图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: MCP1702T-1502E/MB
  • 制造商: Microchip
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

MCP1702T-1502E/MB产品简介:

ICGOO电子元器件商城为您提供MCP1702T-1502E/MB由Microchip设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 MCP1702T-1502E/MB价格参考。MicrochipMCP1702T-1502E/MB封装/规格:PMIC - 稳压器 - 线性, Linear Voltage Regulator IC Positive Fixed 1 Output 200mA SOT-89-3。您可以下载MCP1702T-1502E/MB参考资料、Datasheet数据手册功能说明书,资料中有MCP1702T-1502E/MB 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC REG LDO 1.5V 0.2A SOT89-3低压差稳压器 Low Iq 250mA LDO Vin 13.2V max Vout=1.5V

产品分类

PMIC - 稳压器 - 线性

品牌

Microchip Technology

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

电源管理 IC,低压差稳压器,Microchip Technology MCP1702T-1502E/MB-

数据手册

http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en028186

产品型号

MCP1702T-1502E/MB

PSRR/纹波抑制—典型值

44 dB at 100 Hz

产品目录页面

点击此处下载产品Datasheet

产品种类

低压差稳压器

供应商器件封装

SOT-89-3

其它名称

MCP1702T-1502E/MBTR
MCP1702T1502EMB

包装

带卷 (TR)

商标

Microchip Technology

回动电压—最大值

1.1 V

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

TO-243AA

封装/箱体

SOT-89-3

工作温度

-40°C ~ 125°C

工厂包装数量

1000

最大工作温度

+ 125 C

最大输入电压

13.2 V

最小工作温度

- 40 C

最小输入电压

2.7 V

标准包装

1,000

电压-跌落(典型值)

-

电压-输入

2.7 V ~ 13.2 V

电压-输出

1.5V

电流-输出

200mA

电流-限制(最小值)

-

稳压器拓扑

正,固定式

稳压器数

1

线路调整率

0.3 %/V

负载调节

2.5 %

输出电压

1.5 V

输出电流

200 mA

输出端数量

1 Output

输出类型

Fixed

推荐商品

型号:LP38502TS-ADJ/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LP3965EMP-3.3/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:UCC384DPTR-5

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LP38693SD-1.8/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TLV70512YFPR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:NCV1117DT15RKG

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:TPS79318DBVRQ1

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TLV117112DCYT

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
MCP1702T-1502E/MB 相关产品

LP38691SD-5.0/NOPB

品牌:Texas Instruments

价格:¥5.46-¥12.29

NCV8668ABD133R2G

品牌:ON Semiconductor

价格:

LT1965IT-2.5#PBF

品牌:Linear Technology/Analog Devices

价格:

UC385T-1

品牌:Texas Instruments

价格:¥37.76-¥69.80

MC79L12ABP

品牌:ON Semiconductor

价格:¥3.07-¥3.21

TC1072-2.85VCH713

品牌:Microchip Technology

价格:

MC78L09ACDR2

品牌:ON Semiconductor

价格:

L78L10ACUTR

品牌:STMicroelectronics

价格:¥0.95-¥0.95

PDF Datasheet 数据手册内容提取

MCP1702 250 mA Low Quiescent Current LDO Regulator Features Description • 2.0µA Quiescent Current (typical) The MCP1702 is a family of CMOS low dropout (LDO) • Input Operating Voltage Range: 2.7V to 13.2V voltage regulators that can deliver up to 250mA of current while consuming only 2.0µA of quiescent • 250mA Output Current for Output Voltages ≥ 2.5V current (typical). The input operating range is specified • 200mA Output Current for Output Voltages < 2.5V from 2.7V to 13.2V, making it an ideal choice for two to • Low Dropout (LDO) voltage six primary cell battery-powered applications, 9V - 625mV typical @ 250mA (VOUT = 2.8V) alkaline and one or two cell Li-Ion-powered • 0.4% Typical Output Voltage Tolerance applications. • Standard Output Voltage Options: The MCP1702 is capable of delivering 250mA with - 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, only 625mV (typical) of input to output voltage 3.0V, 3.3V, 4.0V, 5.0V differential (VOUT=2.8V). The output voltage tolerance of the MCP1702 is typically ±0.4% at +25°C and ±3% • Output voltage range 1.2V to 5.5V in 0.1V maximum over the operating junction temperature Increments (50mV increments available upon range of -40°C to +125°C. Line regulation is ±0.1% request) typical at +25°C. • Stable with 1.0µF to 22µF Output Capacitor Output voltages available for the MCP1702 range from • Short-Circuit Protection 1.2V to 5.0V. The LDO output is stable when using only • Overtemperature Protection 1µF of output capacitance. Ceramic, tantalum or aluminum electrolytic capacitors can all be used for Applications input and output. Overcurrent limit and • Battery-powered Devices overtemperature shutdown provide a robust solution for any application. • Battery-powered Alarm Circuits • Smoke Detectors Package options include the SOT-23A, SOT-89-3, and • CO2 Detectors TO-92. • Pagers and Cellular Phones Package Types • Smart Battery Packs • Low Quiescent Current Voltage Reference 3-Pin SOT-23A 3-Pin SOT-89 • PDAs VIN VIN • Digital Cameras 3 • Microcontroller Power MCP1702 • Solar-Powered Instruments MCP1702 • Consumer Products 1 2 3 1 2 • Battery Powered Data Loggers GND VOUT GNDVINVOUT Related Literature 3-Pin TO-92 • AN765, “Using Microchip’s Micropower LDOs”, 1 23 DS00765, Microchip Technology Inc., 2002 • AN766, “Pin-Compatible CMOS Upgrades to BiPolar LDOs”, DS00766, Bottom Microchip Technology Inc., 2002 View • AN792, “A Method to Determine How Much Power a SOT-23 Can Dissipate in an Application”, DS00792, Microchip Technology Inc., 2001 GNDVIN VOUT © 2009 Microchip Technology Inc. DS22008D-page 1

MCP1702 Functional Block Diagrams MCP1702 V V IN OUT Error Amplifier +V IN Voltage - Reference + Overcurrent Overtemperature GND Typical Application Circuits MCP1702 V OUT 3.3V V OUT VIN IOUT VIN COUT 50mA 9V + CIN GND 1µF Ceramic Battery 1µF Ceramic DS22008D-page 2 © 2009 Microchip Technology Inc.

MCP1702 1.0 ELECTRICAL † Notice: Stresses above those listed under “Maximum Rat- ings” may cause permanent damage to the device. This is a CHARACTERISTICS stress rating only and functional operation of the device at those or any other conditions above those indicated in the Absolute Maximum Ratings † operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods VDD...............................................................................+14.5V may affect device reliability. All inputs and outputs w.r.t. .............(V -0.3V) to (V +0.3V) SS IN Peak Output Current...................................................500mA Storage temperature.....................................-65°C to +150°C Maximum Junction Temperature...................................150°C ESD protection on all pins (HBM;MM)...............≥ 4kV; ≥ 400V DC CHARACTERISTICS Electrical Specifications: Unless otherwise specified, all limits are established for V = V + V , Note1, IN OUT(MAX) DROPOUT(MAX) I = 100µA, C = 1µF (X7R), C = 1µF (X7R), T = +25°C. LOAD OUT IN A Boldface type applies for junction temperatures, T of -40°C to +125°C. (Note7) J Parameters Sym Min Typ Max Units Conditions Input / Output Characteristics Input Operating Voltage V 2.7 — 13.2 V Note1 IN Input Quiescent Current I — 2.0 5 µA I = 0mA q L Maximum Output Current I 250 — — mA For V ≥ 2.5V OUT_mA R 50 100 — mA For V < 2.5V, V ≥ 2.7V R IN 100 130 — mA For V < 2.5V, V ≥ 2.95V R IN 150 200 — mA For V < 2.5V, V ≥ 3.2V R IN 200 250 — mA For V < 2.5V, V ≥ 3.45V R IN Output Short Circuit Current I — 400 — mA V = V (Note1), V = GND, OUT_SC IN IN(MIN) OUT Current (average current) measured 10ms after short is applied. Output Voltage Regulation V V -3.0% V ±0.4% V +3.0% V Note2 OUT R R R V -2.0% V ±0.4% V +2.0% V R R R V -1.0% V ±0.4% V +1.0% V 1% Custom R R R V Temperature TCV — 50 — ppm/°C Note3 OUT OUT Coefficient Line Regulation ΔV / -0.3 ±0.1 +0.3 %/V (V + V ) OUT OUT(MAX) DROPOUT(MAX) (V XΔV ) ≤ V ≤ 13.2V, (Note1) OUT IN IN Load Regulation ΔV /V -2.5 ±1.0 +2.5 % I = 1.0mA to 250mA for V ≥ 2.5V OUT OUT L R I = 1.0mA to 200mA for V < 2.5V, L R V = 3.45V (Note4) IN Note 1: The minimum V must meet two conditions: V ≥ 2.7V and V ≥ V + V . IN IN IN OUT(MAX) DROPOUT(MAX) 2: V is the nominal regulator output voltage. For example: V = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, or 5.0V. The R R input voltage V = V + V or V = 2.7V (whichever is greater); I = 100µA. IN OUT(MAX) DROPOUT(MAX) IN OUT 3: TCV = (V - V ) *106 / (V * ΔTemperature), V = highest voltage measured over the OUT OUT-HIGH OUT-LOW R OUT-HIGH temperature range. V = lowest voltage measured over the temperature range. OUT-LOW 4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are determined using thermal regulation specification TCV . OUT 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured value with an applied input voltage of V + V or 2.7V, whichever is greater. OUT(MAX) DROPOUT(MAX) 6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T , T , θ ). Exceeding the maximum allowable power A J JA dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability. 7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the ambient temperature is not significant. © 2009 Microchip Technology Inc. DS22008D-page 3

