%(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) 5 (cid:4)(cid:28)(cid:5)(cid:4) (cid:4)(cid:28):(cid:4) (cid:4)(cid:28)9(cid:4) 2(cid:21)(cid:21)%(cid:10)(cid:20)(cid:18)(cid:24)% 5(cid:29) (cid:4)(cid:28)(cid:6).(cid:14)(cid:8),2 2(cid:21)(cid:21)%(cid:14)(cid:7)(cid:24)(cid:12)(cid:25)(cid:13) (cid:3) (cid:4)A = 9A 5(cid:13)(cid:11)"(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:19) (cid:4)(cid:28)(cid:4)9 = (cid:4)(cid:28)(cid:15)+ 5(cid:13)(cid:11)"(cid:14)<(cid:18)"%(cid:22) ( (cid:4)(cid:28)(cid:29). = (cid:4)(cid:28)++ (cid:19)(cid:20)(cid:12)(cid:5)(cid:11)% (cid:29)(cid:28) (cid:30)(cid:18)(cid:24)(cid:14)(cid:29)(cid:14)(cid:31)(cid:18) !(cid:11)(cid:25)(cid:14)(cid:18)(cid:24)"(cid:13)#(cid:14)$(cid:13)(cid:11)%!(cid:20)(cid:13)(cid:14)&(cid:11)(cid:26)(cid:14)(cid:31)(cid:11)(cid:20)(cid:26)’(cid:14)(!%(cid:14)&! %(cid:14)((cid:13)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14))(cid:18)%(cid:22)(cid:18)(cid:24)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:22)(cid:11)%(cid:19)(cid:22)(cid:13)"(cid:14)(cid:11)(cid:20)(cid:13)(cid:11)(cid:28) (cid:15)(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24) (cid:14)(cid:2)(cid:14)(cid:11)(cid:24)"(cid:14),(cid:29)(cid:14)"(cid:21)(cid:14)(cid:24)(cid:21)%(cid:14)(cid:18)(cid:24)(cid:19)(cid:25)!"(cid:13)(cid:14)&(cid:21)(cid:25)"(cid:14)$(cid:25)(cid:11) (cid:22)(cid:14)(cid:21)(cid:20)(cid:14)(cid:10)(cid:20)(cid:21)%(cid:20)! (cid:18)(cid:21)(cid:24) (cid:28)(cid:14)(cid:17)(cid:21)(cid:25)"(cid:14)$(cid:25)(cid:11) (cid:22)(cid:14)(cid:21)(cid:20)(cid:14)(cid:10)(cid:20)(cid:21)%(cid:20)! (cid:18)(cid:21)(cid:24) (cid:14) (cid:22)(cid:11)(cid:25)(cid:25)(cid:14)(cid:24)(cid:21)%(cid:14)(cid:13)#(cid:19)(cid:13)(cid:13)"(cid:14)(cid:4)(cid:28)(cid:29).(cid:14)&&(cid:14)(cid:10)(cid:13)(cid:20)(cid:14) (cid:18)"(cid:13)(cid:28) +(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:18)(cid:24)(cid:12)(cid:14)(cid:11)(cid:24)"(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:18)(cid:24)(cid:12)(cid:14)(cid:10)(cid:13)(cid:20)(cid:14)(cid:7)(cid:3)(cid:17),(cid:14)-(cid:29)(cid:5)(cid:28).(cid:17)(cid:28) /(cid:3)01 /(cid:11) (cid:18)(cid:19)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:28)(cid:14)(cid:23)(cid:22)(cid:13)(cid:21)(cid:20)(cid:13)%(cid:18)(cid:19)(cid:11)(cid:25)(cid:25)(cid:26)(cid:14)(cid:13)#(cid:11)(cid:19)%(cid:14)(cid:31)(cid:11)(cid:25)!(cid:13)(cid:14) (cid:22)(cid:21))(cid:24)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13) (cid:28) (cid:8),21 (cid:8)(cid:13)$(cid:13)(cid:20)(cid:13)(cid:24)(cid:19)(cid:13)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)’(cid:14)! !(cid:11)(cid:25)(cid:25)(cid:26)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13)’(cid:14)$(cid:21)(cid:20)(cid:14)(cid:18)(cid:24)$(cid:21)(cid:20)&(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:10)!(cid:20)(cid:10)(cid:21) (cid:13) (cid:14)(cid:21)(cid:24)(cid:25)(cid:26)(cid:28) (cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:23)(cid:13)(cid:19)(cid:22)(cid:24)(cid:21)(cid:25)(cid:21)(cid:12)(cid:26)(cid:2)(cid:20)(cid:11))(cid:18)(cid:24)(cid:12)0(cid:4)(cid:5)(cid:9)(cid:4)(cid:15)(cid:29)/ © 2008 Microchip Technology Inc. DS22060B-page 75
MCP413X/415X/423X/425X -/(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)(cid:15)(cid:16)(cid:6)(cid:10)(cid:8)&’(cid:3)(cid:4)(cid:13)’(cid:5)(cid:8)(cid:23)(cid:9)(cid:25)(cid:8)(cid:26)(cid:8)(cid:27)(cid:29)(cid:29)(cid:8) (cid:13)(cid:10)(cid:8)!(cid:20)(cid:7)"(cid:8)#(cid:9)(cid:15)&(cid:9)$ (cid:19)(cid:20)(cid:12)(cid:5)% 2(cid:21)(cid:20)(cid:14)%(cid:22)(cid:13)(cid:14)&(cid:21) %(cid:14)(cid:19)!(cid:20)(cid:20)(cid:13)(cid:24)%(cid:14)(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)"(cid:20)(cid:11))(cid:18)(cid:24)(cid:12) ’(cid:14)(cid:10)(cid:25)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:19)(cid:18)$(cid:18)(cid:19)(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:22)%%(cid:10)133)))(cid:28)&(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:28)(cid:19)(cid:21)&3(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12) N NOTE1 E1 1 2 3 D E A A2 L c A1 b1 b e eB 4(cid:24)(cid:18)% (cid:27)60;,(cid:3) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:14)5(cid:18)&(cid:18)% (cid:17)(cid:27)6 67(cid:17) (cid:17)(cid:7)8 6!&((cid:13)(cid:20)(cid:14)(cid:21)$(cid:14)(cid:30)(cid:18)(cid:24) 6 (cid:29)(cid:5) (cid:30)(cid:18)%(cid:19)(cid:22) (cid:13) (cid:28)(cid:29)(cid:4)(cid:4)(cid:14)/(cid:3)0 (cid:23)(cid:21)(cid:10)(cid:14)%(cid:21)(cid:14)(cid:3)(cid:13)(cid:11)%(cid:18)(cid:24)(cid:12)(cid:14)(cid:30)(cid:25)(cid:11)(cid:24)(cid:13) (cid:7) = = (cid:28)(cid:15)(cid:29)(cid:4) (cid:17)(cid:21)(cid:25)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:7)(cid:15) (cid:28)(cid:29)(cid:29). (cid:28)(cid:29)+(cid:4) (cid:28)(cid:29)(cid:6). /(cid:11) (cid:13)(cid:14)%(cid:21)(cid:14)(cid:3)(cid:13)(cid:11)%(cid:18)(cid:24)(cid:12)(cid:14)(cid:30)(cid:25)(cid:11)(cid:24)(cid:13) (cid:7)(cid:29) (cid:28)(cid:4)(cid:29). = = (cid:3)(cid:22)(cid:21)!