MCP1702 DC CHARACTERISTICS (CONTINUED) Electrical Specifications: Unless otherwise specified, all limits are established for V = V + V , Note1, IN OUT(MAX) DROPOUT(MAX) I = 100µA, C = 1µF (X7R), C = 1µF (X7R), T = +25°C. LOAD OUT IN A Boldface type applies for junction temperatures, T of -40°C to +125°C. (Note7) J Parameters Sym Min Typ Max Units Conditions Dropout Voltage V — 330 650 mV I = 250mA, V = 5.0V DROPOUT L R (Note1, Note5) — 525 725 mV I = 250mA, 3.3V ≤ V < 5.0V L R — 625 975 mV I = 250mA, 2.8V ≤ V < 3.3V L R — 750 1100 mV I = 250mA, 2.5V ≤ V < 2.8V L R — — — mV V < 2.5V, See Maximum Output R Current Parameter Output Delay Time T — 1000 — µs V = 0V to 6V, V = 90% V DELAY IN OUT R R = 50Ω resistive L Output Noise e — 8 — µV/(Hz)1/2 I = 50mA, f = 1kHz, C = 1µF N L OUT Power Supply Ripple PSRR — 44 — dB f = 100Hz, C = 1µF, I = 50mA, OUT L Rejection Ratio V = 100mV pk-pk, C = 0µF, INAC IN V =1.2V R Thermal Shutdown T — 150 — °C SD Protection Note 1: The minimum V must meet two conditions: V ≥ 2.7V and V ≥ V + V . IN IN IN OUT(MAX) DROPOUT(MAX) 2: V is the nominal regulator output voltage. For example: V = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, or 5.0V. The R R input voltage V = V + V or V = 2.7V (whichever is greater); I = 100µA. IN OUT(MAX) DROPOUT(MAX) IN OUT 3: TCV = (V - V ) *106 / (V * ΔTemperature), V = highest voltage measured over the OUT OUT-HIGH OUT-LOW R OUT-HIGH temperature range. V = lowest voltage measured over the temperature range. OUT-LOW 4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are determined using thermal regulation specification TCV . OUT 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured value with an applied input voltage of V + V or 2.7V, whichever is greater. OUT(MAX) DROPOUT(MAX) 6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T , T , θ ). Exceeding the maximum allowable power A J JA dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability. 7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the ambient temperature is not significant. DS22008D-page 4 © 2009 Microchip Technology Inc.

MCP1702 TEMPERATURE SPECIFICATIONS (NOTE 1) Parameters Sym Min Typ Max Units Conditions Temperature Ranges Operating Junction Temperature Range T -40 +125 °C Steady State J Maximum Junction Temperature T — +150 °C Transient J Storage Temperature Range T -65 +150 °C A Thermal Package Resistance (Note2) Thermal Resistance, 3L-SOT-23A EIA/JEDEC JESD51-7 θ — 336 — °C/W JA FR-4 0.063 4-Layer Board θ — 110 — °C/W JC Thermal Resistance, 3L-SOT-89 EIA/JEDEC JESD51-7 θ — 153.3 — °C/W JA FR-4 0.063 4-Layer Board θ — 100 — °C/W JC Thermal Resistance, 3L-TO-92 θ — 131.9 — °C/W JA θ — 66.3 — °C/W JC Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T , T , θ ). Exceeding the maximum allowable power A J JA dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability. 2: Thermal Resistance values are subject to change. Please visit the Microchip Website for the latest packaging information. © 2009 Microchip Technology Inc. DS22008D-page 5

MCP1702 NOTES: DS22008D-page 6 © 2009 Microchip Technology Inc.

MCP1702 2.0 TYPICAL PERFORMANCE CURVES Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. Note: Unless otherwise indicated: V = 2.8V, C = 1µF Ceramic (X7R), C = 1µF Ceramic (X7R), I = 100µA, R OUT IN L T = +25°C, V = V + V . A IN OUT(MAX) DROPOUT(MAX) Note: Junction Temperature (T) is approximated by soaking the device under test to an ambient temperature equal to the desired junction J temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant. 5.00 120.00 VOUT= 1.2V Temperature = +25°C nt Current (µA) 234...000000 +25°C +90°C +130°C 0°C Current (µA) 1068000...000000 VVOINU =T =2 .17.V2V ce D 40.00 s N uie 1.00 -45°C G 20.00 Q 0.00 0.00 2 4 6 8 10 12 14 0 40 80 120 160 200 Input Voltage (V) Load Current (mA) FIGURE 2-1: Quiescent Current vs. Input FIGURE 2-4: Ground Current vs. Load Voltage. Current. 5.00 120.00 VOUT= 2.8V Temperature = +25°C A) 100.00 nt Current (µ 234...000000 +25°C +90°C +130°C Current (µA) 6800..0000 VVOINU =T =6 .50.V0V sce 0°C ND 40.00 VOUT = 2.8V uie 1.00 -45°C G 20.00 VIN = 3.8V Q 0.00 0.00 3 5 7 9 11 13 0 50 100 150 200 250 Input Voltage (V) Load Current (mA) FIGURE 2-2: Quiescent Current vs.Input FIGURE 2-5: Ground Current vs. Load Voltage. Current. 5.00 3.00 nt (µA) 4.00 +130°C VOUT= 5.0V nt (µA) 22..0500 VVOINU =T =3 .28.V8V VVOINU =T =6 .50.V0V IOUT= 0 mA e e Curr 3.00 Curr 1.50 ent +90°C ent 1.00 VVOINU =T =2 .17.V2V esc 2.00 +25°C 0°C esc ui ui 0.50 Q -45°C Q 1.00 0.00 6 7 8 9 10 11 12 13 14 -45 -20 5 30 55 80 105 130 Input Voltage (V) Junction Temperature (°C) FIGURE 2-3: Quiescent Current vs.Input FIGURE 2-6: Quiescent Current vs. Voltage. Junction Temperature. © 2009 Microchip Technology Inc. DS22008D-page 7

MCP1702 Note: Unless otherwise indicated: V = 2.8V, C = 1µF Ceramic (X7R), C = 1µF Ceramic (X7R), I = 100µA, R OUT IN L T = +25°C, V = V + V . A IN OUT(MAX) DROPOUT(MAX) 1.24 1.23 VOUT = 1.2V VOUT= 1.2V V) 1.23 -45°C ILOAD = 0.1 mA V) 1.22 -45°C 0°C e ( 1.22 0°C e ( ag ag 1.21 olt 1.21 olt +25°C V V utput 1.20 +90°C +130°C utput 1.20 +130°C +90°C O 1.19 +25°C O 1.19 1.18 1.18 2 4 6 8 10 12 14 0 20 40 60 80 100 Input Voltage (V) Load Current (mA) FIGURE 2-7: Output Voltage vs. Input FIGURE 2-10: Output Voltage vs. Load Voltage. Current. 2.85 2.83 2.84 VILOOUADT == 20..81V mA 2.82 VOUT= 2.8V ge (V) 22..8823 +90°C +130°C ge (V) 2.81 +90°C +130°C a a olt 2.81 olt 2.80 V V put 2.80 put 2.79 Out 2.79 0°C -45°C Out 2.78 +25°C 0°C 2.78 +25°C -45°C 2.77 2.77 3 4 5 6 7 8 9 10 11 12 13 14 0 50 100 150 200 250 Input Voltage (V) Load Current (mA) FIGURE 2-8: Output Voltage vs. Input FIGURE 2-11: Output Voltage vs. Load Voltage. Current. 5.04 e (V) 55..0046 VILOOUATD == 50..01V +m90A°C +130°C e (V) 55..0023 +130°C +90°C VOUT= 5.0V g g 5.01 olta 5.02 olta 5.00 V V ut 5.00 ut 4.99 0°C utp 0°C -45°C utp 4.98 O 4.98 O +25°C 4.97 -45°C +25°C 4.96 4.96 6 7 8 9 10 11 12 13 14 0 50 100 150 200 250 Input Voltage (V) Load Current (mA) FIGURE 2-9: Output Voltage vs. Input FIGURE 2-12: Output Voltage vs. Load Voltage. Current. DS22008D-page 8 © 2009 Microchip Technology Inc.