(cid:25)"(cid:13)(cid:20)(cid:14)%(cid:21)(cid:14)(cid:3)(cid:22)(cid:21)!(cid:25)"(cid:13)(cid:20)(cid:14)<(cid:18)"%(cid:22) , (cid:28)(cid:15)(cid:6)(cid:4) (cid:28)+(cid:29)(cid:4) (cid:28)+(cid:15). (cid:17)(cid:21)(cid:25)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)<(cid:18)"%(cid:22) ,(cid:29) (cid:28)(cid:15)(cid:5)(cid:4) (cid:28)(cid:15).(cid:4) (cid:28)(cid:15)9(cid:4) 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) (cid:2) (cid:28)(cid:16)+. (cid:28)(cid:16).(cid:4) (cid:28)(cid:16)(cid:16). (cid:23)(cid:18)(cid:10)(cid:14)%(cid:21)(cid:14)(cid:3)(cid:13)(cid:11)%(cid:18)(cid:24)(cid:12)(cid:14)(cid:30)(cid:25)(cid:11)(cid:24)(cid:13) 5 (cid:28)(cid:29)(cid:29). (cid:28)(cid:29)+(cid:4) (cid:28)(cid:29).(cid:4) 5(cid:13)(cid:11)"(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:19) (cid:28)(cid:4)(cid:4)9 (cid:28)(cid:4)(cid:29)(cid:4) (cid:28)(cid:4)(cid:29). 4(cid:10)(cid:10)(cid:13)(cid:20)(cid:14)5(cid:13)(cid:11)"(cid:14)<(cid:18)"%(cid:22) ((cid:29) (cid:28)(cid:4)(cid:5). (cid:28)(cid:4):(cid:4) (cid:28)(cid:4)(cid:16)(cid:4) 5(cid:21))(cid:13)(cid:20)(cid:14)5(cid:13)(cid:11)"(cid:14)<(cid:18)"%(cid:22) ( (cid:28)(cid:4)(cid:29)(cid:5) (cid:28)(cid:4)(cid:29)9 (cid:28)(cid:4)(cid:15)(cid:15) 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)(cid:8)(cid:21))(cid:14)(cid:3)(cid:10)(cid:11)(cid:19)(cid:18)(cid:24)(cid:12)(cid:14)(cid:14)? (cid:13)/ = = (cid:28)(cid:5)+(cid:4) (cid:19)(cid:20)(cid:12)(cid:5)(cid:11)% (cid:29)(cid:28) (cid:30)(cid:18)(cid:24)(cid:14)(cid:29)(cid:14)(cid:31)(cid:18) !(cid:11)(cid:25)(cid:14)(cid:18)(cid:24)"(cid:13)#(cid:14)$(cid:13)(cid:11)%!(cid:20)(cid:13)(cid:14)&(cid:11)(cid:26)(cid:14)(cid:31)(cid:11)(cid:20)(cid:26)’(cid:14)(!%(cid:14)&! %(cid:14)((cid:13)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14))(cid:18)%(cid:22)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:22)(cid:11)%(cid:19)(cid:22)(cid:13)"(cid:14)(cid:11)(cid:20)(cid:13)(cid:11)(cid:28) (cid:15)(cid:28) ?(cid:14)(cid:3)(cid:18)(cid:12)(cid:24)(cid:18)$(cid:18)(cid:19)(cid:11)(cid:24)%(cid:14)0(cid:22)(cid:11)(cid:20)(cid:11)(cid:19)%(cid:13)(cid:20)(cid:18) %(cid:18)(cid:19)(cid:28) +(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24) (cid:14)(cid:2)(cid:14)(cid:11)(cid:24)"(cid:14),(cid:29)(cid:14)"(cid:21)(cid:14)(cid:24)(cid:21)%(cid:14)(cid:18)(cid:24)(cid:19)(cid:25)!"(cid:13)(cid:14)&(cid:21)(cid:25)"(cid:14)$(cid:25)(cid:11) (cid:22)(cid:14)(cid:21)(cid:20)(cid:14)(cid:10)(cid:20)(cid:21)%(cid:20)! (cid:18)(cid:21)(cid:24) (cid:28)(cid:14)(cid:17)(cid:21)(cid:25)"(cid:14)$(cid:25)(cid:11) (cid:22)(cid:14)(cid:21)(cid:20)(cid:14)(cid:10)(cid:20)(cid:21)%(cid:20)! (cid:18)(cid:21)(cid:24) (cid:14) (cid:22)(cid:11)(cid:25)(cid:25)(cid:14)(cid:24)(cid:21)%(cid:14)(cid:13)#(cid:19)(cid:13)(cid:13)"(cid:14)(cid:28)(cid:4)(cid:29)(cid:4)@(cid:14)(cid:10)(cid:13)(cid:20)(cid:14) (cid:18)"(cid:13)(cid:28) (cid:5)(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:18)(cid:24)(cid:12)(cid:14)(cid:11)(cid:24)"(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:18)(cid:24)(cid:12)(cid:14)(cid:10)(cid:13)(cid:20)(cid:14)(cid:7)(cid:3)(cid:17),(cid:14)-(cid:29)(cid:5)(cid:28).(cid:17)(cid:28) /(cid:3)01(cid:14)/(cid:11) (cid:18)(cid:19)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:28)(cid:14)(cid:23)(cid:22)(cid:13)(cid:21)(cid:20)(cid:13)%(cid:18)(cid:19)(cid:11)(cid:25)(cid:25)(cid:26)(cid:14)(cid:13)#(cid:11)(cid:19)%(cid:14)(cid:31)(cid:11)(cid:25)!(cid:13)(cid:14) (cid:22)(cid:21))(cid:24)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13) (cid:28) (cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:23)(cid:13)(cid:19)(cid:22)(cid:24)(cid:21)(cid:25)(cid:21)(cid:12)(cid:26)(cid:2)(cid:20)(cid:11))(cid:18)(cid:24)(cid:12)0(cid:4)(cid:5)(cid:9)(cid:4)(cid:4)./ DS22060B-page 76 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X -/(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)) (cid:6)(cid:10)(cid:10)(cid:8)*(cid:16)(cid:12)(cid:10)(cid:13)’(cid:5)(cid:8)(cid:23))(cid:4)(cid:25)(cid:8)(cid:26)(cid:8)(cid:19)(cid:6)(((cid:20)+(cid:18)(cid:8)(cid:27)(cid:30)(cid:31)(cid:29)(cid:8) (cid:8)!(cid:20)(cid:7)"(cid:8)#)*&,$ (cid:19)(cid:20)(cid:12)(cid:5)% 2(cid:21)(cid:20)(cid:14)%(cid:22)(cid:13)(cid:14)&(cid:21) %(cid:14)(cid:19)!(cid:20)(cid:20)(cid:13)(cid:24)%(cid:14)(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)"(cid:20)(cid:11))(cid:18)(cid:24)(cid:12) ’(cid:14)(cid:10)(cid:25)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:19)(cid:18)$(cid:18)(cid:19)(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:22)%%(cid:10)133)))(cid:28)&(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:28)(cid:19)(cid:21)&3(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12) D N E E1 NOTE1 1 2 3 e h b α h c φ A A2 A1 L L1 β 4(cid:24)(cid:18)% (cid:17)(cid:27)55(cid:27)(cid:17),(cid:23),(cid:8)(cid:3) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:14)5(cid:18)&(cid:18)% (cid:17)(cid:27)6 67(cid:17) (cid:17)(cid:7)8 6!&((cid:13)(cid:20)(cid:14)(cid:21)$(cid:14)(cid:30)(cid:18)(cid:24) 6 (cid:29)(cid:5) (cid:30)(cid:18)%(cid:19)(cid:22) (cid:13) (cid:29)(cid:28)(cid:15)(cid:16)(cid:14)/(cid:3)0 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14);(cid:13)(cid:18)(cid:12)(cid:22)% (cid:7) = = (cid:29)(cid:28)(cid:16). (cid:17)(cid:21)(cid:25)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:7)(cid:15) (cid:29)(cid:28)(cid:15). = = (cid:3)%(cid:11)(cid:24)"(cid:21)$$(cid:14)(cid:14)? (cid:7)(cid:29) (cid:4)(cid:28)(cid:29)(cid:4) = (cid:4)(cid:28)(cid:15). 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)<(cid:18)"%(cid:22) , :(cid:28)(cid:4)(cid:4)(cid:14)/(cid:3)0 (cid:17)(cid:21)(cid:25)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)<(cid:18)"%(cid:22) ,(cid:29) +(cid:28)(cid:6)(cid:4)(cid:14)/(cid:3)0 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) (cid:2) 9(cid:28):.(cid:14)/(cid:3)0 0(cid:22)(cid:11)&$(cid:13)(cid:20)(cid:14)B(cid:21)(cid:10)%(cid:18)(cid:21)(cid:24)(cid:11)(cid:25)C (cid:22) (cid:4)(cid:28)(cid:15). = (cid:4)(cid:28).(cid:4) 2(cid:21)(cid:21)%(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) 5 (cid:4)(cid:28)(cid:5)(cid:4) = (cid:29)(cid:28)(cid:15)(cid:16) 2(cid:21)(cid:21)%(cid:10)(cid:20)(cid:18)(cid:24)% 5(cid:29) (cid:29)(cid:28)(cid:4)(cid:5)(cid:14)(cid:8),2 2(cid:21)(cid:21)%(cid:14)(cid:7)(cid:24)(cid:12)(cid:25)(cid:13) (cid:3) (cid:4)A = 9A 5(cid:13)(cid:11)"(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:19) (cid:4)(cid:28)(cid:29)(cid:16) = (cid:4)(cid:28)(cid:15). 5(cid:13)(cid:11)"(cid:14)<(cid:18)"%(cid:22) ( (cid:4)(cid:28)+(cid:29) = (cid:4)(cid:28).(cid:29) (cid:17)(cid:21)(cid:25)"(cid:14)(cid:2)(cid:20)(cid:11)$%(cid:14)(cid:7)(cid:24)(cid:12)(cid:25)(cid:13)(cid:14)(cid:23)(cid:21)(cid:10) (cid:4) .A = (cid:29).A (cid:17)(cid:21)(cid:25)"(cid:14)(cid:2)(cid:20)(cid:11)$%(cid:14)(cid:7)(cid:24)(cid:12)(cid:25)(cid:13)(cid:14)/(cid:21)%%(cid:21)& (cid:5) .A = (cid:29).A (cid:19)(cid:20)(cid:12)(cid:5)(cid:11)% (cid:29)(cid:28) (cid:30)(cid:18)(cid:24)(cid:14)(cid:29)(cid:14)(cid:31)(cid:18) !(cid:11)(cid:25)(cid:14)(cid:18)(cid:24)"(cid:13)#(cid:14)$(cid:13)(cid:11)%!(cid:20)(cid:13)(cid:14)&(cid:11)(cid:26)(cid:14)(cid:31)(cid:11)(cid:20)(cid:26)’(cid:14)(!%(cid:14)&! %(cid:14)((cid:13)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14))(cid:18)%(cid:22)(cid:18)(cid:24)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:22)(cid:11)%(cid:19)(cid:22)(cid:13)"(cid:14)(cid:11)(cid:20)(cid:13)(cid:11)(cid:28) (cid:15)(cid:28) ?(cid:14)(cid:3)(cid:18)(cid:12)(cid:24)(cid:18)$(cid:18)(cid:19)(cid:11)(cid:24)%(cid:14)0(cid:22)(cid:11)(cid:20)(cid:11)(cid:19)%(cid:13)(cid:20)(cid:18) %(cid:18)(cid:19)(cid:28) +(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24) (cid:14)(cid:2)(cid:14)(cid:11)(cid:24)"(cid:14),(cid:29)(cid:14)"(cid:21)(cid:14)(cid:24)(cid:21)%(cid:14)(cid:18)(cid:24)(cid:19)(cid:25)!"(cid:13)(cid:14)&(cid:21)(cid:25)"(cid:14)$(cid:25)(cid:11) (cid:22)(cid:14)(cid:21)(cid:20)(cid:14)(cid:10)(cid:20)(cid:21)%(cid:20)! (cid:18)(cid:21)(cid:24) (cid:28)(cid:14)(cid:17)(cid:21)(cid:25)"(cid:14)$(cid:25)(cid:11) (cid:22)(cid:14)(cid:21)(cid:20)(cid:14)(cid:10)(cid:20)(cid:21)%(cid:20)! (cid:18)(cid:21)(cid:24) (cid:14) (cid:22)(cid:11)(cid:25)(cid:25)(cid:14)(cid:24)(cid:21)%(cid:14)(cid:13)#(cid:19)(cid:13)(cid:13)"(cid:14)(cid:4)(cid:28)(cid:29).(cid:14)&&(cid:14)(cid:10)(cid:13)(cid:20)(cid:14) (cid:18)"(cid:13)(cid:28) (cid:5)(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:18)(cid:24)(cid:12)(cid:14)(cid:11)(cid:24)"(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:18)(cid:24)(cid:12)(cid:14)(cid:10)(cid:13)(cid:20)(cid:14)(cid:7)(cid:3)(cid:17),(cid:14)-(cid:29)(cid:5)(cid:28).(cid:17)(cid:28) /(cid:3)01 /(cid:11) (cid:18)(cid:19)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:28)(cid:14)(cid:23)(cid:22)(cid:13)(cid:21)(cid:20)(cid:13)%(cid:18)(cid:19)(cid:11)(cid:25)(cid:25)(cid:26)(cid:14)(cid:13)#(cid:11)(cid:19)%(cid:14)(cid:31)(cid:11)(cid:25)!(cid:13)(cid:14) (cid:22)(cid:21))(cid:24)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13) (cid:28) (cid:8),21 (cid:8)(cid:13)$(cid:13)(cid:20)(cid:13)(cid:24)(cid:19)(cid:13)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)’(cid:14)! !(cid:11)(cid:25)(cid:25)(cid:26)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13)’(cid:14)$(cid:21)(cid:20)(cid:14)(cid:18)(cid:24)$(cid:21)(cid:20)&(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:10)!(cid:20)(cid:10)(cid:21) (cid:13) (cid:14)(cid:21)(cid:24)(cid:25)(cid:26)(cid:28) (cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:23)(cid:13)(cid:19)(cid:22)(cid:24)(cid:21)(cid:25)(cid:21)(cid:12)(cid:26)(cid:2)(cid:20)(cid:11))(cid:18)(cid:24)(cid:12)0(cid:4)(cid:5)(cid:9)(cid:4):./ © 2008 Microchip Technology Inc. DS22060B-page 77