MCP1702 Note: Unless otherwise indicated: V = 2.8V, C = 1µF Ceramic (X7R), C = 1µF Ceramic (X7R), I = 100µA, R OUT IN L T = +25°C, V = V + V . A IN OUT(MAX) DROPOUT(MAX) 1.40 1.30 VOUT = 1.8V +130°C age (V) 11..1200 +25°C +90°C Volt 1.00 ut 0.90 0°C o -45°C p o 0.80 Dr 0.70 0.60 100 120 140 160 180 200 Load Current (mA) FIGURE 2-13: Dropout Voltage vs. Load FIGURE 2-16: Dynamic Line Response. Current. 1.00 0.90 VOUT = 2.8V ge (V) 00..7800 +90°C +130°C a 0.60 Volt 0.50 +25°C pout 00..3400 +0°C o -45°C Dr 0.20 0.10 0.00 0 25 50 75 100 125 150 175 200 225 250 Load Current (mA) FIGURE 2-14: Dropout Voltage vs. Load FIGURE 2-17: Dynamic Line Response. Current. 0.50 600.00 0.45 VOUT = 5.0V A) VOUT = 2.8V pout Voltage (V) 000000......122334505050 +25°C+90°C +130°C +0°C Circuit Current (m 234500000000....00000000 ROUT < 0.1(cid:2) Dro 0.10 -45°C ort 100.00 0.05 Sh 0.00 0.00 0 25 50 75 100 125 150 175 200 225 250 4 6 8 10 12 14 Load Current (mA) Input Voltage (V) FIGURE 2-15: Dropout Voltage vs. Load FIGURE 2-18: Short Circuit Current vs. Current. Input Voltage. © 2009 Microchip Technology Inc. DS22008D-page 9

MCP1702 Note: Unless otherwise indicated: V = 2.8V, C = 1µF Ceramic (X7R), C = 1µF Ceramic (X7R), I = 100µA, R OUT IN L T = +25°C, V = V + V . A IN OUT(MAX) DROPOUT(MAX) 0.20 0.20 0.15 VIN = 6V VOUT= 1.2V on (%) 00..0150 n (%/V) 0.16 VIN = 2.7V to 13.2V Load Regulati -----000000......221100505050 VIVLOIONUA =TD ==4 V10..21V mVAIN t=o 1200V0 mAVIN = 12V VIN = 13.2V Line Regulatio 000...001482 1 mA 100 mA 0 mA -0.30 0.00 -45 -20 5 30 55 80 105 130 -45 -20 5 30 55 80 105 130 Temperature (°C) Temperature (°C) FIGURE 2-19: Load Regulation vs. FIGURE 2-22: Line Regulation vs. Temperature. Temperature. 0.40 0.20 0.30 VOUT = 2.8V VOUT = 2.8V gulation (%) -0000....10120000 ILOAD = 1 mA to 250 mA ulation (%/V) 00..1126 VIN = 3.8V to 13.2V 200 mA 250 mA Re -0.20 VIN = 6V eg 0.08 0 mA Load ---000...543000 VIN = 1V0IVN = 3.8V VIN = 13.2V Line R 0.04 100 mA -0.60 0.00 -45 -20 5 30 55 80 105 130 -45 -20 5 30 55 80 105 130 Temperature (°C) Temperature (°C) FIGURE 2-20: Load Regulation vs. FIGURE 2-23: Line Regulation vs. Temperature. Temperature. 0.40 0.16 VOUT = 5.0V VOUT = 5.0V gulation (%) 00..2300 VIN = 6V ILOAD = 1 mA to 250 mA ulation (%/V) 00..1124 VIN = 6.0V to 130. 2mVA 250 mA200 mA e 0.10 g 0.10 oad R 0.00 VIN = 10V VIN = 8V ne Re 0.08 100 mA L VIN = 13.2V Li -0.10 0.06 -45 -20 5 30 55 80 105 130 -45 -20 5 30 55 80 105 130 Temperature (°C) Temperature (°C) FIGURE 2-21: Load Regulation vs. FIGURE 2-24: Line Regulation vs. Temperature. Temperature. DS22008D-page 10 © 2009 Microchip Technology Inc.

MCP1702 Note: Unless otherwise indicated: V = 2.8V, C = 1µF Ceramic (X7R), C = 1µF Ceramic (X7R), I = 100µA, R OUT IN L T = +25°C, V = V + V . A IN OUT(MAX) DROPOUT(MAX) 0 -10 -20 B)-30 d-40 R ( PSR--6500 VCRO=UT1=.21V.0 μF ceramic X7R -70 VIN=2.7V CIN=0 μF -80 IOUT=1.0 mA -90 0.01 0.1 1 10 100 1000 Frequency (kHz) FIGURE 2-25: Power Supply Ripple FIGURE 2-28: Power Up Timing. Rejection vs. Frequency. 0 -10 -20 B)-30 d-40 R ( PSR--6500 VCRO=U5T=.01V.0 μF ceramic X7R -70 VIN=6.0V CIN=0 μF -80 IOUT=1.0 mA -90 0.01 0.1 1 10 100 1000 Frequency (kHz) FIGURE 2-26: Power Supply Ripple FIGURE 2-29: Dynamic Load Response. Rejection vs. Frequency. 100 VR=5.0V, VIN=6.0V IOUT=50 mA 10 (cid:3)Hz) 1 VR=2,8V, VIN=3.8V V/ μ se ( 0.1 VR=1.2V, VIN=2.7V oi N 0.01 0.001 0.01 0.1 1 10 100 1000 Frequency (kHz) FIGURE 2-27: Output Noise vs. Frequency. FIGURE 2-30: Dynamic Load Response. © 2009 Microchip Technology Inc. DS22008D-page 11

MCP1702 NOTES: DS22008D-page 12 © 2009 Microchip Technology Inc.

MCP1702 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table3-1. TABLE 3-1: PIN FUNCTION TABLE Pin No. Pin No. Pin No. Symbol Function SOT-23A SOT-89 TO-92 1 1 1 GND Ground Terminal 2 3 3 V Regulated Voltage Output OUT 3 2, Tab 2 V Unregulated Supply Voltage IN – – – NC No connection 3.1 Ground Terminal (GND) 3.3 Unregulated Input Voltage Pin (V ) Regulator ground. Tie GND to the negative side of the IN output and the negative side of the input capacitor. Connect V to the input unregulated source voltage. IN Only the LDO bias current (2.0µA typical) flows out of Like all LDO linear regulators, low source impedance is this pin; there is no high current. The LDO output necessary for the stable operation of the LDO. The regulation is referenced to this pin. Minimize voltage amount of capacitance required to ensure low source drops between this pin and the negative side of the impedance will depend on the proximity of the input load. source capacitors or battery type. For most applications, 1µF of capacitance will ensure stable 3.2 Regulated Output Voltage (V ) operation of the LDO circuit. For applications that have OUT load currents below 100mA, the input capacitance Connect V to the positive side of the load and the OUT requirement can be lowered. The type of capacitor positive terminal of the output capacitor. The positive used can be ceramic, tantalum or aluminum side of the output capacitor should be physically electrolytic. The low ESR characteristics of the ceramic located as close to the LDO V pin as is practical. OUT will yield better noise and PSRR performance at The current flowing out of this pin is equal to the DC high-frequency. load current. © 2009 Microchip Technology Inc. DS22008D-page 13

MCP1702 NOTES: DS22008D-page 14 © 2009 Microchip Technology Inc.

MCP1702 4.0 DETAILED DESCRIPTION 4.1 Output Regulation 4.3 Overtemperature A portion of the LDO output voltage is fed back to the The internal power dissipation within the LDO is a internal error amplifier and compared with the precision function of input-to-output voltage differential and load internal bandgap reference. The error amplifier output current. If the power dissipation within the LDO is will adjust the amount of current that flows through the excessive, the internal junction temperature will rise P-Channel pass transistor, thus regulating the output above the typical shutdown threshold of 150°C. At that voltage to the desired value. Any changes in input point, the LDO will shut down and begin to cool to the voltage or output current will cause the error amplifier typical turn-on junction temperature of 130°C. If the to respond and adjust the output voltage to the target power dissipation is low enough, the device will voltage (refer to Figure4-1). continue to cool and operate normally. If the power dissipation remains high, the thermal shutdown 4.2 Overcurrent protection circuitry will again turn off the LDO, protecting it from catastrophic failure. The MCP1702 internal circuitry monitors the amount of current flowing through the P-Channel pass transistor. In the event of a short-circuit or excessive output current, the MCP1702 will turn off the P-Channel device for a short period, after which the LDO will attempt to restart. If the excessive current remains, the cycle will repeat itself. MCP1702 V V IN OUT Error Amplifier +V IN Voltage - Reference + Overcurrent Overtemperature GND FIGURE 4-1: Block Diagram. © 2009 Microchip Technology Inc. DS22008D-page 15

MCP1702 NOTES: DS22008D-page 16 © 2009 Microchip Technology Inc.

MCP1702 5.0 FUNCTIONAL DESCRIPTION 5.2 Output The MCP1702 CMOS LDO linear regulator is intended The maximum rated continuous output current for the for applications that need the lowest current MCP1702 is 250mA (VR ≥ 2.5V). For applications consumption while maintaining output voltage where VR < 2.5V, the maximum output current is regulation. The operating continuous load range of the 200mA. MCP1702 is from 0mA to 250mA (VR ≥ 2.5V). The A minimum output capacitance of 1.0µF is required for input operating voltage range is from 2.7V to 13.2V, small signal stability in applications that have up to making it capable of operating from two or more 250mA output current capability. The capacitor type alkaline cells or single and multiple Li-Ion cell batteries. can be ceramic, tantalum or aluminum electrolytic. The esr range on the output capacitor can range from 0Ω to 5.1 Input 2.0Ω. The input of the MCP1702 is connected to the source The output capacitor range for ceramic capacitors is of the P-Channel PMOS pass transistor. As with all 1µF to 22µF. Higher output capacitance values may LDO circuits, a relatively low source impedance (10Ω) be used for tantalum and electrolytic capacitors. Higher is needed to prevent the input impedance from causing output capacitor values pull the pole of the LDO the LDO to become unstable. The size and type of the transfer function inward that results in higher phase capacitor needed depends heavily on the input source shifts which in turn cause a lower crossover frequency. type (battery, power supply) and the output current The circuit designer should verify the stability by range of the application. For most applications (up to applying line step and load step testing to their system 100mA), a 1µF ceramic capacitor will be sufficient to when using capacitance values greater than 22µF. ensure circuit stability. Larger values can be used to improve circuit AC performance. 5.3 Output Rise Time When powering up the internal reference output, the typical output rise time of 500µs is controlled to prevent overshoot of the output voltage. There is also a startup delay time that ranges from 300µs to 800µs based on loading. The startup time is separate from and precedes the Output Rise Time. The total output delay is the Startup Delay plus the Output Rise time. © 2009 Microchip Technology Inc. DS22008D-page 17

MCP1702 NOTES: DS22008D-page 18 © 2009 Microchip Technology Inc.

MCP1702 6.0 APPLICATION CIRCUITS AND EQUATION 6-2: ISSUES T = P ×Rθ +T J(MAX) TOTAL JA AMAX Where: 6.1 Typical Application T = Maximum continuous junction J(MAX) The MCP1702 is most commonly used as a voltage temperature regulator. It’s low quiescent current and low dropout P = Total device power dissipation TOTAL voltage makes it ideal for many battery-powered Rθ Thermal resistance from applications. JA junction to ambient T = Maximum ambient temperature AMAX MCP1702 VIN The maximum power dissipation capability for a VOUT GND (2.8V to 3.2V) package can be calculated given the junction-to- V 1.8V IN C ambient thermal resistance and the maximum ambient V IN OUT temperature for the application. The following equation I 1µF Ceramic OUT C can be used to determine the package maximum 150mA OUT 1µF Ceramic internal power dissipation. EQUATION 6-3: FIGURE 6-1: Typical Application Circuit. (T –T ) 6.1.1 APPLICATION INPUT CONDITIONS P = ------J---(--M----A---X---)------------A---(--M----A---X---)--- D(MAX) Rθ JA Package Type = SOT-23A Where: Input Voltage Range = 2.8V to 3.2V P = Maximum device power D(MAX) VIN maximum = 3.2V dissipation VOUT typical = 1.8V TJ(MAX) = Maximum continuous junction I = 150mA maximum temperature OUT T Maximum ambient temperature A(MAX) 6.2 Power Calculations Rθ = Thermal resistance from JA junction to ambient 6.2.1 POWER DISSIPATION The internal power dissipation of the MCP1702 is a function of input voltage, output voltage and output EQUATION 6-4: current. The power dissipation, as a result of the T = P ×Rθ quiescent current draw, is so low, it is insignificant J(RISE) D(MAX) JA (2.0µA x V ). The following equation can be used to IN Where: calculate the internal power dissipation of the LDO. T = Rise in device junction J(RISE) EQUATION 6-1: temperature over the ambient temperature P = (V –V )×I LDO IN(MAX)) OUT(MIN) OUT(MAX)) P = Maximum device power TOTAL Where: dissipation PLDO = LDO Pass device internal RθJA Thermal resistance from power dissipation junction to ambient V = Maximum input voltage IN(MAX) V = LDO minimum output voltage EQUATION 6-5: OUT(MIN) T = T +T J J(RISE) A The maximum continuous operating junction temperature specified for the MCP1702 is +125°C. To Where: estimate the internal junction temperature of the T = Junction Temperature J MCP1702, the total internal power dissipation is T = Rise in device junction multiplied by the thermal resistance from junction to J(RISE) temperature over the ambient ambient (Rθ ). The thermal resistance from junction to JA temperature ambient for the SOT-23A pin package is estimated at 336°C/W. TA Ambient temperature © 2009 Microchip Technology Inc. DS22008D-page 19

MCP1702 6.3 Voltage Regulator Junction Temperature Estimate Internal power dissipation, junction temperature rise, To estimate the internal junction temperature, the junction temperature and maximum power dissipation calculated temperature rise is added to the ambient or are calculated in the following example. The power offset temperature. For this example, the worst-case dissipation, as a result of ground current, is small junction temperature is estimated below. enough to be neglected. T = T + T J JRISE A(MAX) 6.3.1 POWER DISSIPATION EXAMPLE T = 113.3°C J Package Maximum Package Power Dissipation at +40°C Package Type = SOT-23A Ambient Temperature Input Voltage SOT-23 (336.0°C/Watt = Rθ ) JA V = 2.8V to 3.2V IN P = (+125°C - 40°C) / 336°C/W D(MAX) LDO Output Voltages and Currents P = 253 milli-Watts D(MAX) V = 1.8V OUT SOT-89 (52°C/Watt = Rθ ) JA I = 150mA OUT P = (+125°C - 40°C) / 52°C/W D(MAX) Maximum Ambient Temperature P = 1.635 Watts D(MAX) T = +40°C A(MAX) TO92 (131.9°C/Watt = Rθ ) JA Internal Power Dissipation P = (+125°C - 40°C) / 131.9°C/W D(MAX) Internal Power dissipation is the product of the LDO P = 644 milli-Watts output current times the voltage across the LDO D(MAX) (V to V ). IN OUT 6.4 Voltage Reference P = (V - V ) x LDO(MAX) IN(MAX) OUT(MIN) I The MCP1702 can be used not only as a regulator, but OUT(MAX) also as a low quiescent current voltage reference. In P = (3.2V - (0.97 x 1.8V)) x 150mA LDO many microcontroller applications, the initial accuracy PLDO = 218.1 milli-Watts of the reference can be calibrated using production test equipment or by using a ratio measurement. When the Device Junction Temperature Rise initial accuracy is calibrated, the thermal stability and line regulation tolerance are the only errors introduced The internal junction temperature rise is a function of by the MCP1702 LDO. The low-cost, low quiescent internal power dissipation and the thermal resistance current and small ceramic output capacitor are all from junction to ambient for the application. The advantages when using the MCP1702 as a voltage thermal resistance from junction to ambient (Rθ ) is JA reference. derived from an EIA/JEDEC standard for measuring thermal resistance for small surface mount packages. The EIA/JEDEC specification is JESD51-7, “High Ratio Metric Reference Effective Thermal Conductivity Test Board for Leaded 2 µA Bias PIC® Surface Mount Packages”. The standard describes the MCP1702 Microcontroller test method and board specifications for measuring the V tthheerrmmaall rreessiissttaannccee ffroorm a jpuanrcttiicounla tro aapmpblicieantito. nT hcea na cvtaurayl C1IµNF GINNVDOUT C1OµUFT VREF depending on many factors, such as copper area and ADO thickness. Refer to AN792, “A Method to Determine AD1 How Much Power a SOT-23 Can Dissipate in an Application”, (DS00792), for more information regarding this subject. Bridge Sensor TJ(RISE) = PTOTAL x RqJA FIGURE 6-2: Using the MCP1702 as a TJRISE = 218.1 milli-Watts x 336.0°C/Watt Voltage Reference. TJRISE = 73.3°C DS22008D-page 20 © 2009 Microchip Technology Inc.

MCP1702 6.5 Pulsed Load Applications For some applications, there are pulsed load current events that may exceed the specified 250mA maximum specification of the MCP1702. The internal current limit of the MCP1702 will prevent high peak load demands from causing non-recoverable damage. The 250mA rating is a maximum average continuous rating. As long as the average current does not exceed 250mA, pulsed higher load currents can be applied to the MCP1702. The typical current limit for the MCP1702 is 500mA (T +25°C). A © 2009 Microchip Technology Inc. DS22008D-page 21

MCP1702 NOTES: DS22008D-page 22 © 2009 Microchip Technology Inc.