MCP413X/415X/423X/425X (cid:19)(cid:20)(cid:12)(cid:5)% 2(cid:21)(cid:20)(cid:14)%(cid:22)(cid:13)(cid:14)&(cid:21) %(cid:14)(cid:19)!(cid:20)(cid:20)(cid:13)(cid:24)%(cid:14)(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)"(cid:20)(cid:11))(cid:18)(cid:24)(cid:12) ’(cid:14)(cid:10)(cid:25)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:19)(cid:18)$(cid:18)(cid:19)(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:22)%%(cid:10)133)))(cid:28)&(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:28)(cid:19)(cid:21)&3(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12) DS22060B-page 78 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X -/(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)01(cid:13)’(cid:8))1((cid:13)’(cid:21)(cid:8)) (cid:6)(cid:10)(cid:10)(cid:8)*(cid:16)(cid:12)(cid:10)(cid:13)’(cid:5)(cid:8)(cid:23))0(cid:25)(cid:8)(cid:26)(cid:8)/(cid:30)/(cid:8) (cid:8)!(cid:20)(cid:7)"(cid:8)#0))*(cid:9)$ (cid:19)(cid:20)(cid:12)(cid:5)% 2(cid:21)(cid:20)(cid:14)%(cid:22)(cid:13)(cid:14)&(cid:21) %(cid:14)(cid:19)!(cid:20)(cid:20)(cid:13)(cid:24)%(cid:14)(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)"(cid:20)(cid:11))(cid:18)(cid:24)(cid:12) ’(cid:14)(cid:10)(cid:25)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:19)(cid:18)$(cid:18)(cid:19)(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:22)%%(cid:10)133)))(cid:28)&(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:28)(cid:19)(cid:21)&3(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12) D N E E1 NOTE1 1 2 e b c φ A A2 A1 L1 L 4(cid:24)(cid:18)% (cid:17)(cid:27)55(cid:27)(cid:17),(cid:23),(cid:8)(cid:3) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:14)5(cid:18)&(cid:18)% (cid:17)(cid:27)6 67(cid:17) (cid:17)(cid:7)8 6!&((cid:13)(cid:20)(cid:14)(cid:21)$(cid:14)(cid:30)(cid:18)(cid:24) 6 (cid:29)(cid:5) (cid:30)(cid:18)%(cid:19)(cid:22) (cid:13) (cid:4)(cid:28):.(cid:14)/(cid:3)0 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14);(cid:13)(cid:18)(cid:12)(cid:22)% (cid:7) = = (cid:29)(cid:28)(cid:15)(cid:4) (cid:17)(cid:21)(cid:25)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:7)(cid:15) (cid:4)(cid:28)9(cid:4) (cid:29)(cid:28)(cid:4)(cid:4) (cid:29)(cid:28)(cid:4). (cid:3)%(cid:11)(cid:24)"(cid:21)$$(cid:14) (cid:7)(cid:29) (cid:4)(cid:28)(cid:4). = (cid:4)(cid:28)(cid:29). 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)<(cid:18)"%(cid:22) , :(cid:28)(cid:5)(cid:4)(cid:14)/(cid:3)0 (cid:17)(cid:21)(cid:25)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)<(cid:18)"%(cid:22) ,(cid:29) (cid:5)(cid:28)+(cid:4) (cid:5)(cid:28)(cid:5)(cid:4) (cid:5)(cid:28).(cid:4) (cid:17)(cid:21)(cid:25)"(cid:13)"(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) (cid:2) (cid:5)(cid:28)(cid:6)(cid:4) .(cid:28)(cid:4)(cid:4) .(cid:28)(cid:29)(cid:4) 2(cid:21)(cid:21)%(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) 5 (cid:4)(cid:28)(cid:5). (cid:4)(cid:28):(cid:4) (cid:4)(cid:28)(cid:16). 2(cid:21)(cid:21)%(cid:10)(cid:20)(cid:18)(cid:24)% 5(cid:29) (cid:29)(cid:28)(cid:4)(cid:4)(cid:14)(cid:8),2 2(cid:21)(cid:21)%(cid:14)(cid:7)(cid:24)(cid:12)(cid:25)(cid:13) (cid:3) (cid:4)A = 9A 5(cid:13)(cid:11)"(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:19) (cid:4)(cid:28)(cid:4)(cid:6) = (cid:4)(cid:28)(cid:15)(cid:4) 5(cid:13)(cid:11)"(cid:14)<(cid:18)"%(cid:22) ( (cid:4)(cid:28)(cid:29)(cid:6) = (cid:4)(cid:28)+(cid:4) (cid:19)(cid:20)(cid:12)(cid:5)(cid:11)% (cid:29)(cid:28) (cid:30)(cid:18)(cid:24)(cid:14)(cid:29)(cid:14)(cid:31)(cid:18) !(cid:11)(cid:25)(cid:14)(cid:18)(cid:24)"(cid:13)#(cid:14)$(cid:13)(cid:11)%!(cid:20)(cid:13)(cid:14)&(cid:11)(cid:26)(cid:14)(cid:31)(cid:11)(cid:20)(cid:26)’(cid:14)(!%(cid:14)&! %(cid:14)((cid:13)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14))(cid:18)%(cid:22)(cid:18)(cid:24)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:22)(cid:11)%(cid:19)(cid:22)(cid:13)"(cid:14)(cid:11)(cid:20)(cid:13)(cid:11)(cid:28) (cid:15)(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24) (cid:14)(cid:2)(cid:14)(cid:11)(cid:24)"(cid:14),(cid:29)(cid:14)"(cid:21)(cid:14)(cid:24)(cid:21)%(cid:14)(cid:18)(cid:24)(cid:19)(cid:25)!"(cid:13)(cid:14)&(cid:21)(cid:25)"(cid:14)$(cid:25)(cid:11) (cid:22)(cid:14)(cid:21)(cid:20)(cid:14)(cid:10)(cid:20)(cid:21)%(cid:20)! (cid:18)(cid:21)(cid:24) (cid:28)(cid:14)(cid:17)(cid:21)(cid:25)"(cid:14)$(cid:25)(cid:11) (cid:22)(cid:14)(cid:21)(cid:20)(cid:14)(cid:10)(cid:20)(cid:21)%(cid:20)! (cid:18)(cid:21)(cid:24) (cid:14) (cid:22)(cid:11)(cid:25)(cid:25)(cid:14)(cid:24)(cid:21)%(cid:14)(cid:13)#(cid:19)(cid:13)(cid:13)"(cid:14)(cid:4)(cid:28)(cid:29).