MCP1702 7.0 PACKAGING INFORMATION 7.1 Package Marking Information 3-Pin SOT-23A Example: Standard Extended Temp Symbol Voltage * Symbol Voltage * XXNN HA 1.2 HF 3.0 HANN HB 1.5 HG 3.3 HC 1.8 HH 4.0 HD 2.5 HJ 5.0 HE 2.8 — — Custom GD 4.1 — — * Custom output voltages available upon request. Contact your local Microchip sales office for more information. 3-Lead SOT-89 Example Standard Extended Temp XXXYYWW Symbol Voltage * Symbol Voltage * HA0924 NNN HA 1.2 HF 3.0 256 HB 1.5 HG 3.3 HC 1.8 HH 4.0 HD 2.5 HJ 5.0 HE 2.8 — — * Custom output voltages available upon request. Contact your local Microchip sales office for more information. 3-Lead TO-92 Example XXXXXX 1702 XXXXXX 1202E XXXXXX TO^e^3 YWWNNN 924256 Legend: XX...X Customer-specific information Y Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week ‘01’) NNN Alphanumeric traceability code e3 Pb-free JEDEC designator for Matte Tin (Sn) * This package is Pb-free. The Pb-free JEDEC designator ( e 3 ) can be found on the outer packaging for this package. Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. © 2009 Microchip Technology Inc. DS22008D-page 23

MCP1702 (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)(cid:15)(cid:16)(cid:6)(cid:10)(cid:10)(cid:8)(cid:17)(cid:18)(cid:12)(cid:10)(cid:13)(cid:19)(cid:5)(cid:8)(cid:20)(cid:21)(cid:6)(cid:19)(cid:11)(cid:13)(cid:11)(cid:12)(cid:22)(cid:21)(cid:8)(cid:23)(cid:24)(cid:25)(cid:26)(cid:8)(cid:27)(cid:15)(cid:17)(cid:20)(cid:3)(cid:28)(cid:2)(cid:29)(cid:30) (cid:31)(cid:22)(cid:12)(cid:5) .(cid:22)(cid:21)(cid:14)#(cid:23)(cid:13)(cid:14)(cid:31)(cid:22) #(cid:14)(cid:20)$(cid:21)(cid:21)(cid:13)(cid:25)#(cid:14)(cid:10)(cid:11)(cid:20)/(cid:11)(cid:12)(cid:13)(cid:14)!(cid:21)(cid:11)-(cid:19)(cid:25)(cid:12) 0(cid:14)(cid:10)(cid:26)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)#(cid:23)(cid:13)(cid:14)(cid:18)(cid:19)(cid:20)(cid:21)(cid:22)(cid:20)(cid:23)(cid:19)(cid:10)(cid:14)1(cid:11)(cid:20)/(cid:11)(cid:12)(cid:19)(cid:25)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:20)(cid:19)%(cid:19)(cid:20)(cid:11)#(cid:19)(cid:22)(cid:25)(cid:14)(cid:26)(cid:22)(cid:20)(cid:11)#(cid:13)!(cid:14)(cid:11)#(cid:14) (cid:23)##(cid:10)+22---(cid:29)(cid:31)(cid:19)(cid:20)(cid:21)(cid:22)(cid:20)(cid:23)(cid:19)(cid:10)(cid:29)(cid:20)(cid:22)(cid:31)2(cid:10)(cid:11)(cid:20)/(cid:11)(cid:12)(cid:19)(cid:25)(cid:12) D e1 e 2 1 E E1 N b A A2 c φ A1 L 3(cid:25)(cid:19)# (cid:18)(cid:28)44(cid:28)(cid:18)"(cid:24)"(cid:8)(cid:3) (cid:2)(cid:19)(cid:31)(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)(cid:14)4(cid:19)(cid:31)(cid:19)# (cid:18)(cid:28)5 56(cid:18) (cid:18)(cid:7)7 5$(cid:31)8(cid:13)(cid:21)(cid:14)(cid:22)%(cid:14)1(cid:19)(cid:25) 5 (cid:15) 4(cid:13)(cid:11)!(cid:14)1(cid:19)#(cid:20)(cid:23) (cid:13) (cid:4)(cid:29)(cid:6)((cid:14))(cid:3)* 6$# (cid:19)!(cid:13)(cid:14)4(cid:13)(cid:11)!(cid:14)1(cid:19)#(cid:20)(cid:23) (cid:13)(cid:30) (cid:30)(cid:29)(cid:6)(cid:4)(cid:14))(cid:3)* 6,(cid:13)(cid:21)(cid:11)(cid:26)(cid:26)(cid:14)9(cid:13)(cid:19)(cid:12)(cid:23)# (cid:7) (cid:4)(cid:29):(cid:6) ; (cid:30)(cid:29)(cid:5)( (cid:18)(cid:22)(cid:26)!(cid:13)!(cid:14)1(cid:11)(cid:20)/(cid:11)(cid:12)(cid:13)(cid:14)(cid:24)(cid:23)(cid:19)(cid:20)/(cid:25)(cid:13) (cid:7)(cid:16) (cid:4)(cid:29)(cid:6)(cid:4) ; (cid:30)(cid:29)(cid:15)(cid:4) (cid:3)#(cid:11)(cid:25)!(cid:22)%% (cid:7)(cid:30) (cid:4)(cid:29)(cid:4)(cid:4) ; (cid:4)(cid:29)(cid:30)( 6,(cid:13)(cid:21)(cid:11)(cid:26)(cid:26)(cid:14)<(cid:19)!#(cid:23) " (cid:16)(cid:29)(cid:30)(cid:4) ; (cid:15)(cid:29)(cid:4)(cid:4) (cid:18)(cid:22)(cid:26)!(cid:13)!(cid:14)1(cid:11)(cid:20)/(cid:11)(cid:12)(cid:13)(cid:14)<(cid:19)!#(cid:23) "(cid:30) (cid:30)(cid:29)(cid:16)(cid:4) ; (cid:30)(cid:29):(cid:4) 6,(cid:13)(cid:21)(cid:11)(cid:26)(cid:26)(cid:14)4(cid:13)(cid:25)(cid:12)#(cid:23) (cid:2) (cid:16)(cid:29)(cid:17)(cid:4) ; (cid:15)(cid:29)(cid:30)(cid:4) .(cid:22)(cid:22)#(cid:14)4(cid:13)(cid:25)(cid:12)#(cid:23) 4 (cid:4)(cid:29)(cid:30)( ; (cid:4)(cid:29)=(cid:4) .(cid:22)(cid:22)#(cid:14)(cid:7)(cid:25)(cid:12)(cid:26)(cid:13) (cid:3) (cid:4)> ; (cid:15)(cid:4)> 4(cid:13)(cid:11)!(cid:14)(cid:24)(cid:23)(cid:19)(cid:20)/(cid:25)(cid:13) (cid:20) (cid:4)(cid:29)(cid:4)(cid:6) ; (cid:4)(cid:29)(cid:16)= 4(cid:13)(cid:11)!(cid:14)<(cid:19)!#(cid:23) 8 (cid:4)(cid:29)(cid:15)(cid:4) ; (cid:4)(cid:29)((cid:30) (cid:31)(cid:22)(cid:12)(cid:5)(cid:11) (cid:30)(cid:29) (cid:2)(cid:19)(cid:31)(cid:13)(cid:25) (cid:19)(cid:22)(cid:25) (cid:14)(cid:2)(cid:14)(cid:11)(cid:25)!(cid:14)"(cid:30)(cid:14)!(cid:22)(cid:14)(cid:25)(cid:22)#(cid:14)(cid:19)(cid:25)(cid:20)(cid:26)$!(cid:13)(cid:14)(cid:31)(cid:22)(cid:26)!(cid:14)%(cid:26)(cid:11) (cid:23)(cid:14)(cid:22)(cid:21)(cid:14)(cid:10)(cid:21)(cid:22)#(cid:21)$ (cid:19)(cid:22)(cid:25) (cid:29)(cid:14)(cid:18)(cid:22)(cid:26)!(cid:14)%(cid:26)(cid:11) (cid:23)(cid:14)(cid:22)(cid:21)(cid:14)(cid:10)(cid:21)(cid:22)#(cid:21)$ (cid:19)(cid:22)(cid:25) (cid:14) (cid:23)(cid:11)(cid:26)(cid:26)(cid:14)(cid:25)(cid:22)#(cid:14)(cid:13)&(cid:20)(cid:13)(cid:13)!(cid:14)(cid:4)(cid:29)(cid:30)(cid:16)(cid:17)(cid:14)(cid:31)(cid:31)(cid:14)(cid:10)(cid:13)(cid:21)(cid:14) (cid:19)!(cid:13)(cid:29) (cid:16)(cid:29) (cid:2)(cid:19)(cid:31)(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)(cid:19)(cid:25)(cid:12)(cid:14)(cid:11)(cid:25)!(cid:14)#(cid:22)(cid:26)(cid:13)(cid:21)(cid:11)(cid:25)(cid:20)(cid:19)(cid:25)(cid:12)(cid:14)(cid:10)(cid:13)(cid:21)(cid:14)(cid:7)(cid:3)(cid:18)"(cid:14)’(cid:30)(cid:5)(cid:29)((cid:18)(cid:29) )(cid:3)*+ )(cid:11) (cid:19)(cid:20)(cid:14)(cid:2)(cid:19)(cid:31)(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)(cid:29)(cid:14)(cid:24)(cid:23)(cid:13)(cid:22)(cid:21)(cid:13)#(cid:19)(cid:20)(cid:11)(cid:26)(cid:26)(cid:27)(cid:14)(cid:13)&(cid:11)(cid:20)#(cid:14),(cid:11)(cid:26)$(cid:13)(cid:14) (cid:23)(cid:22)-(cid:25)(cid:14)-(cid:19)#(cid:23)(cid:22)$#(cid:14)#(cid:22)(cid:26)(cid:13)(cid:21)(cid:11)(cid:25)(cid:20)(cid:13) (cid:29) (cid:18)(cid:19)(cid:20)(cid:21)(cid:22)(cid:20)(cid:23)(cid:19)(cid:10)(cid:24)(cid:13)(cid:20)(cid:23)(cid:25)(cid:22)(cid:26)(cid:22)(cid:12)(cid:27)(cid:2)(cid:21)(cid:11)-(cid:19)(cid:25)(cid:12)*(cid:4)(cid:5)(cid:9)(cid:30)(cid:15)(cid:4)) DS22008D-page 24 © 2009 Microchip Technology Inc.