(cid:14)&&(cid:14)(cid:10)(cid:13)(cid:20)(cid:14) (cid:18)"(cid:13)(cid:28) +(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:18)(cid:24)(cid:12)(cid:14)(cid:11)(cid:24)"(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:18)(cid:24)(cid:12)(cid:14)(cid:10)(cid:13)(cid:20)(cid:14)(cid:7)(cid:3)(cid:17),(cid:14)-(cid:29)(cid:5)(cid:28).(cid:17)(cid:28) /(cid:3)01 /(cid:11) (cid:18)(cid:19)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:28)(cid:14)(cid:23)(cid:22)(cid:13)(cid:21)(cid:20)(cid:13)%(cid:18)(cid:19)(cid:11)(cid:25)(cid:25)(cid:26)(cid:14)(cid:13)#(cid:11)(cid:19)%(cid:14)(cid:31)(cid:11)(cid:25)!(cid:13)(cid:14) (cid:22)(cid:21))(cid:24)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13) (cid:28) (cid:8),21 (cid:8)(cid:13)$(cid:13)(cid:20)(cid:13)(cid:24)(cid:19)(cid:13)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)’(cid:14)! !(cid:11)(cid:25)(cid:25)(cid:26)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13)’(cid:14)$(cid:21)(cid:20)(cid:14)(cid:18)(cid:24)$(cid:21)(cid:20)&(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:10)!(cid:20)(cid:10)(cid:21) (cid:13) (cid:14)(cid:21)(cid:24)(cid:25)(cid:26)(cid:28) (cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:23)(cid:13)(cid:19)(cid:22)(cid:24)(cid:21)(cid:25)(cid:21)(cid:12)(cid:26)(cid:2)(cid:20)(cid:11))(cid:18)(cid:24)(cid:12)0(cid:4)(cid:5)(cid:9)(cid:4)9(cid:16)/ © 2008 Microchip Technology Inc. DS22060B-page 79
MCP413X/415X/423X/425X -2(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)3(cid:16)(cid:6)(cid:7)(cid:8)(cid:17)(cid:10)(cid:6)(cid:12)(cid:18)(cid:8)(cid:19)(cid:20)(cid:8)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:6)(cid:14)(cid:21)(cid:6)(cid:22)(cid:5)(cid:8)(cid:23)(cid:24)(cid:4)(cid:25)(cid:8)(cid:26)(cid:8)/(cid:28)/(cid:28)(cid:29)(cid:30)(cid:31)(cid:8) (cid:8)!(cid:20)(cid:7)"(cid:8)#3(cid:17)(cid:19)$ (cid:19)(cid:20)(cid:12)(cid:5)% 2(cid:21)(cid:20)(cid:14)%(cid:22)(cid:13)(cid:14)&(cid:21) %(cid:14)(cid:19)!(cid:20)(cid:20)(cid:13)(cid:24)%(cid:14)(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)"(cid:20)(cid:11))(cid:18)(cid:24)(cid:12) ’(cid:14)(cid:10)(cid:25)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:19)(cid:18)$(cid:18)(cid:19)(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:22)%%(cid:10)133)))(cid:28)&(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:28)(cid:19)(cid:21)&3(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12) D D2 EXPOSED PAD e E E2 2 2 b 1 1 K N N NOTE1 L TOPVIEW BOTTOMVIEW A3 A A1 4(cid:24)(cid:18)% (cid:17)(cid:27)55(cid:27)(cid:17),(cid:23),(cid:8)(cid:3) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:14)5(cid:18)&(cid:18)% (cid:17)(cid:27)6 67(cid:17) (cid:17)(cid:7)8 6!&((cid:13)(cid:20)(cid:14)(cid:21)$(cid:14)(cid:30)(cid:18)(cid:24) 6 (cid:29): (cid:30)(cid:18)%(cid:19)(cid:22) (cid:13) (cid:4)(cid:28):.(cid:14)/(cid:3)0 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14);(cid:13)(cid:18)(cid:12)(cid:22)% (cid:7) (cid:4)(cid:28)9(cid:4) (cid:4)(cid:28)(cid:6)(cid:4) (cid:29)(cid:28)(cid:4)(cid:4) (cid:3)%(cid:11)(cid:24)"(cid:21)$$(cid:14) (cid:7)(cid:29) (cid:4)(cid:28)(cid:4)(cid:4) (cid:4)(cid:28)(cid:4)(cid:15) (cid:4)(cid:28)(cid:4). 0(cid:21)(cid:24)%(cid:11)(cid:19)%(cid:14)(cid:23)(cid:22)(cid:18)(cid:19)*(cid:24)(cid:13) (cid:7)+ (cid:4)(cid:28)(cid:15)(cid:4)(cid:14)(cid:8),2 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)<(cid:18)"%(cid:22) , (cid:5)(cid:28)(cid:4)(cid:4)(cid:14)/(cid:3)0 ,#(cid:10)(cid:21) (cid:13)"(cid:14)(cid:30)(cid:11)"(cid:14)<(cid:18)"%(cid:22) ,(cid:15) (cid:15)(cid:28).(cid:4) (cid:15)(cid:28):. (cid:15)(cid:28)9(cid:4) 7(cid:31)(cid:13)(cid:20)(cid:11)(cid:25)(cid:25)(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) (cid:2) (cid:5)(cid:28)(cid:4)(cid:4)(cid:14)/(cid:3)0 ,#(cid:10)(cid:21) (cid:13)"(cid:14)(cid:30)(cid:11)"(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) (cid:2)(cid:15) (cid:15)(cid:28).(cid:4) (cid:15)(cid:28):. (cid:15)(cid:28)9(cid:4) 0(cid:21)(cid:24)%(cid:11)(cid:19)%(cid:14)<(cid:18)"%(cid:22) ( (cid:4)(cid:28)(cid:15). (cid:4)(cid:28)+(cid:4) (cid:4)(cid:28)+. 0(cid:21)(cid:24)%(cid:11)(cid:19)%(cid:14)5(cid:13)(cid:24)(cid:12)%(cid:22) 5 (cid:4)(cid:28)+(cid:4) (cid:4)(cid:28)(cid:5)(cid:4) (cid:4)(cid:28).(cid:4) 0(cid:21)(cid:24)%(cid:11)(cid:19)%(cid:9)%(cid:21)(cid:9),#(cid:10)(cid:21) (cid:13)"(cid:14)(cid:30)(cid:11)" > (cid:4)(cid:28)(cid:15)(cid:4) = = (cid:19)(cid:20)(cid:12)(cid:5)(cid:11)% (cid:29)(cid:28) (cid:30)(cid:18)(cid:24)(cid:14)(cid:29)(cid:14)(cid:31)(cid:18) !(cid:11)(cid:25)(cid:14)(cid:18)(cid:24)"(cid:13)#(cid:14)$(cid:13)(cid:11)%!(cid:20)(cid:13)(cid:14)&(cid:11)(cid:26)(cid:14)(cid:31)(cid:11)(cid:20)(cid:26)’(cid:14)(!