MCP1702 (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)(cid:15)(cid:16)(cid:6)(cid:10)(cid:10)(cid:8)(cid:17)(cid:18)(cid:12)(cid:10)(cid:13)(cid:19)(cid:5)(cid:8)(cid:20)(cid:21)(cid:6)(cid:19)(cid:11)(cid:13)(cid:11)(cid:12)(cid:22)(cid:21)(cid:8)!(cid:5)(cid:6)(cid:7)(cid:5)(cid:21)(cid:8)(cid:23)"(cid:25)(cid:26)(cid:8)(cid:27)(cid:15)(cid:17)(cid:20)(cid:3)#$(cid:30) (cid:31)(cid:22)(cid:12)(cid:5) .(cid:22)(cid:21)(cid:14)#(cid:23)(cid:13)(cid:14)(cid:31)(cid:22) #(cid:14)(cid:20)$(cid:21)(cid:21)(cid:13)(cid:25)#(cid:14)(cid:10)(cid:11)(cid:20)/(cid:11)(cid:12)(cid:13)(cid:14)!(cid:21)(cid:11)-(cid:19)(cid:25)(cid:12) 0(cid:14)(cid:10)(cid:26)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)#(cid:23)(cid:13)(cid:14)(cid:18)(cid:19)(cid:20)(cid:21)(cid:22)(cid:20)(cid:23)(cid:19)(cid:10)(cid:14)1(cid:11)(cid:20)/(cid:11)(cid:12)(cid:19)(cid:25)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:20)(cid:19)%(cid:19)(cid:20)(cid:11)#(cid:19)(cid:22)(cid:25)(cid:14)(cid:26)(cid:22)(cid:20)(cid:11)#(cid:13)!(cid:14)(cid:11)#(cid:14) (cid:23)##(cid:10)+22---(cid:29)(cid:31)(cid:19)(cid:20)(cid:21)(cid:22)(cid:20)(cid:23)(cid:19)(cid:10)(cid:29)(cid:20)(cid:22)(cid:31)2(cid:10)(cid:11)(cid:20)/(cid:11)(cid:12)(cid:19)(cid:25)(cid:12) D D1 E H L 1 2 N b b1 b1 e e1 E1 A C 3(cid:25)(cid:19)# (cid:18)(cid:28)44(cid:28)(cid:18)"(cid:24)"(cid:8)(cid:3) (cid:2)(cid:19)(cid:31)(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)(cid:14)4(cid:19)(cid:31)(cid:19)# (cid:18)(cid:28)5 (cid:18)(cid:7)7 5$(cid:31)8(cid:13)(cid:21)(cid:14)(cid:22)%(cid:14)4(cid:13)(cid:11)! 5 (cid:15) 1(cid:19)#(cid:20)(cid:23) (cid:13) (cid:30)(cid:29)((cid:4)(cid:14))(cid:3)* 6$# (cid:19)!(cid:13)(cid:14)4(cid:13)(cid:11)!(cid:14)1(cid:19)#(cid:20)(cid:23) (cid:13)(cid:30) (cid:15)(cid:29)(cid:4)(cid:4)(cid:14))(cid:3)* 6,(cid:13)(cid:21)(cid:11)(cid:26)(cid:26)(cid:14)9(cid:13)(cid:19)(cid:12)(cid:23)# (cid:7) (cid:30)(cid:29)(cid:5)(cid:4) (cid:30)(cid:29)=(cid:4) 6,(cid:13)(cid:21)(cid:11)(cid:26)(cid:26)(cid:14)<(cid:19)!#(cid:23) 9 (cid:15)(cid:29)(cid:6)(cid:5) (cid:5)(cid:29)(cid:16)( (cid:18)(cid:22)(cid:26)!(cid:13)!(cid:14)1(cid:11)(cid:20)/(cid:11)(cid:12)(cid:13)(cid:14)<(cid:19)!#(cid:23)(cid:14)(cid:11)#(cid:14))(cid:11) (cid:13) " (cid:16)(cid:29)(cid:16)(cid:6) (cid:16)(cid:29)=(cid:4) (cid:18)(cid:22)(cid:26)!(cid:13)!(cid:14)1(cid:11)(cid:20)/(cid:11)(cid:12)(cid:13)(cid:14)<(cid:19)!#(cid:23)(cid:14)(cid:11)#(cid:14)(cid:24)(cid:22)(cid:10) "(cid:30) (cid:16)(cid:29)(cid:30)(cid:15) (cid:16)(cid:29)(cid:16)(cid:6) 6,(cid:13)(cid:21)(cid:11)(cid:26)(cid:26)(cid:14)4(cid:13)(cid:25)(cid:12)#(cid:23) (cid:2) (cid:5)(cid:29)(cid:15)(cid:6) (cid:5)(cid:29)=(cid:4) (cid:24)(cid:11)8(cid:14)4(cid:13)(cid:25)(cid:12)#(cid:23) (cid:2)(cid:30) (cid:30)(cid:29)(cid:5)(cid:4) (cid:30)(cid:29):(cid:15) .(cid:22)(cid:22)#(cid:14)4(cid:13)(cid:25)(cid:12)#(cid:23) 4 (cid:4)(cid:29)(cid:17)(cid:6) (cid:30)(cid:29)(cid:16)(cid:4) 4(cid:13)(cid:11)!(cid:14)(cid:24)(cid:23)(cid:19)(cid:20)/(cid:25)(cid:13) (cid:20) (cid:4)(cid:29)(cid:15)( (cid:4)(cid:29)(cid:5)(cid:5) 4(cid:13)(cid:11)!(cid:14)(cid:16)(cid:14)<(cid:19)!#(cid:23) 8 (cid:4)(cid:29)(cid:5)(cid:30) (cid:4)(cid:29)(= 4(cid:13)(cid:11)! (cid:14)(cid:30)(cid:14)?(cid:14)(cid:15)(cid:14)<(cid:19)!#(cid:23) 8(cid:30) (cid:4)(cid:29)(cid:15)= (cid:4)(cid:29)(cid:5): (cid:31)(cid:22)(cid:12)(cid:5)(cid:11) (cid:30)(cid:29) (cid:2)(cid:19)(cid:31)(cid:13)(cid:25) (cid:19)(cid:22)(cid:25) (cid:14)(cid:2)(cid:14)(cid:11)(cid:25)!(cid:14)"(cid:14)!(cid:22)(cid:14)(cid:25)(cid:22)#(cid:14)(cid:19)(cid:25)(cid:20)(cid:26)$!(cid:13)(cid:14)(cid:31)(cid:22)(cid:26)!(cid:14)%(cid:26)(cid:11) (cid:23)(cid:14)(cid:22)(cid:21)(cid:14)(cid:10)(cid:21)(cid:22)#(cid:21)$ (cid:19)(cid:22)(cid:25) (cid:29)(cid:14)(cid:18)(cid:22)(cid:26)!(cid:14)%(cid:26)(cid:11) (cid:23)(cid:14)(cid:22)(cid:21)(cid:14)(cid:10)(cid:21)(cid:22)#(cid:21)$ (cid:19)(cid:22)(cid:25) (cid:14) (cid:23)(cid:11)(cid:26)(cid:26)(cid:14)(cid:25)(cid:22)#(cid:14)(cid:13)&(cid:20)(cid:13)(cid:13)!(cid:14)(cid:4)(cid:29)(cid:30)(cid:16)(cid:17)(cid:14)(cid:31)(cid:31)(cid:14)(cid:10)(cid:13)(cid:21)(cid:14) (cid:19)!(cid:13)(cid:29) (cid:16)(cid:29) (cid:2)(cid:19)(cid:31)(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)(cid:19)(cid:25)(cid:12)(cid:14)(cid:11)(cid:25)!(cid:14)#(cid:22)(cid:26)(cid:13)(cid:21)(cid:11)(cid:25)(cid:20)(cid:19)(cid:25)(cid:12)(cid:14)(cid:10)(cid:13)(cid:21)(cid:14)(cid:7)(cid:3)(cid:18)"(cid:14)’(cid:30)(cid:5)(cid:29)((cid:18)(cid:29) )(cid:3)*+ )(cid:11) (cid:19)(cid:20)(cid:14)(cid:2)(cid:19)(cid:31)(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)(cid:29)(cid:14)(cid:24)(cid:23)(cid:13)(cid:22)(cid:21)(cid:13)#(cid:19)(cid:20)(cid:11)(cid:26)(cid:26)(cid:27)(cid:14)(cid:13)&(cid:11)(cid:20)#(cid:14),(cid:11)(cid:26)$(cid:13)(cid:14) (cid:23)(cid:22)-(cid:25)(cid:14)-(cid:19)#(cid:23)(cid:22)$#(cid:14)#(cid:22)(cid:26)(cid:13)(cid:21)(cid:11)(cid:25)(cid:20)(cid:13) (cid:29) (cid:18)(cid:19)(cid:20)(cid:21)(cid:22)(cid:20)(cid:23)(cid:19)(cid:10)(cid:24)(cid:13)(cid:20)(cid:23)(cid:25)(cid:22)(cid:26)(cid:22)(cid:12)(cid:27)(cid:2)(cid:21)(cid:11)-(cid:19)(cid:25)(cid:12)*(cid:4)(cid:5)(cid:9)(cid:4)(cid:16)(cid:6)) © 2009 Microchip Technology Inc. DS22008D-page 25