%(cid:14)&! %(cid:14)((cid:13)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14))(cid:18)%(cid:22)(cid:18)(cid:24)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:22)(cid:11)%(cid:19)(cid:22)(cid:13)"(cid:14)(cid:11)(cid:20)(cid:13)(cid:11)(cid:28) (cid:15)(cid:28) (cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)(cid:18) (cid:14) (cid:11))(cid:14) (cid:18)(cid:24)(cid:12)!(cid:25)(cid:11)%(cid:13)"(cid:28) +(cid:28) (cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:18)(cid:24)(cid:12)(cid:14)(cid:11)(cid:24)"(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:18)(cid:24)(cid:12)(cid:14)(cid:10)(cid:13)(cid:20)(cid:14)(cid:7)(cid:3)(cid:17),(cid:14)-(cid:29)(cid:5)(cid:28).(cid:17)(cid:28) /(cid:3)01 /(cid:11) (cid:18)(cid:19)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)(cid:28)(cid:14)(cid:23)(cid:22)(cid:13)(cid:21)(cid:20)(cid:13)%(cid:18)(cid:19)(cid:11)(cid:25)(cid:25)(cid:26)(cid:14)(cid:13)#(cid:11)(cid:19)%(cid:14)(cid:31)(cid:11)(cid:25)!(cid:13)(cid:14) (cid:22)(cid:21))(cid:24)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13) (cid:28) (cid:8),21 (cid:8)(cid:13)$(cid:13)(cid:20)(cid:13)(cid:24)(cid:19)(cid:13)(cid:14)(cid:2)(cid:18)&(cid:13)(cid:24) (cid:18)(cid:21)(cid:24)’(cid:14)! !(cid:11)(cid:25)(cid:25)(cid:26)(cid:14))(cid:18)%(cid:22)(cid:21)!%(cid:14)%(cid:21)(cid:25)(cid:13)(cid:20)(cid:11)(cid:24)(cid:19)(cid:13)’(cid:14)$(cid:21)(cid:20)(cid:14)(cid:18)(cid:24)$(cid:21)(cid:20)&(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:10)!(cid:20)(cid:10)(cid:21) (cid:13) (cid:14)(cid:21)(cid:24)(cid:25)(cid:26)(cid:28) (cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:23)(cid:13)(cid:19)(cid:22)(cid:24)(cid:21)(cid:25)(cid:21)(cid:12)(cid:26)(cid:2)(cid:20)(cid:11))(cid:18)(cid:24)(cid:12)0(cid:4)(cid:5)(cid:9)(cid:29)(cid:15)(cid:16)/ DS22060B-page 80 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X (cid:19)(cid:20)(cid:12)(cid:5)% 2(cid:21)(cid:20)(cid:14)%(cid:22)(cid:13)(cid:14)&(cid:21) %(cid:14)(cid:19)!(cid:20)(cid:20)(cid:13)(cid:24)%(cid:14)(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:13)(cid:14)"(cid:20)(cid:11))(cid:18)(cid:24)(cid:12) ’(cid:14)(cid:10)(cid:25)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)%(cid:22)(cid:13)(cid:14)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:14)(cid:30)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:19)(cid:18)$(cid:18)(cid:19)(cid:11)%(cid:18)(cid:21)(cid:24)(cid:14)(cid:25)(cid:21)(cid:19)(cid:11)%(cid:13)"(cid:14)(cid:11)%(cid:14) (cid:22)%%(cid:10)133)))(cid:28)&(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:18)(cid:10)(cid:28)(cid:19)(cid:21)&3(cid:10)(cid:11)(cid:19)*(cid:11)(cid:12)(cid:18)(cid:24)(cid:12) © 2008 Microchip Technology Inc. DS22060B-page 81
MCP413X/415X/423X/425X NOTES: DS22060B-page 82 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X APPENDIX A: REVISION HISTORY APPENDIX B: MIGRATING FROM THE MCP41XXX AND Revision B (December 2008) MCP42XXX DEVICES The following is the list of modifications: This is intended to give an overview of some of the 1. Updated I specifications to specify test differences to be aware of when migrating from the PU conditions and new limit. MCP41XXX and MCP42XXX devices. 2. Updated DFN package in “Package Types (top view)”, including Exposed Thermal Pad sample B.1 MCP41XXX to MCP41XX (EP). Differences 3. Added new descriptions in Section3.0 “Pin Here are some of the differences to be aware of: Descriptions”. 1. SI pin is now SDI/SDO pin, and the contents of 4. Added new Development Tool support items. the device memory can be read. 5. Updated Package Outline section. 2. Need to address the Terminal Connect Feature (TCON register) of MCP41XX. Revision A (September 2007) 3. MCP41XX supports software Shutdown mode. • Original Release of this Document. 4. New 5 kΩ version. 5. MCP41XX have 7-bit resolution options. 6. Alternate pinout versions (for Rheostat configuration). 7. Verify device’s electrical specifications. 8. Interface signals are now high voltage tolerant. 9. Interface signals now have internal pull-up resistors. B.2 MCP42XXX to MCP42XX Differences Here are some of the differences to be aware of: 1. Daisy chaining of devices is no longer supported. 2. SDO pin allows contents of device memory to be read. 3. Need to address the Terminal Connect Feature (TCON register) of MCP42XX. 4. MCP42XX supports software Shutdown mode. 5. New 5 kΩ version. 6. MCP42XX have 7-bit resolution options. 7. Alternate package/pinout versions (for Rheostat configuration). 8. Verify device’s electrical specifications. 9. Interface signals are now high voltage tolerant 10. Interface signals now have internal pull-up resistors. © 2008 Microchip Technology Inc. DS22060B-page 83
MCP413X/415X/423X/425X NOTES: DS22060B-page 84 © 2008 Microchip Technology Inc.
MCP413X/415X/423X/425X PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. Examples: PART NO. XXX X /XX a) MCP4131-502E/XX: 5kΩ, 8LD Device b) MCP4131T-502E/XX: T/R, 5kΩ, 8LD Device Device Resistance Temperature Package c) MCP4131-103E/XX: 10kΩ, 8-LD Device Version Range d) MCP4131T-103E/XX: T/R, 10kΩ, 8LD Device e) MCP4131-503E/XX: 50kΩ, 8LD Device f) MCP4131T-503E/XX: T/R, 50kΩ, 8LD Device Device MCP4131: Single Volatile 7-bit Potentiometer g) MCP4131-104E/XX: 100kΩ, 8LD Device MCP4131T: Single Volatile 7-bit Potentiometer (Tape and Reel) h) MCP4131T-104E/XX: T/R, 100kΩ, 8LD Device MCP4132: Single Volatile 7-bit Rheostat a) MCP4132-502E/XX: 5kΩ, 8LD Device MCP4132T: Single Volatile 7-bit Rheostat b) MCP4132T-502E/XX: T/R, 5kΩ, 8LD Device (Tape and Reel) c) MCP4132-103E/XX: 10kΩ, 8-LD Device MCP4151: Single Volatile 8-bit Potentiometer MCP4151T: Single Volatile 8-bit Potentiometer d) MCP4132T-103E/XX: T/R, 10kΩ, 8LD Device (Tape and Reel) e) MCP4132-503E/XX: 50kΩ, 8LD Device MCP4152: Single Volatile 8-bit Rheostat f) MCP4132T-503E/XX: T/R, 50kΩ, 8LD Device MCP4152T: Single Volatile 8-bit Rheostat g) MCP4132-104E/XX: 100kΩ, 8LD Device (Tape and Reel) h) MCP4132T-104E/XX: T/R, 100kΩ, 8LD Device MCP4231: Dual Volatile 7-bit Potentiometer MCP4231T: Dual Volatile 7-bit Potentiometer a) MCP4151-502E/XX: 5kΩ, 8LD Device (Tape and Reel) b) MCP4151T-502E/XX: T/R, 5kΩ, 8LD Device MCP4232: Dual Volatile 7-bit Rheostat c) MCP4151-103E/XX: 10kΩ, 8-LD Device MCP4232T: Dual Volatile 7-bit Rheostat d) MCP4151T-103E/XX: T/R, 10kΩ, 8LD Device (Tape and Reel) e) MCP4151-503E/XX: 50kΩ, 8LD Device MCP4251: Dual Volatile 8-bit Potentiometer f) MCP4151T-503E/XX: T/R, 50kΩ, 8LD Device MCP4251T: Dual Volatile 8-bit Potentiometer g) MCP4151-104E/XX: 100kΩ, 8LD Device (Tape and Reel) h) MCP4151T-104E/XX: T/R, 100kΩ, 8LD Device MCP4252: Dual Volatile 8-bit Rheostat MCP4252T: Dual Volatile 8-bit Rheostat a) MCP4152-502E/XX: 5kΩ, 8LD Device (Tape and Reel) b) MCP4152T-502E/XX: T/R, 5kΩ, 8LD Device c) MCP4152-103E/XX: 10kΩ, 8-LD Device d) MCP4152T-103E/XX: T/R, 10kΩ, 8LD Device Resistance Version: 502 = 5kΩ e) MCP4152-503E/XX: 50kΩ, 8LD Device 103 = 10kΩ f) MCP4152T-503E/XX: T/R, 50kΩ, 8LD Device 503 = 50kΩ g) MCP4152-104E/XX: 100kΩ, 8LD Device 104 = 100kΩ h) MCP4152T-104E/XX: T/R, 100kΩ, 8LD Device a) MCP4231-502E/XX: 5kΩ, 8LD Device Temperature Range I = -40°C to +85°C (Industrial) b) MCP4231T-502E/XX: T/R, 5kΩΩ, 8LD Device E = -40°C to +125°C (Extended) c) MCP4231-103E/XX: 10kΩ, 8-LD Device d) MCP4231T-103E/XX: T/R, 10kΩ, 8LD Device e) MCP4231-503E/XX: 50kΩ, 8LD Device Package MF = Plastic Dual Flat No-lead (3x3 DFN), 8/10-lead f) MCP4231T-503E/XX: T/R, 50kΩ, 8LD Device ML = Plastic Quad Flat No-lead (QFN), 16-lead g) MCP4231-104E/XX: 100kΩ, 8LD Device MS = Plastic Micro Small Outline (MSOP), 8-lead h) MCP4231T-104E/XX: T/R, 100kΩ, 8LD Device P = Plastic Dual In-line (PDIP) (300 mil), 8/14-lead a) MCP4232-502E/XX: 5kΩ, 8LD Device SN = Plastic Small Outline (SOIC), (150 mil), 8-lead b) MCP4232T-502E/XX: T/R, 5kΩ, 8LD Device SL = Plastic Small Outline (SOIC), (150 mil), 14-lead c) MCP4232-103E/XX: 10kΩ, 8-LD Device ST = Plastic Thin Shrink Small Outline (TSSOP), 14-lead d) MCP4232T-103E/XX: T/R, 10kΩ, 8LD Device UN = Plastic Micro Small Outline (MSOP), 10-lead e) MCP4232-503E/XX: 50kΩ, 8LD Device f) MCP4232T-503E/XX: T/R, 50kΩ, 8LD Device g) MCP4232-104E/XX: 100kΩ, 8LD Device h) MCP4232T-104E/XX: T/R, 100kΩ, 8LD Device a) MCP4251-502E/XX: 5kΩ, 8LD Device b) MCP4251T-502E/XX: T/R, 5kΩ, 8LD Device c) MCP4251-103E/XX: 10kΩ, 8-LD Device d) MCP4251T-103E/XX: T/R, 10kΩ, 8LD Device e) MCP4251-503E/XX: 50kΩ, 8LD Device f) MCP4251T-503E/XX: T/R, 50kΩ, 8LD Device g) MCP4251-104E/XX: 100kΩ, 8LD Device h) MCP4251T-104E/XX: T/R, 100kΩ, 8LD Device a) MCP4252-502E/XX: 5kΩ, 8LD Device b) MCP4252T-502E/XX: T/R, 5kΩ, 8LD Device c) MCP4252-103E/XX: 10kΩ, 8-LD Device d) MCP4252T-103E/XX: T/R, 10kΩ, 8LD Device e) MCP4252-503E/XX: 50kΩ, 8LD Device f) MCP4252T-503E/XX: T/R, 50kΩ, 8LD Device g) MCP4252-104E/XX: 100kΩ, 8LD Device h) MCP4252T-104E/XX: T/R, 100kΩ, 8LD Device XX = MF for 8/10-lead 3x3 DFN = ML for 16-lead QFN = MS for 8-lead MSOP = P for 8/14-lead PDIP = SN for 8-lead SOIC = SL for 14-lead SOIC = ST for 14-lead TSSOP = UN for 10-lead MSOP © 2008 Microchip Technology Inc. DS22060B-page 85