MCP1702 (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)(cid:20)(cid:21)(cid:6)(cid:19)(cid:11)(cid:13)(cid:11)(cid:12)(cid:22)(cid:21)(cid:8)(cid:17)(cid:18)(cid:12)(cid:10)(cid:13)(cid:19)(cid:5)(cid:8)(cid:23)(cid:20)(cid:17)(cid:26)(cid:8)(cid:27)(cid:20)(cid:17)(cid:3)$(cid:28)(cid:30) (cid:31)(cid:22)(cid:12)(cid:5) .(cid:22)(cid:21)(cid:14)#(cid:23)(cid:13)(cid:14)(cid:31)(cid:22) #(cid:14)(cid:20)$(cid:21)(cid:21)(cid:13)(cid:25)#(cid:14)(cid:10)(cid:11)(cid:20)/(cid:11)(cid:12)(cid:13)(cid:14)!(cid:21)(cid:11)-(cid:19)(cid:25)(cid:12) 0(cid:14)(cid:10)(cid:26)(cid:13)(cid:11) (cid:13)(cid:14) (cid:13)(cid:13)(cid:14)#(cid:23)(cid:13)(cid:14)(cid:18)(cid:19)(cid:20)(cid:21)(cid:22)(cid:20)(cid:23)(cid:19)(cid:10)(cid:14)1(cid:11)(cid:20)/(cid:11)(cid:12)(cid:19)(cid:25)(cid:12)(cid:14)(cid:3)(cid:10)(cid:13)(cid:20)(cid:19)%(cid:19)(cid:20)(cid:11)#(cid:19)(cid:22)(cid:25)(cid:14)(cid:26)(cid:22)(cid:20)(cid:11)#(cid:13)!(cid:14)(cid:11)#(cid:14) (cid:23)##(cid:10)+22---(cid:29)(cid:31)(cid:19)(cid:20)(cid:21)(cid:22)(cid:20)(cid:23)(cid:19)(cid:10)(cid:29)(cid:20)(cid:22)(cid:31)2(cid:10)(cid:11)(cid:20)/(cid:11)(cid:12)(cid:19)(cid:25)(cid:12) E A 1 N L 1 2 3 b e c D R 3(cid:25)(cid:19)# (cid:28)5*9"(cid:3) (cid:2)(cid:19)(cid:31)(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)(cid:14)4(cid:19)(cid:31)(cid:19)# (cid:18)(cid:28)5 (cid:18)(cid:7)7 5$(cid:31)8(cid:13)(cid:21)(cid:14)(cid:22)%(cid:14)1(cid:19)(cid:25) 5 (cid:15) 1(cid:19)#(cid:20)(cid:23) (cid:13) (cid:29)(cid:4)((cid:4)(cid:14))(cid:3)* )(cid:22)##(cid:22)(cid:31)(cid:14)#(cid:22)(cid:14)1(cid:11)(cid:20)/(cid:11)(cid:12)(cid:13)(cid:14).(cid:26)(cid:11)# (cid:2) (cid:29)(cid:30)(cid:16)( (cid:29)(cid:30)=( 6,(cid:13)(cid:21)(cid:11)(cid:26)(cid:26)(cid:14)<(cid:19)!#(cid:23) " (cid:29)(cid:30)(cid:17)( (cid:29)(cid:16)(cid:4)( 6,(cid:13)(cid:21)(cid:11)(cid:26)(cid:26)(cid:14)4(cid:13)(cid:25)(cid:12)#(cid:23) (cid:7) (cid:29)(cid:30)(cid:17)(cid:4) (cid:29)(cid:16)(cid:30)(cid:4) (cid:18)(cid:22)(cid:26)!(cid:13)!(cid:14)1(cid:11)(cid:20)/(cid:11)(cid:12)(cid:13)(cid:14)(cid:8)(cid:11)!(cid:19)$ (cid:8) (cid:29)(cid:4):(cid:4) (cid:29)(cid:30)(cid:4)( (cid:24)(cid:19)(cid:10)(cid:14)#(cid:22)(cid:14)(cid:3)(cid:13)(cid:11)#(cid:19)(cid:25)(cid:12)(cid:14)1(cid:26)(cid:11)(cid:25)(cid:13) 4 (cid:29)((cid:4)(cid:4) ; 4(cid:13)(cid:11)!(cid:14)(cid:24)(cid:23)(cid:19)(cid:20)/(cid:25)(cid:13) (cid:20) (cid:29)(cid:4)(cid:30)(cid:5) (cid:29)(cid:4)(cid:16)(cid:30) 4(cid:13)(cid:11)!(cid:14)<(cid:19)!#(cid:23) 8 (cid:29)(cid:4)(cid:30)(cid:5) (cid:29)(cid:4)(cid:16)(cid:16) (cid:31)(cid:22)(cid:12)(cid:5)(cid:11) (cid:30)(cid:29) (cid:2)(cid:19)(cid:31)(cid:13)(cid:25) (cid:19)(cid:22)(cid:25) (cid:14)(cid:7)(cid:14)(cid:11)(cid:25)!(cid:14)"(cid:14)!(cid:22)(cid:14)(cid:25)(cid:22)#(cid:14)(cid:19)(cid:25)(cid:20)(cid:26)$!(cid:13)(cid:14)(cid:31)(cid:22)(cid:26)!(cid:14)%(cid:26)(cid:11) (cid:23)(cid:14)(cid:22)(cid:21)(cid:14)(cid:10)(cid:21)(cid:22)#(cid:21)$ (cid:19)(cid:22)(cid:25) (cid:29)(cid:14)(cid:18)(cid:22)(cid:26)!(cid:14)%(cid:26)(cid:11) (cid:23)(cid:14)(cid:22)(cid:21)(cid:14)(cid:10)(cid:21)(cid:22)#(cid:21)$ (cid:19)(cid:22)(cid:25) (cid:14) (cid:23)(cid:11)(cid:26)(cid:26)(cid:14)(cid:25)(cid:22)#(cid:14)(cid:13)&(cid:20)(cid:13)(cid:13)!(cid:14)(cid:29)(cid:4)(cid:4)(@(cid:14)(cid:10)(cid:13)(cid:21)(cid:14) (cid:19)!(cid:13)(cid:29) (cid:16)(cid:29) (cid:2)(cid:19)(cid:31)(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)(cid:19)(cid:25)(cid:12)(cid:14)(cid:11)(cid:25)!(cid:14)#(cid:22)(cid:26)(cid:13)(cid:21)(cid:11)(cid:25)(cid:20)(cid:19)(cid:25)(cid:12)(cid:14)(cid:10)(cid:13)(cid:21)(cid:14)(cid:7)(cid:3)(cid:18)"(cid:14)’(cid:30)(cid:5)(cid:29)((cid:18)(cid:29) )(cid:3)*+ )(cid:11) (cid:19)(cid:20)(cid:14)(cid:2)(cid:19)(cid:31)(cid:13)(cid:25) (cid:19)(cid:22)(cid:25)(cid:29)(cid:14)(cid:24)(cid:23)(cid:13)(cid:22)(cid:21)(cid:13)#(cid:19)(cid:20)(cid:11)(cid:26)(cid:26)(cid:27)(cid:14)(cid:13)&(cid:11)(cid:20)#(cid:14),(cid:11)(cid:26)$(cid:13)(cid:14) (cid:23)(cid:22)-(cid:25)(cid:14)-(cid:19)#(cid:23)(cid:22)$#(cid:14)#(cid:22)(cid:26)(cid:13)(cid:21)(cid:11)(cid:25)(cid:20)(cid:13) (cid:29) (cid:18)(cid:19)(cid:20)(cid:21)(cid:22)(cid:20)(cid:23)(cid:19)(cid:10)(cid:24)(cid:13)(cid:20)(cid:23)(cid:25)(cid:22)(cid:26)(cid:22)(cid:12)(cid:27)(cid:2)(cid:21)(cid:11)-(cid:19)(cid:25)(cid:12)*(cid:4)(cid:5)(cid:9)(cid:30)(cid:4)(cid:30)) DS22008D-page 26 © 2009 Microchip Technology Inc.

MCP1702 APPENDIX A: REVISION HISTORY Revision D (June 2009) The following is the list of modifications: 1. DC Characteristics table: Updated the V OUT Temperature Coefficient’s maximum value. 2. Section7.0 “Packaging Information”: Updated package outline drawings. Revision C (November 2008) The following is the list of modifications: 1. DC Characteristics table: Added row to Output Voltage Regulation for 1% custom part. 2. Temperature Specification table: Numerous changes to table. 3. Added Note 2 to Temperature Specifications table. 4. Section5.0 “Functional Description”, Section5.2 “Output”: Added second paragraph. 5. Section7.0 “Packaging Information”: Added 1% custom part information to this section. Also, updated package outline drawings. 6. Product Identification System: Added 1% custom part information to this page. Revision B (May 2007) The following is the list of modifications: 1. All Pages: Corrected minor errors in document. 2. Page 4: Added junction-to-case information to Temperature Specifications table. 3. Page 16: Updated Package Outline Drawings in Section7.0 “Packaging Information”. 4. Page 21: Updated Revison History. 5. Page 23: Corrected examples in Product Identification System. Revision A (September 2006) • Original Release of this Document. © 2009 Microchip Technology Inc. DS22008D-page 27

MCP1702 NOTES: DS22008D-page 28 © 2009 Microchip Technology Inc.