MCP413X/415X/423X/425X NOTES: DS22060B-page 86 © 2008 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device Trademarks applications and the like is provided only for your convenience The Microchip name and logo, the Microchip logo, Accuron, and may be superseded by updates. It is your responsibility to dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, ensure that your application meets with your specifications. PICSTART, rfPIC, SmartShunt and UNI/O are registered MICROCHIP MAKES NO REPRESENTATIONS OR trademarks of Microchip Technology Incorporated in the WARRANTIES OF ANY KIND WHETHER EXPRESS OR U.S.A. and other countries. IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, FilterLab, Linear Active Thermistor, MXDEV, MXLAB, INCLUDING BUT NOT LIMITED TO ITS CONDITION, SEEVAL, SmartSensor and The Embedded Control Solutions QUALITY, PERFORMANCE, MERCHANTABILITY OR Company are registered trademarks of Microchip Technology FITNESS FOR PURPOSE. Microchip disclaims all liability Incorporated in the U.S.A. arising from this information and its use. Use of Microchip Analog-for-the-Digital Age, Application Maestro, CodeGuard, devices in life support and/or safety applications is entirely at dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, the buyer’s risk, and the buyer agrees to defend, indemnify and ECONOMONITOR, FanSense, In-Circuit Serial hold harmless Microchip from any and all damages, claims, Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB suits, or expenses resulting from such use. No licenses are Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, conveyed, implicitly or otherwise, under any Microchip PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo, intellectual property rights. PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. © 2008 Microchip Technology Inc. DS22060B-page 87
WORLDWIDE SALES AND SERVICE AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office Asia Pacific Office India - Bangalore Austria - Wels 2355 West Chandler Blvd. Suites 3707-14, 37th Floor Tel: 91-80-4182-8400 Tel: 43-7242-2244-39 Chandler, AZ 85224-6199 Tower 6, The Gateway Fax: 91-80-4182-8422 Fax: 43-7242-2244-393 Tel: 480-792-7200 Harbour City, Kowloon India - New Delhi Denmark - Copenhagen Fax: 480-792-7277 Hong Kong Tel: 91-11-4160-8631 Tel: 45-4450-2828 Technical Support: Tel: 852-2401-1200 Fax: 91-11-4160-8632 Fax: 45-4485-2829 http://support.microchip.com Web Address: Fax: 852-2401-3431 India - Pune France - Paris www.microchip.com Australia - Sydney Tel: 91-20-2566-1512 Tel: 33-1-69-53-63-20 Tel: 61-2-9868-6733 Fax: 33-1-69-30-90-79 Fax: 91-20-2566-1513 Atlanta Fax: 61-2-9868-6755 Germany - Munich Duluth, GA Japan - Yokohama China - Beijing Tel: 49-89-627-144-0 Tel: 678-957-9614 Tel: 81-45-471- 6166 Tel: 86-10-8528-2100 Fax: 49-89-627-144-44 Fax: 678-957-1455 Fax: 81-45-471-6122 Fax: 86-10-8528-2104 Italy - Milan Boston Korea - Daegu Westborough, MA China - Chengdu Tel: 82-53-744-4301 Tel: 39-0331-742611 Tel: 774-760-0087 Tel: 86-28-8665-5511 Fax: 82-53-744-4302 Fax: 39-0331-466781 Fax: 774-760-0088 Fax: 86-28-8665-7889 Korea - Seoul Netherlands - Drunen Chicago China - Hong Kong SAR Tel: 82-2-554-7200 Tel: 31-416-690399 Itasca, IL Tel: 852-2401-1200 Fax: 82-2-558-5932 or Fax: 31-416-690340 Tel: 630-285-0071 Fax: 852-2401-3431 82-2-558-5934 Spain - Madrid Fax: 630-285-0075 China - Nanjing Malaysia - Kuala Lumpur Tel: 34-91-708-08-90 Dallas Tel: 86-25-8473-2460 Tel: 60-3-6201-9857 Fax: 34-91-708-08-91 Addison, TX Fax: 86-25-8473-2470 Fax: 60-3-6201-9859 UK - Wokingham Tel: 972-818-7423 China - Qingdao Malaysia - Penang Tel: 44-118-921-5869 Fax: 972-818-2924 Tel: 86-532-8502-7355 Tel: 60-4-227-8870 Fax: 44-118-921-5820 Detroit Fax: 86-532-8502-7205 Fax: 60-4-227-4068 Farmington Hills, MI China - Shanghai Philippines - Manila Tel: 248-538-2250 Tel: 86-21-5407-5533 Tel: 63-2-634-9065 Fax: 248-538-2260 Fax: 86-21-5407-5066 Fax: 63-2-634-9069 Kokomo China - Shenyang Singapore Kokomo, IN Tel: 86-24-2334-2829 Tel: 65-6334-8870 Tel: 765-864-8360 Fax: 86-24-2334-2393 Fax: 65-6334-8850 Fax: 765-864-8387 China - Shenzhen Taiwan - Hsin Chu Los Angeles Tel: 86-755-8203-2660 Tel: 886-3-572-9526 Mission Viejo, CA Fax: 86-755-8203-1760 Fax: 886-3-572-6459 Tel: 949-462-9523 Fax: 949-462-9608 China - Wuhan Taiwan - Kaohsiung Tel: 86-27-5980-5300 Tel: 886-7-536-4818 Santa Clara Fax: 86-27-5980-5118 Fax: 886-7-536-4803 Santa Clara, CA China - Xiamen Taiwan - Taipei Tel: 408-961-6444 Tel: 86-592-2388138 Tel: 886-2-2500-6610 Fax: 408-961-6445 Fax: 86-592-2388130 Fax: 886-2-2508-0102 Toronto China - Xian Thailand - Bangkok Mississauga, Ontario, Tel: 86-29-8833-7252 Tel: 66-2-694-1351 Canada Fax: 86-29-8833-7256 Fax: 66-2-694-1350 Tel: 905-673-0699 Fax: 905-673-6509 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 01/02/08 DS22060B-page 88 © 2008 Microchip Technology Inc.