MCP1702 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. X- XX X X X/ XX Examples: a) MCP1702T-1202E/CB: 1.2V LDO Positive Device Tape Output Feature Tolerance Temp. Package Voltage Regulator, and Reel Voltage Code SOT-23A-3 pkg. b) MCP1702T-1802E/MB: 1.8V LDO Positive Voltage Regulator, Device: MCP1702: 2µA Low Dropout Positive Voltage Regulator SOT-89-3 pkg. c) MCP1702T-2502E/CB: 2.5V LDO Positive Tape and Reel: T = Tape and Reel Voltage Regulator, SOT-23A-3 pkg. Output Voltage *: 12 = 1.2V “Standard” d) MCP1702T-3002E/CB: 3.0V LDO Positive 15 = 1.5V “Standard” Voltage Regulator, 18 = 1.8V “Standard” SOT-23A-3 pkg. 25 = 2.5V “Standard” 28 = 2.8V “Standard” e) MCP1702T-3002E/MB: 3.0V LDO Positive 30 = 3.0V “Standard” Voltage Regulator, 33 = 3.3V “Standard” SOT-89-3 pkg. 40 = 4.0V “Standard” f) MCP1702T-3302E/CB: 3.3V LDO Positive 50 = 5.0V “Standard” *Contact factory for other output voltage options. Voltage Regulator, SOT-23A-3 pkg. g) MCP1702T-3302E/MB: 3.3V LDO Positive Extra Feature Code: 0 = Fixed Voltage Regulator, SOT-89-3 pkg. Tolerance: 2 = 2.0% (Standard) h) MCP1702T-4002E/CB: 4.0V LDO Positive 1 = 1.0% (Custom) Voltage Regulator, SOT-23A-3 pkg. Temperature: E = -40°C to +125°C i) MCP1702-5002E/TO: 5.0V LDO Positive Voltage Regulator, TO-92 pkg. Package Type: CB = Plastic Small Outline Transistor (SOT-23A) (equivalent to EIAJ SC-59), 3-lead, j) MCP1702T-5002E/CB: 5.0V LDO Positive MB = Plastic Small Outline Transistor Header, (SOT-89), Voltage Regulator, 3-lead SOT-23A-3 pkg. TO = Plastic Transistor Outline (TO-92), 3-lead k) MCP1702T-5002E/MB: 5.0V LDO Positive Voltage Regulator, SOT-89-3 pkg. © 2009 Microchip Technology Inc. DS22008D-page 29

MCP1702 NOTES: DS22008D-page 30 © 2009 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device Trademarks applications and the like is provided only for your convenience The Microchip name and logo, the Microchip logo, dsPIC, and may be superseded by updates. It is your responsibility to KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, ensure that your application meets with your specifications. rfPIC and UNI/O are registered trademarks of Microchip MICROCHIP MAKES NO REPRESENTATIONS OR Technology Incorporated in the U.S.A. and other countries. WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, OTHERWISE, RELATED TO THE INFORMATION, MXDEV, MXLAB, SEEVAL and The Embedded Control INCLUDING BUT NOT LIMITED TO ITS CONDITION, Solutions Company are registered trademarks of Microchip QUALITY, PERFORMANCE, MERCHANTABILITY OR Technology Incorporated in the U.S.A. FITNESS FOR PURPOSE. Microchip disclaims all liability Analog-for-the-Digital Age, Application Maestro, CodeGuard, arising from this information and its use. Use of Microchip dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, devices in life support and/or safety applications is entirely at ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial the buyer’s risk, and the buyer agrees to defend, indemnify and Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB hold harmless Microchip from any and all damages, claims, Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP, suits, or expenses resulting from such use. No licenses are Omniscient Code Generation, PICC, PICC-18, PICkit, conveyed, implicitly or otherwise, under any Microchip PICDEM, PICDEM.net, PICtail, PIC32 logo, REAL ICE, rfLAB, intellectual property rights. Select Mode, Total Endurance, TSHARC, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. © 2009 Microchip Technology Inc. DS22008D-page 31

WORLDWIDE SALES AND SERVICE AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office Asia Pacific Office India - Bangalore Austria - Wels 2355 West Chandler Blvd. Suites 3707-14, 37th Floor Tel: 91-80-3090-4444 Tel: 43-7242-2244-39 Chandler, AZ 85224-6199 Tower 6, The Gateway Fax: 91-80-3090-4080 Fax: 43-7242-2244-393 Tel: 480-792-7200 Harbour City, Kowloon India - New Delhi Denmark - Copenhagen Fax: 480-792-7277 Hong Kong Tel: 91-11-4160-8631 Tel: 45-4450-2828 Technical Support: Tel: 852-2401-1200 Fax: 91-11-4160-8632 Fax: 45-4485-2829 http://support.microchip.com Web Address: Fax: 852-2401-3431 India - Pune France - Paris www.microchip.com Australia - Sydney Tel: 91-20-2566-1512 Tel: 33-1-69-53-63-20 Tel: 61-2-9868-6733 Fax: 33-1-69-30-90-79 Fax: 91-20-2566-1513 Atlanta Fax: 61-2-9868-6755 Germany - Munich Duluth, GA Japan - Yokohama China - Beijing Tel: 49-89-627-144-0 Tel: 678-957-9614 Tel: 81-45-471- 6166 Tel: 86-10-8528-2100 Fax: 49-89-627-144-44 Fax: 678-957-1455 Fax: 81-45-471-6122 Fax: 86-10-8528-2104 Italy - Milan Boston Korea - Daegu Westborough, MA China - Chengdu Tel: 82-53-744-4301 Tel: 39-0331-742611 Tel: 774-760-0087 Tel: 86-28-8665-5511 Fax: 82-53-744-4302 Fax: 39-0331-466781 Fax: 774-760-0088 Fax: 86-28-8665-7889 Korea - Seoul Netherlands - Drunen Chicago China - Hong Kong SAR Tel: 82-2-554-7200 Tel: 31-416-690399 Itasca, IL Tel: 852-2401-1200 Fax: 82-2-558-5932 or Fax: 31-416-690340 Tel: 630-285-0071 Fax: 852-2401-3431 82-2-558-5934 Spain - Madrid Fax: 630-285-0075 China - Nanjing Malaysia - Kuala Lumpur Tel: 34-91-708-08-90 Cleveland Tel: 86-25-8473-2460 Tel: 60-3-6201-9857 Fax: 34-91-708-08-91 Independence, OH Fax: 86-25-8473-2470 Fax: 60-3-6201-9859 UK - Wokingham Tel: 216-447-0464 China - Qingdao Malaysia - Penang Tel: 44-118-921-5869 Fax: 216-447-0643 Tel: 86-532-8502-7355 Tel: 60-4-227-8870 Fax: 44-118-921-5820 Dallas Fax: 86-532-8502-7205 Fax: 60-4-227-4068 Addison, TX China - Shanghai Philippines - Manila Tel: 972-818-7423 Tel: 86-21-5407-5533 Tel: 63-2-634-9065 Fax: 972-818-2924 Fax: 86-21-5407-5066 Fax: 63-2-634-9069 Detroit China - Shenyang Singapore Farmington Hills, MI Tel: 86-24-2334-2829 Tel: 65-6334-8870 Tel: 248-538-2250 Fax: 86-24-2334-2393 Fax: 65-6334-8850 Fax: 248-538-2260 China - Shenzhen Taiwan - Hsin Chu Kokomo Tel: 86-755-8203-2660 Tel: 886-3-6578-300 Kokomo, IN Fax: 86-755-8203-1760 Fax: 886-3-6578-370 Tel: 765-864-8360 Fax: 765-864-8387 China - Wuhan Taiwan - Kaohsiung Tel: 86-27-5980-5300 Tel: 886-7-536-4818 Los Angeles Fax: 86-27-5980-5118 Fax: 886-7-536-4803 Mission Viejo, CA Tel: 949-462-9523 China - Xiamen Taiwan - Taipei Fax: 949-462-9608 Tel: 86-592-2388138 Tel: 886-2-2500-6610 Fax: 86-592-2388130 Fax: 886-2-2508-0102 Santa Clara Santa Clara, CA China - Xian Thailand - Bangkok Tel: 408-961-6444 Tel: 86-29-8833-7252 Tel: 66-2-694-1351 Fax: 408-961-6445 Fax: 86-29-8833-7256 Fax: 66-2-694-1350 Toronto China - Zhuhai Mississauga, Ontario, Tel: 86-756-3210040 Canada Fax: 86-756-3210049 Tel: 905-673-0699 Fax: 905-673-6509 03/26/09 DS22008D-page 32 © 2009 Microchip Technology Inc.

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: M icrochip: MCP1702-1502E/TO MCP1702-2802E/TO MCP1702-4002E/TO MCP1702T-1202E/MB MCP1702T-1502E/CB MCP1702T-1502E/MB MCP1702T-2802E/CB MCP1702T-2802E/MB MCP1702T-4002E/CB MCP1702T-4002E/MB MCP1703T-2802E/DB MCP1703T-2802E/MB MCP1702-1202E/TO MCP1702T-1202E/CB MCP1703T-4002E/MC